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Abstract We present a novel probabilistic approach to fully automated delineation of tree

structures in noisy 2D images and 3D image stacks. Unlike earlier methods that rely mostly

on local evidence, ours builds a set of candidate trees over many different subsets of points

likely to belong to the optimal tree and then chooses the best one according to a global

objective function that combines image evidence with geometric priors. Since the best tree

does not necessarily span all the points, the algorithm is able to eliminate false detections

while retaining the correct tree topology.

Manually annotated brightfield micrographs, retinal scans and the DIADEM challenge

datasets are used to evaluate the performance of our method. We used the DIADEM metric

to quantitatively evaluate the topological accuracy of the reconstructions and showed that

the use of the geometric regularization yields a substantial improvement.

Keywords DIADEM · Tree Reconstruction · Global Optimization · Minimum Arbores-

cence · k-MST · Ant Colony Optimization

1 Introduction

Tree-like structures, such as dendritic, vascular, or bronchial networks, are pervasive in bi-

ological systems. With the advent of modern acquisition techniques that produce endless

streams of imagery, there has been renewed interest in automated delineation to exploit this
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(a) (b) (c) (d)

Fig. 1: Delineation results in 3D (top row) and 2D (bottom row). (a) A brightfield micrograph

of a neuron and a scan of a retinal blood vessel network. (b) Minimum spanning trees. (c)

Reconstructions obtained without geometric regularization. (d) Reconstructions obtained

with geometric regularization. This figure, as most others in this paper, is best viewed in

color because it contains overlays.

data. However, despite many years of sustained effort, automated techniques remain fragile

and error-prone. In this paper, we use 3D optical micrographs of neurons and 2D retinal

fundus images to demonstrate the importance of taking global tree structure and geometry

into account to improve topological accuracy of the delineations.

More specifically, we rely on a machine learning approach to assign to image voxels

probabilities of belonging to the centerline of a filament. We then select evenly spaced

high-probability voxels that we treat as anchor points and connect them using maximum-

probability paths. This turns our set of N anchor points into a weighted graph in which

we look for minimum-weight trees that span k < N of its edges, which is known as the

k-Minimum Spanning Tree (k-MST ) problem (Garg, 1996). Finding the optimal k-MST is

NP-hard but an Ant Colony Optimization scheme we developed in earlier work (Blum and

Blesa, 2005) has proved effective at generating good approximations. Such an approach is in

contrast to more traditional ones (Fischler and Heller, 1998; Gonzalez et al, 2008) that use a

minimum spanning tree to link all vertices and then prune the branches that do not conform

to a shape or image appearance criterion. Such methods are faster and can eliminate spuri-

ous branches, but cannot recover from incorrect connectivity in the initial spanning tree. By

contrast, when k is in the right range, the tree spanning only k edges does not suffer from

this problem. We present an automated way to estimate the optimal k value by assigning

probabilistic costs to trees and selecting the one that minimizes this cost. As a result, we

obtain improved reconstructions such as those depicted in the third column of Fig. 1.

As shown in the last column of Fig. 1, these results can be further improved by incor-

porating into the tree reconstruction algorithm a regularization prior that rewards geometric

consistency between consecutive edges and nodes. Unfortunately, this improvement comes

at the cost of an increased computational complexity because the algorithm has to deal with

pairs of edges as opposed to single ones. Nevertheless, we were able to extend our earlier

optimization algorithm (Blum and Blesa, 2005) to handle the pairwise terms and compute

near-optimal trees for all possible k values at little extra cost.



Automated Tree Reconstruction by Global Optimization 3

This results in a generic and fully automated technique. Our contribution is therefore

both a global optimization approach to finding optimal trees and a practical algorithm to

computing good approximations in an acceptably short time, even though the underlying

problem is NP-hard.

2 Related Work

Most automated delineation techniques rely on a local tubularity measure that can be pos-

tulated a priori (Frangi et al, 1998; Law and Chung, 2008), optimized to find specific pat-

terns (Jacob and Unser, 2004; Meijering et al, 2004), or learned (Santamarı́a-Pang et al,

2007; Gonzalez et al, 2009) from training data. Given an image stack, they compute a tubu-

larity image in which this measure is computed at each voxel. The algorithms that use such

tubularity scores can be roughly categorized into two classes.

The first class includes methods that use segmentation of the tubularity image such as

thinning-based methods, which perform skeletonization of this segmentation (Weaver et al,

2004; Xu et al, 2009), and active contour-based methods, which are initialized from it (Cai

et al, 2006; Vasilkoski and Stepanyants, 2009). Such methods are shown to be effective and

efficient, when a very good segmentation is given or can be reliably obtained. In practice,

however, such segmentations are hard to obtain. In particular, thinning-based methods often

produce disconnected components and artifacts on noisy data, which then require consider-

able post-processing and analysis to merge into a meaningful tree.

The second class involves explicitly delineating the tree in the tubularity image. It in-

cludes tracking methods that start from a set of seed points and recursively trace high-

tubularity paths (Can et al, 1999; Al-Kofahi et al, 2002; Yedidya and Hartley, 2008). These

techniques are computationally efficient because the tubularity measure only needs to be

evaluated for a small subset of the image volume. However, due to their incremental na-

ture, local tracing errors may result in large topological perturbations, and hence they lack

robustness.

Global methods avoid this problem by exploiting more of the image evidence and op-

timizing a global objective function, for example by using Markov Chain Monte Carlo

(MCMC) algorithms (Fan, 2006; Sun et al, 2007). However, while such methods produce

smooth tree components, they do not necessarily guarantee their spatial connectedness.

Furthermore, they are computationally intensive, which limits their applicability to large

datasets.

By contrast, methods that sample local maxima of the tubularity image and then connect

these samples into a minimum spanning tree (MST) (Fischler and Heller, 1998; Gonzalez

et al, 2008; Xie et al, 2010), guarantee connectivity. However, they usually result in many

spurious branches and gaps. While pruning during post-processing can eliminate some of

the erroneous branches, it does not allow for recovery from the other mistakes. To resolve

some of these mistakes, in (Xie et al, 2010), a gap indicator function is incorporated in the

edge weights. However, this approach can easily fail in the presence of noisy data where the

branches appear as disconnected segments.

Furthermore, MST-based approaches usually do not take into account global tree geom-

etry, such as smoothness along the edges or branching factors, which can play an impor-

tant role in improving topological accuracy, avoiding over-fitting, and speeding up conver-

gence. Finally, they do not explicitly account for junction points such as bifurcations and

crossovers, which can easily lead to erroneous connections, as will be shown later.
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Fig. 2: The tree construction process. (a) Maximum intensity projection of an image stack

representing olfactory projection fibers. The root node of the tree is manually supplied and

is depicted by the yellow sphere. (b) Maximum intensity projection of the tubularity values

computed for individual voxels. Anchor points obtained as local maxima of this measure

are overlaid in green and blue. The green dots denote bifurcation points and the blue dots

denote sampled points on the fibers’ centerline. (c) The graph obtained by linking all anchor

points to their neighbors. The edges depicted in red are illustrative and do not represent the

actual paths. (d) The k-MST that minimizes our global objective function.

We address these problems by optimizing a global objective function that explicitly

models spurious branches and incorporates geometric priors that capture geometric rela-

tionships between pairs of tree vertices and edges. These priors are of the same nature as

those that are used in the object detection literature (Felzenszwalb and Huttenlocher, 2005;

Leordeanu et al, 2007) to express dependencies between object parts.

3 Approach

In this section, we briefly outline our approach to delineation, which is depicted by Fig. 2.

Our algorithm goes through the following steps:

1. We compute a tubularity value at each voxel, as shown in Fig. 2(b). It encodes how

likely it is to be on the centerline of a tubular structure.

2. We select high-probability voxels that are as evenly spaced as possible and that we treat

as anchor points, as shown in Fig. 2(b).

3. We compute the most probable paths between pairs of nearby anchor points and assign

them probabilistic costs that are lowest when all voxels along them are likely to lie in the

middle of a filament. This results in the graph of Fig. 2(c), where vertices are represented

by the anchor points and edges by the paths linking them.
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4. We compute the lowest-cost tree in this graph among those that span k of the edges for

a wide range of k < N . This is known as the k-Minimum Spanning Tree (k-MST) or

k-Cardinality Tree (KCT) problem. Even though it is NP-hard, approximate solutions

can nevertheless be computed efficiently and fast (Blum and Blesa, 2005).

5. We select the tree depicted by Fig. 2(d) that maximizes a global objective function.

Steps 4 and 5 are those that most distinguish our approach from more traditional ones that

either build trees spanning all the anchor points and then attempt to eliminate spurious

branches, or grow the tree incrementally at the risk of propagating errors. We avoid these

problems by minimizing a well-defined global objective function, as the minimum spanning

tree approaches do, but with the possibility to explore different topologies because we do

not force the tree to systematically connect all vertices.

For clarity’s sake, we describe our approach in terms of finding dendritic and axonal

trees in 3D image stacks. Note, however, that it also applies to linear structures in regular

2D images, such as the retinal scans of Fig. 1. One only has to replace the voxels by pixels

and 26-connectivity by 8-connectivity.

In the remainder of this paper, we first describe in more details our approach to building

graphs such as the one of Fig. 2(c). We then formulate the objective function we use to

assess the quality of a tree within this graph and show how it can be optimized to produce

a tree reconstruction such as the one of Fig. 2(d). Finally, we present results on real 2D and

3D images acquired using different modalities and discuss them.

4 Graph Construction

As discussed above, we begin by computing a graph, whose nodes are anchor points that are

likely to lie at the center of filaments, and whose edges represent paths connecting them. In

this section, we discuss the three steps involved in building this graph. We first introduce the

tubularity measure we use to assess the probability that a voxel lies on a filament. We then

discuss the sampling procedure we implemented to select regularly spaced anchor points by

using the voxel probabilities. Finally, we describe our approach to linking them to create the

edges of the graph.

4.1 Tubularity Measure

Elongated structures such as those of Fig. 1 can be found at many different scales and their

appearance is often severely affected by the point spread function of the microscope, acqui-

sition noise, and irregularities in the staining process. As a result, they only rarely appear as

well-defined tubes, especially when they are very thin.

To achieve robustness to such distortions, we rely on statistical machine learning to

learn the appearance of processes given the specific acquisition modality we are dealing

with. More specifically, for each voxel, we form a set of feature vectors each of which is

made up of steerable filter responses (Gonzalez et al, 2009) and Hessian eigenvalues at

a particular scale and an orientation. We then train a Support Vector Machine classifier

(SVM) (Schoelkopf et al, 1999) with Gaussian kernel on training data that consists of hand-

supplied delineations. To this end, we collect voxels along these delineations as positive

samples and randomly sample ones away from them as negative samples. At run-time, for

a voxel xi, we run the SVM for several possible widths and orientations. For each pair of
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Fig. 3: Two cases that can lead to reconstruction errors. (a) If there is no sample point at

bifurcation D, the tree reconstruction algorithm is likely to incorporate both the AB and AC

paths into the final tree, which will result in counting twice the pixels in AD when scoring

it. This is avoided by introducing an anchor point at D. (b) At a crossover, an anchor point

can be used to build either the horizontal AXB branch or the vertical Y XZ one, but not

both. This is why we choose to create two anchor points at all potential crossovers.

width w and orientation φ, the SVM returns a score f(xi, w, φ). We take our tubularity

measure to be

fi = max
w,φ

f(xi, w, φ) (1)

and retain the corresponding maximizing values wi and φi as local width and orientation

estimates. We use a sigmoid to map this measure to the posterior probability pi of xi being

on the centerline of a linear structure given the score fi. We write

pi =
1

1 + e−(afi+b)
, (2)

where the parameters a and b are estimated by cross-validation over a validation set. Using a

sigmoid to convert an SVM output into a probability is valid because it preserves the sparse-

ness of the SVM while returning probabilities comparable to those produced by regularized

likelihood kernel methods (Platt, 2000).

4.2 Sampling the Image

To extract a representative set of anchor points that approximate well the underlying tree

structure, samples should be taken from both junction points and tubular segments of the

tree. We have therefore developed a two-step approach to finding anchor points introduced

at the beginning of Section 3. We first attempt to detect junctions such as the green dots of

Fig. 2(b) and then to find regularly spaced anchor points such as the blue dots away from

them. In this way, if a junction is missed, it can be recovered when the algorithm tries to

link blue dots. Furthermore, even if all the junctions were found, the blue dots would still be

required to properly link distant ones.

Recall that we have assigned the tubularity probability pi of Eq. 2 to each voxel. It

is the voxel’s probability of being on the centerline of a tubular structure. To detect junc-

tions, we use a 0.5 threshold to binarize the resulting probability image and compute its

skeleton (Lee et al, 1994). We label as potential junction voxels from which more than two

skeletal branches emanate. Note that this can result either from a legitimate bifurcation or

from a crossover, which can occur whenever two independent filaments approach each other

at a distance smaller than the spatial resolution of the microscope. Because we cannot know
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at this stage whether a detected point is a bifurcation or a crossover, we generate two co-

located anchor points for each such point to avoid problems such as those depicted by Fig. 3

at tree reconstruction time.

This being done, we remove from further consideration spatial neighborhoods of the

detected junction points and sort the remaining voxels according to their tubularity proba-

bility. We then iteratively select the most probable one and eliminate all those within the

neighborhood until the whole image has been explored. The neighborhood of voxel xi is

taken to be a cylindrical box whose axis is aligned with the orientation estimate φi. While

the cylinder height is fixed to favor even sampling along filaments, the radius is taken to be

linearly proportional to the width estimate wi.

This results in a set of anchor points that are relatively regularly spaced along filaments.

Inevitably, some of these points are false positives that do not lie on filaments and will have

to be ignored when building the final tree.

4.3 Linking the Anchor Points

Let V be the set of anchor points, which is a subset of V I = {xi}, the set of all voxels in the

image volume. We represent this volume by a directed graph GI = (V I , EI) whose vertex

set is V I and whose edges EI = {eIij} connect each voxel to its 26 neighbors. Hereafter,

GI will be referred to as the image graph.

We construct a reduced graph G = (V,E) of GI over the set of anchor points V by

linking all pairs of them, except the co-located ones, that are within a specified distance of

each other. The edge set E corresponds to paths formed by successive edges of EI connect-

ing nearby anchor points. In the remainder of the paper, we will use the terms voxels and

vertices of G as well as edges and paths interchangeably.

Formally, the path emn ∈ E linking anchor points xm , xn ∈ V can be represented

by the set of edges {eImi, e
I
ij , . . . , e

I
kn} it includes. In practice, we choose these edges by

running Dijkstra’s algorithm to minimize

dmn =
∑

eIij∈emn

− log pij , (3)

where pij is an image-based probability that edge eIij belongs to the centerline of a filament.

In other words, we take emn to be the maximum likelihood path based on image evidence

only and assuming that, in the absence of any such evidence, all paths are a priori equally

likely.
We derive pij from the pi values of Eq. 2 by considering the dmn cost of Eq. 3. We re-

quire that dmn should be roughly equal to the integral of − log(pi) along the corresponding
continuous path. In other words, we have

dmn ≈

∫

− log p(s)ds (4)

≈
∑

eI
ij

∈emn

∫ lij

0
− log p(

lij − s

lij
xi +

s

lij
xj)ds ,

where s represents the curvilinear abscissa along the path, p(s) the probability that the point
at abscissa s is on a centerline, and lij the distance between neighboring points xi and xj .
Since we work on a voxel grid, to compute the integral of Eq. 4, we only have values pi and
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pj of p((1−s/lij)xi+(s/lij)xj) for s = 0 and s = lij respectively. Assuming that p varies
linearly between xi and xj , we write

dmn ≈
∑

eI
ij

∈emn

∫ lij

0
− log(

lij − s

lij
pi +

s

lij
pj)ds

≈
∑

eI
ij

∈emn

− lij
pi(log(pi)− 1) + pj(1− log(pj))

pi − pj
. (5)

In practice, to avoid divisions by zero, we therefore take pij to be equal to p
lij
i if |pi−pj | ≤

ǫ, and so that

log(pij) = lij
pi(log(pi)− 1) + pj(1− log(pj))

pi − pj
, (6)

otherwise. Note that this is consistent because when pj − pi tends towards zero, log(pij)
defined in this manner tends towards lij log(pi) = lij log(pj).

5 Tree Reconstruction

Given the graph G = (V,E) introduced in the previous section, we take trees to be directed

subgraphs of G with a distinguished vertex, called the root, with in-degree 0 and such that

there is a unique directed path from it to every other vertex in the tree.

Let T (G) be the set of all such trees in G. Our task now is to find the tree t
∗ ∈ T (G)

that best represents the underlying tree structure. To this end, we first introduce a Bayesian

framework that lets us define an objective function to assess the quality of a tree t ∈ T (G),
using both image- and geometry-based evidence. Then, since T (G) is exceedingly large,

we introduce two different algorithms designed to find acceptable approximations of the

true optimum sufficiently fast to be of practical use.

5.1 Bayesian Formulation

A subgraph t of G can be represented by a set of indicator variables {tmn}, one for each

edge of G, such that

∀emn ∈ E, tmn =

{

1, if emn ∈ t

0, otherwise.
(7)

Let T = {Tmn} be the set of binary random variables such that Tmn stands for edge emn

truly being on the centerline of a tree structure. Similarly, let T I
ij stand for the random

variable representing the presence or absence of a centerline along the edge eIij of the image

graph.

Recall from Section 4.1 that we associate to each voxel xi the tubularity measure fi of

Eq. 1, which can be used to evaluate how likely xi is to be on the centerline of a tubular

structure. We also estimate the width wi and the orientation φi of the tube, assuming there is

one. Let f denote the set of tubularity measures and Φ the set of all widths and orientations.



Automated Tree Reconstruction by Global Optimization 9

We take the optimal subgraph t
∗ to be the tree whose likelihood is greatest, given the

image features f and the orientation and width estimates Φ. This can be written as

t
∗ = argmax

t∈T (G)

P (T = t|f ,Φ,Θ) (8)

= argmax
t∈T (G)

P (f |T = t)P (T = t|Φ,Θ) (9)

= argmin
t∈T (G)

− logP (f |T = t)− logP (T = t|Φ,Θ), (10)

where Θ denotes a set of learned meta-parameters encoding prior knowledge about plausible

tree shapes. Eq. 9 follows from Eq. 8 because the tubularity measures f of Eq. 1 only denote

the presence or the absence of centerlines and are therefore conditionally independent of

the widths and orientations Φ, given the presence or absence of a tubular structure. We

now turn to defining more precisely the two terms of Eq. 10, which we will refer to as the

Image-Based and the Geometry-Based terms respectively.

5.1.1 Image-Based Term

P (f |T = t) represents the probability of observing the image features we extract, knowing

where the tree is. We assume conditional independence of these features along neighboring

edges given that we actually know whether these edges belong to the tree or not, and hence,

represent the likelihood as a product of individual edge likelihoods. Since our eventual goal

is to maximize the first term of Eq. 9 with respect to the tmn indicator variables of Eq. 7,

in the following derivation, we drop all terms that are independent from the tmn and have

therefore no bearing on the outcome of the computation.

Recall from Section 4.3 that each edge emn ∈ E is composed by a set of edges {eIij} ∈

EI belonging to the image graph and linking anchor points xm, xn ∈ V . We therefore write

P (f |T = t) =
∏

emn∈E

P (fmn|Tmn = tmn) (11)

=
∏

emn∈E

P (fmn|Tmn = 1)tmn × P (fmn|Tmn = 0)(1−tmn)
(12)

∝
∏

emn∈E

[

P (fmn|Tmn = 1)

P (fmn|Tmn = 0)

]tmn

(13)

=
∏

emn∈E

[

∏

eIij∈emn

P (fij |T
I
ij = 1)

P (fij |T I
ij = 0)

]tmn

(14)

=
∏

emn∈E

[

∏

eIij∈emn

P (T I
ij = 1|fij)P (T I

ij = 0)

P (T I
ij = 0|fij)P (T I

ij = 1)

]tmn

(15)

∝
∏

emn∈E

[

∏

eIij∈emn

P (T I
ij = 1|fij)

P (T I
ij = 0|fij)

]tmn

(16)

=
∏

emn∈E

[

∏

eIij∈emn

pij
1− pij

]tmn

, (17)
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where fmn is the set of tubularity values along the path emn and fij stands for the tubularity

values fi and fj for the vertices of the edge eIij ∈ EI of the image graph.

Eqs. 12 and 13 are respectively obtained by a simple algebraic manipulation and drop-

ping a constant term. In Eq. 14, we use the conditional independence assumption of the

tubularity measures along neighboring edges of the image graph given the true state of the

edges. In Eqs. 15 and 16, we use Bayes’ rule and assume that edges are a priori equally

likely to belong to a tree, which lets us also drop the P (T I
ij = 0) and P (T I

ij = 1) terms.

Finally, in Eq. 17, we replaced the probability P (T I
ij = 1|fij), the likelihood that the edge

eIij is on a filament centerline, by its short notation pij introduced in Eq. 3 and computed

according to the formula given in Eq. 6. Likewise, we replaced P (T I
ij = 0|fij) by 1− pij .

For a tree t in G, the image-based term of Eq. 17 can therefore be written as

Fi(t) = − logP (f |T = t) =
∑

emn∈E

cmn tmn, (18)

where cmn =
∑

eIij∈emn

−log
pij

1− pij
.

In essence, cmn can be considered as the cost of edge emn and our algorithm will try

to minimize the sum of these costs over the whole tree, while also enforcing the geometric

constraints discussed in the following section.

5.1.2 Introducing the Geometry-Based Term

The simplest possible approach to estimating the geometry-based term, − logP (T = t|Φ,Θ),
is to assume that all trees have the same prior probability and that subgraphs that are not trees

have probability zero, which makes it constant for all choices of tmn values that result in

a tree. Under this assumption, the optimal tree t
∗ of Eq. 10 can be obtained by finding

the set of indicator variables {t∗mn} such that the corresponding subgraph is a tree and the

image-based linear objective function of Eq. 18 is minimized.

However, as shown in Fig. 1, this can result in erroneous topologies in ambiguous cases,

mostly because the image data is very noisy. To remedy this, we incorporate geometric priors

into our objective function to penalize trees whose geometric properties make them unlikely

candidates.

More specifically, we model the prior term as a tree structured Bayesian network that

captures geometric relationships between consecutive edge and vertex pairs. In this work,

we assume that the root vertex, xr ∈ V , of the tree structure is either given or can be reliably

estimated. Let Er ⊂ E be the set of edges emanating from xr . We take the prior probability

P (T = t|Φ,Θ) to be

∏

eri∈Er

P (Tri = 1|Φr,Φi,Θ)tri ×
∏

eom∈E
emn∈E\Er

P (Tmn = 1|Tom = 1,Φomn,Θ)tmntom ,

where Φi denotes the width and orientation estimates for vertex xi, and Φomn denotes

width and orientation estimates for vertex triplets. Under this model, the geometry-based

term becomes the quadratic function of the indicator variables

− logP (T = t|Φ,Θ) =
∑

eri∈Er

bri tri +
∑

eom∈E
emn∈E\Er

aomntmntom , (19)
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where

bri = − logP (Tri = 1|Φr,Φi,Θ) , (20)

aomn = − logP (Tmn = 1|Tom = 1,Φomn,Θ).

These terms encode the fact that successive edges and vertices must have consistent

widths and orientations. Specific choices for modeling them will be given in the next section.

The objective function Fg(t) that must be minimized to find the optimal tree t∗ of Eq. 10

can now be obtained by summing the geometry-based term of Eq. 19 to the image-based one

of Eq. 18. This yields

Fg(t) =
∑

emn∈E

cmntmn +
∑

eri∈Er

britri +
∑

eom∈E,
emn∈E\Er

aomntmntom (21)

=
∑

eri∈Er

(cri + bri)tri +
∑

eom∈E,
emn∈E\Er

(cmn + aomn)tmntom . (22)

Eq. 22 follows from Eq. 21 by rewriting the image-based term as a sum of unary and

binary terms involving the indicator variables under the assumption that t is a tree, and thus

has no cycles, and then grouping them with those that appear in the geometry-based term.

Note that the unary term represents the total cost of the edges emanating from the root vertex

and the binary term represents the cost for all edge pairs in t. Note also that the cmn and bri
terms are edge weights while the aomn terms are pairwise edge weights.

The above optimization problem generalizes the Minimum Arborescence Problem

(Duhamel et al, 2008) with a quadratic cost and additional constraints, which is NP-hard.

The presence of the quadratic terms makes the minimization of Fg(t) more difficult than that

of the linear objective function Fi(t) of Eq. 18, which only involves unary terms. While it

turned out to be possible to optimize the latter by directly using our earlier algorithm (Blum

and Blesa, 2005), we had to extend it substantially to handle the former. This will be dis-

cussed in more details in Section 5.2.

Even though the above formulation assumes a single tree with a well defined root, it

is easily extended to the multiple tree reconstruction case. This is done by adding a virtual

vertex to the graph and connecting it to the individual root vertices of the trees to be recon-

structed by minimal cost outgoing edges. Likewise, the pairwise costs of edge pairs directly

connected to the root vertices are set to minimal values. This transforms the multiple tree

reconstruction problem into a single-tree reconstruction one with no loss of generality.

For multiple trees, as in the single tree case, we assume that the root vertices of each

tree is either given a priori or can be reliably estimated. This is required because the global

objective function of Eq. 22 does not score one single tree at a time, as is done in most

tracking-based methods. Instead, the tree reconstruction algorithm discussed below, which

is designed to minimize it, seeks to explain the whole image volume at once.

5.1.3 Modeling the Geometry-Based Term

In this work, we exploit four geometric properties to capture the underlying relations be-

tween parts of the tree structure, as illustrated by Fig. 4. They are:

(a) Edge Direction Similarity. To obtain smooth reconstructions, we encode direction sim-

ilarity of pairs of consecutive edges. The angular difference between the directions is

modeled by a von Mises distribution, that is a circular normal distribution of mean µe

and concentration ke.
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(a) (b)

(c) (d)

Fig. 4: The four components of the geometric regularization term. The green circles are the

vertices of the reduced graph and the solid lines illustrate the edges between them. (a) Edge

direction similarity. (b) Width consistency. (c) Orientation consistency. (d) Tortuosity.

(b) Width Consistency. We model the width differences at pairs of consecutive vertices

by an asymmetric Gaussian distribution of mean µw and variances σ2
wl and σ2

wr . This

model accommodates the fact that the width may tend to decrease with distance from

the root in some datasets but not others.

(c) Orientation Consistency. We measure the angular deviation of the estimated orien-

tations of two consecutive vertices from the direction of the line between them. This

deviation is again modeled by a von Mises distribution of mean µφ and concentration

kφ.

(d) Tortuosity, We use the ratio of the path length to the linear distance between the end-

points as measure of tortuosity, which we then represent by a Gaussian distribution of

mean µtor and variance σ2
tor .

Given these geometric terms, the vector Θ of meta-parameters introduced in Eq. 10 is com-

posed of the means, variances, and concentrations of these four distributions, which we

estimate using a maximum likelihood approach on a training data set. We therefore write

the geometry-based probability of a pair of consecutive edges eom ∈ E and emn ∈ E

belonging to the tree as

P (Tmn = 1|Tom = 1,Φomn,Θ) = M(φom − φmn, µe, ke) (23)

× AN (wm − wn, µw, σ
2
wl, σ

2
wr)

× M(φm − φmn, µφ, kφ)

× M(φn − φmn, µφ, kφ)

× N (tor(emn), µtor, σ
2
tor) ,

where φom denotes the direction angle of the line between vertices xo and xm, and tor(emn)
denotes the tortuosity value assigned to the path corresponding to edge emn. The prior

probability P (Tri = 1|Φr,Φi,Θ) of Eq. 20 for edges emanating from the root vertex

includes the same set of geometric terms except the edge direction similarity term.
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5.2 Optimization

Let us assume that the graph G has N vertices. In the first part of this section, we present a

simple approach that aims at building the best possible tree, tk, among all those that span

exactly k edges. We run it for all k from 1 to N−1 and pick the tk that yields the best

overall score. This is a simple but practical way to optimize the criterion of Eq. 18 be-

cause, for each k, we can take advantage of our earlier k-MST algorithm (Blum and Blesa,

2005) to build a near-optimal k cardinality tree. However, this algorithm was not designed

to handle pairwise edge-relationships, such as those that appear in the objective function of

Eq. 22. Furthermore, this approach is computationally inefficient because it involves restart-

ing the whole computation from scratch for each successive cardinality. In the second part

of this section, we therefore extend the original k-MST algorithm both to handle geomet-

ric relationships between edges and to compute not one single tree but many, one for each

cardinality, at once.

5.2.1 Optimizing the Image-Based Term

To minimize the image-based objective function Fi of Eq. 18, we begin by using the k-MST

algorithm (Blum and Blesa, 2005) for each value of k (0 < k < N ) to build the k-cardinality

tree tk that minimizes
∑

emn∈E

dmntmn , (24)

where the dmn are the sum of negative log likelihoods of Eq. 3. We then simply select the k

and corresponding tk that yields the lowest value of Fi(tk).
Note that it might have seemed more logical to use the sums of log likelihood ratios cmn

of Eq. 18 in Eq. 24 so that the k-MST algorithm could directly build k-cardinality trees that

are optimal for the true objective function we seek to minimize. However, consider that the

k-MST algorithm makes local decisions to build candidate trees, which involves selecting a

new edge at each iteration to decrease the overall tree cost. If the edges were weighted using

the log-likelihood ratios of Eq. 18, the preferred edge would always be the one account-

ing for the greatest amount of image evidence, thus ignoring the fact that there are more

edges to be added. This would bias the optimization towards long edges and would produce

undesirable effects, such as those depicted by Fig. 5(a). The same argument is made very

convincingly, albeit in a different context, in Section 5 of (Felzenszwalb and McAllester,

2006). In contrast, using the log-likelihood of Eq. 24 as edge weights results in the highest

density of probability tree being built. Since we assume that there exists only one tree per

image, once the tree tk is constructed we consider all remaining edges as background, and

assign to the tree the score of Eq. 18.

The k-MST algorithm (Blum and Blesa, 2005) relies on an ant colony optimization

(ACO) scheme (Dorigo and Stütale, 2004) inspired by the foraging behavior of real ants.

While walking from food sources to the nest and vice versa, ants deposit chemicals known

as pheromones on the ground. Paths marked by strong pheromone concentrations are more

likely to be chosen when deciding in what direction to go. This group behavior is the basis

for a cooperative interaction which lets the ants find shortest paths between their nest and

food sources. In ACO algorithms, an artificial ant incrementally constructs a complete so-

lution by iteratively adding appropriately chosen components to a partial one. The solution

components to be added are chosen probabilistically according to a parameterized proba-

bilistic model, the so-called pheromone model P , which is a finite set of numerical values.
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(a) (b)

(c) (d)

Fig. 5: Different approaches to linking a set of anchor points. (a) Minimizing the log-

likelihood ratio cost function of Eq. 18 using the ACO algorithm of Section 5.2.1 favors

long paths between anchor points, which results in zig-zags and some pixels being used

twice. (b) Replacing the log-likelihood ratios by the log likelihoods of Eq. 24 removes the

zig-zags but does not prevent double-counting, resulting in the linking of a false-positive

and a spurious branch. (c) Introducing the geometric priors to the log-likelihood ratios of

Eq. 25 also removes the zig-zags but still does not prevent double-counting and the creation

of a different spurious branch. (d) Using the log likelihoods and the geometric priors as in

Eq. 26 produces the right answer.

Each pheromone value τi ∈ P is associated to an element from a set of potential solution

components. The pheromone model is used to probabilistically generate complete solutions

by assembling them from a set of solution components. In general, an ACO algorithm re-

peatedly goes through the two following steps:

1. Candidate solutions are constructed using a pheromone model, that is, a parameterized

probability distribution over the solution space;

2. The candidate solutions are used to modify the pheromone values so as to bias future

sampling toward high quality solutions.

The second step, often referred to as the pheromone update, aims at focusing the search to-

wards promising parts of the search space and is a critical component of all ACO algorithms.

It implicitly assumes that good solutions consist of good solution components.

More specifically, the ACO algorithm for the k-MST problem in undirected graphs that

we use here works roughly as follows. At each iteration, a number na of l-cardinality trees—

where l > k—are probabilistically constructed based on the pheromone model and edge

weights. The pheromone model consists of a pheromone value τe for each edge e of the

given undirected graph. Then, a dynamic programming algorithm (Blum, 2007) is used to

extract from each of these l-cardinality trees the best k-cardinality tree they contain. The last

step of each iteration consists in the pheromone update, which—depending on the so-called

convergence factor—uses a weighted average of good solutions found previously. When
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reaching the imposed computation time limit, the algorithm returns the best solution it has

found up to this point.

5.2.2 Accounting for the Pairwise Terms

The approach discussed above cannot be used to optimize the full objective function of

Eq. 22 because our original k-MST algorithm cannot handle quadratic terms. Furthermore,

it is computationally inefficient because it involves running the algorithm many times over,

once for each cardinality. We have therefore extended the k-MST algorithm in the following

ways:

1. Since the root node is given and the pairwise terms aomn of Eq. 20 are asymmetric, we

replace the undirected graph model used by the original k-MST algorithm by a directed

one and explicitly introduce the root vertex xr .

2. We take into account the pairwise terms introduced in Section 5.1.2 when computing

effective edge weights.

3. To improve the convergence of the algorithm, pheromone values are assigned to pairs

of consecutive edges instead of to individual ones. In other words, the set P contains a

pheromone value for each pair of consecutive edges.

4. We introduce an additional tree neighborhood structure and search over this neighbor-

hood to avoid incorrect connections at crossovers and to improve convergence.

5. A branching factor limit constraint is imposed on the reconstructions.

In our implementation, not only is the quality of the trees subject to optimization, but

also their cardinality, which is not given beforehand. This is achieved through an optimiza-

tion scheme that iterates two complementary steps, one for tree construction and the other

for cardinality selection. Recall from Section 5.1.2, that we seek to minimize the objective

function

Fg(t) =
∑

eri∈Er

(cri + bri)tri +
∑

eom∈E,
emn∈E\Er

(cmn + aomn)tmntom , (25)

which we will refer to as the primary objective function. We also introduce an auxiliary

objective function

F ′
g(t) =

∑

eri∈Er

(dri + bri)tri +
∑

eom∈E,
emn∈E\Er

(dmn + aomn)tmntom (26)

where we replace the log likelihood ratios cmn of Eq. 18 by the log likelihoods dmn of

Eq. 3.

In our optimization procedure, we use the dmn costs in the auxiliary objective func-

tion as a search heuristic to construct the trees and the cmn ones in the primary objective

function to score them. We do this for the same reason as we did in the simpler version of

the algorithm outlined in Section 5.2.1. This remains necessary because, even though in-

troducing the geometric priors tends to fix the zigzagging behavior depicted by Fig. 5(a),

as shown in Fig. 5(c), it does not prevent some pixels from being used twice, resulting in

spurious branches such as the one depicted by Fig. 5(c). This behavior results from the fact

that when we compute the edges of the graph, that is, the paths linking the anchor points,

nothing prevents the same voxels from being used in more than one path. Preventing this

would require adding many additional anchor points to guarantee that there is one for every
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potential junction and would be very computationally expensive. Furthermore, this would

result in irregularly spaced anchor points and paths of arbitrary length, which would give

additional and unwarranted influence to path length when selecting edges.

The first reconstruction step of the optimization involves first building a number na of

trees using an ACO scheme similar to the one discussed in Section 5.2.1 that adds edges

so as to probabilistically minimize the auxiliary objective function with the quadratic term.

For each one of these trees, the algorithm then uses the same dynamic programming tech-

nique (Blum, 2007) as before to extract the best k-cardinality tree for k = 1, . . . , klimit.

Finally, for each cardinality, among the extracted na trees, we keep the one that minimizes

the auxiliary objective function. This results in klimit trees each with a different cardinality.

In the second reconstruction step, among all the resulting trees, the one that minimizes

the primary objective function is selected and the pheromone values are updated accordingly.

Henceforth, we will refer to this algorithm as the ACO-RTS method, which stands for

Ant Colony Optimization for the Reconstruction of Tree-like Structures. In the appendix,

we describe it in more details and provide a pseudo-code for it.

6 Results

In this section, we first use eight brightfield micrographs, such as those depicted in Figs. 1

and 6, to evaluate the various components of our approach and to demonstrate the impor-

tance of using both the image-based and the geometry-based terms of our objective function.

To demonstrate the generality of our approach, we show a similar improvement on a very

different dataset, the DRIVE database of retinal scans (Staal et al, 2004), such as those in

Figs. 1 and 8. Finally, we present our results on the DIADEM challenge datasets (Ascoli

et al, 2010). All images in this section contain overlays that are best viewed in color.

In all cases, we used the same algorithm without customization, besides retraining using

ground truth data. This illustrates the ability of our statistical learning-based approach to

adapt to a wide range of modalities.

Running the full algorithm requires setting 13 parameters in total. The a and b param-

eters of the sigmoid function of Eq. 2 are learned from the training datasets and associated

ground truth tracings using the Levenberg-Marquardt algorithm of (Platt, 2000). The ra-

dius and height of the cylindrical box used for sampling and described in Section 4.2 are

estimated from the training datasets using a two dimensional grid search procedure to max-

imize the DIADEM score. The remaining parameters correspond to the distributions of the

geometric priors introduced in Section 5.1.3 and are estimated using a maximum likelihood

approach.

The algorithm is implemented in C++ and parallelized across multiple CPU cores. The

training-times are in the order of a few tens of minutes. The run-times range between few

seconds for relatively small datasets such as the Olfactory Projection Fibers to few tens of

minutes for the largest ones such as the Hippocampal CA3 Neurons on an eight core 3 GHz

PC. The software is available online at http://cvlab.epfl.ch/research/medical/lm.

6.1 Brightfield Micrographs

We evaluated our algorithm on eight brightfield micrographs such as those of Figs. 1 and 6.

They were acquired by our colleagues from EPFL’s Brain Mind Institute, who also gave

us hand-traced ground-truth data. The images were obtained from biocityne-dyed rat brains.
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(a) (b) (c) (d)

Fig. 6: Reconstructions in a brightfield micrograph. The top row depicts the whole image

stack and the bottom one an enlarged portion of it. The yellow sphere denotes the soma

and serves as the root node. (a) Manually delineated ground truth overlaid over the original

stack. (b) Minimum spanning tree. (c) Reconstruction obtained without geometric regular-

ization. (d) Reconstruction obtained with geometric regularization. The boxes overlaid on

the bottom row images highlight locations where geometric regularization clearly brings

about an improvement. In the area within the uppermost box, there seems to be a gap in the

data. As a result, both the MST and the k-MST without regularization fail to connect the

top and bottom part of the dendrite, which is wrong as can be seen in the ground truth data.

By contrast, the regularized k-MST depicted by the last column exhibits the right topology.

Moreover, in the area enclosed by the lowest of the boxes, there is structured noise, which

is correctly ignored by the regularized k-MST but not by the others.

The numerous artifacts produced by irregularities of the staining process and the non-Gaussian

blur introduced by the microscope make their automated analysis challenging. Many signif-

icant processes appear as faint structures, present abrupt intensity changes, or are severely

blurred. Furthermore, the stain can dye irrelevant structures, such as blood vessels that are

close to the neuron under analysis. This produces both structured and unstructured noise that

is difficult to distinguish from true processes, even for a human expert.

As discussed in the implementation section, we use manually annotated trees to train

the SVM classifiers of Section 4.1, which we use to evaluate tubularity, and to learn the

geometric probability distributions of Section 5.1.3. Since the data is noisy, many spurious

anchor points are generated during the sampling step of Section 4.2. Thus, the minimum

spanning tree of Fig. 1(b) is over-complete. Applying our k-MST scheme results in the

much cleaner trees of Fig. 1(c), when not using our geometric regularization term, and of

Fig. 1(d), when using it.

In Fig. 6, we show similar results on a second micrograph. As shown in the areas high-

lighted by the boxes overlaid on the bottom row images, the geometric regularization term

can bring very significant improvements both when there is a gap in the image data, by
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Fig. 7: Quantitative evaluation of our results for the brightfield stack of Fig. 6 (top row),

the retinal scan of Fig. 8 (middle row) and the Olfactory Projection Fibers of Fig. 9 (bottom

row). (a) DIADEM scores as a function of the tree cardinality. The red solid curve represents

the scores obtained with the proposed geometric regularization, which means minimizing

the objective function of Eq. 26 for each fixed cardinality, and the blue dotted curve rep-

resents those obtained without regularization. The yellow square indicates the score of the

standard MST. (b) Corresponding values of the objective functions Fg of Eq. 22 and Fi of

Eq. 18, also drawn as red solid and blue dotted lines respectively. The diamonds represent

the selected cardinalities that minimize them.

bridging it, or when there is structured noise, by eliminating it. To quantify this improve-

ment, we scored the reconstructions using the DIADEM metric (Ascoli et al, 2010), which

is specifically designed to compare the topology of a reconstructed tree against ground truth.

It returns a number between 0 and 1 that measures the topological distance between trees

by matching their branching and end points, and analyzing the connecting paths. Each con-

nection is weighted by the size of the subtree it is connected to. Therefore, errors close to

the tree root are usually penalized more heavily than those further away because they result

in more severe topological changes. The results shown in the top row of Fig. 7 confirm that

trees reconstructed using our full approach score better than both the minimum spanning

tree and those reconstructed without geometric regularization.
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(a)

(b)

(c)

(d)

(e)

Fig. 8: Example result for a retinal image from the DRIVE database. The first column depicts

the whole image and the second an enlarged portion of it. (a) Manually outlined blood

vessels overlaid in white. (b) Minimum spanning tree. (c) Minimum spanning tree with the

spurious branches trimmed by minimizing Eq. 18. (d) Reconstruction without geometric

regularization. (e) Reconstruction with geometric regularization. The green boxes and the

yellow ellipses denote spurious branches and gaps, all of which disappear in row (e).
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6.2 Retinal Scans

To demonstrate the generality of our algorithm, we evaluated it on the 2D retinal images of

the DRIVE database (Staal et al, 2004). The dataset contains 20 test images with manual

segmentations of blood vessels performed by trained human observers. Since segmentations

can not be used for quantitative topological comparison, we manually traced the vascular

trees and treat them as ground truth. At detection time, the root vertex is automatically

estimated to be the anchor point nearest to the center of the optic disk region, which is

detected by using a variant of the method of (Huang and Yan, 2006).

Fig. 8 illustrates the behavior of our algorithm on one of these images1. Again, our ap-

proach eliminates many outliers and yields much cleaner trees than a standard minimum

spanning tree, with far fewer mistakes such as those highlighted by the green rectangles

and the yellow ellipses in the second column of the figure, especially when using the full

objective function. Note that the final tree is not a subset of the minimum spanning tree.

Its topology is actually different, which could not have been achieved by simply pruning

the minimum spanning tree as shown in the third row of the figure. To quantify the corre-

sponding improvement, we again computed the DIADEM scores. As shown in the middle

row of Fig. 7, the results are similar to those we obtained for the brightfield micrographs. In

terms of the metric, using the geometric regularizer improves the results by about 40% over

not using it and by slightly more when comparing against the minimum spanning tree or

the pruned version of it. Arguably, using the k-MST algorithm without geometric regular-

ization eliminates many spurious branches but does not significantly improve the resulting

topology. However, this is achieved using the full objective function.

6.3 DIADEM Data

We ran our algorithm on the five datasets provided by the DIADEM challenge (Ascoli et al,

2010). Each one includes training image stacks with ground-truth traces generated by ex-

perts and test stacks. As before, the ground truth is used to train the SVM classifiers of

Section 4.1 and to learn the geometric probability distributions of Section 5.1.3.

6.3.1 Olfactory Projection Fibers

These image stacks are acquired from neurons of the olfactory bulb of the Drosophila fly.

Each stack depicts a single neuron labeled with a Green Fluorescent Protein (GFP) and is

imaged using a confocal microscope. The stacks are relatively clean, with a small point

spread function. As can be seen in Fig. 9, the trees appear either as simple structures con-

sisting of few branches or a path with almost no bifurcations that ends in a complex and a

highly branched structure.

The reconstructions we produce are generally good as also shown by the DIADEM

scores of the bottom row of Fig. 7. Note that the objective function Fg of Eq. 25 does not

seem to reach to a minimum as shown in the bottom row of Fig. 7(b). Since this dataset is

fairly clean with relatively little noise on the background, it turns out that the sampling does

not produce any outliers outside the processes and all the anchor points are within the fibers.

As a result, the objective function Fg always decreases with increasing tree cardinality, up

to the point where all vertices are spanned by the tree.

1 Additional results are available online at http://cvlab.epfl.ch/research/medical/lm/retinal/.
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(a) (b)

Fig. 9: Olfactory Projection Fibers. (a) Maximum intensity projections of three image stacks

with the reconstructions overlaid. (b) Enlarged versions of the same images.

However, the reconstructions contain some spurious branches that are perpendicular

to the main processes and that reside within them, which is attributable to the sampling

methodology of Section 4.2. Because the processes occasionally have complex shapes, the

sampling step generates two anchor points, one on the centerline and the other close to

the surface of the fiber, corresponding to the same cross-section of the tube. This could be

solved by a more sophisticated sampling strategy or by taking into account voxel width and

orientation estimates when computing the paths of Eq. 3.

6.3.2 Cerebellar Climbing Fibers

These stacks are acquired from the cerebellar cortex of rats. The axons’ terminals are dyed

with Biotinylated Dextran Amine (Anterograde), which results in very dark processes and
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(a) (b)

Fig. 10: Conversion from color to grayscale of Cerebellar Climbing Fibers images. (a)

Original image patch. (b) Grayscale version.

blob-like blue nuclei. Before processing the stacks, we converted them to grayscale by lin-

early combining the RGB components so as to suppress the blue blobs and maximize the

absolute grayscale intensity difference between the axon terminals and the nuclei in the

training stacks, as shown in Fig. 10.

As shown in Fig. 11, each stack contains several tiles that are stitched together and

empty regions of space are assigned a neutral gray level. The resulting reconstructions are

fairly accurate but contain some topological mistakes, such as erroneous connections at

crossovers and shortcuts where the curvature is very high. Solving this would require more

global geometrical constraints than the relatively local ones we impose.

Furthermore, in our implementation as discussed in Section 4.3, paths between anchor

points only take into account the probabilities that their voxels are on the centerline of a

filament. A natural extension that would generate more accurate and smoother paths would

be to incorporate the width and the orientation estimates of the voxels in the shortest path

computation.

6.3.3 Neocortical Layer 6 Axons

This dataset is obtained by labeling axons using GFP and imaging them with a two-photon

microscope. The resulting image stack is depicted by Fig. 12. The axons appear as clean

structures and the point spread function of the microscope is relatively small. There is some

shot noise that is easily eliminated by our tubularity measure.

This dataset is nevertheless very challenging because there can be more than 30 differ-

ent trees per stack. As discussed at the end of Section 5.1.2, we handle this by introducing a

virtual node connected to the root node of each individual tree. These trees are then recon-

structed simultaneously. Because their branches are closely spaced, it can easily happen that

one tree “steals” the branches of another one, as depicted in the bottom row of Fig. 12. As a

result, the DIADEM scores we obtain for this dataset are much lower than those of Fig. 7.

They are in the order of 0.05 without the geometric priors and 0.1 with them. In other words,

while imposing geometric regularity and explicitly sampling from junctions helps to some

extent, a more global analysis of the interaction between distant anchor points and edges

would be required to automatically correct such mistakes.

6.3.4 Hippocampal CA3 Neurons

These stacks are relatively similar to those of Figs. 1 and 6. They are acquired from the rat

brains, dyed with biocityne, and imaged using brightfield microscopes. However, their im-
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Fig. 11: Cerebellar Climbing Fibers. Top row: Image stack with reconstruction overlaid in

white. The yellow dot denotes the tree root. Bottom Row: Ground truth delineation. Note

that the branch on the right of the root node is correctly delineated, even though it was not

traced in the ground truth.

age characteristics differ in three important ways. First, the point spread function of the mi-

croscope is very elongated in the z axis. As a result the dendrites look more like thin planes

than tubular structures. Second, there are irregularities in the staining process, which make

several dendrites degenerate into sequences of blobs. Finally, the dye spread around the
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Fig. 12: Neocortical Layer 6 dataset. Top row: Image stack with reconstructions overlaid.

Each colored tree corresponds to a different root node. Bottom row: An example of the tree

stealing problem. The red, green and yellow trees (left) compete for the same part of the

image data. In the ground truth reconstruction (right), the red tree explains all the diagonal

process.

soma, generating blob-like structures. These artifacts make automated tracing much more

difficult.

As in the Cerebellar Climbing Fiber dataset, the stacks consist of several tiles that we

stitched together. As shown in Fig. 13, in spite of all the problems mentioned above, most

of the salient processes are successfully reconstructed and the spurious ones ignored.

6.3.5 Neuromuscular Projection Fibers

This dataset consists of 152 image stack tiles of mouse neuromuscular axonal projection

fibers acquired with a 2-channel confocal microscope. Starting from a set of nearby root

nodes, the fibers follow approximately parallel paths while twisting around each other, as

shown in Fig. 14(a).
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Fig. 13: Hippocampal CA3 Neurons stack with overlaid reconstructions. As in the case of

Fig. 12, there are several trees overlaid using different colors.

Because the fibers are so close to each other, the reduced graph G, introduced in Sec-

tion 4, inevitably contains low-cost edges that connect anchor points from different branches.

At linking time, this often results in trees with branches erroneously jumping from one fiber

to another. As shown in Fig. 14(b), this problem can be mitigated by increasing the sampling

rate and generating more anchor points than we did for the other datasets.

However, if we were to process the whole dataset, this would result in hundreds of

thousands of anchor points to be linked. This would be computationally infeasible using our

current algorithm, which is why we only show results on a single tile. A feasible strategy

could then be to trace the tiles sequentially and use the leaves obtained in one tile as the

roots for the next one, possibly with some manual intervention to prevent the propagation of

errors.

7 Conclusion

We have presented an approach to automatically inferring tree structures in 2D images and

3D image stacks by optimizing a global objective function that combines image data and

geometric regularization terms. It also explicitly accounts for potential problems at bifur-

cations and crossovers. This allows us to recover faint and disconnected filaments at an

acceptable computational cost while rejecting structured noise.

We evaluated our method on brightfield micrographs, retinal scans of the DRIVE database

and the DIADEM challenge datasets. The final reconstructions are compared against man-

ually annotated ground truths by experts. Despite the differences in the imaging modalities,

our method produces visually pleasing results on all datasets, which is also supported by

quantitative results. In particular, we showed that the use of the geometric regularization

yields a substantial improvement in the DIADEM metric scores.
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Fig. 14: The tile of the Neuromuscular Projection Fibers dataset that contains the root

nodes. Top Row: Image stack with reconstructions overlaid. Each colored tree corresponds

to a different root node. Bottom row: Enlarged version. The anchor points are depicted by

the white circles.

The limitations of our current approach mainly come from the fact that the geometric

properties we have incorporated in our objective function are still relatively local ones. As a

result, we cannot account for very global properties, such as overall smoothness of a branch
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or expected branching factors as a given distance from the root of the tree. Our focus in

future work will therefore be to extend our approach to such properties and thereby further

increase its robustness.
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Appendix: Pseudo-code for the ACO-RTS Algorithm

In this appendix, we describe in more details our ACO-RTS algorithm and supply pseudo-code for it.

Notations and Overview

ACO-RTS is designed to minimize the primary cost function of Eq. 25 and uses the auxiliary cost function of

Eq. 26 during tree construction. To this end, it maintains three sets of trees, namely the best-so-far solutions

Tbs, the restart-best solutions Trb, and the iteration-best solutions Tib. Each one of these sets contains a

group of trees with cardinalities {1, . . . , klimit}, where klimit is the maximum cardinality of the trees to be

constructed. Its value is updated at each iteration of the algorithm so as to focus the search on the regions of

most likely cardinalities and to discard very high ones.

Given a directed graph G = (V,E), let H be the set of all directed paths (eus, est) containing exactly

two consecutive edges. The pheromone model P , first introduced in Section 5.2.1, is constructed by assigning

a pheromone value τust to each one of these edge pairs and τrv to each edge emanating from the root vertex

xr . More formally,

P = {τust ∈ [τmin, τmax] | est ∈ E, eus ∈ E} ∪ {τrv ∈ [τmin, τmax] | erv ∈ Er}, (27)

where τmin ∈ R and τmax ∈ R are lower and upper limits for the pheromone values and Er is the set

of edges emanating from xr . In this work, τmin and τmax are set to 0.01 and 0.99, respectively. In effect,

this model amounts to introducing a likelihood distribution over edge pairs, which improves convergence by

resolving conflicts at crossovers.

Fig. 15 shows a simplified flowchart of the algorithm. At each iteration, na directed trees are proba-

bilistically constructed by combining the pheromone information and the auxiliary cost of Eq. 26. The tree

cardinality is bounded by the variable klimit, whose value is dynamically updated at run-time. Tree construc-

tion always starts at the root vertex xr , with edges being probabilistically selected and iteratively added to the

tree. Edge pairs whose contribution to the auxiliary cost is small are given higher priority and care is taken

not to violate the branching factor limit.

We rely on dynamic programming (Blum, 2007) to find the best l-cardinality tree for all l from 1 to klimit

in each one of the na trees that have been built. For each cardinality, we select from the resulting na trees the

one that minimizes the auxiliary objective function and store it in Tib. Each l-cardinality tree in Trb or Tbs

is then updated by the l-cardinality tree in Tib, if the latter has a lower auxiliary cost. The best cardinality

k∗ for the next iteration is then taken to be the one that minimizes the primary objective function of Eq. 25

among the trees in Tbs. The cardinality limit klimit is taken to be the average of k∗ and |V |−1, the maximum

possible cardinality of a tree. The pheromone values are updated by using the k∗-cardinality trees in Tib,

Trb and Tbs so that values corresponding to edge pairs belonging to these k∗-cardinality trees are increased

while others are decreased. Finally, when the algorithm has run for a preset amount of time, it returns the

k∗-cardinality tree in Tbs.

Pseudo Code

Fig. 16 depicts the pseudo-code that implements the approach outlined above. It includes the following

functions:

– ConstructDirectedTree(P, klimit, xr): This function constructs a klimit-cardinality tree T = (VT , ET )
with vertices VT ⊆ V , edges ET ⊆ E, and pairs of consecutive edges HT ⊆ H . The construction starts

from the given root vertex xr , that is, initially T = ({xr}, ∅). At each step, a tree is stochastically selected

from a neighborhood of the current solution. This neighborhood is generated by adding an edge and its target

vertex to the tree under construction such that the tree property is maintained (i.e., no cycles are formed)

and no bifurcation with a branching factor greater than a predefined threshold bth is introduced. The set of

candidate edges is generated as follows.

As a convention, let the source vertex of an edge est ∈ E be denoted by xs and the target vertex by xt.

Let also N ⊆ V be the set of vertices such that N ∩ VT = ∅ and for each xt ∈ N , there exists at least one

edge est ∈ E with xs ∈ VT . Moreover, let Et ⊆ E denote the set of edges that can connect the vertex xt

to T such that the following conditions hold:

1. For each est ∈ Et, deg+(xs) < bth, where deg+(xs) denotes the out-degree of vertex xs in tree T .
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For each tree, extract the best l-cardinality subtrees for l = 1, . . . , klimit.

❄

❄

❄

❄

❄

◗
◗

◗
◗◗✑

✑
✑

✑✑
◗

◗
◗

◗◗✑
✑
✑
✑✑

✲

✡

☛

✠

✟

✡

☛

✠

✟

❄

❄

Stochastically construct na trees of cardinality klimit.

For each cardinality, retain the minimum cost tree.

Update the set of best trees, Tbs.

Update pheromone values.

Compute klimit and the best cardinality k∗.

Is stopping

Yes

No

Initialize pheromone values to 0.5 and klimit to |V | − 1.

Output the best tree, Tbs[k
∗], at cardinality k∗.

criterion met?

Fig. 15: ACO-RTS algorithm flowchart.

2. There does not exist an edge esl ∈ ET such that xs and xl are co-located vertices as defined in

Section 4.2.

Then, the set of candidate edges is taken to be

C = {argmin
est∈Et

{w(est)} | xt ∈ N}, (28)

where w(est) is the effective weight of an edge est, which can be expressed in terms of the cost terms of

Eq. 26.

w(est) =

{

dst + bst , if xs = xr ,

dst + aust , if xs 6= xr, eus ∈ ET .
(29)

At each construction step, with a constant probability q ∈ [0, 1], the algorithm chooses an edge est ∈ C
that deterministically minimizes τust/w(est), where τust ∈ P denotes the pheromone value assigned to

the edge pair est and eus ∈ ET . Otherwise, with probability 1 − q, est ∈ C is chosen probabilistically in

proportion to τust/w(est).
The resulting trees may contain incorrect connections at crossovers. We observed that, while growing

the tree from the root vertex, one of the crossing branches usually grows more rapidly than the other and

dominates the crossover region by taking the ownership of the continuation edges. This is mainly caused by

contrast differences in the original data and local classifier errors, which lead to high-cost edges not being

selected to bridge gaps along the branches.
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INPUT: A directed graph G = (V,E) with both edge and pairwise edge weights and a root vertex

xr .

na := Number of ants.

Tbs := ∅, Trb := ∅, klimit := |V | − 1,

cf := 0, bs update := FALSE.

forall h ∈ P do τh := 0.5 end forall

while a preset time limit is not reached do

for j = 1 to na do

T := ConstructDirectedTree(P, klimit, xr)
S := DynamicTree(T ,klimit)
Update(Tib,S, klimit)

end for

Update(Trb, Tib, klimit)
Update(Tbs, Tib, klimit)
T̂ ∗
bs

:= argmin{Fg(T ) | T ∈ Tbs}

k∗ := |V
T̂∗

bs
| − 1, (i.e., T̂ ∗

bs
= Tbs[k

∗])

klimit := k∗ +
|V |−k∗−1

2
PheromoneUpdate( cf , bs update, P ,

Tib[k
∗], Trb[k

∗], Tbs[k
∗])

cf := ComputeConvergenceFactor(P, Trb[k
∗], k∗)

if cf ≥ 0.99 then

if bs update = TRUE then

forall h ∈ P do τh := 0.5 end forall

Trb := ∅
bs update := FALSE

else

bs update := TRUE

end if

end if

end while

OUTPUT: T̂ ∗
bs

Fig. 16: ACO-RTS: Pseudo-code for Ant Colony Optimization for the Reconstruction of

Tree-Like Structures.

To correct such errors, we introduce an additional neighborhood structure, which we name crossover

neighborhood. Two trees are said to be crossover-neighbors if one can be obtained from the other by simply

changing possession of continuation edges at two co-located crossover vertices. Fig. 17 gives an example of

such a neighborhood for a crossover with three continuation edges. After each construction step, we search

over this neighborhood of the constructed tree and minimize the primary cost function. Note that, this mini-

mization reduces to the minimization of the sum of the pairwise edge weights in this case, since all the trees

in the neighborhood have the same set of edges, and hence the unary edge costs are common.

– DynamicTree(T, klimit): This runs a dynamic programming algorithm (Blum, 2007), which we ex-

tended to handle directed graphs. For each l = 1, . . . , klimit, it returns the best l-cardinality tree rooted at xr .

The quality of a tree is determined by the auxiliary cost function.

– Update(Ta, Tb, klimit): This function updates the set of trees Ta by the set Tb for each cardinality. That

is, for l = 1, . . . , klimit, if F ′
g(Ta[l]) > F ′

g(Tb[l]), then Ta[l] = Tb[l], where Ta[l] and Tb[l] denote the

l-cardinality trees in Ta and Tb, respectively.

– PheromoneUpdate(cf , bs update, P , Tib[k
∗], Trb[k

∗], Tbs[k
∗]): The pheromone values are up-

dated using the three solutions Tib[k
∗], Trb[k

∗] and Tbs[k
∗] that have the same k∗ cardinality. Their influ-

ence on the update depends on the state of convergence of the algorithm. This procedure is the same as the

one described in (Blum and Blesa, 2005) for the k-cardinality tree problem, except that the pheromone values

are assigned to edge pairs instead of individual edges. We refer the interested reader to our earlier publication

for further details.

– ComputeConvergenceFactor(P, Trb[k
∗], k∗): In this procedure, the convergence factor of the al-

gorithm is computed based on the convergence of the restart-best tree with cardinality k∗. We take it to
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Fig. 17: Crossover neighborhood for a junction with two branches and three continuation

edges. The green circles are vertices. The blue dotted lines represent one of the crossing

branches and the red solid lines represent the other one.

be

cf =

∑

h∈PTrb[k
∗]

τh

k∗.τmax

, (30)

where PTrb[k
∗] denotes the set of pheromone values of the edges and edge pairs included in Trb[k

∗] and

τmax is the upper limit for the pheromone values. Note that, the convergence factor can only assume values

in the interval [0 1].
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