
Frontiers in Neuroinformatics www.frontiersin.org September 2009 | Volume 3 | Article 29 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 01 September 2009
doi: 10.3389/neuro.11.029.2009

We hypothesize that many of the methods and approaches devel-
oped for extraction of information about genes can be applied 
to extraction of information about brain areas. This is an attrac-
tive approach because many of the challenges in analyzing text for 
information about genes are also faced in trying to mine informa-
tion about brain regions. These challenges include abbreviations, 
synonyms, lexical variation and ambiguity. For example, the gene 
“carbonic anhydrase 1” has synonyms including “carbonate dehy-
dratase I”, “Car1”, and “CA-I”. Its offi cial symbol, CA1, is ambiguious 
in that it also matches a drug (the abbreviated form of coumermy-
cin A1) and a brain region (the CA1 fi eld of the hippocampus). 
Similarly brain regions have a variety of names and abbreviations, 
and can be confused with other types of entities. Approaches have 
been developed for addressing these problems for genes, so it seems 
reasonable to expect that the lessons learned will apply at least 
partly to other domains. However, before these approaches can be 
applied to brain regions, a “gold standard” corpus is needed. Such 
a corpus is needed both as training data for algorithms and for 
evaluation of methods. To our knowledge, no such resource exists 
for neuroscience text mining.

Past efforts in neuroscience text mining provided limited ability 
to retrieve brain region mentions, by looking for exact matches of 
brain region names from small lists (Crasto et al., 2003, 2007; Muller 
et al., 2008). This limits the recall to a small number of (usually broad 
or large) brain regions. The most extensive effort is “Textpresso for 

INTRODUCTION
Bioinformatics has proven the value of databasing and formal-
izing knowledge. Traditionally much of the focus is on molecu-
lar biology but neuroscience researchers are taking note (French 
and Pavlidis, 2007). One means of building, or at least seeding, 
knowledge bases is text mining, or the automated extraction and 
formalization of information from free text sources such as the 
biomedical literature. There has been much interest in applying 
text mining to extracting information about genes and proteins. In 
the BioCreative 2 challenge, 44 teams competed to extract, resolve 
and link protein and gene mentions (Krallinger et al., 2008), and 
the methods work well enough to be of practical importance in 
creating databases (Leitner et al., 2008). There has been less work 
on how to apply such techniques to domain-specifi c knowledge 
in neuroscience.

One entity of interest in the neuroscience literature is mentions 
of neuroanatomical regions (which we call brain regions for short). 
By analogy to the task of extracting gene mentions, the ability to 
computationally extract mentions of brain regions would be of 
potential value in building neurobiological knowledge bases. This 
is because many neurobiological studies only make sense in the 
context of the specifi c brain regions studied. Furthermore ana-
tomical or functional connections between regions are commonly 
described. Computationally extracting these locations would allow 
faster organization and mining of neuroscience data.
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expanded. The General Architecture for Text Engineering (GATE)2 
was used to create, compare and visualize the document annota-
tions. Additionally, GATE provided a helpful interface and API for 
managing the document collections.

MANUAL ANNOTATION GUIDELINES
The annotators were presented with the title and abstract text in the 
GATE interactive document display. Using the computer mouse, 
regions of text were selected and then “tagged” as representing a 
brain region mention. One annotator (the “primary” annotator, SL) 
annotated all abstracts. A secondary annotator (LX) re-annotated 
a random subset of abstracts annotated by the primary annotator 
(to allow estimation of the human component in annotation accu-
racy). The annotators used their own knowledge of neuroanatomy, 
supplemented by online resources such as medical dictionaries, 
neuroanatomical atlases and BrainInfo3. An initial set of guidelines 
were developed prior to the annotation starting; these guidelines 
were amended in response to the outcome of periodic discussion 
of problems and manual review of the corpus.

Brain (and spinal cord) regions were the primary targets of our 
manual annotation efforts. We annotated all mentions of brain 
regions in both the abstracts and titles according to our guidelines. 
Although we annotated all brain region mentions, our guidelines 
are infl uenced by our interest in mentions that describe higher-level 
features such as neuroanatomical connections.

A key set of guidelines involves the level of detail. In particular, we 
did not attempt to annotate details such as specifi c cortical layers, in 
part because they cover the whole cortex but also because these were 
judged to present an additional challenge that would be a topic of 
future work. Conversely, very broad mentions of “systems” were not 
annotated (e.g. “orexin/hypocretin system” or “vestibular system”). 
However, mentions such as “cortex” were captured. Further, mentions 
of white matter tracts or fasciculi were not annotated. Annotations 
also included text that modifi ed the mention. An example is “motor 
related areas of the hippocampus”. We annotated the adjective forms 
of brain regions, for example “thamalic” or “cortical”. We also anno-
tated parts that were identifi ed by a number (primarily this applied 
to Brodmann areas or cortical regions such as V1). Brain region 
mentions were not extended to include organism name, so “rat hip-
pocampus” would always be annotated only as “hippocampus”. We 
annotated text segments that referred to a specifi c region but might 
not be resolvable without more context. For example, in an abstract 
about the cerebellum we might fi nd mentions of “medial zone”. As a 
fragment, “medial zone” cannot be assigned to a specifi c region.

One particular problem area is conjunctions or coordination 
ellipses. Examples are “dorsal and ventral cortex” or “lower thoracic 
and lumbosacral segments”. The diffi culty is determining whether 
these should be broken up into two brain region mentions or 
treated together. Past annotation efforts have recognized this dif-
fi culty (Tanabe et al., 2005). Unlike abbreviations there is no reliable 
method to automatically expand such expressions (Buyko et al., 
2007). In the corpus, annotation of conjunctions varies except in 
the abstracts annotated by both annotators where consistency was 
enforced. To achieve this, the whole conjunction was annotated if 
the contained brain region names have been shortened.

Neuroscience”, with a list of 4,800 brain region terms (Muller et al., 
2008). Unfortunately evaluations of these tools are lacking, as the 
methods were not checked against a gold standard set of annotated 
abstracts, leaving accuracy in question. The Neuroscholar project 
was the fi rst to explore advanced natural language processing meth-
ods to extraction of neuroscience data (Burns et al., 2007). Focusing 
on neuroanatomical connectivity, Burns et al. sought to extract 
and annotate detailed statements from full-text articles. Their goal 
was extraction of relatively detailed experimental parameters and 
descriptions of results. They manually annotated 1,047 sentences 
from 21 articles. Text spans were tagged with fi ve different labels 
including two that represented brain regions. These annotations 
provided the test and training examples for a CRF that was able to 
produce the same tags at an overall 79% F-Measure (performance 
for brain-region recognition alone was not reported). Although it 
was a small dataset they found the CRF could be joined with manual 
curation to increase annotation rate by 255%.

The goals of the current work are two-fold. First, we provide a 
reasonably large corpus of article abstracts manually annotated for 
brain region mentions. Second, we develop and evaluate methods 
for extraction of brain region mentions from text, using the corpus. 
We also describe preliminary attempts to normalize the mentions 
to brain region terms from a common neuroanatomical database. 
This sets the stage for further efforts at improving and applying 
text-mining methods to neuroanatomical questions.

MATERIALS AND METHODS
CORPUS CREATION
Articles for the corpus were initially selected manually but later 
an automated procedure was employed. The fi rst 119 articles in 
the corpus were selected with the help of PubMed1 searches using 
keywords such as “afferent” and “efferent”. The process was then 
automated to increase speed of curation and reduce bias in selec-
tion. The automated procedure picks random articles from the 
Journal of Comparative Neurology. There was no limitation placed 
on the topic organism (rat and cat were most common but insects 
were the topics of some abstracts). We also experimented with 
other search strategies, for example the MeSH keyword of “Neural 
Pathways”. The Journal of Comparative Neurology was chosen to 
maximize the number of abstracts that included brain region men-
tions. It has also been used in previous work (Burns et al., 2007). 
A total of 1,377 abstracts were used.

The selected abstracts were retrieved in MEDLINE XML format 
for preprocessing. For each abstract the PubMed identifi er, title 
and abstract were stored. The abstract text was then processed by 
the Schwartz and Hearst (2003) abbreviation expansion algorithm. 
This identifi es the short and long forms of abbreviations in the 
abstract with high accuracy. All short forms of the abbreviation are 
replaced with the long form followed by its short form in parenthe-
ses. Thirty-two abstracts (2.3%) were reloaded without expansion 
due to encoding errors. The abbreviation expansion changes are 
expressed in the XML markup and can be reversed. Finally, anno-
tators are provided the abstract and title for annotation. Figure 1 
shows an example of a fi nal annotated abstract with abbreviations 

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://gate.ac.uk/ 3http://braininfo.rprc.washington.edu

http://www.ncbi.nlm.nih.gov/pubmed/
http://gate.ac.uk/
http://braininfo.rprc.washington.edu
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DICTIONARY MATCHING
To test dictionary matching approaches we created term lists from 
neuroanatomical nomenclature sources. Although several lexicons 
exist we focused on Neuronames, the largest source of brain region 
names (Bowden and Dubach, 2003). We extracted terms from both 
Nomenclatures of Canonical Mouse and Rat Brain Atlases and the 
Ontology of Human and Macaque Neuroanatomy. From the later, 
a total of 6,462 terms were extracted from the primary names, 
synonyms, ancillary structures and Latin terms. We addition-
ally extracted 1,900 terms from the Nomenclatures of Canonical 
Mouse and Rat Brain Atlases that organizes terms from mouse 
(Hof et al., 2000; Paxinos and Franklin, 2001; Dong, 2007) and 
rat brain atlases (Swanson, 1999). Since we expand abbrevia-
tions within the abstracts we excluded abbreviations contained 
in Neuronames.

To match the Neuronames terms to the document text we 
used a GATE Gazetteer. Bracketed text in Neuronames terms were 
removed before matching. We set the Gazetteer to use case insensi-
tive exact string matching. Resulting annotations were joined to 
remove overlapping matches.

To compare our method to that used by “Textpresso for 
Neuroscience” we used its lexicon fi les4, with case sensitive exact 
matching. To further replicate conditions used by Textpresso we 
reverted the expanded abbreviations in the abstracts and did not 
fi lter abbreviation terms from the lexicon.

CONDITIONAL RANDOM FIELD
For automated annotation of brain region mentions, we applied 
a linear chain conditional random fi eld (CRF) using the Mallet 
software toolkit (Lafferty et al., 2001; McCallum, 2002). A linear 

chain CRF is similar to a hidden Markov model (HMM). Like an 
HMM, a CRF is a method for sequence processing that takes a series 
of symbols (in our case, words) as input and provides as output the 
predicted state (in our case, whether the symbol is part of a brain 
region mention or not). Unlike HMM’s, in which state probabilities 
are conditioned only on the state of the previous token, CRF state 
probabilities are computed by conditioning on the entire input 
sequence. Therefore, it cannot compare the probabilities of label-
lings across sentences. In return CRF models allow token descrip-
tions (features) with complex dependencies. For example, HMM’s 
use current token type but a CRF feature design can examine the 
previous and next two tokens.

To start, the CRF model must be trained, by computing fea-
tures for tokens with known label sequences (training set). In 
our case each feature has a Boolean value (details on the fea-
tures are given in the next section). For example a feature named 
“text = red” is true if the current token is “red”. These features 
combined with the state transitions form feature functions. The 
feature functions are then given weights, so that a specifi c fea-
ture can infl uence the likelihood of specifi c state transition. The 
weights are learned from the known state sequences using an 
optimization procedure. For example, in Table 3 we can see that 
the probability of the label sequence changing from outside of 
a brain region to inside is increased when the preceding token 
is “the”. For test sequences or sentences, probabilities of state 
sequences are computed. The most probable state sequence then 
forms the predicted brain region mention spans. For further 
detail we point our readers to a more complete introduction of 
CRFs (Wallach, 2004).

The GATE software was used to segment the abstracts into sen-
tences and tokens. For Mallet we used default CRF settings from the 
SimpleTagger class except Gaussian variance was set to 1.

16196030
Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers.
This paper describes the quantitative areal and laminar distribution of identified neuron populations projecting from
areas of prefrontal cortex (PFC) to subcortical autonomic, motor, and limbic sites in the rat. Injections of the retrograde 
pathway tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) were made into 
dorsal/ventral striatum (DS/VS), basolateral amygdala (BLA), mediodorsal thalamus (MD), lateral hypothalamus (LH),
mediolateral septum, dorsolateral periaqueductal gray, dorsal raphe, ventral tegmental area, parabrachial nucleus, 
nucleus tractus solitarius, rostral/caudal ventrolateral medulla, or thoracic spinal cord (SC). High-resolution flat-map 
density distributions of retrogradely labelled neurons indicated that specific prefrontal cortex(PFC) regions were 
differentially involved in the projections studied, with medial (m) prefrontal cortex(PFC) divided into dorsal and ventral
sectors. The percentages that wheat germ agglutinin conjugated with horseradish peroxidase(WGA-HRP) retrogradely
labelled neurons composed of the projection neurons in individual layers of infralimbic (IL; area 25) prelimbic (PL; area
32), and dorsal anterior cingulate (ACd; area 24b) cortices were calculated. Among layer 5 pyramidal cells, approximately
27.4% in infralimbic(IL) / prelimbic(PL) /ACd cortices projected to lateral hypothalamus(LH) , 22.9% in infralimbic(IL)
/ventral prelimbic(PL) to VS, 18.3% in ACd/dorsal prelimbic(PL) to DS, and 8.1% in areas infralimbic(IL) / prelimbic(PL) to
basolateral amygdala(BLA) ; and 37% of layer 6 pyramidal cells in infralimbic(IL) / prelimbic(PL) /ACd projected to
mediodorsal thalamus(MD) . Data for other projection pathways are given. Multiple dual retrograde fluorescent tracing
studies indicated that moderate populations (&lt;9%) of layer 5 m prefrontal cortex(PFC) neurons projected to lateral
hypothalamus(LH) /VS, lateral hypothalamus(LH) / spinal cord(SC) , or VS/ basolateral amygdala(BLA) . The data provide
new quantitative information concerning the density and distribution of neurons involved in identified projection
pathways from defined areas of the rat prefrontal cortex(PFC) to specific subcortical targets involved in dynamic
goal-directed behavior.

FIGURE 1 | A representative annotated abstract with several expanded abbreviations (Gabbott et al., 2005).

4http://www.textpresso.org/neuroscience

http://www.textpresso.org/neuroscience
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Features
As mentioned, all of the features we used were binary. Thus the 
representation of each token was a long binary vector representing, 
for each feature, whether it was present for the given token. The 
simplest feature is the token itself, generated for every word/token 
in the corpus. We tested orthographic features, for example an 
uppercase fi rst letter or presence of a numerical digit. The part 
of speech tag and lemma of the word were also computed and 
tested. Like the text features, the lemmas of every word become a 
feature that is set to true if a word’s canonical form matches that 
lemma. To determine lemmas and tags we employed a model for 
the TreeTagger software (Schmid, 1994) that was extensively trained 
on the GENIA biomedical corpus (Kim et al., 2003) for STRING-IE 
(Saric et al., 2006).

The token is compared to several term lists and lexical resources. 
For complete matching a word and neighbouring words must 
exactly match a brain region name in one of many neuroanatomical 
lexicons. Further we segmented the brain region names into word 
n-grams. For example “ventral anterior nucleus” is fragmented into 
the 2-grams of “ventral anterior” and “anterior nucleus”. The tokens 
are then matched against these n-grams allowing relaxed matches to 
the lexicons. We further employed word lists for neuroanatomical 
terms describing boundaries or regions (e.g. bank, sulci, surface, 
area), neuroanatomical directions (e.g. dorsal, superior), root neu-
roscience terms (e.g. chiasm, raphe, striated) and stop words (e.g. 
on, this, is). Root neuroscience terms were extracted from Dr. Eric 
Chudler’s resource for neuroanatomical, neurophysiological and 
neuropsychological terminology5. We used the stop word list from 
the Snowball small string processing language software6. We also 
added regular expression features that match common templates, 
for example Brodmann’s areas and spinal vertebrae. Finally, we 
employed window features that add context information to the 
current words feature set. This is done by encoding features from 
previous and following words into the current word’s set.

To rank the context features we averaged feature weights from 
eight cross-validation folds. The weights are from CRFs using only 
the text feature with a context window of two tokens on each side. 
We show the top weights for the state transition of outside a brain 
region mention into inside one, which occurs at the fi rst word of a 
brain region mention. We fi ltered out the direct features from the 
current word to leave only the weights and rankings of features 
derived from the neighbouring words. Next we calculated a nor-
malized score by multiplying the weight by the natural logarithm 
of its frequency.

EXPERIMENT SETUP
Manual feature design and initial tests were performed using eight-
fold cross-validation on the 1,146 abstracts annotated only by the 
primary annotator. Annotations from both curators were merged by 
a logical OR operation at the character level (if an annotator marked 
that character as a brain region then it was kept). Sentences of an 
abstract were not split between training and testing sets. Each sen-
tence became an input instance for the CRF. Final results were gener-
ated on the same eight-fold cross-validation across all abstracts.

RESOLUTION
To separate this task from recognition of brain region mentions we 
attempted to resolve manually annotated brain region mentions. 
The target term set are the same Neuroname entries previously 
described for dictionary matching. The fi rst method ignored case 
and removed text surrounded by brackets. The “bag of words” 
method is similar except word order is ignored. The lexicon entries 
and mentions are tokenized with “of” and “the” removed. Matches 
are then found by exact matching of the token sets or bags of words. 
For example “ventral posterolateral nucleus, caudal part” matches 
“caudal part of ventral posterolateral nucleus”. Because both of 
these methods are very strict we did not evaluate the results for 
accuracy and instead provide coverage.

EVALUATION
We used standard evaluation measures that ignore true negatives 
and operate at the annotation level instead of the token. Precision 
is defi ned as the proportion of predictions matching the annotated 
spans with recall being the proportion of annotated spans that 
match a prediction. F-measure is the harmonic mean of precision 
and recall. In the strict case annotation spans must match exactly. 
Lenient measures are computed by counting partially overlapping 
spans as matches.

RESULTS
In total 1,377 abstracts were annotated by the primary curator. 
A second curator annotated 231 of those abstracts for agreement 
evaluation. The average number of brain region annotations per 
abstract from the primary curator was 13.2 and 14.6 for the second. 
Interannotator agreement was 90.7% (F-measure), increasing to 
96.7% for the lenient measure. Table 1 displays the top 40 occurring 
mentions and their frequencies in the corpus.

The GATE tokenizer split the corpus into 17,247 sentences then 
461,552 tokens with 46,340 labelled as brain regions. On average 
each brain region is 2.3 tokens in length. We observed a large 
vocabulary of 17,901 token types.

Lexicon-based methods directed from neuroanatomical atlases 
performed poorly on the dataset, reaching 43.8% F-measure (preci-
sion = 57.2%, recall = 35.5%). We expected a higher level of preci-
sion; we believe variances in applying the annotation guidelines 
account for some of the false positives. Neuronames contains terms 
for layers, systems and tracts all of which we did not annotate. In 
addition, TextPresso contains abbreviations which possibly cause 
additional false positives.

The next best performance of 66.4% F-Measure was attained 
by a CRF using 625 features we derived primarily from neuroana-
tomical lexicons. The lemma and text based CRF’s demonstrate 
the effect of the context window. These classifi ers only look at the 
token type, or word. Without the window features the text based 
CRF achieves 66.7% F-measure. Adding information about the 
previous and next two words increases F-Measure to 76.1%. By 
combining any two of the designed, lemma and text feature sets the 
CRF reaches F-measures in the range 76–78%. Combining the text 
and lemma features only slightly improves on text alone suggesting 
the features are very similar. By combing all three feature sets, the 
F-Measure peaks at 78.6%, with most of the gain from recall. This 
CRF that combined all features perfectly predicted all brain region 

5http://faculty.washington.edu/chudler/neuroroot.html
6http://snowball.tartarus.org

http://faculty.washington.edu/chudler/neuroroot.html
http://snowball.tartarus.org
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mentions for 174 abstracts that had on average 6.8 brain region 
mentions per abstract.

We were unable to clearly determine which of our designed 
features contributed most to the fi nal performance. This is due to 
the high dependency between the designed features and the simple 
text features. Furthermore, F-Measure varies by about 1% across 
different cross-validation splits, so improvements of less than 1% 
are not signifi cant.

Throughout Table 2 the recall rate is below precision. This sug-
gests many novel brain regions are left unrecognized, also known 
as out-of-vocabulary error. Indeed, we fi nd that on average 19.3% 
of text features are observed in the test folds but not in the training 
folds. To test the impact of this effect, we repeated the experiment 

but allowing the sentences of an abstract to be spread across training 
and testing sets. This decreases unseen words to 10.4% because new 
terms are often mentioned many times throughout an abstract. At 
this sentence level performance improves; F-measure reaches 0.813 
with the gain in recall twice that of precision. This suggests that, 
not surprisingly, performance can be improved simply by having 
more diverse training data.

We found some of the poorly classifi ed examples were stud-
ies of brain regions from insects or other organisms underrep-
resented in the corpus. These abstracts tended to lack relevant 
training samples, and the regions they mention are not contained 
in the brain region lexicons we collected, resulting in very poor 
recall. To examine this effect in more detail, we used a subset of 
abstracts for which we annotated the organism of study. This 
subset was further reduced to those studying monkey, cat, rat 
and mouse brains. A full featured CRF trained on this set of 
214 common organism abstracts demonstrates much higher per-
formance than a CRF trained on a random subset of the same 
size. This is demonstrated primarily by recall which increases to 
75.7% from 67.6%, combined with a small increase in precision 
we fi nd F-Measure increases to 77.8% from 72.5%. In terms of 
unseen features, the random set has 20.2% compared to 17.6% 
for the common organism set. This suggests that both sets have 
a similar out-of-vocabulary error.

We began by assuming that expanding abbreviations to the full 
forms would increase performance. As a test of this assumption, we 
reverted the expanded abbreviations back to the original, resulting 
in an F-Measure decrease of only 2.1 (to 76.5%). If we include the 
Neuronames abbreviation terms as an added feature this difference 
is reduced to 1.4.

We observed that coordinating conjunctions (see Materials and 
Methods) cause a signifi cant amount of error. Examples are “mid-
dle and caudal amydgala” or “hippocampus and amydgala”. Five 
percent of annotations have a similar form with 893 annotations 
in 403 of the abstracts containing “and”, “or”, comma, semicolon, 
or a slash. By removing these abstracts we remove annotations 
that span conjunctions, the remaining abstracts still have conjunc-
tions but each part is annotated separately. By training and test-
ing the CRF on the reduced set of 974 the F-Measure increases 
to 79.9. This is signifi cant compared to 76.5% reached by a CRF 
trained on a random set of the same size. With these consistently 
annotated conjunctions the strict precision gains the most, while 
lenient precision is almost unchanged. This suggests both datasets 
produce similar predictions but consistent annotations produce 
more precise spans.

Table 3 presents the context feature weights derived from a text 
only conditional random fi eld. The window size ranged from the 
two preceding and following tokens. Although we only display 
the top 20, this CRF has over 300,000 weights for 17,901 token 
types times 5 token locations across four state changes. As expected 
common prepositions or adpositions are the most informative. 
Interestingly, “rat” and “monkey” have top scores. It seems the CRF 
learned that an organism name often precedes a brain region men-
tion. Another entry is “projections” that is informative when seen 
two words before the current token. This connectivity related word 
makes sense given the high number of tract tracing experiments in 
the Journal of Comparative Neurology.

Table 1 | Top 40 frequently occurring mentions.

Mention Frequency

Retina 313

Retinal 280

Spinal cord 256

Cortical 239

Superior colliculus 142

Cortex 140

Olfactory bulb 134

Brainstem 127

Thalamic 122

Thalamus 115

Hippocampus 108

Hypothalamus 100

Lateral geniculate nucleus 92

Olfactory 92

Cerebellum 86

Thalamocortical 85

Suprachiasmatic nucleus 83

Amygdala 78

Hippocampal 76

Optic nerve 74

Forebrain 73

Striatum 73

Inferior colliculus 72

Visual cortex 71

Cerebral cortex 69

Basal forebrain 68

Nucleus of the solitary tract 64

Spinal 64

Cerebellar 63

Globus pallidus 61

Midbrain 60

Periaqueductal gray 60

Locus coeruleus 59

Basal ganglia 57

Nucleus accumbens 55

Substantia nigra 55

v2 55

Area 17 54

Prefrontal cortex 52
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We found several techniques frequently used in general and 
biomedical named entity recognition research did not improve 
performance. Guided by work on gene name extraction we experi-
mented with bidirectional parsing and beginning-inside-outside 
labels (Hsu et al., 2008). We processed the text using MMTx and 
extracted rich semantic features (Aronson, 2006). We tested feature 
induction (McCallum, 2003), an extension of the CRF framework. 
To treat the abstract as a whole we tested treating each abstract 
as a sequence instead of its sentences and also carried the fea-
tures from the fi rst mention of a word to all the following. The 
large vocabulary suggested semi-supervised learning may help; 
we tested a self training approach using an additional set of 3,881 
unlabelled abstracts. Unfortunately, all of these methods failed to 
produce a signifi cant increase in performance when compared to 
our best results.

We tested the two simple normalization procedures for resolving 
a brain region mention to its term in the Neuronames vocabulary. 
The fi rst approach of direct matching covers 33.1% of annotations. 

This mirrors the recall of the lexicon based method for  recognition. 
By ignoring the number of times a mention occurs we fi nd that 
11.4% of the 6,146 unique text mentions are matched to a term. 
The “bag of words” method that disregards the word order matched 
slightly more regions at 34.6% with 13.0% unique term matches. 
The bag of words method reduced the total number of Neuronames 
entries by 96 to 6,366 suggesting that terms maintain their unique-
ness when word order is ignored. Because of the strict constraints 
enforced by these methods we believe that almost all of the term 
matches are correct.

DISCUSSION
We have provided the fi rst corpus of manually annotated brain 
region mentions in biomedical abstracts. The corpus is large 
enough to allow statistical models to learn the nomenclature. This 
is demonstrated by the text-based CRF which reached a 76.1% 
F-Measure without outside resources. We found context windows, 
lemmatization and abbreviation expansion to be the most informa-
tive features for CRF labelling. A CRF using all the features provided 
the best performance of 78.6% F-Measure.

Compared to more advanced techniques, the dictionary approach 
based on neuroanatomical lexicons performed poorly. However, it 
has the advantage of speed and easier resolution to standardized 
names. Furthermore, features derived from these lexicons provide 
valuable information to the CRF models.

We demonstrated that signifi cant amounts of error are due to 
coordinating conjunctions, previously unseen words and brain 
regions of less commonly studied organisms. The poor perform-
ance of the lexicon combined with recall values consistently below 
precision suggest that lexical resources for neuroscience need to 
be improved. Current resources are based primary on neuro-
anatomical atlases of a few organisms. With open initiatives like 
NeuroLex we hope richer resources will be generated by a broader 
audience7.

We performed a preliminary examination of normalization of 
mentions to standardized identifi ers. This task is more diffi cult 
than mention extraction alone, as demonstrated by our baseline 
methods covering just over one-third of mentions. One reason for 
the diffi culty of the normalization task is that researchers do not 
use standardized nomenclatures for brain regions in their papers. 
This is a recognized problem for resolving gene mentions (where 
aliases are common) which has been ameliorated to some extent by 

Table 2 | Results from evaluated techniques.

Name Strict Lenient

 Precision Recall F-Measure Precision Recall F-Measure

TextPresso Lexicon 0.529 0.185 0.274 0.824 0.288 0.427

Neuronames Lexicon 0.572 0.355 0.438 0.839 0.521 0.643

Features CRF 0.751 0.595 0.664 0.889 0.704 0.786

Lemma CRF 0.773 0.681 0.724 0.890 0.784 0.834

Text CRF 0.811 0.717 0.761 0.924 0.818 0.868

Features + Lemma + Text CRF 0.813 0.761 0.786 0.916 0.857 0.886

Table 3 | Top 20 context features from text only CRF.

Token  Position Count CRF  Normalized

type   weight score

the Previous token 28,376 11.4 117.2

and Previous token 13,109 10.8 102.8

period Previous token 16,811 10.4 101.3

from Previous token 2,295 10.4 80.6

in Previous token 12,203 8.5 80.1

to Previous token 6,630 9.1 79.9

with Previous token 2,957 9.8 78.1

that Previous token 3,581 9.2 75.5

rat Previous token 777 10.4 69.2

into Previous token 758 9.6 63.9

monkey Previous token 216 11.8 63.6

left bracket Previous token 10,944 6.7 61.9

labeled Previous token 785 9.0 60.2

projections Second preceding 

 token 904 8.6 58.3

The Previous token 3,274 7.0 56.4

or Previous token 1,198 7.9 56.2

mouse Previous token 171 10.9 56.0

and Next token 13,108 5.8 54.7

of Previous token 19,205 5.5 54.6

7http://neurolex.org/wiki/

http://neurolex.org/wiki/
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efforts by nomenclature standardization committees (Wain et al., 
2004). Such efforts would be of obvious value in neuroscience (Bug 
et al., 2008). When combined with organism identifi cation it grows 
in diffi culty.
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