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Automated Recovery of Compressedly Observed

Sparse Signals From Smooth Background
Zhaofu Chen, Rafael Molina, Member, IEEE, and Aggelos K. Katsaggelos, Fellow, IEEE

Abstract—We propose a Bayesian based algorithm to recover
sparse signals from compressed noisy measurements in the pres-

ence of a smooth background component. This problem is closely

related to robust principal component analysis and compressive
sensing, and is found in a number of practical areas. The pro-

posed algorithm adopts a hierarchical Bayesian framework for

modeling, and employs approximate inference to estimate the
unknowns. Numerical examples demonstrate the effectiveness

of the proposed algorithm and its advantage over the current

state-of-the-art solutions.

Index Terms—Bayesian algorithm, compressive sensing, robust
principal component analysis.

I. INTRODUCTION

C ONSIDER the measurement system expressed as

(1)

where the signal of interest undergoes a transfor-
mation and is corrupted by both noise and a
smooth background . The signal is assumed to have sparse
columns, i.e., for , where de-
notes the th column of and is the -(pseudo)norm.
The smooth background is a low-rank matrix. The transfor-
mation in general has the effect of compression, i.e., .
The model in (1) is found in a number of applications. In net-

work anomaly detection [1], consists of the temporal snap-
shots of flow anomalies, represents the network routing op-
eration, and contains the smooth link measurements resulted
from the normal traffic flows, respectively. As another applica-
tion, in video surveillance from compressed measurements [2],
denotes the moving objects in the foreground, is a known

measurement matrix, and is the compressed version of the
background.
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The model in (1) is also closely related to Compressive
Sensing (CS) [3]–[5] and Robust Principal Component Anal-
ysis (RPCA) [6]. For CS, where is not present, algorithms
generally employ regularized optimization (e.g., in [7]–[9]) or
Bayesian approaches (e.g., in [10]–[12]). For RPCA, where

, regularized optimization problems are solved with
proper convex relaxation to sparsity and rank [13]–[15]. Alter-
natively, Bayesian approaches model the sparse and low-rank
components with appropriate prior structures and employ
approximate inference techniques for estimation [16], [17].
Recently, the model in (1) has received much attention from

the signal processing community. [1] provides the conditions for
identifiability and recoverability. Algorithms based on convex
optimization have been proposed in [1], [18], [19]. The opti-
mization-based algorithms usually require proper selection of
user parameters. In contrast, [20] takes a Bayesian perspective
and automatically estimates all model parameters. A limitation
of [20], though, is the memory and computational requirement
incurred by the use of Hessian information.
In this letter, we incorporate the Laplace prior to model the

sparse signal. As explained in [21], this prior has been shown
to promote sparsity to a higher level than the Sparse Bayesian
Learning (SBL) prior used in [20]. In addition, in order to re-
ducememory consumption, we develop a constructive approach
based on the principles in [22] and [12] that essentially replaces
the demanding matrix inversion with a sequence of efficient
rank-one updates. The algorithm proposed herein is free of user
parameters, making it amenable to be deployed for automatic
operation.
This letter is organized as follows. In Section II we introduce

the hierarchical Bayesian model. The inference procedure with
the constructive algorithm is outlined in Section III. Numerical
examples demonstrating the effectiveness of the proposed algo-
rithm are provided in Section IV. Finally, we draw concluding
remarks in Section V.

II. HIERARCHICAL BAYESIAN MODEL

A. Modeling Additive Noise

in (1) contains uncorrelated noise. We
employ an independent and identically distributed (i.i.d.)
Gaussian distribution , with pre-
cision modeled using the conjugate Gamma prior, i.e.,

, where the hyperparameters and
are fixed at small values to approximate the non-informative

Jeffreys prior.

B. Modeling Smooth Background

Consider the factorization of the smooth background
, where and are and matrices, respec-

tively,and isa looseupperboundfor the rankof .Smoothness
of is resulted when most of the outer products in are
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zeros. To achieve this, common sparsity promoting priors are
simultaneously assigned to the columns of and , as in [20]

(2)

where the precisions are assigned Gamma priors, i.e.,
. The hyperparameters and are

fixed at small values to yield broad distributions.

C. Modeling Sparse Signal

In least squares fitting problems -norm is commonly used
for regularization so that sparse solutions are preferred. This is
equivalent to adopting a Laplace prior on the sparse signals

(3)

The Laplace prior, though being sparsity promoting, is not con-
jugate to the Gaussian model. To overcome this limitation, a
hierarchical model is established as in [23], where

(4)

Finally, is modeled as , where
and are fixed at small values.

D. Complete System Model

By combining the observation and prior models, the joint dis-
tribution is expressed as

(5)

where , , and
.

III. APPROXIMATE BAYESIAN INFERENCE

Bayesian approaches seek the posterior distributions of the
unknowns given the observations. Approximations are usually
employed since the exact posterior distributions are analytically
intractable. Common approximate approaches include (1) point
estimation, such as Maximum Likelihood (ML) and Maximum
A Posteriori (MAP) estimation, (2) sampling approaches, such
as Gibbs Sampler (GS), and (3) Variational Bayes (VB), etc.
In this letter, we employ VB to approximate the posterior dis-

tributions of , and . For , and , we introduce a con-
structive algorithm based on marginalization. Finally, the noise
precision is estimated via VB.

A. Inference of Smooth Background

The inference of , and follows from the invocation of
themean-field approximation and variational calculus. Omitting
the details that can be found in [20], the posterior means of
and are given by

(6)

where denotes the posterior mean of , and the covariance
matrices and are inter-related as

The term above is a diagonal matrix constructed from . Sim-
ilarly, the approximate posterior mean of is found to be

(7)

where and are the th elements on the diagonals of
and , respectively. In the iterations, the posterior means in (6)
and (7) are used as the estimates of the corresponding variables.

B. Inference of Sparse Signal

If we continued applying VB inference we would have
to find, within the iterative process, the distributions ,

, and minimizing the Kullback-Leibler divergence
,

where , ,

and and are degenerate distributions. Then we
would have

(8)

and with some algebra it follows that this conditional distribu-
tion is a multivariate Gaussian with

(9)

where .
Two observations follow from (9). First, involves the in-

version of an matrix, which is memory and compu-
tationally intensive. Second, if an is zero, then the corre-

sponding must be zero (see (4)), and then the column

and row in are eliminated by removing from the diag-

onal of and the column of . Therefore, the dimension
of is determined by the number of nonzeros in . Since

is sparse, most of its entries are expected to be zero with
zero variance.
Let us now find the nonzero components of . We fix

to (8), where , , and are estimated from

(10)

where .
To determine the optimal , we take the logarithm of (10),

drop the terms independent of and maximize

(11)

Focusing on a single entry of , it follows that

(12)

where denotes the portion of with the contribution
from excluded. Utilizing properties of determinant, we have

(13)
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where we define for notational clarity.
Invoking matrix inversion lemma, we have

(14)

and

(15)

where is defined for notational clarity.
Substituting (13) and (15) into (11), and retaining only terms

dependent on , it follows that

(16)

It is clear that the maximizing (16) also maximizes (11).
Note in (16) both and are independent of . The
univariate function can be maximized by examining its
derivative and taking into account the domain of . With
some algebra, the optimal is found to be

(17)

As discussed above, a zero-valued indicates that the corre-
sponding row and column in are all zeros. Therefore, (17)
provides a guideline as how the model should be adjusted. In
the iterative procedure, depending on the previous estimate of

and the condition , there are three possible ad-
justments to the model, namely

if previously excluded and

if previously included and

if previously included and

(18)

Note that, for a fixed , all these updates only involve efficient
rank-one modifications to and , rather than requiring ma-
trix inversions (see [22] for details). Also note that the effec-
tive dimension of and is much smaller than , as only

a small subset of are included at any time in the iter-
ative process. In this way the constructive approach alleviates
the memory and computational requirement. The selection of
an for update can be done either randomly, or such that the
largest increase in the log-likelihood is obtained.
For a fixed , whenever the model is adjusted, and

need to be updated efficiently. Invocation of matrix in-
version lemma yields

(19)

which is now used.
For , using (14), it follows

(20)

where

(21)

from (19). Since the effective dimension of in (21) is much
smaller than , can be efficiently updated. Solving (20) for
, we have

(22)

The introduction of the auxiliary variables eliminates
matrix inversions for the update of . Similarly, by

introducing

(23)

the update of can be performed via

(24)

Finally, the update of is done by maximizing the logarithm
of (10) with respect to to obtain

(25)

The updates in (18) and (21) to (25) are iterated until conver-
gence. In each iteration an is selected for update. One cri-
terion for convergence is that the relative change in log-likeli-
hood (11) falls below a pre-defined threshold. In practice, we
find that a small number of iterations (e.g., 20) is usually suffi-
cient for good performance. When the iterations converge, the
approximate posterior mean is used as an estimate of .

C. Inference of noise power

Via mean-field approximation, the approximate posterior dis-
tribution of the noise precision is found to be Gamma, with
mean

(26)

where

(27)

The iterative procedure described above continues until conver-
gence is reached. One criterion for convergence is that the rela-
tive change in the variables, e.g., or , falls below a pre-de-
fined threshold.

IV. NUMERICAL RESULTS

A. Simulation

1) Recovery Accuracy: We first demonstrate the performance
of the proposed algorithm on simulated data. The data genera-
tion is described as follows. We consider problems of varying
scales . For each scale,
and . The ground truth sparsity is fixed at

, and nonzeros of are independently drawn from uni-
form distribution. The ground truth rank of is
fixed at . The smooth component is generated as
the product of an matrix and an matrix, whose ele-
ments are drawn from i.i.d. and dis-
tributions, respectively. Additive noise with standard deviation

is added to the measurement. The transformation
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TABLE I

COMPARISON OF PERFORMANCE FOR VARYING PROBLEM SCALES

is generated similarly to that in [1], which consists of random
orthonormal rows.
The proposed algorithm is applied to recover the sparse

signal and smooth background, with estimates denoted as

and , respectively. All hyperparameters in the model are
set to a small value (e.g., ), making the algorithm fully
automated. As a comparison, we show the performance on
the same test data of two alternative algorithms, namely the
Variational Bayes Sparse Estimator (VBSE) proposed in [20],
and the state-of-the-art Alternating Directions Method of Mul-
tipliers (ADMM) proposed in [1]. For the problem considered
herein, VBSE is the only available Bayesian approach to our
knowledge and ADMM is reported to have high recovery
accuracy in the literature.
In Table I four metrics are used to evaluate the performance:

rank of , number of nonzeros in , reconstruction error
and runnig time (Intel Core i5-3210M

CPU@2.50 GHz, 4 GB RAM, MATLAB R2012b). Both the
proposed algorithm and VBSE are free of user parameters. For
ADMM we manually tune the two user parameters to yield
empirically smallest . For tuning the parameters in ADMM,
scanning is performed over a 2-D logarithmic grid followed
by a 2-D linear grid. As the table shows, both Bayesian based
approaches correctly estimate the rank and sparsity, as well as
yield significantly lower recovery error than ADMM. Despite
being manually tuned, ADMM suffers substantial performance
degradation with the presence of even moderate level of noise.
Regarding computational cost, the following observations

are in line. First of all, we see that the proposed algorithm
reduces running time by about 50% compared with VBSE. In
addition, note that the proposed algorithm, thanks to its con-
structive nature, has lower memory requirement than VBSE,
making it scale better with problem dimensions. Last but not
least, although the numbers seem to imply that ADMM is close
to an order of magnitude more efficient than the proposed al-
gorithm, we would like to point out that the numbers shown
here do not include the overhead of parameter tuning. Param-
eter tuning may take significantly longer than the running time
shown in the table.
2) Robustness to Noise: To examine robustness of the pro-

posed algorithm to noise, we fix , ,
, , and vary from 0.01 to 1. Three pa-

rameter settings for ADMM are considered, namely ADMM-1

that yields the lowest , ADMM-2 that gives correct , and

ADMM-3 that gives almost correct .
It is clear from Fig. 1 that the proposed algorithm is robust to

additive noise, thanks to its automatic estimation of noise level.
In particular, it accurately recovers the nonzeros in and tracks
the rank of even at very low Signal-to-Noise-Ratio (SNR)
conditions (e.g., for ). The ADMMalgorithm
is most sensitive to noise due to its inherent modeling assump-
tion. Moreover, it requires careful tuning of user parameters to
achieve reasonable results.
3) Ability to Identify Nonzero Signal Elements: To investigate

the ability of the proposed algorithm in detecting nonzeros of

Fig. 1. Recovery performance with respect to noise level. (Note: in the middle

figure, the proposed, VBSE and ADMM-2 all correctly estimate the rank, hence

their curves overlap with each other).

Fig. 2. Comparison of abilities to detect nonzeros in ( , 10, and 15

from left to right).

Fig. 3. Detection of network anomalies in Internet2 data.

under different conditions, we consider from 1% to 11%
and . is fixed at 0.01. The data generation
is similar to that above.
Fig. 2 shows the F-scores at various conditions. The F-score,

defined as the harmonic mean of precision and recall, is a bal-
anced indicator of detection performance. From the figure it
is seen the proposed algorithm gives reliable detections over a
wider range of operational conditions than its alternatives.

B. Network Anomaly Detection Example

To further validate its effectiveness, the proposed algorithm
is applied to the real life Internet2 flow traffic data [24]. In the
data there are origin-destination flows carried by
links. The routing matrix is given in the data set. Fig. 3

shows the proposed algorithm detects the anomalous flows from
the data and moreover, accurately estimates their magnitudes.
Moreover, the proposed algorithm is amenable for automated
deployment since it requires no parameter tuning.

V. CONCLUSIONS

In this letter we proposed a Bayesian based approach for re-
covery of sparse signals from compressed measurements when
additive noise and a smooth background are present. A memory
and computationally efficient constructive algorithm is devel-
oped under the framework of Bayesian inference. Advantages
over the current state-of-the-art alternative solutions are demon-
strated in numerical examples.
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