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Increased adoption of the systems approach to biological research has focused attention on the use of quantitative models of
biological objects. This includes a need for realistic three-dimensional (3D) representations of plant shoots for quantification and
modeling. Previous limitations in single-view or multiple-view stereo algorithms have led to a reliance on volumetric methods or
expensive hardware to record plant structure. We present a fully automatic approach to image-based 3D plant reconstruction
that can be achieved using a single low-cost camera. The reconstructed plants are represented as a series of small planar sections
that together model the more complex architecture of the leaf surfaces. The boundary of each leaf patch is refined using the level-
set method, optimizing the model based on image information, curvature constraints, and the position of neighboring surfaces.
The reconstruction process makes few assumptions about the nature of the plant material being reconstructed and, as such, is
applicable to a wide variety of plant species and topologies and can be extended to canopy-scale imaging. We demonstrate the
effectiveness of our approach on data sets of wheat (Triticum aestivum) and rice (Oryza sativa) plants as well as a unique virtual
data set that allows us to compute quantitative measures of reconstruction accuracy. The output is a 3D mesh structure that is
suitable for modeling applications in a format that can be imported in the majority of 3D graphics and software packages.

In recent years, there has been a surge of interest in the
construction of geometrically accurate models of plants.
Increased adoption of the systems approach to biological
research has focused attention on the use of quantitative
models of biological objects and processes to both make
and test hypotheses. Applications of the systems ap-
proach are diverse and include the study of canopy
photosynthesis (Watanabe et al., 2005; Song et al., 2013).
The work reported here was motivated by a need for
realistic three-dimensional (3D) representations of plant
shoots for photosynthesis modeling. Canopy structure or
architecture is an important codeterminant of the maxi-
mum productivity of crops and theoretically can influ-
ence canopy photosynthesis efficiency (Zhu et al., 2004;
Long et al., 2006; Reynolds et al., 2012). For example,
many high-yielding cereal varieties tend to have upright
leaves, which raises the optimal leaf area index and re-
duces the proportion of leaves in a light-saturated con-
dition (Murchie and Reynolds, 2012). However, there is

still considerable variation in plant canopy architecture,
and it is currently unclear whether many existing archi-
tectures (which have been influenced by breeding for spe-
cific traits) offer optimal arrangements for photosynthesis
(Long et al., 2006; Murchie et al., 2009). Therefore, there
is a need for rapid, automated, user-accessible techniques
for accurately measuring the 3D architecture of complex
crop canopies.

Existing plant modeling approaches can be broadly
classified as either rule based or image based (Quan et al.,
2006). Rule-based approaches generate model plants based
on rules or grammars with specified structure. These rules,
and hence the form and parameters of the models pro-
duced, are often derived from measurements of real
plants (Watanabe et al., 2005; Alarcon and Sassenrath,
2011). The resulting virtual plants can model different
phenotypes, plant response to various growing condi-
tions and stresses, and when based on real-world data
will be reasonably accurate. However, the data acqui-
sition process is often extremely time consuming and is
usually tailored to a particular species. In many cases,
only a small set of varieties can be described, due to the
manual measurements required to parameterize the
model. It is also difficult to incorporate additional data
into a rule-based model after it has been created. For
example, modeling the effect of environmental factors
on plant development will require rules to bemodified and
additional measures to be taken, again a time-consuming
process. Critically, while models created in this way may
capture the important characteristics of a given species,
they do not necessarily describe any specific, individual
plant. This is important when considering the variation
in plant structure that can occur in response to environment
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and features that are associated with communities of
plants, including crop canopies. This can be seen in the
relationship between planting density and tillering rate,
for example (Zhong et al., 2002).
Image-based approaches attempt to directly model a

given object by extracting the necessary information from
one or more images of that object. The approach relies on
techniques developed in the wider field of computer vi-
sion and is computationally challenging. The continued
increase in available computing power, however, means
that this can be done efficiently, and in some cases fully
automatically. Image-based approaches to plant mod-
eling are particularly attractive, as, in addition to sup-
porting systems biology, they provide a route to plant
phenotyping (Houle et al., 2010; White et al., 2012). 3D
geometrical models contain the information needed to
compute summary plant traits, such as total leaf area,
mean leaf angle, etc. These underpin both plant breeding
programs and attempts to understand the relationship
between genotype, phenotype, and environment, regard-
less of the scientific approach taken.
Plants, however, provide a particularly challenging

image-based modeling target, including large amounts
of self-occlusion (leaves obscuring one another) and
many smaller surfaces that appear similar. Depending
on the plant species, leaves can lack the texture nec-
essary to perform robust feature matching, either to
separate leaves from one another or to locate specific
leaves across multiple views. To overcome this chal-
lenge, where image-based modeling approaches are
successful, they have often involved user interaction to
guide the process (Quan et al., 2006).
It is possible to further categorize image-based ap-

proaches into those that are top down, beginning with an
existing, generic plant model that is fitted to the received
image data, and those that are bottom up, creating a
description of the plant by examining the contents of the
images. Top-down approaches attempt to simplify the
model construction problem by instead solving a model
refinement problem. An existing model is adjusted to fit
the image data, so that the new plant representation is
consistent with what is observed. Quan et al. (2006) take
this approach, first obtaining an ideal leaf model from a
single leaf and then fitting it to all other (user-segmented)
leaves in the scene. By adapting an existing model, to-
pological inconsistency (such as the self-intersection of
leaf surfaces) is avoided, but this comes at the expense of
generality. This approach can be extended in principle to
other plant species, but where the geometry of a plant or
leaf differs greatly from the expected model, the suit-
ability of this approach is unclear. This is also significant
where a plant model has been generated with highly
specific real-world data, such as the work of Watanabe
et al. (2005).
Bottom-up methods begin with one or more images

and reconstruct a plant model based only on the ob-
served pixel data. Two broad approaches exist, both re-
quiring a set of images captured from different, but
known, viewpoints. Silhouette-based methods (Clark
et al., 2011; Kumar et al., 2012) segment each image to

identify the boundary of the object of interest. Each sil-
houette is effectively projected into the viewed environ-
ment, identifying a region of 3D space that could be
occupied by the plant. These regions are combined to
determine the maximum possible object size that is
consistent with the images presented to the algorithm. In
many cases, where the number of input images is high,
the resulting model will be a good approximation of the
true plant structure. However, as the scene becomes in-
creasingly complex, for example with the addition of
more leaves in an older plant, the discrepancy between
the true object and the model will increase. This problem
becomes more pronounced when extending these tech-
niques to very complex scenes, such as plant canopies,
where its effectiveness is limited.

Correspondence-based methods identify features of
interest (i.e. recognizable patches of pixels in the image),
independently in each of a set of images, and then match
those features between views. If the image features as-
sociated with a particular plant feature (e.g. the tip of a
leaf) can be identified in multiple images taken from
different viewpoints, knowledge of the cameras’ positions
and orientations allow its 3D location to be computed.
The result is a point cloud representation, a set of (x, y, z)
coordinates approximating the plant’s surface (Quan
et al., 2006; Omasa et al., 2007; Alenya et al., 2011). Point
cloud data can be obtained directly from special-purpose
hardware devices such as light detection and ranging
laser (LIDAR; Omasa et al., 2007) and time-of-flight laser
(Alenya et al., 2011) scanners. These systems use a large
number of distance samples to measure the depth of the
scene relative to the capture location. The equipment in-
volved, however, can be expensive and often places re-
strictions on the environments in which it can operate.

Image-based modeling algorithms are widely appli-
cable and require only easily accessible and affordable
cameras. Their generality, however, can become a hin-
drance, as the challenging nature of plant topology may
require additional assumptions to be made as the recon-
struction proceeds. The representations they produce may
also be unsuitable for direct use in some situations. The
volumetric data structures produced by silhouette-based
methods, for example, are static: the size and positions of
the voxels are defined early in the process and are difficult
to change. While measurements of height and volume are
easily made from volumetric descriptions, estimating
motion (e.g. of leaves moving in the breeze) is extremely
difficult. Volume-based descriptions contain an implicit
surface around that volume that can be measured; how-
ever, these surfaces are less suitable for ray tracing and
modeling, as each leaf is represented as numerous sur-
faces (inside, outside, and sides of the leaf volume). Sim-
ilarly, point clouds can be used to calculate the density
and distribution of plant material but cannot immediately
be used to host models of photosynthetic activity; for this,
a surface-based representation is required.

This article describes a fully automatic, bottom-up ap-
proach to image-based 3D plant reconstruction that is ap-
plicable to a wide variety of plant species and topologies.
The method is accurate, providing a true representation of
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the original plant, and produces data in a form that can
support both trait measurements and modeling techniques
such as forward ray tracing (Song et al., 2013).

The proposed approach requires a point cloud and
a set of color images. We obtain these using existing
correspondence-based techniques (Furukawa and Ponce,
2010; Wu, 2011), with a focus on inexpensive equipment;
however, hardware-based approaches that generate
point clouds in three dimensions, such as LIDAR scan-
ners, also could be used. The point cloud is first de-
scribed by fitting a set of planar patches (flat surfaces),
each representing a small section of plant material, usu-
ally a segment of leaf. Where the quality of the input
point cloud is high, the initial surface estimate will pro-
vide a good model of the plant. Image noise and the
complexity of the plant, however, will typically lead to
missing areas of leaf material and poorly defined leaf
boundaries. Therefore, we extend existing approaches by
refining the initial surface estimate into a more accurate
plant model. Initial surface patches are resized and re-
shaped based on image information and information
obtained from neighboring surfaces. The resulting sur-
faces are then subdivided into triangular sections suit-
able for output to produce a smooth and geometrically
accurate model of the plant.

The reconstruction process makes few assumptions
about the nature of the plant material being reconstructed;
by representing each leaf as a series of small, flat sec-
tions (like pieces in a jigsaw puzzle), the complete leaf
surface itself can take any reasonable shape. The output
is a 3D triangular mesh structure that is suitable for ray
tracing or other modeling applications in a format that
can be imported into many 3D graphics and modeling
packages. The generality of our technique allows it to be
scaled to scenes involving multiple plants and even plant
canopies: the software makes no assumptions about the
number of plants in the image. However, the focus of
this article is on the accurate reconstruction of single plants
of varying species. In the discussion below, we will out-
line our intentions for extending this method to field-scale
phenotyping.

A software tool utilizing the techniques described in
this article has been released as an open-source project
under Berkeley Software Distribution license.

RESULTS

In this section, we present results obtained when ap-
plying our reconstruction approach to multiple views of
single plants. Verification of our approach is achieved
using a unique artificial data set in which an in silico
model rice plant is rendered from multiple viewpoints to
generate artificial color images that are then treated in
the same way as a real-world image set. This approach
allows the reconstructed plant to be directly compared
with the artificial target object, a difficult problem if no
such ground truth were to exist.

We have tested our reconstruction methods on data
sets obtained from rice (Oryza sativa) and wheat (Triticum
aestivum) plants. The number and nature of the images
were left to the user to decide given the subject in
question, although we recommend more than 30 im-
ages surrounding the subject for a single plant, in-
cluding a variety of angles from side on to above. No
special consideration was given to the environment in
which the plants were imaged: the rice data set was
captured in an indoor environment and the wheat data
set in a greenhouse. These environments provide com-
plex backgrounds, which raise additional challenges,
but the plants can still be reconstructed using our
methods. It is likely that a permanent installation with a
more strict protocol for image capture would result in
more consistent point cloud reconstruction between
data sets; readers are encouraged to explore this option
if using our methods over extended periods. An over-
view of each data set is given in Table I.

The computational performance of our approach
and the image capture that proceeds it varies depend-
ing on the number of images and the parameters used.
For a recommended data set of 30 or more images using
default parameters, both the image capture and recon-
struction can be expected to take on the order of a few
minutes.

Reconstruction of Example Rice and Wheat Data Sets

Figure 1 shows the result of applying our recon-
struction approach to the rice and wheat data sets. The
reconstructions are colored based on the normal ori-
entation of each surface; the models have not been

Table I. Descriptions of the single plant data sets used to test our reconstruction approach

The rice and wheat data sets were captured manually using a single camera. The virtual rice data set was generated using 3D modeling software
based on a template rice plant created manually. In all cases, the input into our reconstruction software was the calibrated camera coordinates
generated by VisualSFM, the set of input images, and an initial point cloud generated by PMVS.

Data Set Name
Image

Count
Description

Rice 36 Images of a rice plant (variety IR64) at leaf 10 stage held in a cylindrical flask; images were captured
from a variety of angles surrounding the plant and from above

Wheat 64 Images of a wheat plant at growth stage 37 held statically in a growth pot; images were taken in
concentric movements of increasing height around the plant, at a higher frequency than that of the rice data set

Virtual rice 40 A model plant was manually created based on the rice data set; this model was used to generate
40 artificial images from a variety of viewpoints surrounding and above the plant; unlike real-world
examples, the ground truth of this model is known and can be compared with the output of the
reconstruction process
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textured to avoid concealing imperfections in the output
mesh. Quantitative evaluation of the effectiveness of any
3D shoot reconstruction is challenging due to a lack of
ground truth models for comparison. Here, we offer a
qualitative evaluation of the benefits and shortcomings
of our approach followed by a quantitative evaluation
using the virtual rice data set.
The initial surface estimate, obtained by calculating an

a-shape over each patch, will naturally reproduce any
flaws present in the patch-based multiple-view stereo
(PMVS) point cloud (Fig. 2, A and C). Most notable is the
lack of point information in areas of poor texture and
noise perpendicular to the leaf surface, where depth has
not been adequately resolved. These issues can be caused
by the heavy self-occlusion observed in larger plants but

are often caused in even simple data sets by a lack of
image features in the center of leaves.

Depth noise is significantly reduced by the use of best-
fit planes in small patches, as all points are projected onto
a single flat surface. However, the boundary of each
surface is a function of the parameters used to create the
a-shape and the quality of the underlying data. As such,
we can expect the a-shape boundaries to be a poor
representation of the true leaf shape. With this in mind,
we would characterize a successful reconstruction as one
that improves upon the initial surface estimate through
the optimization of the surface boundaries.

Consider Figure 2, A and C, depicting initial surface
estimates from the rice and wheat plants in Figure 1. In
Figure 2A, the initial surface contains a great deal of

Figure 1. Output of our recon-
struction approach. A, An image of
a wheat plant from the wheat data
set, a multiview data set captured
in a glasshouse. B, A point cloud
representation of the wheat data set
output by the PMVS software. C,
A reconstructed surface mesh of the
complete wheat plant produced by
our algorithm. D, An image of a
rice plant from the rice data set, a
multiview data set captured in an
office environment. E, A point
cloud representation of the rice
data set output by the PMVS soft-
ware. F, A reconstructed surface
mesh of the complete rice plant
produced by our algorithm. Both
completed meshes have been col-
ored based on surface orientation
for clarity.

Figure 2. Boundary optimization using level sets.
A, An initial surface estimate on the rice data set.
B, The reconstructed rice surface after 200 itera-
tions using our level-set approach. C, An initial
surface estimate on the wheat data set. D, The
reconstructed wheat surface after 200 iterations
using our level-set approach. Regions showing
the complex structure of the surfaces have been
added above each mesh for clarity.
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overlapping regions, something that, if not rectified,
would produce errors when quantified or used in mod-
eling. Figure 2B shows our level-set approach to have re-
moved this overlap and smoothed each surface boundary
such that the original leaf surface is recovered. This result
is representative of the success of our approach across all
the leaves in this data set.

The wheat data set generally contains wider leaves,
and their lack of surface patterning often results in
only sparse point data in the center of each leaf. This is
shown in Figure 2C, where large missing sections of
leaf must be recovered. Figure 2D shows our results on
this section, in which the cluster boundaries have been
optimized and again form a more continuous surface.
There is still some overlap in the clusters on the left of
the image, but this is caused by the angle from which
the image was rendered and relates to the relative
orientations of neighboring clusters.

The clusters toward the left of Figure 2D are orientated
at slightly disjointed angles, due to noise in the original
point cloud reconstruction. This makes optimization of
the intercluster boundaries challenging, as the intersec-
tion of these boundaries depends not only on their

orientation but also on the position from which they are
being viewed (the reference view IR from “Materials and
Methods”). This is an important characteristic of our re-
construction algorithm in its current form: the bound-
aries of neighboring patches will be reshaped relative to
the reference camera view IR for each cluster. It is pos-
sible that gaps may be observable between surfaces
when viewed at angles very dissimilar to the reference
view. In reality, for clusters with very similar orienta-
tions, these gaps will be negligible. However, as the main
focus of our reconstruction work to date has been opti-
mizing the boundary speed functions of level sets, we
have yet to address this problem. We anticipate that
further work on smoothing the normal orientations of
neighboring clusters or merging neighboring clusters
into a single curved leaf model will solve this issue; this
will be a focus of upcoming research.

Quantification of Accuracy Using in Silico Image Capture

To verify the accuracy of our reconstruction ap-
proach, an additional data set was created based on

Figure 3. A, The model rice plant is rendered
from 40 different viewpoints, moving around the
plant and from above. B, The model rice plant,
colored based on the surface normal orientation.
C, The reconstruction of this data set using our
level-set approach.

Figure 4. Quantification of the accuracy of our
approach on the virtual plant data set. A, Per-
centage error of various measurements between
the virtual model and both the a-shape surface
estimate and optimized reconstruction. Lower
percentage error indicates that a measurement is
closer to the original model. Projected area was
measured from four viewpoints, with an ortho-
graphic projection mimicking the parallel light
rays produced in our ray-tracing system. B, A graph
showing the change in model density as a function
of the vertical distance through the plant, from the
base of the models to the top. The strong peaks
represent near-horizontal leaves that cause an
abundance of plant material at very specific depths.
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the plant used in the rice data set. The rice plant was
first manually modeled using the point cloud created
by PMVS and 3D graphics software (Topogun [SC
Pixelmachine SRL, version 2.0; www.topogun.com]
and Blender [version 2.69; Blender Foundation; www.
blender.org]). This is a time-consuming and subjective
process and should not be viewed as a suitable alter-
native to automatic reconstruction. However, it is
possible to produce an easily quantifiable ground truth
model that can be used as a target for automated re-
construction. We textured and colored the virtual plant
in order to emulate the original plant leaves. Finally,
we rendered 40 distinct camera views of the same
model (Fig. 3A), simulating an image-capture system
moving around a static plant. The resulting data set
can then be reconstructed in the same manner as real-
world data, but importantly, we retain the ability to
compare the reconstruction with the original virtual

plant model, in particular keeping the same coordinate
system. The original model, and our reconstruction,
can be seen in Figure 3, B and C.

As our model contains no notion of leaf or plant
structure at this stage (plants are described as the com-
bination of many distinct surfaces), we have chosen to
focus our evaluation on macro-level geometric traits such
as surface area instead of lower-level traits such as leaf
angle or curvature. We anticipate that these additional
traits will be incorporated as our methods are extended
to consider topological plant structure.

A variety of geometric measures were calculated to
quantify the differences between the original ground
truth model, the initial surface estimate, and the model
output by our reconstruction. In each case, any dif-
ferences between the expected and observed results
were used to produce percentage error values, which
can be seen in Figure 4A. An increase or decrease in

Figure 5. The process of obtaining an initial surface estimate based on a cluster of points and initializing a level-set method to
optimize the surface boundary. A, A small cluster of points in 3D world coordinates, obtained through clustering the input point
cloud. B, An orthogonal regression plane is fitted through the points; c, Center point of the plane; n and x, the orientation and
rotation of the plane, respectively. C, Points are orthogonally projected onto the plane surface, and in doing so, the coordinate
system is changed to 2D planar coordinates. The points are rotated around the normal such that the x9 axis in planar coordinates
lies along x. D, The boundary of the Delaunay triangulation of the 2D points in C. E, The boundary of an a-shape computed
over the same point set. F, A 3D level-set function is initialized such that the intersection with the plane resembles the boundary
of the a-shape computed in E.

Figure 6. Level sets allow the complex boundary conditions exhibited within each leaf surface to be modeled. A, Three
a-shapes in close proximity that require shape optimization. Active contours are ill suited to this task, due to the disconnected
nature of the red region and the hole containing a separate cluster. B to D, Individual level-set functions intersecting the x-y
plane. Using three separate level-set functions allows the complex topology of these a-shapes to be preserved and allows for
efficient shape optimization.
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error between the initial surface estimate and our op-
timized reconstruction is an indication of the perfor-
mance of our level-set approach.

The summary measurements of width, depth, height,
and convex hull volume for the ground truth model
and our reconstruction are in good agreement. The con-
vex hull represents the smallest 3D volume that still
encompasses the entire model. The results show that
our approach does not significantly alter the overall size
and shape of the original model. The slight decreases in
depth and convex hull volume were caused by the very
tip of the one leaf missing in the output model; this, in
turn, could be caused by missing point data in the orig-
inal cloud or the lack of a suitable reference image of that
surface.

Area measurements were also calculated from both
two-dimensional (2D) projected viewpoints and an over-
all surface area measure for each model. An orthographic
projection acts in a similar way to the flattening of points
onto their best-fit planes, as described above. The plant
is rendered with all surfaces projected parallel directly
onto the image. This removes all considerations of camera
focal length and radial distortion. In all cases, the area
of the reconstructed model is slightly higher than that
of the original ground truth. In the worst case, the corner-
projected (three-quarter) view shows a 5.5% increase in
size in the reconstruction over the original model, and the
total surface area was increased 3.9% from the original
model. However, all area measurements show an im-
provement over the original surface estimate, from an
average error of 210% to +4%. The initial surface esti-
mate may also contain additional flaws, such as those
seen in Figure 2, that are not reflected in these geometric
measurements.

We believe that the 3.9% increase in total surface
area observed between the original model and our
reconstruction is caused primarily by the nature of our
patch-based model. As we model the curved surfaces
of leaves using a series of small, flat patches, this

approximation will often differ slightly from the un-
derlying plant (Supplemental Fig. S1). Results can be
improved, to a point, by altering the size of the surface
patches (Supplemental Fig. S2); however, good results
usually can be obtained with the default values pro-
vided by our software. It is also possible to observe an
increase in accuracy with an increase in image reso-
lution (Supplemental Fig. S3). This benefit is marginal,
however, and will come at the expense of increased
cost of hardware and higher computational require-
ments for processing. Importantly, these results show
that our approach is consistent for a large range of image
resolutions and patch sizes, meaning that any user
should be able to obtain good results without the need to
optimize numerous parameters experimentally.

While approximating a curved surface with planar
sections will inevitably reduce accuracy by a small
amount, small sections are easily managed, and the al-
gorithmic complexity of the fitting problem is reduced.
Our approach, therefore, is able to reconstruct more
complex surfaces than many existing algorithms applied
to this type of data and, crucially, is generally applicable
to plants of any size or shape. Future work will look to
combine this general reconstruction approach with a
more specific plant model for certain species, allowing us
to obtain more accurate models of larger surfaces with-
out completely sacrificing generality.

Software Availability

The software associated with this article is open source,
distributed under a Berkeley Software Distribution license.
It will be distributed on SourceForge (http://sourceforge.
net). A link to the SourceForge distribution page is avail-
able at www.cpib.ac.uk. The software is written in C#
using the .NET framework, so it is currently available
only for the Windows operating system.

CONCLUSION

The recovery of accurate 3D models of plants from
color images is challenging. A single plant constitutes a

Figure 7. Histogram showing the normalized green distribution over
all images in an input set. The solid line includes only locations in
which the initial a-shape regions are projected, and the dashed line
represents all pixels. The dashed line shows a distribution containing a
larger amount of background pixels. The reduced frequency of the
background in the surface-only distribution can be exploited using the
unimodel thresholding method of Rosin (2001), which will select a
position below the foreground peak, indicated with the arrow.

Figure 8. Constrained Delaunay triangulation of an example leaf
surface. A, The level set f. Input into the constrained triangulation is a
list of points obtained by regularly sampling from the boundary of the
level set. B, A constrained Delaunay triangulation preserves the con-
tour of the boundary and generates additional points inside the surface
to complete the mesh. [See online article for color version of this
figure.]
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crowded scene in the sense described by Furukawa
and Ponce (2010), and the construction of accurate 3D
models of objects of this level of complexity is an active
research topic. Images of plants exhibit high degrees of
occlusion, with the occlusion relations between leaves
varying from image to image. To complicate matters
further, individual leaves are difficult to identify: most
of the leaves on a given plant have similar color and
texture properties. Rather than address these issues in
a single process that transforms a set of images into a
3D model via feature correspondence or silhouette
analysis, the approach presented here develops each
leaf segment individually, automatically selecting an
image likely to contain the necessary information. The
proposed method reduces the effect of occlusion by
choosing an image with a clear view of the target
surface and addresses the similarity problem by per-
forming detailed analysis of the colors present in that
image. The approach is suited to image capture with
either a hand-held camera or a fixed imaging setup
and will work effectively on images taken using low-
cost consumer digital cameras.
The mesh representation produced provides a de-

tailed model of the surface of the viewed plant that can
be used both in modeling tasks and as a route to shoot
phenotyping. It should be stressed, though, that the
surface description output by the proposed technique
comprises a large set of distinct planar patches rather
than larger, curved surfaces describing whole leaves.
The level-set method resizes and reshapes each patch
to maximize its consistency with neighboring patches
and the selected image, and as such the reconstructed
patches provide an accurate approximation of the leaf
surfaces.
Looking to the future, both field phenotyping and

canopy-scale modeling will require 3D models of plant
communities and canopies. The major additional chal-
lenge as the number of plants is increased is the greater
incidence of occlusion between leaf surfaces. Our re-
construction algorithm operates on a best-view refer-
ence image, chosen separately for each patch. Therefore,
it is robust to occlusion, as heavily obscured view-
points are discarded. However, it is still the case that
leaves that cannot be viewed clearly from at least one
camera are likely to be poorly reconstructed. This
makes the image acquisition process particularly im-
portant.
Further development of this technique itself will

focus on the generation of more easily usable 3D
models for plant phenotyping. Plant trait measurements
can be obtained from a point cloud or patch-based model
in a straightforward manner using existing modeling
packages such as Meshlab (Cignoni et al., 2008);
however, this is still a manual process in which a user
can select points of interest and obtain distance, or
other, measurements. Grouping neighboring patches
into leaves before fitting plant-specific leaf models
would remove boundary discrepancies between nearby
patches, providing automatic trait measurement while
remaining applicable to ray tracing. As yet, our technique

does not distinguish between plant leaves and stems.
We anticipate that domain knowledge can drive the
segmentation process here as well, where plant com-
ponents are identified based on knowledge of expected
plant structure. Finally, while the performance of our
approach and that of the initial point cloud estimation
appears robust to a varied number of input images and
views, the determination of the optimal set of image
views and mechanisms for their capture is something
that should be explored.

MATERIALS AND METHODS

Growth of Plants

Cultivation of wheat (Triticum aestivum) plants took place in greenhouses
on the Sutton Bonington campus, University of Nottingham, during the
summer of 2013. Seeds of the variety Paragon were germinated on Levington’s
seed and modular compost (Everris). Following vernalization, they were trans-
ferred to 2-L pots with J. Arthur Bower’s John Innes #2 soil-based compost. Plants
were watered daily and illuminated with natural light as supplemented with
400-W high-pressure sodium (sonTAgro) bulbs (Philips). Rice (Oryza sativa) plants
of variety IR64 were cultivated hydroponically in a controlled-environment
chamber as described by Hubbart et al. (2012). Conditions were 30°C (continu-
ous), photoperiod of 12 h, with light provided by 600-W metal halide bulbs
(Philips) supplemented by domestic incandescent bulbs. Irradiance at plant
height was 700 mmol m22 s21. Sampling took place at the leaf 11 stage.

Obtaining an Initial Point Cloud

The reconstruction algorithm described in this article uses an initial point
cloud estimate as a basis for the growth of plant surfaces in three dimensions.
Numerous software- and hardware-based techniques exist to obtain point
clouds of objects. While we have chosen to make use of an image-based
technique, PMVS (Furukawa and Ponce, 2010), in principle, other approaches,
such as laser scanners or LIDAR systems (Omasa et al., 2007), also could work
effectively in its place.

PMVS reconstructs a 3D point cloud model of a plant and scene based on
multiple color input images. A requirement of this algorithm is that the in-
trinsic (focal length, etc.) and extrinsic (3D position and orientation) camera
parameters be known. In the case of static-camera capture systems, such as
that used in RootReader3D (Clark et al., 2011), calibration (the process of
obtaining camera parameters for all images) can be performed once and the
estimated parameters used until the system is reconfigured. Tools exist that
can perform automatic calibration of moving camera systems, and our in-
tention is that this software be usable with a single digital camera (we use a
Canon 650D with a 35-mm lens), with images captured manually by a user.
We use the VisualSFM (Wu, 2011) system to perform automatic camera cali-
bration. This software provides a step-by-step process for camera calibration
and provides an interface to the PMVS software. VisualSFM uses scale-
invariant feature transform (Lowe, 1999) features to find corresponding
points in pairs of images, which in turn are used to calculate the 3D position of
each camera position relative to all others and relative to the model being
reconstructed. There are two outputs to this process: a series of camera
models, each representing the 3D position of the camera when each input
image was taken, and the point cloud representation of the entire scene
reconstructed by PMVS.

VisualSFM and PMVS were created to address the general image-based
modeling problem and represent the current state of the art in this area. PMVS
has been shown to provide high-quality descriptions of simpler, convex ob-
jects, and although plant complexity poses a challenge, it provides a sound
basis for the development of plant modeling techniques.

An Initial Surface Estimate

Although each point can reasonably be expected to lie on some surface, the point
cloud representation produced by PMVS contains no explicit description of
those surfaces. If the final plant model is to be used with a ray-tracing system (Zhu
et al., 2004; Song et al., 2013) or if details of individual leaves are required,
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a surface-based description must be constructed. Methods for the reconstruction of
a surface mesh from a point cloud exist (Carr et al., 2001; Kazhdan et al., 2006).
Most, however, construct a single surface describing the entire point cloud. While
leaves of the same plant can be considered connected in the biological sense,
attempting to fit a single surface representation between multiple leaves is chal-
lenging. In fact, we wish to identify each leaf separately, to aid the reconstruction
and later modeling processes. This surface identity problem is increased when
extending a reconstruction approach to plant canopies. Common algorithms such
as Poisson surface reconstruction (Kazhdan et al., 2006) cannot be used over
complex plants or plant canopies; where they attempt to fit a single surface over
the scene, they will inevitably oversimplify the complex structure.

In this work, we address this problem by representing plants as a series of
small jigsaw-like surface sections, with each leaf surface being composed of
multiple separate surface patches. We begin by producing an initial surface
estimate based on the input point cloud before refining this estimate until the
plant model is complete.

The initial surface consists of a number of small, flat surface patches (the
pieces of the jigsaw puzzle) that represent small areas of plant material. Pre-
vious work in plant modeling has used planar sections to represent leaves, such
as the artificially generated plant models used by Song et al. (2013). Over larger
plants, or within a plant canopy, large planes represent an oversimplification
of the underlying leaf shape. Smaller surface patches increase accuracy and
allow neighboring sections with different orientations to characterize the
curved nature of the leaves, just as smaller jigsaw pieces would allow us to
better approximate the curved surface of a 3D ball puzzle.

In order to establish the required size of the fitted planes and the location
and orientation of each patch, the point cloud is first segmented into small
groups of points (Fig. 5A). Points are clustered with their nearest neighbors
using the strategy described by Klasing et al. (2008). We extend this method to
limit the potential size of each cluster, such that no surface patch becomes too
large, oversimplifying the model. Points are grouped as defined by a preset
distance, above which points are considered too far apart to form a cluster.
This distance is dependent on the size and resolution of the model being
captured. However, as the PMVS algorithm and laser scanning devices usu-
ally output points with a consistent density, the distance parameter can be set
once and then remain unchanged between experiments. Here, clusters were
limited to a maximum size of 150 points; reducing this number will increase
the number of planar sections fitted to the data, increasing accuracy at the cost
of decreased algorithmic efficiency. In our experiments, a limit of 120 points
represents a significant partitioning of the point cloud, typically producing
sections of leaf approximately 2 to 5 cm2. Crucially, the limited size of the
clusters ensures that points on neighboring leaves, between which a surface
should not be formed, are rarely clustered together.

In order to approximate the surfaces throughout themodel, a flat surface section
is fitted to each group of points using least-squares regression. This best-fit plane
minimizes the orthogonal distance to each point and is described by a center point
and two vectors representing the surface orientation and rotation (Fig. 5B). It is this
plane that represents the 3D position of this section of leaf surface, with the shape
of the plane (which we will optimize shortly) describing the edges of that leaf
surface. In performing the optimization steps on these planes, rather than the 3D
point cloud, we simplify the challenging 3D surface-fitting problem into a series of
less complex 2D surface-fitting problems.

Any 3D reconstruction process requires a coordinate system or frame of
reference in which to describe the world. It is helpful when describing the
process to visualize the different coordinate systems in use. We identify the
system used by our plant model as world coordinates, representing the 3D
geometry of the scene. It is in this coordinate system that the eventual com-
pleted model will be output. Each point in the input cloud is associated with
the cluster of points to which it has been assigned and can be projected
(flattened) onto the best-fit plane for that cluster. Once projected, we say that
the point resides in 2D planar coordinates (Fig. 5C), where instead of a 3D
world position, we refer to its location on the patch on which it sits. The or-
thographic projection also has the effect of flattening the points in each cluster
to lie on their best-fit plane, reducing noise in individual points and, as
mentioned above, reducing the search for an optimal patch boundary to two
dimensions. It is important, however, to consider the planar and world co-
ordinate systems as essentially different views of the same information. As
such, point and mesh surfaces generated on a plane will have an associated
world position that can be output as a final 3D model, and if the boundaries of
our 2D patches are improved, so too is the boundary of the 3D plant model.

An initial surface description is constructed by calculating the a-shape
(Edelsbrunner et al., 1983) of each set of 2D points, expressed in planar coor-
dinates. An a-shape is a subset of the commonly used Delaunay triangulation

(which generates a triangular mesh over a set of points) but contains restrictions
on which edges and faces are preserved. In general, points that are closer to-
gether will be connected by triangular faces, whereas boundary points that are
farther apart will not. In practice, the value, a, can be increased in size to increase
the level of detail in the boundary of the triangulation by removing larger edges.
The a-value can be tuned for a given data set to preserve the shape of the
boundary of each reconstructed point set. Figure 5, D and E, shows the Delaunay
triangulation for the example cluster and an associated a-shape. The Delaunay
triangulation oversimplifies the boundary of the shape, whereas the a-shape
does not.

Shape Optimization Using Level Sets

The set of a-shapes computed over all clusters forms an initial estimate of
the location and shape of the leaf surfaces. The limitations of the initial stereo
reconstruction on plant data sets means that, in many instances, this estimate
will be inaccurate or incomplete and will require further optimization to ad-
equately reflect the true shape of the plant. Missing areas of leaf should be
reconstructed, and overlapping shapes should be adjusted to meet at a single
boundary. Many methods, such as active contours (Kass et al., 1988), pa-
rameterize the boundary of a shape before attempting this optimization: fit-
ting a curve that is then manipulated to best describe the leaf. Such approaches
are ill suited to the complex boundary conditions that might be produced by
a-shapes. Consider Figure 6A, in which three example clusters have been
segmented in close proximity and described by their a-shape boundaries. The
red cluster contains a hole, but this hole should be preserved in order to
prevent the yellow cluster from being obstructed. The red cluster also contains
two distinct segments; this occurs when all the links between the two sections
are longer than a and is difficult to model with a traditional contour method.
This is particularly true where we can expect these two regions to merge as the
optimization process continues, as is likely here.

These problems can be solved using the level-set method (Osher and
Sethian, 1988; Sethian, 1999). The distinct regions and hole in the red cluster
are preserved, and each region can reshape independently of the others. This
is achieved by defining the boundary as the intersection of a 3D surface and a
plane

The boundary of the a-shape computed for a given cluster is used to ini-
tialize a level-set function. The level-set method defines a 3D function, f, that
intersects the cluster plane (Fig. 6, B–D). We represent the level set as a signed
distance function, where the value (the height) at any point on the function is
equal to its distance from the nearest boundary. The function contains nega-
tive values within our a-shape boundary and positive values outside. Thus,
the boundary itself is defined as the set of all points in f that intersect the
cluster plane. Consider the function in Figure 6B. It is initially shaped such
that the intersection with the 2D plane matches the red region in Figure 6A. If
the values of the level-set function are decreased, the 3D function will move
downward and the boundary will change shape, joining up the two separate
regions and eventually filling the hole in the surface. Alternatively, if the
function were to move upward, the boundaries would shrink, making the
surfaces continually smaller until they eventually disappear, where the 3D
function no longer intersects the plane at all.

Our goal is to optimize the height of the level-set function such that the
boundary represents an accurate approximation of the shape of the leaf on
which the cluster is located. To achieve this, during each step of the level-set
process, the height of the distance function at any point (x, y) is altered based on
a speed function v. The speed function can be altered based on both global and
local parameters; thus, different regions of f can move upward and others
downward. The result is a boundary that grows or shrinks as necessary to fit
the underlying data. We have defined our speed function to consider three
components: the curvature of the boundary, the underlying image data, and
the interaction between neighboring surfaces:

v¼ vcurveþvimageþvinter

Boundary Curvature

vcurve is a measure of the local curvature of the level set, calculated as de-
scribed (Sethian, 1999). We calculate this as:

vcurve¼ v$k

where k is the curvature at a given point on the level set, which represents the
smoothness at that point, and v is a small scaling factor used to ensure that
curvature does not dictate the movement of the patch boundary compared
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with vimage and vinter. The curvature term encourages the level-set function to
remain smooth, meaning that the boundary of the surfaces will also remain
smooth. With any triangulation such as a-shapes, it is possible for the initial
patch boundaries to be jagged (Fig. 2), while it is likely that the optimum leaf
reconstruction will be smoother. Strongly convex or concave regions will be
given negative or positive curvature terms, respectively, and will generally
become flatter over time. An example showing the effect of this component of
the speed function is shown in Supplemental Figure S4.

Image Information

The image term, vimage, references color information in the input images to
ascertain whether the reconstructed surface lies over regions depicting plant
material. We view each small patch of leaf surface from the point of view of
one camera position and compare this projection with the captured image.
Where an image does not show plant material at the expected location, it is
likely that the surface should be shrunk at this point. Conversely, if pixels near
the current surface boundary show a high likelihood of being plant material, it
may be beneficial to grow the surface into this position.

While it is mathematically possible to view a given surface in any input
image, it may not be useful to do so in all cases. Some images will present an
obscured view of a specific leaf surface, and others may be viewed from a near-
perpendicular angle, resulting in a view of a region that is less useful than other
camera views. In the worst case, some cameraswill not see a given surface at all,
where the leaf falls outside of that camera’s field of view. To avoid these
difficulties, rather than combining information from multiple views, we
choose instead to pick one so-called reference view in which to obtain color
information. We choose a reference image that represents a calculated best
view of an individual flat surface, and this is performed for each surface patch
in the reconstructed model.

Reference image selection begins by projecting each cluster into each camera
view (viewing each cluster surface with respect to each camera). For each initial
surface, we obtain the pixel locations in which that surface appears in a
specified image. Attached to each projected position is a z-depth value that
records the distance that the projected point lies from the camera’s image
plane. These distances can be used to sort clusters that appear at the same
location in an image, which may be caused by either true occlusion between
leaves or overlapping surfaces caused by errors in the input point cloud. In
both cases, a heavily overlapped view of a surface is a hindrance, and this
image should be considered less suitable for selection as the reference view.

It is desirable to select camera views that contain as little interference be-
tween surface patches as possible. For each image and each patch, we calculate
vclear, a measure of the number of pixels into which a surface projects, voccluded,
representing the percentage of occluded pixels belonging to that cluster, and
voccluding, representing the percentage of pixels within a certain cluster that
occlude those from other clusters. voccluded and voccluding fall between 0 and 1,
and in both cases values close to 1 are preferable. vclear is normalized between
0, for an image in which a surface does not appear, and 1, where that surface
appears at its largest. The clear pixel count also provides a measure of the
angle of incidence between a cluster and the camera plane. If a cluster is seen
at an angle from a given camera, this camera will likely contain fewer pro-
jected pixels than one that sees a front-on view of that leaf surface.

For each patch, the combination of normalized clear pixel count, occlusion,
and occluding percentages can be used to sort images in terms of view quality:

view  quality¼ vclear
�
12 voccluded

��
12 voccluding

�

A reference image, IR, is chosen for each patch that maximizes this view-
quality measure. In other words, an image is chosen such that the patch ap-
pears as large as possible in the image and with as little occlusion as possible.

When referencing pixel values in the image IR, we use a normalized green
value to measure the likelihood of leaf material existing at that location.
Normalized green is robust to changes in illumination, which are frequent
within a canopy where shadows are cast from other leaves. It does this by
disregarding luminance and considering only hue.

Computed from the red, green, and blue color channel information, the
normalized green value of a pixel is calculated as:

normalized  green ¼ green
redþ greenþ blue

As long as care is taken to choose a suitable background during image
capture, we can assume that normalized green values will be higher in pixels
containing leaf material and lower in pixels containing background. Where

lighting conditions remain consistent over an image set, we can also assume
that the distribution of normalized green values is the same over each image.
The expected normalized green values of leaf material for an image set should
be ascertained at the beginning of the reconstruction process, before being used
to contribute to the vimage term.

In a data set where the only strong normalized green response originates
from plant material and the background intensity is fairly consistent, we can
assume that the histogram of normalized green values for all pixels over all
images will contain two dominant peaks, shown by the dashed line in Figure 7.
If we restrict sampling to only those pixels that are initially occupied by
surface patches, we would expect the frequency of background pixels to be
reduced dramatically, as shown by the solid line in Figure 7. The unimodal
thresholding approach of Rosin (2001) is ideally suited to analyzing such a
histogram and is capable of finding an appropriate threshold level below the
foreground peak. Using this point, marked in Figure 7 with an arrow, the
vimage term can be scaled such that surfaces that appear significantly green in
their reference image will grow and those that do not will shrink. The vimage
term, therefore, is calculated as:

vimage¼

8>>><
>>>:

max
�
2 1;

N 2 t
2s

�
; N . t

min
�
þ1;

N 2 t
2s

�
; N $ t

where N is the normalized green value of that surface location in its reference
image, t is the threshold calculated using the Rosin (2001) method, and s is the
SD of the normalized green peak. This term will produce a value between 21,
where a lower normalized green value reaches the expected color of the
nonplant pixels, and +1, where a higher value reaches the expected color of
plant material. This will cause the level-set boundary to grow over areas of
plant material and shrink over areas of background.

Surface Interaction

The final component of the speed function, vinter, works to reshape each surface
based on the location and shape of nearby patches. As each surface patch is located
on an individually oriented plane, neighboring patches might have different ori-
entations. This makes the calculations of their 3D intersections challenging and
makes decisions on how to reshape these surfaces to best avoid one another dif-
ficult. For example, there may be two neighboring patches that are separate (that
do not intersect) in world coordinates but from specific camera views may obscure
one another. In other camera views from different angles, they may not overlap at
all. We want to find the optimum boundary shape for these patches such that they
are sufficiently close in world coordinates in the final model. We use the reference
image IR for each patch and examine the interactions in this 2D view. The function
vinter is then calculated such that any given point is penalized if it is occluded by
another surface when seen from the point of view of the reference image. We
define the function as:

vinter¼
�
p; occluded  in  IR
0; not  occluded  in  IR

where p is a small negative value such that the level-set boundary shrinks at
this location. Where this occurs, we also set the value of vimage at this position
to 0, regardless of the normalized green value. This causes the image com-
ponent to be ignored where a surface is occluded. The motivation for this is
that where a surface is obstructed, we cannot reliably use image information at
that position. In simple terms, the vinter component of the speed function will
have no effect where a surface is growing separately from all others in the
model. In cases where a surface is obscured by one or more others, the
boundary will shrink away from these locations.

The Complete Speed Function

The individual components of the speed function are responsible for op-
timizing each level set, and therefore each surface boundary, in a different way.
The curvature term ensures that extremely sharp boundaries are avoided: these
boundary conditions are unlikely on a real leaf, and a smoother boundary is
also beneficial when outputting the final 3D model. The image term references
an image chosen that provides a detailed view of that surface and will grow
the surface where leaf material is observed in the image. The interaction
component will examine neighboring surfaces in the same reference image
and will shrink patches at locations where they are obscured. The complete
speed function, therefore, works to grow each surface where leaf material is
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observed while preserving the smoothness of its boundary and ensuring that
overlapping surfaces are avoided.

The complete speed function is used to update each position on the level-set
function, and this process is performed for each surface patch. The process must
be repeated until each cluster boundary has reshaped to adequately fit the
underlying image data. The speed function will slow significantly as we ap-
proach this optimal shape. Where a level-set boundary no longer moves with
respect to the reference image (does not alter the number of pixels it appears in),
we mark this cluster as complete and discontinue level-set iterations. Any level
sets that do not slow significantly will continue until a maximum number of
cycles has elapsed, a parameter that can be set by the user. We typically use
between 200 and 500 iterations as a compromise between computational ef-
ficiency and offering each level set adequate time to reshape. In many cases,
clusters will halt naturally before this maximum has been reached.

Remeshing the Level-Set Functions

Once the level-set operation has terminated, patch shapes may bear little
resemblance to their original a-shape description. Each surface, therefore, must
be retriangulated in order to provide the mesh information required for a
complete plant model. The a-shape method used above is less suitable for
this task, as the parameter a may have a noticeable effect on the resulting
boundary shape: the level-set function now has a known boundary that
was not available during the original surface estimation. This can be used
to drive a more accurate meshing approach that will preserve the boundary
contour.

We use constrained Delaunay triangulation for this task, based on the al-
gorithms outlined by Shewchuk (2002). A constrained triangulation will ac-
count for a complex boundary shape when producing a mesh from a series of
points; however, it will not oversimplify the boundary by fitting surfaces
across concave sections and can consider holes in the surface if required. For
each cluster, we sample from the boundary of the level set in order to obtain
a series of points that travel clockwise around the shape. A constrained
triangulation is computed from these points, a process that will automati-
cally generate additional points, where required, within the shape itself. An
example mesh generated from a single level-set function is shown in Figure
8.

As each point in the new triangulation exists in planar coordinates, they can be
easily back projected into world coordinates to be output in mesh format. Our
software outputs the completed mesh in the standard PLY format, which is
readable in all commonly used software packages and can be imported into
modeling tools.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Possible errors observed when using a patch-
based reconstruction approach.

Supplemental Figure S2. The effect of patch count and size on reconstruc-
tion accuracy.

Supplemental Figure S3. The effect of input image resolution on recon-
struction accuracy.

Supplemental Figure S4. The operation of individual components of the
level set speed function.
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