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Abstract

This paper proposes an approach to leverage upon existing ontologies in order to automate the annotation of time
series medical data. The annotation is achieved by an abductive reasoner using parsimonious covering theorem in
order to determine the best explanation or annotation for specific user defined events in the data. The novelty of this
approach resides in part by the system’s flexibility in how events are defined by users and later detected by the
system. This is achieved via the use of different ontologies which find relations between medical, lexical and
numerical concepts. A second contribution resides in the application of an abductive reasoner which uses the online
and existing ontologies to provide annotations. The proposed method is evaluated on datasets collected from ICU
patients and the generated annotations are compared against those given by medical experts.
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Introduction
Medical monitoring of patients is becoming increasingly

device supported and thus large volumes of high fre-

quency data are generated from sensors that monitor

physiological parameters. While the use of such technolo-

gies enables a continuous monitoring, the complexity and

amount of data creates a challenge for the medical staff

to provide interpretations. Furthermore, such interpreta-

tions may be complex as sensor data is inherently uncer-

tain, there may exist interdependencies between physical

parameters, and the data is voluminous and multivariate

[1,2].

Automated analysis and mining techniques have the

potential to support the medical staff in the interpreta-

tion of the data. For time series data analysis this implies

a need for proper annotation of the signals with domain

dependent knowledge in order to facilitate decision mak-

ing and eventual diagnosis. The output generated by the

algorithms should ideally provide information that is com-

patible with the knowledge and the terms used by health

practitioners. In data-driven approaches [3] the labelling

of data is limited to those pre-defined by the engineers
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implementing the algorithms. On the other hand, knowl-

edge driven approaches offer the possibility to more

explicitly model the relations between higher level con-

cepts and data. However, these techniques e.g. rule based

methods, also require significant manual effort to encode

domain knowledge.

At the same time, the amount of structured knowledge

in the medical domain is rapidly increasing due in part

by the Linked Data model. This model which is based on

the RDF model [4] allows bodies of knowledge that are

independently structured to be directly interlinked with-

out any further customization efforts. For example,NCBO

BioPortal [5] as a repository of biomedical ontologies con-

tains more than 300 ontologies holding about 5 millions

classes that cover medical concepts including the causes

and symptoms of diseases. The rise of large and shared

machine processable knowledge repositories provides an

opportunity to automate the utilisation of information.

In this paper, we propose a system which is able to

receive as input time series signals and generate as out-

put an annotation of these signals. Domain knowledge is

inputted into the system in a flexible manner allowing the

practitioners to express freely the terms and thresholds

that are relevant for a particular physiological parame-

ter i.e. an event. To enable flexibility, these expressions

are connected to a number of ontologies containing rela-

tions between concepts expressed by the practitioner
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and observations measured by the various sensors. The

ontologies used are the Symptom ontology as one of

the ontologies in BioPortal [5,6], WordNet [7] and the

Semantic Sensor Network (SSN) ontologya. The symp-

tom ontology provides the medical terms and definitions

defined as concepts in a hierarchy of subsumption rela-

tions which are used in the annotations of the sensor

data. The WordNet ontology which consists of a lexical

database of the English language enables finding relations

between the concepts in BioPortal and those defined by

the practitioner. The SSN ontology is used to link the spe-

cific sensors to physiological parameters, and provide a

standardized representation of sensors, observations and

related concepts.

The reasoning process used in this paper which finds the

relations contained in the different ontologies, is abduc-

tive. Abductive reasoning is chosen as it is non-monotonic

and thus differs from deductive reasoning in that a logi-

cally certain conclusion is not guaranteed. Rather, abduc-

tive reasoning infers the best possible explanation given

a set of observations. Techniques such as Parsimonious

Covering Theory (PCT) or diagnostic reasoners which are

abductive are often used in the medical domain [8] as

they promote explicitation, and can contend with uncer-

tainty by assessing the likelihood that a specific hypothesis

entails a given conclusion [9].

This paper whose main focus is more on the reason-

ing method and its scalability and less on the auxiliary

techniques such as Natural Language Processing (NLP)

used, evaluates the use of existing ontologies and abduc-

tive reasoning to annotate sensor data from ICU patients.

One benchmark dataset provided for use in 1994 AI in

Medicine symposium submissions [10] and one dataset

collected at a local hospital (Section ‘DataSets’) are used

in the experimental analysis. The annotations generated

by the proposed approach are compared against the anno-

tations made by experts. Also, the complexity of the

reasoning method is evaluated.

The paper begins with a description of related works

in Section ‘Related work’. The Linked Data model and

Abductive Reasoning are then shortly introduced in

Section ‘Background’. We explain the details of the frame-

work in Section ‘Method’ and then discuss the results

of the reasoner and evaluate the framework’s output in

Section ‘Results and discussion’. The paper ends with the

conclusion and discussion in Section ‘Conclusion’.

Related work
In the literature, research whose goal is to use knowl-

edge driven methods to annotate time series data is found

in various fields in artificial intelligence that include sen-

sor data enrichment [11,12], data stream annotation [13],

symbol grounding [14,15], and semantic perception [16].

Such works share the common feature where symbolic

knowledge is integrated to the numeric data processing.

Often high level symbolic knowledge is manually encoded

based on the requirements of the problem rather than

(re)using existing knowledge already modelled in e.g.,

ontologies (RDF graph model). For example, [16] and

[17] have proposed reasoning techniques based on abduc-

tive reasoning for data stream annotation using manually

encoded knowledge. These works including [18] imple-

mented in OWL use PCT for inferring the best possible

explanation. However, the reasoner is restricted to gener-

ate explanations with only one cause. The work presented

in [19] implements an automated reasoning which is sim-

ilar to our work in the sense that the knowledge base

consists of a RDF/OWL ontology. However, in our work,

we propose an automated reasoning over external ontolo-

gies modelled by different experts. Furthermore, the PCT

based reasoner in our work overcomes the constraint of

providing an explanation containing more than one cause

for the observations. This approach builds upon previous

work [20] and has formalized the reasoning process and

extended the experimental evaluation.

Background
In this section we introduce preliminary features of the

Linked Data model and abductive reasoning.

Linked data

Exploiting human knowledge for commonsense and auto-

mated reasoning has always been a challenge. The fast-

growing Webb which has traditionally been populated

with HTML documents is known as the biggest reposi-

tory of human knowledge in different domains. However,

despite the fact that contents of this repository are acces-

sible in the form of pages, due to the lack of semantic

interconnection among them, it is impossible for an arti-

ficial agent to retrieve a specific concept. Therefore, the

first step towards automatically using the content of Web

pages is structuring these contents so that they become

interlinked and can be queried in different levels of

abstraction.

Linked data which refers to a set of structured data,

namely global data space, has become a paradigm pro-

viding the transition from document oriented Web into a

web of interlinked data [21]. According to this paradigm,

unstructured information represented in web pages is

mapped into the RDF graph which is understood as a

set of subject-predicate-object triples, T = (S ,P ,O) [4].

Given U as a set of dereferenceable URIsc and L as a set

of literals such as numbers or strings, the aforementioned

RDF triple is defined as T ∈ U × U × (U ∪ L). In other

words, all subjects and predicates are URIs and objects

are either a URI or a literal value. Similarly, stating the set

Q = (V ∪ U) × (V ∪ U) × (V ∪ U ∪ L), where V as a set

of variables is ranging over (U ∪ L), we can redefine the
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triple T as an element of the query set Q. More specifi-

cally, instead of feeding search engines with search terms,

it is possible to fetch the desired set of triples by writing

a query which is equivalent to the finite set of triples Q.

Eventually, an answer for this query is simply achieved by

binding variables of the query triples into (U ∪ L).

Different languages such as RDFS and OWL comply-

ing with the Linked Data model, provide different levels of

expressivity. Regardless of the implementation language,

however, it is the uniformity and the integrability features

of the Linked Data model that make the integration of

different linked datasets straightforward.

However, despite its unified structure, there are number

of issues with linked data that pose a challenge for auto-

mated reasoning [22]. For instance, in order to query large

size linked datad, the query process needs to deal with the

problem of localizing relevant parts in linked data.

In this paper, a biomedical repository called BioPor-

tal [5] is used. Using a similar data model as the Linked

Data model, BioPortal contains more than 300 ontologies

ranging in subjects from anatomy, phenotype descrip-

tion, to health [6]. Further details about dealing with

the aforementioned issue of size are discussed in Section

‘Hypothesis extraction’.

Abductive reasoning with PCT

Reasoning processes are categorized into two main

groups, monotonic and non-monotonic reasoning.

Monotonic reasoning including deductive reasoning

implies that inferring a new piece of knowledge does

not change the set of already known information. Non-

monotonic reasoning, on the other hand, states that

adding more knowledge can invalidate current conclu-

sions. In diagnostic medical procedure where symptoms

of a disease gradually emerge, monotonic reasoning due

to the permanence of its results, are less favourable. Since

all the symptoms of a disease do not occur at a same time,

the reasoner needs to be able to deal with incomplete data

throughout the reasoning process. Incompleteness may

also extend to the high level models e.g. ontologies which

may also be dynamically changing. A non-monotonic

reasoning process whose set of answers can later be

updated is therefore useful in domains such as medicine

and industrial diagnosis process [23].

There are different models of non-monotonic reason-

ing such as default reasoning, autoepistemic logic, belief

revision and abductive reasoning [23]. In this work, we

selected abductive reasoning with the ability of deriv-

ing the best (most likely) explanations out of known

facts. Abduction as the backbone of commonsense rea-

soning and has increasingly been applied in diagnosis

systems (medical domains) [24]. Diagnostic reasoning in

particular, is based on abductive logic and represents

the knowledge within a network of causal associations.

The “hypothesis-and-test” approach of diagnosis reason-

ing shows its non-monotonic behaviour where the set of

plausible causes of the observed behaviour can change

whenever the observation set extends. Parsimonious Cov-

ering Theory (PCT) is a model of diagnostic reasoning [8]

used in this work.

PCT formalization is based on set theory and is defined

within a quadruple T = (O,M,H, E), where O is the set

of all observations which are either qualitative or quantita-

tive objects;M states the set of all manifestations (events)

detected over observations; subsequently, H contains all

hypotheses defined as possible causes that are in rela-

tions with expected events. Finally, E is the solution set

indicating inferred explanations for items of M. More

specifically, the inference process is about drawing E ⊆ H

as an explanation for elements of M ⊆ O. However, the

formalization is not complete in that it does not formal-

ize the “best” explanation. For this, PCT suggests various

criteria to select the final result set E . Two widely used

criteria are:

• Set covering criterion is defined as a property of a

function f which is assumed to be a mapping from a

subset ofH (set of all hypotheses) to a subset ofM

(set of manifestations) so thatX is a possible cause for

f (X ). An accepted conclusion w.r.t the set-covering

criterion is set X ⊆ H such that f (X ) = M.

• Minimum cardinality criterion is concerned about

the cardinality of the solution set. According to this

criterion,R as a subset ofH is chosen as the solution

set if for all other “covering” subsets ofH, namely S ,

|R| ≤ |S|.

As previously mentioned, PCT is based on set the-

ory. The eventual explanation is a subset of the of the

Hypothesis set for which aforementioned criteria hold.

Selecting a subset poses an issue of the time complex-

ity. Consequently, there are a number of techniques that

address computational factors for making abductive rea-

soning NP-Hard [25]. For instance, applying constraints

that reduce the composite hypothesis set size as well as

ruling out criteria-violating candidates (and their super

classes) from the power set, can reduce the time complex-

ity. Techniques used in this work are further discussed in

Section ‘Reasoner’.

Method
The reasoner depicted in Figure 1 receives two primary

inputs, Hypothesis (H), andManifestation (M) which are

separately provided by the HypothesisExtractor and the

ManifestationExtractor processes, respectively. The out-

put of the reasoner is called Explanation (E). Each com-

ponent feeding the reasoner contains several modules that



Alirezaie and Loutfi Journal of Biomedical Semantics 2014, 5:35 Page 4 of 16

http://www.jbiomedsem.com/content/5/1/35

Figure 1 Sensor data annotation framework based on abductive reasoning.

collaborate with ontologies including the SSN ontology

and theWordNet ontology.

Considering the PCT quadruple T = (O,M,H, E)

explained in Section ‘Abductive reasoning with PCT’,

we then follow the reasoning process of the framework

by mapping the main elements of PCT into outputs of

different components.

Configuration

The framework illustrated in Figure 1 is based on a config-

uration file which is filled by the expert of the domain. The

configuration file contains details of (possible) behaviours

of signals in which the expert is interested to monitor. To

illustrate the method in the paper, we will use a running

example of configuration files shown in Figure 2, 3 and

4. For instance, Figure 2 is about a situation where the

expert is interested to observe the “heart rate”, “amount

of oxygen saturation” and “blood pressure”. There is also

a section in the configuration file in which the expert,

by setting a range of values, can specify a significant

behaviour for physiological terms.

The SSN ontology is populated only with the contents

of the configuration file. There is an equivalent class or

property in SSN, for each item (key/value pair) mentioned

in the configuration file. The value of a key in the file

is used as a name of a class in SSN. Given FeatureOfIn-

terest and Property as concepts defined in SSN and the

function valueOf(key) which returns the value of a key in

the configuration file, the SSN ontology is populated as

follows:

∀ F , ∀ P , ∀ B (F = valueOf (feature_of _interest),

P = valueOf (property),

B = valueOf (Behaviour),

min = minValueOf (Behaviour),

max = maxValueOf (Behaviour)

∴

B_P ⊑ P ⊑ ssn:Property

F ⊑ ssn:FeatureOfInterest ⊓ (∃ssn:hasProperty. B_P)

F_P_Sensor ⊑ ssn:Sensor ⊓ (∃ssn:observes. P))

B_P_SensorOutput ⊑ ssn:SensorOutput⊓

(∃ssn:isProducedBy. F_P_Sensor)⊓

(∀ssn:hasValue. B_P_Value)

B_P_Observation ⊑ ssn:Observation⊓

(∃ssn:observationResult. B_P_SensorOutput)⊓

(∃ssn:FeatureOfInterest.F)

B_P_Value ⊑ ssn:ObservationValue

B_P_MinValue ∈ B_P_Value

B_P_MaxValue ∈ B_P_Value

(B_P_MinValue,min) ∈ hasQuantityValue

(B_P_MaxValue,max) ∈ hasQuantityValue
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Figure 2 Configuration file sample I (related to an infant patient).

For example, the SSN ontology populated with the con-

tent of Figure 2 will contain the following axioms:

Slow_Rate ⊑ Rate ⊑ ssn:Property

Heart ⊑ ssn:FeatureOfInterest ⊓ (∃ssn:hasProperty. Slow_Rate)

Heart_Rate_Sensor ⊑ ssn:Sensor ⊓ (∃ssn:observes. Rate))

Slow_Rate_SensorOutput ⊑ ssn:SensorOutput⊓

(∃ssn:isProducedBy. Heart_Rate_Sensor)⊓

(∀ssn:hasValue. Slow_Rate_Value)

Slow_Rate_Observation ⊑ ssn:Observation⊓

(∃ssn:observationResult. Slow_Rate_SensorOutput⊓

(∃ssn:FeatureOfInterest.Heart)

Slow_Rate_Value ⊑ ssn:ObservationValue

Slow_Rate_MinValue ∈ Slow_Rate_Value

Slow_Rate_MaxValue ∈ Slow_Rate_Value

(Slow_Rate_MinValue, 0) ∈ hasQuantityValue

(Slow_Rate_MaxValue, 157) ∈ hasQuantityValue

The configuration file allows expert to enter values

which denote either a normal or an abnormal behaviour

in signals. For example, in Figure 2 and 4 we can find

the definition of abnormal and normal behaviours, respec-

tively. In the experimental validation in Section ‘Results’,

we show that the eventual explanations are not literally

dependent on the content of the file. More specifically, the

signal explanation process results in same interpretation

for variations of terms used by the expert.

Hypothesis extraction

According to PCT, the Hypothesis set is defined as a set

of facts that represent relations between expected events

and their causes. The SemanticAnalysermodule (Figure 1)

initializes the process resulting in the Hypothesis set. This

module collaborating with public ontologies is responsible

for retrieving a hierarchy of related concepts formatted in

RDF/OWL.

Before going to the details of the Hypothesis Extraction,

we first explain how we deal with localizing the relevant

parts in Bioportal. The goal of the system is annotating

medical signals that contain abnormal behaviours, (i.e.,

symptoms of diseases). SemanticAnalyser queries for the

term “symptom” in the NCBO BioPortal. The results of

this query is 21 records out of which 15 items belong to the

Symptom ontology, as a sub ontology in BioPortal. There-

fore, due to its high rank, the Symptom ontology is chosen

as a reference ontology.

The symptom ontology illustrated in Figure 5, has been

modelled to capture signs and symptoms of diseases and

provides well-categorized medical symptoms in terms of

body part names. Due to its structure, the symptom ontol-

ogy is only used for retrieving the hierarchy of symptom

concepts modelled based on subsumption relations. Run-

ning the following SPARQL querye, the SemanticAnalyser

module retrieves a hierarchy of symptoms in terms of

subclasses of the “symptom” class:

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?sub ?labSub

FROM <http://bioportal.bioontology.org/ontologies/SYMP>

WHERE {

?super a owl:Class .

?super rdfs:label ?label .

?sub rdfs:subClassOf ?super.

?sub rdfs:label ?labSub.

FILTER regex(?label, "symptom")

}

Figure 3 Configuration file sample II (related to the same infant in Figure 2).
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Figure 4 Configuration file sample III (related to an adult patient).

SemanticAnalyser, then searches through the set of

symptom classes in order to select relevant symptoms.

The relevant symptoms are those ones that are related

to parts of the body (“feature_of_interest”) observed by

sensors e.g., “heart” and “blood” in case of the config-

uration file in Figure 2, or “heart”, “blood” and “res-

piratory” system in case of the configuration file in

Figure 4. In order to find the relevant symptoms, each

symptom type passes the two phases of tokenizingf and

stemmingg. As shown in Figure 1, the SemanticAnal-

yser module uses the WordNet ontology that contains

synonym/pertainymh set of words and acquires the syn-

onym/pertainym set of each token of a symptom type.

Consequently, each symptom type (split into its tokens)

is assigned with multiple synonym/pertainym lists corre-

sponding to its tokens. The number of times that each

physiological parameter (the “feature_of_interest” value)

appears in the synonym set of each token is counted.

Finally, a symptom type whose tokens have the highest

total count is chosen as the top candidate which has

the highest similarity to the “feature_of_interest”. Table 1

shows all categorized symptom types along with the body

parts’ name for different configuration files. For exam-

ple, the “cardiovascular system symptoms” is chosen due

to its highest relevance to the “heart” as a “feature_of_

interest”.

The final Causes set shown in Figure 1 is the union of

all subclasses of the candidate symptom types returned

per each “feature_of_interest”. In Table 2, cause items as

the output of the SemanticAnalysermodule are listed. The

first 62 items and the total 89 items are considered as

causes related to configurations in Figure 2 and Figure 4,

respectively. As we see in Table 2, each cause can be a sin-

gle term (e.g., hypoxemia) or a combination of terms (e.g.,

atrial fibrillation). The definition of each single cause

term is retrieved from either the Symptom ontology or the

WordNet ontology (in case the former returns nothing) to

be replaced with the cause item.

Figure 5 An excerpt of the symptom ontology: cardiovascular, hemic and respiratory symptoms.
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Algorithm 1 Similarity Matrix

Require: Causesn×1, BehaviourListm×1, Sn×m = 0

for i ← 1 to n do

tree ← getGrammaticalTree(Cause[i])

phrases ← getAllPhrases(tree)

if size(phrases) > 0 then

for k ← 1 to size(phrases) do

JJ ← phrases[ k] .getAdjective();

N1 ← phrases[ k] .getNoun1();

N2 ← phrases[ k] .getNoun2();

for j ← 1 to m do

if BehaviourList[j].getBehaviour() ∈ SynSet(JJ)

and BehaviourList[j].getProperty() ∈ SynSet(N1)

and BehaviourList[j].getFeatureOfInterest() ∈

SynSet(N2) then

S[i, j] ← 1

end if

end for

end for

end if

end for

return S {//Similarity Matrix}

The Hypothesis set is generated by the SignalMap-

per module. The SignalMapper takes as input the set

of causes. It selects a subset of these causes based on

parameters mentioned in the configuration file. Specif-

ically it looks at the terms used to define behaviours.

For example, possible behaviours for a specific sig-

nal are defined as “fast”, “slow” and “irregular”. The

SignalMapper concatenates the values of behaviour, fea-

ture of interest and property to generate a list of phrases

such as “irregular heart rate”, “low oxygen saturation” (see

Table 3). For those configurations where the expert states

the normal behaviour, e.g., Figure 4, the term “not” is

added in front of the concatenated phrase, e.g. “not nor-

mal respiratory rate”. For phrases preceded by “not” an

antonym set is retrieved fromWordNet.

As the next step towards generating the Hypothesis

set, the SignalMapper process builds an n × m similar-

ity matrix S, where n and m are the number of cause

items and the number of possible behaviours, respec-

tively. The similarity matrix S which is initialized to zero,

will hold the similarity values between elements of these

two lists (Algorithm 1). For calculating the similarity val-

ues, the cause items need to be grammatically analysedi.

For instance, for each cause item, grammatical roles of

its terms such as noun (“NN”) or adjective (“JJ”) are

identified. All causes will therefore have their own gram-

matical tree by running the grammatical analysing process

over rows of the matrix. In order to set the value of ele-

ment si,j of matrix S, the process first needs to generate

the grammatical structure tree of the ith cause and then

to check whether this cause is related to an behaviour j.

For this, all adjectives (“JJ”) with their own substantives

(“NN”) of the ith cause item are retrieved. Each substantive

(called noun1) is also checked to see if it is related (e.g.,

via a preposition or a connective) to another noun (called

noun2). If such a combination is found in a cause item, at

the next step, the synonym/pertainym sets of the adjec-

tive, noun1 and noun2 are also retrieved to be checked

against the column side items. The value of si,j increases if

the following three conditions are met: (SynSet(K) refers

to the synonym/pertainym set of term K, cj refers to the

jth column and ri refers to the ith row)

Behaviour(cj) ∈ SynSet(Adjective(ri))

Property(cj) ∈ SynSet(Noun1(ri))

FeatureOfInterest(cj) ∈ SynSet(Noun2(ri))

Table 1 List of symptoms retrieved from the symptom ontology

Related to Figure 2 Related to Figure 4

Symptom category Heart Blood Heart Blood Respiratory

Abdominal symptoms 0 0 0 0 0

Head & neck symptoms 0 0 0 0 0

Musculoskeletal system symptoms 0 0 0 0 0

Neurological & physiological symptoms 0 0 0 0 0

Reproductive system symptoms 0 0 0 0 0

Skin & integumentary tissue symptoms 0 0 0 0 0

Digestive system symptoms 0 0 0 0 0

Cardiovascular system symptoms 1 0 1 0 0

Hemic system symptoms 0 1 0 1 0

Nervous system symptoms 0 0 0 0 0

Nutrition, metabolism symptoms 0 0 0 0 0

Respiratory system & chest symptoms 0 0 0 0 1

Urinary system symptoms 0 0 0 0 0
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Table 2 List of causes for three different symptom types

# Cause Symptom group Body part

1 Arrhythmia Cardiovascular System

Heart
2 Atrial fibrillation Cardiovascular System

. . . . . . . . .

30 Postphlebitic ulcer Cardiovascular System

31 Hypoxemia Hemic System

Blood. . . . . . . . .

62 Cyanosis Hemic System

63 Tachypnea Respiratory System

Respiratory. . . . . . . . .

89 Dyspnea Respiratory System

Figures 6 and 7 illustrate two samples of a grammatical

structure tree for two causes and their relations with two

behaviours. The matrix element referring to “arrhythmia”

and “irregular heart rate” will be set to 1 due to the match-

ing terms found between them (Figure 6). Likewise, after

running the process of Algorithm 1, the matrix element

referring to “tachypnea” and “not normal respiratory rate”

is set to 1 (Figure 7).

After calculating the elements’ value of the matrix S, the

SignalMapper chooses non zero elements showing a rela-

tion between causes and behaviours. The Hypothesis set

(H) as the first input of the reasoner (Figure 1) is cre-

ated by pairs of row-column items of non-zero elements in

the matrix S. Table 4(a) and Table 4(b) partially show two

retrieved Hypothesis sets based on the two configurations

in Figure 2 and Figure 4, respectively.

Manifestation extraction

TheManifestationExtractor component is responsible for

the signal analysis process. This component contains a

module called SignalAnalyser (Figure 1) which performs

the event detection process. Using the SSN ontology

which is only populated with the configuration informa-

tion, the Signal Analyser detects those parts of signals that

Table 3 Possible abnormal behaviours

(a) Based on Figure 2 (b) Based on Figure 4

# Abnormal behaviour # Abnormal behaviour

1 Slow heart rate 1 Slow cardiac system pulse

2 Fast heart rate 2 Rapid cardiac system pulse

3 Irregular heart rate 3 Abnormal cardiac system pulse

4 High blood oxygen 4 Not normal respiratory rate

5 Low blood oxygen 5 Elevated blood pressure

6 High blood pressure 6 Low blood pressure

7 Low blood pressure

contain an abnormal behaviour mentioned in the config-

uration. An event (or an abnormal behaviour detected in

a signal) is defined based on threshold values set by the

expert of the domain according to sampling rate of signals

and the patient profile (age, gender, etc.). For example, in

Figure 2, the “Behaviour” section related to “heart” shows

the range of “heart rate” values as “< 157 AND > 175”

which is set by the expert to monitor the situation of an

infant to detect an “irregular” heart behaviour. The expert

would enter different values in case of an adult patient. For

instance, the upper bound of the “slow heart rate” for an

infant is set to 157 (Figure 2) while the same behaviour for

an adult patient is set to 60 (Figure 4).

The applied data analysis method divides signals into

several segments. A segment is created based on the num-

ber of events (set as threshold values defining a numeric

range) detected in each signal. The division process is

done within an iterative process which looks for events

in each signal and determines a set of temporal intervals

in which a number of events are included. The iterative

process starts by creating a temporal segment in the first

signal whose length is set based on the minimum required

number of events in the signal. More precisely, the starting

time point of the initial segment is the same as that of the

signal, and its ending point is when theminimum required

number of events in this signal has been met. Detecting a

new event affects the size and the number of created inter-

vals. The iteration ends whenever the size of intervals do

not change. At the end, these intervals are considered as

segments. The reasoner will then be applied on each seg-

ment separately. Therefore, the threshold values set by the

expert enables him/her to have some segments in which,

for example, one signal has no event while the others do.

Although the data analysis method can affect the even-

tual interpretation results, it is the representation tech-

nique which, in this work, is at focus. In Section ‘Results’,

examples of the threshold values set for a configuration is

given.

The output of the ManifestationExtractor component

is a set of Manifestations (M) at each segment, which is

a list of time points at which events are detected. The

Manifestation set is the second input of the reasoner

(Figure 1).

Reasoner

The reasoner module is based on Parsimonious Covering

Theory (PCT) as an abductive reasoning method whose

basis is on the set theory. The main feature of this rea-

soner is finding the best possible Explanations (E) for

the set of Manifestations (M) detected at each segment

of signals. More precisely, given the Hypothesis set (H)

which is the set of the cause/abnormal_behaviour pairs,

the reasoner calculates the power setk of the causes set.

Final Explanations are those members of the power set
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Figure 6 Grammatical parsing tree and relation between “arrhythmia” as a cause item and “abnormal heart rate” as a behaviour.

(or subsets of the causes set) which do not violate the

reasoner’s principles.

The principles of the reasoner are defined within two

criteria: Covering and Minimality. According to the first

criterion shown in (1), the reasoner nominates those sub-

sets of the causes set (C) that are related to all Manifes-

tations. In other words, the covering set indicates a set

of subsets of causes with the aforementioned specifica-

tion. Moreover, the concern of the minimality criterion

(2) is the size of the selected subset. Complying with

aforementioned criteria, the reasoner finds the best pos-

sible explanations which are those covering subsets of the

causes (as part of the Hypothesis set) that are minimal in

terms of the cardinality. Algorithm 2 shows the details of

the reasoner.

Covering = {K ⊆ C | ∀m ∈ M, ∃ c ∈ K : (c,m) ∈ H}

(1)

Minimality = {c ∈ Covering | � ∃ d : (d ⊂ c ∧ d ∈ Covering)}

(2)

Algorithm 2 Abductive Reasoning

Require: Causes, Observations, Relations

{//Removing non-participant causes}

relevantCauses← getRelevantCauses(Causes,

Relations)

explanations ←null

powerSet ← getPowerSet(relevantCauses)

for all ps in the powerSet do

if isCovering(ps,Observations) then

if isIrredundant(ps,Observations) then

addExplanation(ps, explanations)

else

removeSuperSet(ps, powerSet) {//Removing the

supersets of ps}

end if

end if

end for

return explanations

The reasoning complexity, due to the power set calcu-

lation, grows exponentially w.r.t the number of causes. In

Figure 7 Grammatical parsing tree and relation between “tachypnea” as a cause and “not normal respiratory rate” as a behaviour.



Alirezaie and Loutfi Journal of Biomedical Semantics 2014, 5:35 Page 10 of 16

http://www.jbiomedsem.com/content/5/1/35

Table 4 List of hypotheses

(a) Hypothesis related to the configurations in Figure 2

# Cause Abnormal behaviour

1 Arrhythmia Irregular heart rate

2 Bradycardia Slow heart rate

3 Tachycardia Fast heart rate

. . . . . .

6 Hypertension High blood pressure

7 Hypotension Low blood pressure

. . . . . .

18 Hypoxemia Low blood oxygen

(b) Hypothesis related to the configurations in Figure 4

# Cause Abnormal behaviour

1 Arrhythmia Abnormal cardiac system pulse

2 Bradycardia Slow cardiac system pulse

3 Tachycardia Rapid cardiac system pulse

. . . . . .

6 Hypertension Elevated blood pressure

7 Hypotension Low blood pressure

. . . . . .

20 Tachypnea Not normal respiratory rate

21 Bradypnea Not normal respiratory rate

order to reduce the size of the power set, two steps indi-

cated in Algorithm 2 are applied. The first step filters the

set of causes by removing those causes that are not listed

in pairs of the Hypothesis set. At the second step, super

classes are removed for elements of the power set where

the minimality criterion is violated.

The output of the reasoner is the set of Explanations for

observations.

Results and discussion
DataSets

In order to evaluate the framework, we use two different

sets of multivariate medical data. The first dataset con-

tains 12-hours of time-series data from a set of medical

sensors measuring heart rate, arterial pressure, and arte-

rial oxygen saturation of an infant in an Intensive Caring

Unit (ICU). This patient is suffering from several diseases,

namely “multiple liver abscesses”, “portal hypertension”

and “E. Coli sepsis”, used as the ground truth for the eval-

uation of the final explanations suggested by the reasoner.

This package of data is the ICU data package provided

for use in 1994 AI in Medicine symposium submissions

[10]. The second dataset also contains multivariate data

from three sensors measuring heart rate, respiratory rate

and blood pressure of an adult patient in a Critical Caring

Unit (CCU) who is suffering from “congestive heart fail-

ure (CHF)”. This package is provided by the caring unit

section of a hospitall.

Results

In this section, we discuss about the experiments which

are based on two different configurations and two dif-

ferent datasets. The first experiment is related to the

configurations in Figure 2 and the infant patient data

introduced above. The second experiment is based on the

configurations set in Figure 4 and the adult patient data.

Finally, the scalability of the reasoner is also evaluated base

on different configuration parameters such as: number

of “feature_of_interests” (F ), size of the Causes set (|C|),

number of abnormal behaviours (B) and distinct number

of causes in the Hypothesis set (|Hc|).

Experiment I

Figure 2 shows the configurations used in this experi-

ment for monitoring the “heart” and “blood” situation of a

patient. The properties of interest are “rate” (rate of heart),

“pressure” (pressure of blood) and “oxygen” (amount of

oxygen in blood). As mentioned in Section ‘Hypothe-

sis extraction’, in order to find the relevant symptoms,

each symptom type listed in Table 1, is assigned with

the synonym/pertainym list of its tokens. For example,

the set of tokens of the first symptom types (“abdominal

symptoms”) is [abdomen, symptom ]whose elements are

assigned to their synonym/pertainym list:

abdomen �−→ { venter, stomach, belly}

symptom �−→ { indication, evidence, gesture, mark, point,

...}

Since there is no match between items of the above

lists and the two physiological parameters (heart and

blood), the value of the “abdominal symptoms” item is

set to zero. However, the 8th item, “cardiovascular system

symptoms”, is tokenized as [cardiovascular, system, symp-

tom]. Focusing on the first token, the synonym/pertainym

list is:

cardiovascular �−→ {cardiac, heart}

The score of the item “cardiovascular system symptoms”,

related to the “heart”, hence, increases to 1. The “hemic

system symptoms” item, in a same way, gets 1 score since

the pertainym of “hemic” is the term “blood”. Therefore,

the selected symptoms indicated in Table 1 are those ones

that are related to the “cardiovascular system” and “hemic

system” symptoms due to their highest similarity values to

the “feature_of_interests” set in the configuration file.

The list of 62 cause items (|C| = 62) which are subclasses

of the selected symptom types (“cardiovascular system

symptoms” and “hemic system symptoms”) are only par-

tially shown in Table 2. Furthermore, the list of all possible

behaviours mentioned in the configuration file (Figure 2),

that created by the SignalMapper module, is depicted in
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Table 3(a). As we can see, the process of concatenating

“behaviour”, “feature_of_interest” and “property” values

results in 7 phrases indicating different behaviours (B =

7). For example, the first item, “slow heart rate” is gener-

ated by concatenating the term “slow” as “behaviour”, the

term “heart” as “feature_of_interest” and the term rate as

“property”.

In order to achieve the Hypothesis set (H) whose ele-

ments are the pairs of cause / abnormal_behaviour, the

SignalMapper process, at its next step, creates a 62 × 7

similarity matrix S initialized to zero. The updated value

of the element si,j will indicate the relation between the

ith cause and the jth behaviour. As mentioned before,

for each cause item whose definitions has been retrieved

from the symptom or the WordNet ontology, a grammat-

ical structure tree holding the grammatical role of each

term in the sentence, is generated. Finding the similarity

between causes and abnormal behaviours implies a need

for checking if a similar phrase to an abnormal behaviour

is detected within a cause item (Algorithm 1). For exam-

ple, the first cause item (Table 2), arrhythmia, is defined

as “an abnormal rate of muscle contractions in the heart”.

As we see in the grammatical tree of this cause illustrated

in Figure 6, there is an adjective (“abnormal”) whose sub-

stantive (“rate”) is also related to a noun, “heart” (via a

preposition, “in”). This cause item is found similar to the

third behaviour (“irregular heart rate”) since:

Behaviour(c1) = abnormal ∈ SynSet(Adjective(r3) = irregular)

Property(c1) = rate ∈ SynSet(Noun1(r3) = rate)

FeatureOfInterest(c1) = heart ∈ SynSet(Noun2(r3) = heart)

Therefore, the element s1,3 is set to 1. Follow-

ing Algorithm 1, the similarity matrix S will finally

contain 18 non-zero values referring to 18 pairs

cause/abnormal_behaviour that creates theHypothesis set

(|H| = 18) (Table 4(a)). Counting the number of causes,

we find 11 distinct items out of 18 in this list (|Hc| = 11).

Therefore, during the reasoning process, where the power

set of the causes set is generated, the reasoner needs to

deal with the power set with the size of 211.

The SignalAnalyser detects abnormal behaviours of

data and represents them as items of the Manifesta-

tion set (M) for each segment of data. The applied data

analysis method divides signals into several segments

which as explained in Section ‘Manifestation extraction’,

are defined based on the desired number of events at

each signal as well as the sampling rate of the signal.

Figure 8 shows three signals related to the configurations

in Figure 2. The threshold value for the Arterial Pressure

Figure 8 Segmentation result over 12-hours data (the first dataset).
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Signal has been set as “25 ≤ n ≤ 60” meaning that a

segment needs to have at least 25 and at most 60 arte-

rial pressure events. Similarly, the threshold values for the

Arterial O2 Saturation and the Heart rate are “2 ≤ n ≤

15” and “5 ≤ n ≤ 20”, respectively. According to these

threshold values, signals in Figure 8 are divided into 3

segments.

Given the two sets Hypothesis (H) and Manifestation

(M), the reasoner separately provides inferred Explana-

tions for each segment shown in Table 5. For the patient

of the first dataset, 6 distinct diseases (explanations) have

been found (Table 6(a)). By calculating the probability of

occurrence for each disease, the soundness of the rea-

soner outputs is evaluated. The Occurrence probability

is defined as the ratio of the number of times a disease

has been seen to the number of different explanations

observed for a segmentm. According to Table 6(a), the

first (hypertension) and the forth (Septic Shock) items

are matched with the diseases mentioned in the patient

profile (“portal hypertension” and “E. Coli sepsis”) with

the probability of 100% and 33%, respectively. In addition,

other items which are discovered by the reasoner but are

not mentioned in the patient profile such as “tachycar-

dia” and “hypertension” are in the literature considered as

a sign of “Sepsis” [26]. Therefore, if we also count these

combinations as sepsis, as shown in Table 6(b), the true

positive diseases are the two first ones in the ordered list.

The false negative case which exists in the patient pro-

file but has not been inferred by the reasoner is “liver

abscesses”. This liver dependent disease to be diagnosed,

most likely requires other types of sensors information in

order to be detected.

Experiment II

In this section, we continue the experiments with the

second dataset and present results of the reasoner for sit-

uations where the expert uses the negation concept in the

configuration file. As mentioned in Figure 4, the expert

decided to monitor the heart rate, the blood pressure and

the respiratory rate of the patient. Before going to the

details, we examine the results of the HypothesisExtrac-

tion component for this case.

Table 5 Manifestations shown in Figure 8

Seg# Manifestations Explanations

1 “Fast heart rate” (Hypertension,hypoxemia,palpitation)

“Low blood oxygen” (Hypertension, palpitation,hyperemia)

“High blood pressure” (Hypertension,hypoxemia,septicShock)

(Hypertension,hyperemia,septicShock)

(Hypertension,hypoxemia,tachycardia)

(Hypertension,hyperemia,tachycardia)

2 Same as segment 1 Same as segment 1

3 Same as segment 1 Same as segment 1

Table 6 Occurrence probability

(a) (b)

# Disease Probability # Disease Probability

1 Hypertension 100% 1 Hypertension 66%

2 Hypoxemia 50% 2 Septicshock 66%

3 Hyperemia 50% 3 Hypoxemia 50%

4 Septicshock 33% 4 Hyperemia 50%

5 Palpitation 33% 5 Palpitation 33%

6 Tachycardia 33%

Candidate symptoms for the second dataset in Table 1

are “cardiovascular system”, “hemic system” and “respi-

ratory system” symptoms. The entire subclasses of these

three concepts in the Synonym ontology contain 89 causes

(|C| = 89) shown in Table 2. Moreover, for configura-

tions in Figure 4, there are 6 possible abnormal behaviours

(B = 6) (see Table 3(b)). One of these items, “not normal

respiratory rate”, is the phrase with negation for which

the antonym set rather than the synonym set is retrieved

from the WordNet ontology. SignalMapper, then, creates

a 89 × 6 similarity matrix in order to prepare the Hypoth-

esis set. Table 4(b) shows 21 relations (|H| = 21) out of

which 17 cause items (|Hc| = 17) are distinct. Therefore,

the reasoner has only to deal with 217 elements of the

power set.

Due to the threshold values set for the segmentation

process, the signals which are the results of 4 days of

observation with the sampling rate of once per hour, is

divided into 1 segment. Shown in Figure 9, the thresh-

old values for the heart rate, respiratory rate and blood

pressure are set as, “1 ≤ n ≤ 25”, “50 ≤ n ≤ 70” and

“30 ≤ n ≤ 55”, respectively. The inferred Explanations

are shown in Table 7.

It is worth mentioning that for the first dataset, since

the cardinality of all inferred Explanations at each seg-

ment were the same (3 items for each explanation), we

did not consider the minimality criterion. However, for

the second dataset, since the reasoner results in explana-

tions with different sizes, the evaluation will be different.

As shown in Table 7, the first two explanations holds

the minimality criteria of the reasoner, “heart failure” and

“dyspnea”. The first one is matched with CHF, the disease

the patient is suffering from. Furthermore, the second one,

dyspnea, is considered as amain sign of heart failure in the

literature [27].

Experiment III

The purpose of the following experiment is to examine

the performance of the reasoner given various inputs.

For example, given a larger hypothesis set, the reasoner

spends more time on the processing of the power set cal-

culation. In the following, we momentarily disregard the
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Figure 9 Segmentation result over 4-days data (the second dataset).

time for segmentation of the signals (as this is indepen-

dent of the configurations) and we represent the reasoning

time for different configurations in order to study the scal-

ability of the reasoner and the impact of the parameters in

a configuration file on the reasoning performance.

Recall that the final explanation is retrieved from the

Hypothesis set (H) which is as such extracted from the

Cause set (C). As said in Section ‘Hypothesis extrac-

tion’, the cause items are the union of the subclasses of

the candidate symptom types. The candidate symptom

types are also chosen based on the “feature_of_interest”

parameters mentioned in a configuration. For instance, in

the first experiment (Section ‘Experiment I’), due to the

2 mentioned “feature_of_interests” in the configuration

file (F = 2), there were finally 2 symptom types cho-

sen. Since, the number of subclasses for each symptom

type is not really specified, we consider it as a constant

value for all types of symptoms. Therefore, the number

Table 7 Manifestations shown in Figure 9

Seg# Manifestations Explanations

1 “Rapid cardiac system pulse” (Heart failure)

“Not normal respiratory rate” (Dyspnea)

“Low blood pressure” (Anemia, apnea)

(Anemia, tachycardia)

(Apnea, hypotension)

(Hypotension, tachycardia,

tachypnea)

of symptom types which is equivalent to the number of

“feature_of_interests” (F ) indicated in the configuration,

is considered as a significant parameter which affects the

cardinality of the Cause set (|C|). The greater the parame-

ter F , the larger the value of |C|.

In experiment I: F = 2, |C| = 62,

In experimentII: F = 3, |C| = 89,

Since the input of the reasoning process is the Hypothe-

sis set which is extracted from the Cause set, we focus on

parameters affecting the distinct number of causes in the

Hypothesis set (|Hc|). The first parameter, is the size of the

Cause set (|C|) which is also dependent on the F parame-

ter. Another parameter influencing |Hc|, is the number of

behaviours (B).

In Table 8, we listed the measured reasoning time (in

milliseconds)n for different configurations. The informa-

tion of each row in Table 8 belongs to a configuration

which is accumulated with a new configuration for its next

row. In the following the summary of four configurations

which are accumulated in order are given:

I : II :

feature_of_interest = Heart feature_of_interest = Blood

property = Rate property = Oxygen

Behaviours : Slow, Fast, Irregular Behaviours : High,Low

III : VI :

feature_of_interest = Blood feature_of_interest = Respiratory

property = Pressure property = Rate

Behaviours : High,Low Behaviours : Slow, Fast
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Table 8 Reasoning time complexity (the unit of time is in milliseconds)

|F | |C| |B| SimilarityMatrix_time |Hc| Reasoning_time Final_reasoning_time

1 30 3 18 4 1 19

2 62 5 23 7 31 54

2 62 7 26 11 2146 2172

3 89 9 29 19 10301 10330

The first row and first configuration uses only one

feature_of_interest (F = 1) and the number of causes

retrieved from the symptom ontology is |C| = 30 (Table 2).

The distinct number of causes in the Hypotheses is |Hc| =

4 and is based on the 3 possible behaviours (B = 3). The

reasoning time for calculating the power set of causes in

the Hypothesis set is 1 ms. However, since the generation

and the filtering process of the similarity matrix is neces-

sary to reach to the final set, we consider the last column

of the table as the final reasoning time (19ms) which is the

summation of both the similarity matrix calculation time

and the reasoning time and by increasing the parameter

F in the second row of Table 2 (F = 2) the growth of the

number of behaviours (B = 5), we see the total reasoning

time also increased to 54 ms. In order to see the effect of

the parameter B, we keep the same “feature_of_interests”

in the third row (F = 2 and therefore |C| = 62). By adding

the third configuration, the only parameter changes is the

number of behaviours (B = 7), which results in a much

longer reasoning time (2172 ms). Although the param-

eter F influences the reasoning time, the effect of the

parameter B on the reasoning process is stronger.

The reasoning process due to the techniques explained

in Algorithm 2 (such as filtering the cause items based on

their relations with events), is much more efficient than a

pure calculation of the power set of the Cause set. Never-

theless, it still needs to deal with the power set calculation

for a smaller size of causes in the Hypothesis set, explain-

ing an exponential trend in computation time. Therefore,

the system configurations for higher scales matters. For

instance, behaviours allow the system to reduce the num-

ber of causes which are not relevant and results in a

smaller size of H. At the same time, however, the higher

number of behaviours enables the system to accept more

cause items during the similarity matrix filtering process,

which results in a bigger size of H and consequently a

higher reasoning time. The number of behaviours given

in the configuration file is therefore the most influential

parameter in the reasoning time. In summary, according

to the computational time represented in Table 8, the user

in order to have a reasonable computational time, is rec-

ommended not to define more than 3 behaviours for each

property of a feature_of_interest in a configuration file.

Although the intensive care units (ICUs) depending on

the patient situation or medical specialty are divided into

several parts such as medical intensive care unit (MICU),

surgical intensive care unit (SICU), etc., there are common

equipments in terms of monitoring critical physiological

parameters [28]. For instance, instant monitoring of pulse

oximetry, arterial blood pressure, oxygenation saturation,

temperature along with using ventilators assisting the res-

piratory systems are done by common wired sensors used

in any care units of emergency cases. Considering the

typical monitoring sensors in hospitals’ care units, the

computational time of our approach applied on other real

world scenarios with in average 4 sensors and 3 gen-

eral behaviours would be the same as what we discussed

above.

Conclusion
In this paper, we have presented a framework which is

able to annotate medical sensor data with labels con-

taining probable causes pertaining to sensor events. This

framework reduces the probability of losing the relevant

causes by retrieving a wide possibility of causes which are

related to sensor data. At the same time, by pruning the

retrieved concepts (removing irrelevant causes w.r.t the

probable events), the complexity of the reasoning process

is reduced.

The primary motivation to the presented work is having

the data annotation process that is as automated as possi-

ble. The process uses manually created configuration file

which is filled by the expert of the domain and is based

on events which are likely to occur. Although the process

of generating explanations of the data is dependent upon

the content of the configuration file, the expert is free to

populate this file using his/her own words. In other words,

the eventual explanations, due to synonyms of terms con-

sidered throughout the interpretation process, are literally

(but not conceptually) independent of terms used by the

expert. Certain limitations in the system include the level

of complexity of the user defined configurations. In addi-

tion, we chose to populate the SSN ontology with classes

so as to provide the opportunity of a better classifica-

tions of relevant classes for future purposes. For example,

by creating the two classes Heart and Cardiac system as

the subclasses of the feature_of_interest class, the sys-

tem will be able to, for some purposes in future, create a

“owl:sameas” properties between them to introduce them

as equivalent classes.
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Furthermore, as discussed in Section ‘Experiment III’,

the user of the system needs to consider the limitation

in number of abnormal behaviour defined in the con-

figuration to avoid the time complexity of the reasoner

to increase. In addition, the filtering process in similar-

ity matrix, where the relevant causes are chosen based

on their grammatical structure, can be further extended

towards considering complicated situations that may be

found in English definition of a cause.

Although the use of the symptom ontology is limited

to the retrieval of subclasses, still, the existence of this

ontology with its well-categorized structure was a positive

feature of the medical repository which provided read-

able categories of symptoms in terms of different parts of

the body. In order to extend the framework to be appli-

cable to other domains (e.g., Meteorology or Geography),

such a general ontology related to the domain is necessary.

For this reason, the medical domain is the more promis-

ing application domain for this approach. Considering the

requirements of this framework in terms of the structure

of knowledge, along with the reasoning issues over linked

data such as data inconsistency or redundancymay help to

efficiently develop and populate linked data for different

domains.

Endnotes
aThis ontology developed by the W3C Semantic Sensor

Networks Incubator Group (SSN-XG) describes sensors,

observations, and related concepts [29].
bThe size of the Web is 3.32 billion sites [30].
cURIs return contents of a resource that they identify.
dhttp://datahub.io/group/lodcloud (over 31 billion

triples),
eThe last access date of the Bioportal’s SPARQL

endpoint (http://sparql.bioontology.org) is on 27th July

2014
fThe process of splitting a sequence of strings into its

elements (tokens or words).
gThe process of reducing inflected words to their stem,

base or root form.
hIn WordNet 2.1 OWL, pertain is a property between

twoWordSense concepts that indicates the relevant term

for a word [7]
iIn this work we used StanfordParser [31] to analyse

phrases or sentences.
jIt is useful to recall that the jth column refers to

abnormal (or “not” + normal) behaviour that is composed

of a “behaviour” (as an adjective), a “feature_of_interest”

(as a noun) and a “property” (as a noun).
kThe power set of a set is the set of all its subsets.
lDue to the ethical concerns about the patient’s privacy

we received this dataset as an anonymous patient profile.

mSince all three segments are the same, the occurrence

probability can be calculated for one segment and its

values can be generalized.
nThe computational time has been done on a computer

which has an Intel(R) Core(TM) i7-2620M CPU

(2.70GHz), 64 bit, 4 cores,4 MB for the cache memory),12

GB memory, and Linux kernel 3.8.0-44-generic.
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