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Abstract

Although tracing linear structures in 2D images and 3D

image stacks has received much attention over the years,

full automation remains elusive. In this paper, we formu-

late the delineation problem as one of solving a Quadratic

Mixed Integer Program (Q-MIP) in a graph of potential

paths, which can be done optimally up to a very small tol-

erance. We further propose a novel approach to weighting

these paths, which results in a Q-MIP solution that accu-

rately matches the ground truth.

We demonstrate that our approach outperforms a state-

of-the-art technique based on the k-Minimum Spanning

Tree formulation on a 2D dataset of aerial images and a

3D dataset of confocal microscopy stacks.

1. Introduction

Fully automated reconstruction of tubular tree-like struc-

tures such as the neuronal arbors in optical microscopy im-

age stacks, blood vessels in retinal scans, or road networks

in aerial images remains an open computer vision problem.

Current techniques still lack robustness to imaging artifacts

such as noise, inhomogeneous contrasts, non-uniform illu-

mination, and scene clutter. As a result, practical systems

require extensive manual intervention. For example, in the

recently completed DIADEM challenge [2], the algorithms

that proved best at tracing dendritic trees were also those

that provided the best tools for manual editing. In neuro-

science research, the requirement for such editing dramat-

ically slows down the process and makes it impossible to

exploit the vast amount of data that modern microscopes

can produce.

Part of the problem comes from the fact that techniques

that rely on local criteria to create the trees are generally

greedy in nature and lack robustness to large gaps in the im-

age data while techniques that involve minimizing a global

objective function usually do so using heuristics that can get
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trapped in undesirable local minima.

To overcome these limitations, we introduce a novel

framework, which involves building a tree that is provably

very close to the global optimum of a Quadratic Mixed In-

teger Program (Q-MIP). This is the first contribution of this

paper, which is made practical by the second one, an orig-

inal classification-based approach to assessing the proba-

bility that a tubular path corresponds to a real curvilinear

structure. The resulting probability estimates are reliable

enough so that the corresponding log-likelihood ratios can

be directly injected into the Q-MIP and that its solution cor-

responds to the desired response. This is in contrast to more

traditional approaches to scoring paths by integrating pixel

values along their length, which often fails to adequately

penalize short-cuts and makes it difficult to compute com-

mensurate scores for paths of different lengths.

We evaluated both the path classification and the tree re-

construction components of our approach on a 3D dataset of

confocal micrographs containing neurites and a 2D dataset

of aerial images containing road networks. We compared

our results against manually annotated tubular delineations

in both cases and achieved high classification and recon-

struction accuracies on the evaluated datasets.

2. Related Work

The analysis and reconstruction of tree-like struc-

tures [15, 7, 19] has recently received much attention. Most

automated techniques rely on a local tubularity measure

that returns the likelihood of a point being on the cen-

terline of a tubular structure. Examples include matched

filter scores [1, 25], Hessian and Oriented Flux function-

als [21, 12, 16], and classification scores derived from steer-

able filter responses [14, 13]. They are used to find the most

likely paths using a search mechanism that can be either lo-

cal or global.

Local search methods involve algorithms, which, start-

ing from a set of seed points, incrementally grow branches

by iteratively adding new points and paths [1, 3, 23]. These

algorithms are computationally efficient since the tubularity



Figure 1: Path classification vs Integration in portion of mi-

croscopy stacks from the DIADEM data [2]. (Top) Scoring

paths by summing tubularity values [22] results in, from left

to right, shortcuts, spurious branches, and missing branches.

(Bottom) Our classification approach to scoring paths yields

the right answer in all three cases.

measure needs only be evaluated on a small subset of the

image points in the vicinity of the seeds. However, due to

their greedy nature, they lack robustness to imaging noise,

especially when there are large gaps along the filaments.

Furthermore, they typically require separate procedures to

detect branching points.

Global search methods aim at achieving greater ro-

bustness by computing the tubularity measure everywhere.

They then extract paths from the resulting tubularity image

by either thresholding and thinning it [5] or extracting lo-

cal maximum seed points and connecting nearby points by

high-tubularity paths [22]. These paths are then represented

as a weighted graph and the tree-reconstruction problem is

formulated as one of finding the minimum-weight tree that

resides within this graph. Algorithms that find a Minimum

Spanning Tree (MST) [11, 25, 23] or a Shortest Path Tree

(SPT) [20] belong to this class. They can handle gaps in the

image data but can easily produce spurious branches when

seed points that are not part of the tree structure are mistak-

enly detected, which happens all too often in noisy data. As

a result, a post-processing step is usually required and is not

guaranteed to correct all such mistakes.

The recent k-Minimum Spanning Tree (k-MST) formu-

lation addresses this issue by posing the problem as one of

finding the minimum cost tree that spans only an a priori

unknown subset of k seed points [22]. However, the method

relies on a heuristic search algorithm and a dual objective

function, one for searching and the other for scoring, with-

out guaranteeing the global optimality of the final recon-

struction. Furthermore, it requires an explicit optimization

over the auxiliary variable k, which is not relevant to the

problem. By contrast, the Mixed Integer Program formula-

tion we advocate in this paper involves minimization of a

single global objective function that allows us to link legit-

imate seed points while rejecting spurious ones by finding

the optimum solution to within a small user-specified toler-

ance.

The key ingredient that makes this approach practical is

our ability to assign paths connecting seed points probabili-

ties that faithfully represent their true likelihood of belong-

ing to the real tree structure. As a result, the global op-

timum we find fits better to the desired tree in the image,

with fewer missing or spurious branches. To this end, we

develop novel appearance features based on gradient his-

tograms to perform path classification on the basis of train-

ing data. This is in contrast to all other approaches currently

used by both local and global search methods to score the

paths they construct. For example, global methods that rely

on geodesic distances express this cost as an integral of a

function of the tubularity values [22, 18]. Similarly, active

contour-based methods typically define their energy terms

as such integrals over the paths [23, 17]. Since the tubular-

ity values only depend on local image evidence, they are not

particularly effective at ignoring paths that are mostly on the

curvilinear structures but also partially on the background.

Moreover, because the scores are computed as sums of val-

ues along the path, normalizing them so that paths of differ-

ent lengths can be appropriately compared is non-trivial. By

contrast, we will show that our approach returns compara-

ble probabilistic costs for tubular paths of arbitrary length.

Furthermore, our path features capture global appearance,

while being robust to noise and inhomogeneities.

3. Approach

We first briefly outline our reconstruction algorithm,

which goes through the following steps depicted by Fig. 2:

1. We compute a tubularity value at each image location

xi and radius value ri, which quantifies the likelihood

that there exists a tubular structure of radius ri, at loca-

tion xi. Given an N -D image, this creates an (N +1)-
D scale-space tubularity image such as the one shown

in Fig. 2(b).

2. We select high-probability points in this tubularity im-

age as seed points and connect them through high-

tubularity paths in scale-space. This results in a di-

rected graph (see Fig. 2(c)).

3. Having trained a path classifier using such graphs

and ground-truth trees, we assign log-likelihood ratio

weights to pairs of consecutive edges of a given graph

at detection time (see Fig. 2(d)).

4. We use these weights and solve a Mixed Integer Pro-

gram to compute the maximum-likelihood directed

tree in this graph (see Fig. 2(e)).



(a) (b) (c) (d) (e)
Figure 2: Algorithmic steps. (a) Aerial image of a suburban neighborhood. (b) 3-D scale-space tubularity image. (c) Graph

obtained by linking the seed points. They are shown in red with the path centerlines overlaid in green. (d) The same graph

with probabilities assigned to paths using our path classification approach. Blue and transparent denote low probabilities, red

and opaque high ones. Note that only the paths lying on roads appear in red. (e) Final reconstruction obtained by solving the

Q-MIP problem.

These four steps come in roughly the same sequence as

those used in most algorithms that build trees from seed

points, such as [11, 25, 23, 22], but with two key differ-

ences. First, whereas heuristic optimization algorithms such

as MST followed by pruning or the k-MST algorithm offer

no guarantee of optimality, our approach guarantees that the

solution is within a small tolerance of the global optimum.

Second, our approach to scoring individual paths using a

classifier instead of integrating pixel values as usually done

gives us more robustness to image noise and helps ensure

that the global optimum is close to the ground truth.

4. Q-MIP Formulation

In this section, we first discuss the construction of the

graph of Fig. 2(c), which is designed to be an over-complete

representation for the underlying network of tubular struc-

tures. We then show how finding the most likely arbores-

cence 1 can be formulated as a Q-MIP problem.

4.1. Graph Construction

Building graphs such as the one depicted by Fig. 2(c) is

done in three steps.

First, we compute a scale space tubularity measure based

on the oriented flux cross-section trace measure [16]. This

measure is used to assess if a voxel lies on a centerline of a

filament at a given scale.

Second, we sample seed points from the tubularity image

by iteratively selecting the maximum tubularity points and

then suppressing their neighborhoods. Finally, we compute

paths linking the seed points using a variant of the minimal

path method applied in the scale space domain [18]. There-

fore, a geodesic tubular path connecting seed points vi and

1An arborescence is a directed tree with a distinguished vertex, called

the root, with in-degree zero and such that there is a unique directed path

from it to every other vertex in the tree.

vj is taken to be

pij = argmin
γ

∫ L

0

P (γ(s)) ds, (1)

where P is an exponential mapping of the tubularity mea-

sure, s ∈ [0, L] is the arc-length parameter and γ is a

parametrized curve mapping s to a location in R
N+1 [4].

The first N dimensions are spatial ones while the last one

denotes the scale.

4.2. Standard Formulation

Formally, the procedure described above yields a graph

G = (V,E), whose vertices V = {vi} represent the seed

points and directed edges E = {eij = (vi, vj)} represent

geodesic tubular paths linking them. Algorithms [11, 25,

23, 22] that rely on this kind of formalism can all be un-

derstood as maximizing an a posteriori probability given

a tubularity image and optionally a set of meta parameters

that encode geometric relations between vertices and edge

pairs. For example, in the recently published [22], building

the tree is shown to be equivalent to solving

min
t∈T (G)







∑

eij∈E

caij tij +
∑

eij , ejk∈E

cgijk tij tjk







, (2)

where T (G) denotes the set of all arborescences in G, tij is

a binary variable indicating the presence or absence of eij
in arborescence t. caij represents the cost of an edge, which

can be either negative or positive and is computed by inte-

grating pixelwise negative log-likelihood ratio values along

the path connecting the vertices, while cgijk encodes the ge-

ometric compatibility of consecutive edges. As shown in

Fig. 3, these geometric terms are important to eliminate

edge sequences that backtrack or curve unnaturally. This



(a) (b) (c)
Figure 3: Considering geometric relationships between

edges helps at junctions. (a) A closeup view of the graph

built by our algorithm at a branching point. (b) Minimiz-

ing a sum of individual path costs yields these overlapping

paths. (c) Accounting for edge-pair geometry yields the cor-

rect connectivity.

approach, however, has two severe shortcomings. First, be-

cause the caij and cgijk are computed independently, they are

not necessarily commensurate or consistent with each other.

As a consequence, careful weighting of the two terms is re-

quired for optimal performance. Second, optimizing using

a heuristic algorithm [8] does not guarantee a global opti-

mum.

We address the first issue by computing probability es-

timates, not on single edges, but on edge pairs so that both

appearance and geometry can be accounted for simultane-

ously, as will be discussed in Section 5. Given such esti-

mates, we solve the second problem by reformulating the

tree reconstruction problem not as the heuristic minimiza-

tion of an energy such as the one of Eq. 2 but as a solution

of a Q-MIP problem, for which we can find exact solutions.

4.3. Integer Program in Terms of Edge Pairs

Let F = {eijk = (eij , ejk)} be the set of pairs of con-

secutive edges in G and S = {pijk} be the paths corre-

sponding to these pairs. By analogy to the binary variable

tij of Eq. 2, let tijk denote the presence or absence of eijk
in the arborescence. Let Tijk be the corresponding hidden

variable denoting whether pijk truly corresponds to a tubu-

lar structure in the image. Let also t and T be the set of all

tijk and Tijk variables respectively.

Using Bayes’ rule and assuming a uniform distribution

over the image I and the paths S, the optimal arborescence

t
∗ ∈ T (G) maximizes

P (T = t|I, S) ∝ P (I, S|T = t)P (T = t) . (3)

Since we encode geometric relationships in the pairwise

edge terms, we use a uniform prior for the arborescences

and drop the prior term P (T = t) from Eq. 3. Further-

more, as hinted above, we assume conditional independence

of image evidence along the tubular paths {pijk}, given

that we know whether their edge pairs {eijk} belong to the

tree structure. We therefore represent the likelihood term

P (I, S|T = t) as a product of individual edge pair likeli-

hoods. Following similar steps as in [22], this leads to

t
∗=argmin

t∈T (G)

∑

eijk∈F

− log

(

P (Tijk = 1|Iijk, pijk)

P (Tijk = 0|Iijk, pijk)

)

tijk (4)

=argmin
t∈T (G)

∑

eijk∈F

cijk tijk, (5)

where Iijk represents image data around the path pijk. The

probability P (Tijk = 1|Iijk, pijk) denotes the likelihood

of the path pijk belonging to the tree structure, which we

compute based on global appearance and geometry of the

paths as described in Section 5. The cijk variables rep-

resent the probabilistic likelihood ratios we assign to the

edge-pairs. As we will show next, optimizing the objective

function of Eq. 5 with respect to the constraints t ∈ T (G)
amounts to solving a minimum arborescence problem [9]

with a quadratic cost.

By decomposing the indicator variable tijk introduced

above as the product of the two variables tij and tjk, we

can express the cost of Eq. 5 as a quadratic function of these

variables. The constraints t ∈ T (G) can also be defined in

terms of these variables by adapting the network flow for-

mulation presented in [9], which provides a compact system

with a polynomial number of variables and constraints. As-

suming that the root vertex vr of the optimal arborescence

is given, the minimization of Eq. 5 can then be reformulated

as the Q-MIP

argmin
t∈T (G)

∑

eij ,ejk∈E

cijk tij tjk (6)

s.t.
∑

vj∈V \{vr}

ylrj ≤ 1, ∀vl ∈ V \ {vr},

∑

vj∈V \{vk}

yljk ≤ 1, ∀vl ∈ V \ {vr},

∑

vj∈V \{vi,vr}

ylij −
∑

vj∈V \{vi,vl}

ylji = 0,
∀vl ∈ V \ {vr},
∀vi ∈ V \ {vr, vl},

ylij ≤ tij , ∀eij ∈ E, vl ∈ V \ {vr, vi, vj},

ylil = til, ∀eil ∈ E,

ylij ≥ 0, ∀eij ∈ E, vl ∈ V \ {vr, vi},

tij ∈ {0, 1}, ∀eij ∈ E,

where the ylij are auxiliary continuous variables that denote

the flow from the root vertex to all others. More specifically,

ylij indicates whether the unique directed path from the root

vr to vertex vl traverses the edge eij . If the optimal arbores-

cence t∗ does not contain vl and hence such a path does not

exist, then ylij = 0. The first two constraints ensure that



there can be at most one path in t
∗ from the root to each

vertex in the graph. The third one enforces conservation of

flow at intermediate vertices vl. The remaining constraints

guarantee that t∗ includes a path from the root to the vertex

vl passing through edge eil if t∗ contains eil.
Even though this Q-MIP problem is NP-Hard [9], its so-

lution can be found up to an arbitrarily small tolerance2

from the true optimum using a branch-and-cut strategy3. As

a result, this optimization took only a few minutes on a dual

core PC for the examples presented in the result section.

5. Path Classification

The outcome of the Q-MIP procedure introduced in

the previous section depends critically on the probabilistic

weights cijk of Eq. 5, which are assigned to edge pairs.

A standard approach to computing such weights is to

integrate tubularity values along the paths, as in Eq. 1.

However, as shown in Fig. 4, the resulting estimates

Figure 4: Tubular graph

of Fig. 2(c) with edge

weights computed by in-

tegrating tubularity val-

ues along the paths in-

stead of using our path

classification approach.

We use the same color

scheme as in Fig. 2(d) to

demonstrate how much

less informative these

weights are.

are often unreliable because

a few very high values along

the path might offset low

values and, as a result, fail

to adequately penalize spuri-

ous branches and short-cuts.

Furthermore, it is often diffi-

cult to find an adequate bal-

ance between allowing paths

to deviate from a straight line

and preventing them from

meandering too much.

In this section, we pro-

pose a path-classification ap-

proach to computing the

probability estimates that we

found to be more reliable.

More specifically, given a

tubular path computed as

discussed in Section 4.1, we

break it down into several

segments and compute one

feature vector based on gra-

dient histograms for each.

We then use an embedding

approach [24] to compute fixed-size descriptors from the

potentially arbitrary number of feature vectors we obtain.

Finally, we feed these to an SVM classifier and turn its out-

put into a probability estimate.

As shown in Fig. 1, this approach penalizes paths that

mostly follow the true tree structure but cross the back-

ground. Thus, it discourages shortcuts, which is something

that integrating along the path fails to do.

2We used an absolute MIP gap tolerance of 1e-4 in all our experiments.
3We used the Gurobi optimization software for solving the Q-MIPs.

Figure 5: Three aspects of our feature extraction process.

An extended neighborhood of points around the path cen-

terline C(s) is defined as the envelope of cross-sectional

circles shown in black. This neighborhood is divided into

R radius intervals highlighted by the yellow, green and red

tubes (here R = 3) and a histogram is created for each such

interval. A point x contributes a weighted vote to an angu-

lar bin according to the angle between the normal N(x) and

the image gradient ∇I(x) at that point.

In the remainder of this section, we describe our path

features, embedding scheme, and training data collection

mechanism in more details.

5.1. Histogram of Gradient Deviation Descriptors

Gradient orientation histograms have been successfully

applied to detecting objects in images and recognizing ac-

tions in videos [6, 10, 24]. In a typical setup, the image is

first divided into a grid of fixed-size blocks, called cells, and

then for each cell, a 1-D histogram of orientated gradients

(HOG) is formed from the pixel votes within it. Histograms

from neighboring cells are then combined and normalized

to form feature vectors invariant to illumination and con-

trast changes. Finally, these features are fed into a classifier

to detect objects of interest. We adapt this strategy by defin-

ing Histogram of Gradient Deviation (HGD) descriptors as

follows.

Given a tubular path γ(s) such as the one depicted by

Fig. 5, with s being the curvilinear abscissa, let C(s) be the

centerline and r(s) the corresponding radius mappings. We

partition the path into equal-length overlapping segments

and, for each, we compute histograms of gradient orien-

tation deviations from the normal vectors emanating from

the centerline. The histograms are populated by points be-

longing to a certain neighborhood N (γ) around the cen-

terline of the path. This neighborhood is defined as the

envelope of cross-sectional circles as illustrated by Fig 5.

To ensure that all the gradient information surrounding the

tube is captured, we extend this neighborhood by a margin

m(s) = K ∗ r(s) proportional to the radii values.

For a given image point x ∈ N (γ), let N(x) be the

normal ray vector emanating from the centerline C passing

by x, and C(sx) the closest point to it. Each such point

contributes a weighted vote ‖∇I(x)‖ to a histogram bin,

which we take to be

Ψ(x)=

{

angle(∇I(x),N(x)) , if ‖x− C(sx)‖ > ε
angle(∇I(x),Π(x)) , otherwise,

(7)



where Π(x) is the cross-sectional plane, which we use to

compute the deviation angle when x belongs to the center-

line and the normal ray vector is not defined.

To obtain a description of paths’ appearance on the cross-

sectional plane, we further split the neighborhood N (γ)
into R equally spaced radius intervals as shown in Fig. 5 and

create a histogram for each such interval. Given B orienta-

tion bins, the radius interval and the angular bin indices for a

point x are then given by min(R− 1, ⌊R‖N(x)‖/(r(sx) +
m(sx))⌋) and min(B − 1, ⌊BΨ(x)/π⌋) respectively. For

each segment, this produces R histograms, each one corre-

sponding to a radius interval. We interpolate points within

each such interval to ensure that enough votes are used to

form the histograms. Finally, we normalize each histogram

by the number of points that voted for it.

This yields a set of histograms for each segment, which

we combine into a single HGD descriptor.

5.2. Embedding

The above procedure produces an arbitrary number of

HGD descriptors per path. To derive from them a fixed-size

descriptor, we first use a Bag-of-Words (BoW) approach

to compactly represent their feature space. The words of

the BoW model are generated by randomly sampling a pre-

defined number of descriptors from the training data. For

a given path of arbitrary length, we then compute an em-

bedding of the path’s HGD descriptors into the codewords

of the model. Adapting the sequence embedding approach

of [24], we find the minimum Euclidean distance from the

path’s descriptors to each word in the model. This yields a

feature vector of minimal distances that has the same length

as the number of elements in the BoW model.

To account for geometry and characterize paths that

share a common section, such as the one shown in Fig. 3(a),

we incorporate into these descriptors the maximum cur-

vature along the centerline curve C. It is computed as

argmax‖T′(s))‖, where T(s) is the unit tangent vector.

5.3. Parameters

In all our experiments, we used the same parameters to

compute our HGD descriptors: Segment length 2 pixels;

segment sampling step 0.5 pixels implying a 75% overlap; 9

angular bins; two radius intervals; radius margin K = 0.33,

and a randomly sampled BoW model of 300 codewords.

For classification purposes, we used an SVM classifier

with an RBF kernel. During training, the C and the γ pa-

rameters were optimized by performing a grid search using

a standard 5-fold cross validation procedure on the confocal

microscopy images of Fig. 7. At run time, the resulting pa-

rameters are used for both the neurite and the road images.

5.4. Collecting Training Data

To train the SVM classifier, we obtain positive samples

by simply sampling the ground-truth trees associated to our

training images. To obtain negative samples, we first build

tubular graphs in these training images using the method

of Section 4.1. We then randomly select paths from these

graphs and attempt to find matching paths in the ground

truth tree. For a given path, this is done by finding the two

nodes of the tree that are closest to the start and end points

of the path. It is considered as a true negative if the length

of its largest centerline section that is outside the volume of

the matched path is larger than a threshold, taken to be 4

pixels in all our experiments.

6. Results

We evaluated our approach both on 3D confocal mi-

croscopy image stacks of Olfactory Projection Fibers (OPF)

of the Drosophila fly and on 2D aerial images of a subur-

ban neighborhood. The OPF dataset consists of 9 images,

which we split into a training and a validation set, leaving

3 images in the latter. Similarly, the Road dataset consists

of 14 images, 7 of which are used for training, and 7 for

testing. Sample images from both datasets and our results

are depicted by Fig 7.

In both cases, we used a semi-automated delineation tool

we developed to obtain the ground truth tracings4. Note that

the OPF dataset was used in the DIADEM challenge [2] dis-

cussed in the introduction and that ground truth was avail-

able for it. However, we found it to be both incomplete and

imprecise, in particular with respect to the width and pre-

cise centerline location of the paths, which is why we chose

to use ours.

The DIADEM challenge involved many groups world-

wide. Of these, five made it into the final round and the

ones that scored highest relied on a various levels of man-

ual intervention. We compare ourselves to the k-MST ap-

proach of [22], which was both one of the five and fully au-

tomated. To ensure that the comparison is fair, we extended

the original implementation of [22] by taking into account

path radius values when scoring graph edges. This is done

by integrating the tubularity values along the paths in the

scale-space tubularity image, such as the one in Fig. 2(b).

This is how we computed the weighted graph of Fig. 4.

6.1. Path Classification

To train the SVM classifier, we randomly sampled 10000

positive and 10000 negative paths from the graphs. For as-

sessing the ROC performance, we used 2500 positive and

negative samples at detection time.

Fig. 6(a) shows the classification performance of our

path features on the two datasets. The roads yield a higher

true positive rate (TPR) at a fixed false positive rate (FPR)

than the OPF one, which is mostly attributable to the rich

gradient information available in the road images. Fig. 6(b-

e) provides an analysis of the effect of the feature parameter

4The ground truth tracings and our acquisition software are publicly

available at http://cvlab.epfl.ch/data/delin.
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Figure 6: (a) ROC curves for the Road and OPF datasets. (b-e) Influence of the feature extraction parameters on the

classification accuracy for the OPF dataset.

OP4 OP6 OP8 ny1 ny3 ny6 ny7 ny12 ny14 ny15

k-MST [22] 0.865 0.898 0.722 0.314 0.209 0.195 0.159 0.24 0.32 0.235

HGD-QMIP 0.923 0.911 0.722 0.92 0.936 0.907 0.915 0.565 0.308 0.683

Table 1: Tree reconstruction accuracy measured by the DI-

ADEM [2] scores on our test datasets. OPi and nyi denote

images from the OPF and the road datasets respectively.

settings discussed in Section 5.3 on classification accuracy.

Briefly, increasing the number of radius intervals, the angu-

lar bins and the codebook entries improves the accuracy at

the expense of a higher computational cost. Short segment

lengths provides a fine grained sampling of paths and hence

yields a higher performance.

6.2. Tree Reconstruction

Fig. 7 illustrates three sample reconstructions for the

OPF and Road datasets. Additional ones are supplied as

supplementary material. While the k-MST algorithm gen-

erates spurious branches and shortcuts, ours consistently

eliminates outliers without either shortcuts and missing

branches. This is especially visible in the road images for

which the tubular graphs are dense.

For a more quantitative evaluation, we use the DIADEM

metric [2], which computes a similarity score between a re-

construction and the ground-truth tree. Table 1 provides the

DIADEM scores for the test images of the two datasets. Our

approach systematically outperforms the k-MST algorithm

except in one case on which both methods perform poorly.

7. Conclusion

We have proposed a novel approach to tubular tree struc-

ture delineation that lets us find the desired tree as the global

optimum of a well-designed objective function. A key in-

gredient is a classification-based approach to scoring the

quality of paths, which allows us to outperform a state-of-

the-art method without having to manually tune the algo-

rithm parameters for each new dataset.

This stability of the parameters, however, comes at the

cost of requiring training data, which can be tedious to ob-

tain. Future work will therefore focus on Transfer Learning

techniques that should allow us to retrain our system using

minimal amounts of such training data for each new modal-

ity we have to deal with.
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