
Received July 13, 2019, accepted July 26, 2019, date of publication July 30, 2019, date of current version August 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2931953

Automated Refactoring for Stampedlock

YANG ZHANG 1, SHICHENG DONG1, XIANGYU ZHANG2, HUAN LIU1,
AND DONGWEN ZHANG1
1School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
2Department of Computer Science, Purdue University, West Lafayette, IN 47906, USA

Corresponding author: Yang Zhang (zhangyang@hebust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61440012, in part by the Scientific

Research Foundation of Hebei Educational Department under Grant ZD2019093, and in part by the Fundamental Research Foundation of

Hebei Province under Grant 18960106D.

ABSTRACT StampedLock, proposed in JDK 1.8, provides many interesting features, such as optimistic

read locks and upgrading/downgrading locks to improve the design of concurrent programs instead of

employing pure read/write locks. Existing refactorings have proposed algorithms to convert locks, but

there are a few refactorings that use these promising features of StampedLock. To illustrate a possible

refactoring, this paper first shows three code transformations based on StampedLock. Then, this paper

presents CLOCK, an automated refactoring tool that helps developers convert the synchronized lock into

the StampedLock. An algorithm for reentrance analysis is proposed for the precondition validation. The

write lock, read lock, optimistic read lock, and upgrading/downgrading lock are inferred and refactored.

CLOCK is evaluated with the SPECjbb2005 benchmark and two real-world applications, Xalan and FOP.

A total of 66 classes are modified by searching approximately 395KSLOC and applying the refactoring,

achieving an average of 22 classes per benchmark. The experimental results show that CLOCK can help

developers with refactoring for StampedLock and save developer effort.

INDEX TERMS Automated refactoring, StampedLock, reentrance analysis, optimistic read lock, upgrad-

ing/downgrading lock.

I. INTRODUCTION

Lock, as one of the synchronization mechanisms, is used

to ensure the correctness of shared resources access in

concurrent programs. Commonly, a lock provides exclusive

access to a shared resource so that only one thread at a

time can acquire the lock while other threads will have to

wait for the release of the lock. Locks are widely used, but

they suffer from some problems, such as deadlock, livelock,

priority reversion, convoying and lock contention. Among

them, lock contention often leads to poor scalability and low

performance, which comprise as a main challenge in the

multi-core era.

Various synchronization mechanisms, such as software

transactional memory (STM) [1], [2] and the lock-free

algorithm (LFA) [3], also exist for concurrent program-

ming. Similar to locks, they have benefits and draw-

backs. STM and LFA provide non-blocking execution and

seem very suited for concurrent programs running on a

The associate editor coordinating the review of this manuscript and
approving it for publication was Mohammad Anwar Hossain.

multi-core/many-core processor. However, STM is not appli-

cable if I/O or other irreversible operations exist. Further-

more, for those concurrent programs with a frequent data

race, most transactions will have to roll back and start over,

likely resulting in poor performance. Analogous to STM,

programs with the LFA run continuously without block-

ing, making full utilization of multi-core processors. How-

ever, designing a correct and high-performance LFA usually

requires expertise and seems difficult for typical developers.

Although locks are susceptible to lock contention and other

promising techniques for synchronization mechanisms (e.g.,

STM and LFA) have been proposed, it seems that locks will

continue to be used in the future.

Java has provided several locks, such as the synchro-

nized lock, ReentrantLock, ReentrantReadWriteLock, and

StampedLock. Early in JDK1.0, the synchronized lock

was introduced as a synchronized method or a synchro-

nized block. With an implicit monitor object and without

explicit release operations, developers can use and under-

stand this lock easily. Since JDK1.5, Java has introduced

both ReentrantLock and ReentrantReadWriteLock in the

104900 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 7, 2019

https://orcid.org/0000-0001-8641-2660

Y. Zhang et al.: Automated Refactoring for Stampedlock

java.util.concurrent.locks package to support an explicit

locking mechanism. ReentrantLock has the same behavior

and semantics as the synchronized lock but provides extended

capabilities, such as a fairness strategy, trying to acquire a

lock and interrupting lock acquisition. ReentrantReadWrite-

Lock provides read and write locks. It allows the read lock to

be held simultaneously by multiple reader threads as long as

there are no writers, and the write lock is exclusive. However,

ReentrantReadWriteLock may suffer from severe starvation

if there are a number of reads but very few writes. The

fairness strategy may help improve this problem but may

compromise throughput [4]. With JDK1.8, StampedLock was

introduced and involved many interesting features that were

unsupported by previous Java locks, such as optimistic read,

upgrading/downgrading lock, and acquiring or releasing a

lock with a stamp value. Similar to ReentrantReadWriteLock,

StampedLock also has read and write locks by the methods

asReadLock() and asWriteLock(), but it does not seem to

suffer from severe starvation.

Both academic and industrial sectors have proposed tech-

niques and tools for refactoring among locks in the past few

years. In the academic community, Schäfer et al. [5] proposed

a refactoring tool Relocker with the techniques of converting

the synchronized lock to a ReentrantLock and of converting a

ReentrantLock to a ReentrantReadWriteLock. With Relocker,

developers can easily select a relatively high-performance

lock by tuning the performance among these locks. Tao et al.

[6] proposed an automated refactoring approach for Java

concurrent programs based on synchronization requirement

analysis. Their approach could find refactoring opportunities

for splitting locks and converting locks to atomic operations.

In the industrial setting, some commercial refactoring tools,

such as concurrency-oriented refactoring for JDT [7] and

LockSmith [8], were integrated into the modern integrated

development environment (IDE) IntelliJ IDEA and Eclipse

respectively. Both tools could split and merge locks, convert

among locks, and make the field atomic.

Although many techniques and tools have been proposed

to convert locks, we are not aware of any works that perform

refactoring for StampedLock. The optimistic read lock and

upgrading/downgrading lock provided by StampedLock pro-

vide an alternative for developers to improve the design of

concurrent programs. Therefore, we attempt to work on the

refactoring for StampedLock by taking advantage of these

advanced locking operations.

Refactoring from the synchronized lock to StampedLock is

non-trivial and challenging. First and foremost, the behavior

semantic of StampedLock is different from the synchronized

lock. The synchronized lock is reentrant while StampedLock

is not. Hence, we need to check reentrance and avoid such

refactoring if reentrance occurs. Second, the synchronized

lock only uses the synchronized keyword while Stamped-

Lock owns multiple lock modes, such as the write lock,

read lock and optimistic read lock. Determining how to infer

these locks accurately requires more program analysis. Third,

compared with inferring the read/write lock, inferring the

upgrading/downgrading lock is more difficult. Automated

refactoring tools need to know where and how to upgrade/

downgrade a lock.

To meet these challenges, this paper focuses on refactoring

support for the advanced locking operations, e.g., upgrad-

ing/downgrading locks and optimistic read locks provided by

StampedLock. We present CLOCK, an automated refactoring

tool that helps developers with refactoring the synchronized

lock to StampedLock. We propose an algorithm for reentrance

analysis as the precondition validation and the regulation for

inferring the write lock, read lock, optimistic read lock and

the upgrading/downgrading lock. CLOCK is evaluated with

the SPECjbb2005 benchmark and two real world applica-

tions Xalan and FOP. A total of 66 classes are modified by

searching among approximately 395KSLOC and applying

the refactoring with an average of 22 classes per benchmark.

Experimental results show that CLOCK can help the devel-

oper with refactoring and save developer effort.

This paper makes the following contributions:
• We describe the novel problem of converting the syn-

chronized lock to StampedLock.

• We design a detection algorithm for reentrancy and

inferring regulation for locks.

• A prototype tool, named CLOCK, is implemented as an

extension to Eclipse IDE.

• CLOCK is evaluated on several Java benchmarks

and applications, demonstrating the effectiveness of

CLOCK.

The rest of this paper is organized as follows. Section II

presents three motivating examples. Section III presents our

refactoring framework and some details. Some practical prob-

lems are considered in Section IV, and a screenshot of

CLOCK is shown in Section V. Section VI shows the exper-

imental evaluation of the refactoring. The related works of

literature are examined in Section VII and conclusions are

drawn in Section VIII.

II. MOTIVATING EXAMPLES

This section presents three motivating examples to demon-

strate the rationale. These examples show a variety of possi-

ble improvements of lock usage that may be introduced by

StampedLock

Figure 1 shows three implementations of a method delete()

based on the built-in monitor, ReadWriteLock and Stamped-

Lock. In this method, it first validates if the value key already

exists or not, and then deletes the value key if it exists. This is

a common practice for data structures to remove an element.

Figure 1(a) presents the method delete() based on the built-

in monitor. The synchronized modifier is added to the method

declaration to make it synchronized. If this method is con-

verted to the read-write lock viaRelocker [5], a write lockwill

be inferred as shown in Figure 1(b), because Relocker finds

the side-effect of the method remove(). However, we notice

that the method remove() will be executed only if the node

exists. If the node does not exist, this method is not exe-

cuted at all. Only the method contain() is executed and has

VOLUME 7, 2019 104901

Y. Zhang et al.: Automated Refactoring for Stampedlock

FIGURE 1. Method delete() based on built-in monitor, ReadWriteLock and StampedLock. (c) shows how to
upgrade a read lock to a write lock.

FIGURE 2. Method computeAndGet() based on built-in monitor, ReadWriteLock and StampedLock. (c) shows
how to downgrade a write lock to a read lock.

no side-effect. Therefore, a read lock should be inferred

since it may introduce more concurrency. This situation often

occurs for those data structures in which most of the nodes do

not exist, especially for a newly created data structure. Hence,

for this code segment, we should first use a read lock to test

the existence of the value key, and only when the conditional

statement becomes true will the write lock be used.

Figure 1(c) shows an alternative by taking advantage of

the upgrading lock of StampedLock. It first employs a read

lock (Line 3), and then judges if the value key exists or not.

It upgrades this lock to a write lock if the value key exists

(Lines 7-13). It leverages the method tryConvertToWrite-

Lock() of the class StampedLock to perform the state con-

version of the lock slock. If the conversion succeeds, a valid

stamp ws will be returned and the argument stamp will be

updated (Line 9). Even if the method tryConvertToWrite-

Lock() fails, it may release the read lock (Line 11) and acquire

awrite lock (Line 12) to remove the value key.When releasing

the lock, it uses the method unlock() of the class StampedLock

with the value stamp.

Figure 2 shows three implementations of the method com-

puteAndGet() based on the built-in monitor, ReadWriteLock

and StampedLock. This method first computes the value of

the field length, and then assigns the value length to the local

variant a, b and c.

Figure 2(a) shows the method computeAndGet() based on

the built-in monitor. When this method is refactored to Read-

WriteLock by Relocker [5], as shown in Figure 2(b), a write

104902 VOLUME 7, 2019

Y. Zhang et al.: Automated Refactoring for Stampedlock

FIGURE 3. Method getLength() based on built-in monitor, ReadWriteLock and StampedLock. (c) shows how to
convert a built-in monitor to an optimistic read lock.

lock will be inferred since Relocker finds the side-effect that

the field length will be updated. However, the method com-

puteAndGet() only has an update statement (line 3) followed

by several field-read statements (lines 4-6). It may have a

performance penalty for those read operations when it still

holds a write lock. Developers can attempt to downgrade

a write lock to a read lock after the update operation is

executed.

Figure 2(c) shows the method computeAndGet() based on

StampedLock. It first acquires a write lock (Line 4), and

then attempts to convert to a read lock (Lines 7-13) just

after the update of the field length. To downgrade a lock,

the method tryConvertToReadLock() of the class Stamped-

Lock is leveraged to perform the state conversion of the lock

slock. The variable stamp will be updated if the conversion

succeeds; otherwise, it can release thewrite lock and acquire a

read lock.

Figure 3 shows the method getLength() based on the built-

in monitor, ReadWriteLock and StampedLock. This method

only reads the field length and returns it as the returned value.

Figure 3(a) shows that the method getLength() only returns

the value of the field length with the synchronized declara-

tion. When this method is refactored to ReadWriteLock by

Relocker [5], as shown in Figure 3(b), a read lock will be

inferred since Relocker cannot find any side-effect of this

method. Although a read lock is a good choice and introduces

more concurrency, this method can be further improved to use

an optimistic read lock. We notice that this method has a very

short read-only code segment that meets the StampedLockąŕs

requirement to use the optimistic read lock; this code segment

may continue to reduce contention and improve throughput.

Figure 3(c) shows an alternative of the method getLength()

based on the StampedLock to read the field length. Instead

of acquiring a lock, it first leverages the method tryOpti-

misticRead() to attempt the optimistic read (Line 4), and

then reads the field length directly (Line 5). Since reading

the field in the optimistic mode may be wildly inconsistent,

the method validate() of the class StampedLock is used

to check consistency (Line 6). If the current optimistic

mode is invalidated by a write operation, it enters the read

mode by acquiring a read lock and reads this length again

(Lines 7-12).

III. REFACTORING FOR STAMPEDLOCK

In this section, we first present an overview of refactoring for

StampedLock. Then, we discuss the design of the individual

components in more detail in Section III-B to III-D.

A. REFACTORING FRAMEWORK

The framework of converting a program based on the syn-

chronized lock into one based on StampedLock is presented

in Figure 4. The program analysis tool WALA [9] is used

to perform analysis based on the WALA intermediate rep-

resentation (IR). Precondition validation is used to validate

whether a synchronized lock can be transformed or not.

Reentrance analysis is leveraged to check the reentrance for

a synchronized method or block. Precondition checking also

attempts to find all the thread communication operations to

which StampedLock cannot be applied. All locks are located

by a visitor pattern analysis. They further undergo a side

effect analysis and are converted to write lock, read lock,

optimistic read lock, upgrading lock and downgrading lock.

B. PRECONDITION

CLOCK checks two preconditions before refactoring. These

preconditions are inherent to how StampedLock is used and

are not the limitations of our refactoring tool.

1) CONDITIONAL OPERATIONS

The methods wait(), notify() and notifyAll() are used to

establish the communication between the threads. How-

ever, StampedLock does not support these methods. It is

mainly because it supports the coordinated usage across

multiple lock modes, so it does not directly implement the

VOLUME 7, 2019 104903

Y. Zhang et al.: Automated Refactoring for Stampedlock

FIGURE 4. The refactoring framework.

interface Lock such as ReentrantLock and ReentrantRead-

WriteLock do. Instead, it provides themethods asReadLock(),

asWriteLock() or asReadWriteLock() to be viewed as a read-

write lock. Unfortunately, it does not support a condition

on the lock returned by invoking these methods and if the

Lock.newCondition() method is called, an exception Unsup-

portedOperationException will be thrown. Since Stamped-

Lock does not support conditional operations, CLOCK

checks if a method contains them.

2) REENTRANCE ANALYSIS

Wloka et al. [10] presented a mostly-automated refactor-

ing that makes programs reentrant by replacing the global

state with the thread-local state. They defined the reen-

trance as ‘‘distinct executions of program on distinct inputs

cannot affect each other’’. Different from their work, reen-

trance in our work means that if a synchronized lock is

acquired with a monitor, this lock may be re-acquired with

the samemonitor. Some locks can be acquiredmultiple times.

For example, ReentrantReadWriteLock supports a maximum

of 65,535 recursive write locks and 65,535 read locks. Some

locks are not reentrant, and StampedLock is a typical exam-

ple. If a lock is not reentrant and a thread tries to acquire the

lock held by other threads, the acquisition will not succeed.

In other words, a method (or block) that is protected by the

StampedLock should not call another method (or block) that

may try to re-acquire locks with the same monitor of the

StampedLock.

What if a method body that holds a StampedLock acquires

this lock again? To answer this question, we should try to

understand the nature of the StampedLock. Different from the

previous locks before JDK1.8, StampedLock returns a long

integer value stamp when acquiring a lock and releases the

lock with this stamp. If the invoked method re-acquires this

lock, the value stamp will be updated. As a result, the caller

method will never release the lock by using the updated

stamp. Hence, a deadlock state will occur.

Converting a reentrant lock to a non-reentrant lock will

definitely change the behavior of the original program and

vice versa. Therefore, our refactoring seems to be impractical.

However, we can detect the reentrance and avoid such a

transformation wherever the synchronized lock is reentrant.

CLOCKwill explore the refactoring possibility of those code

segments without reentrance.

Figure 5 presents an algorithm of detecting reentrance

for both a synchronized method and a synchronized block

implemented by isReentrantForMethod and isReentrantf-

ForInstruction methods, respectively. As the synchronized

lock can be used in the declaration of a method or as a block,

this algorithm handles the following four situations: (1) the

synchronized method calls the synchronized method; (2) the

body of the synchronized method involves a synchronized

block; (3) a synchronized method is called in a synchronized

block; and (4) one synchronized block involves another syn-

chronized block.

Alias analysis is used to analyze monitors that have a

different name but actually access the same memory posi-

tion. For a synchronized method, the monitor is this or

A.class where A represents the name of a class. For a syn-

chronized block, the monitor depends on a specific object.

The method isReentrantForMethod is used to handle both

synchronized methods and other non-synchronized meth-

ods that contain synchronized blocks. The monitor object

of the current method is recorded in pointerKey and exam-

ines the may alias (Lines 2-5). This method may call itself

recursively or other methods, and the algorithm checks all

called methods (Lines 6-12). If a method is not synchronized

but involves synchronized blocks, it will invoke the method

isReentrantForInstruction to handle the synchronized blocks

(Lines 13-17). The method isReentrantForInstruction is used

to handle the synchronized block. It obtains the monitor

object of the current synchronized instruction and examines

the may alias (Lines 25-27). For some situations in which

one synchronized block involves another synchronized block,

104904 VOLUME 7, 2019

Y. Zhang et al.: Automated Refactoring for Stampedlock

FIGURE 5. Algorithm of detecting reentrance for locks.

CLOCK handles the nested synchronized block by a stack

(Lines 22 and 29) to ensure that the current pointKey is the

current monitor object. If a synchronized block invokes a syn-

chronized method, CLOCK calls the isReentrantForMethod

method to handle it (Lines 31-36).

Note that CLOCK cannot obtain the pointerKey for a static

synchronized method by WALA [9]. To handle it, CLOCK

converts the static synchronized method to a synchronized

block with an explicit monitor; then, the pointerKey can be

obtained.

C. INFERRING LOCKS

CLOCK uses a side-effect analysis to infer the read/write

lock, optimistic read lock or upgrading/downgrading lock.

Relocker [5] presented a side-effect analysis to infer the

read/write lock for ReentrantReadWriteLock. For each lock,

Relocker just gives the suggestion of using a read/write lock.

Considering our refactoring, StampedLock hasmultiple kinds

of lock modes, and the use of read lock modes relies on the

associated code sections being side-effect-free. Refactoring

for StampedLock needs to infer not only the read/write lock

but also the upgrade/downgrade lock. The side effect anal-

ysis for CLOCK needs to record each read/write operation

to facilitate the following inference. If the critical section

contains multiple read/write operations, the analysis results

will generate a character sequence.

The regular expression is defined for each lock mode to

match the character sequence. CLOCK defines five regular

expressions for inferring lock modes, where R represents

the read operation, W represents the write operation, A ⊙ B

represents A matches B, R∗ represents that R repeats for zero

or multiple times, and R+ represents that R repeats once or

multiple times.

Regulation 1: CLOCK infers a write lock WL if WL ⊙

{R|W }∗W {R|W }∗.

Regulation 1 shows that a write lock is inferred if there

is at least one write operation in the character sequence.

The regulation expression of write lock definitely includes

the upgrading/downgrading lock. CLOCK performs a further

definition for the upgrading/downgrading lock.

Regulation 2: CLOCK infers an optimistic read lock OL

if OL ⊙ Rfield .

Regulation 2 shows that an optimistic read lock is inferred

if there is a read operation to a field of a class.

Regulation 3: CLOCK infers a read lock RL if

(RL ⊆ ¬OL) ∩ (RL ⊙ R+).

Regulation 3 shows that a read lock is inferred if there is

at least one read operation and it is not a read operation to

the field. Here, ¬OL represents that CLOCK excludes the

optimistic read mode out of read mode to avoid the ambiguity

of inferring locks.

Regulation 4: CLOCK infers a downgrading lock DL if

(DL ⊆ WL) ∩ (DL ⊙W+R+).

Regulation 4 shows that a downgrading lock is a subset

of WL, and write operations are usually followed by one or

multiple read operations.

Regulation 5: CLOCK infers an upgrading lock UL if

(UL ⊆ WL) ∩ (UL ⊙ R+[{R|W }∗W {R|W }∗]).

Regulation 5 shows that a downgrading lock is the subset of

WL and is inferred if one or multiple read operations follows

multiple read and write operations. The ‘[]’ represents the

scope of an if-statement in the critical section. We should

note that our upgrading lock strategy is only for the situation

in which one or multiple read operations are followed by an

if-statement that contains write operations. Our strategy for

inferring the upgrading lock maybe simple, but most of them

happen around the ‘if’ statement.

D. TRANSFORMATION

CLOCK traverses the abstract syntax tree to locate all

synchronized locks and converts the synchronized lock to

VOLUME 7, 2019 104905

Y. Zhang et al.: Automated Refactoring for Stampedlock

the corresponding StampedLock. In each refactored class,

CLOCK imports the StampedLock package and defines the

StampedLock. AllWLs and RLs are put in to the try...finally...

structure to ensure the release of a lock even if the exception

occurs. For OL, CLOCK handles the transformation of the

optimistic read operation in the same way as the code shown

in Figure 3(c). For DL, CLOCK downgrades a write lock

to a read lock just after the last write operation. For UL,

CLOCK upgrades a read lock to a write lock just after the

‘if’ statement.

IV. HANDLING PRACTICAL ISSUES

This section presents several practical issues that we solved

during the implementation of CLOCK.

A. EARLY RETURNING

Early returning means that the refactored function ends early.

Considering an example similar to Figure 3, if the body of

the getLength() method in Figure 3(a) only contains one

statement ‘return length’, when it is refactored analogous to

the approach in Figure 3(c), this statement will be placed in

Lines 5 and 9. The execution of this methodwill always end in

Line 5 and all the following statements will never be executed.

To handle early returning, we need to create a new local

variable with the same type as the variable in the return

statement. Actually, Figure 3(c) present the possible solution

of early returning.

A similar problem can happen if the method getLength()

contains an output statement as follows.

public synchronized void getLength() {

System.out.println(‘‘length=’’ + length);

}

When refactoring the above code segment, we cannot

replace the statement in Lines 5 and 9 of Figure 3(c) with this

output statement. Otherwise, the value length will be printed

twice if the validation fails. Creating a new local variable can

solve this problem as follows.

public void getLength() {

int temp;

long stamp = slock.tryOptimisticRead();

temp = length;

if(!slock.validate(stamp)){

stamp=slock.readLock();

try{

temp = length;

System.out.println(‘‘length=’’ + temp);

} finally {

slock.unlockRead(stamp);

}

} else {

System.out.println(‘‘length=’’ + temp);

}

}

B. THE CHANGE OF THE VARIABLE SCOPE

For some variables defined in the critical section, CLOCK

may change the variable scope because CLOCK will use the

try...finally... structure and move the original critical section

into the try block. As a result, the variable scope may become

small. To solve this problem, CLOCK checks these defini-

tions of the variable and allows them to be defined out of the

try statement.

C. ESCAPING

Escaping analysis is an approach for determining the dynamic

scope of a pointer. A pointer to a variable that defined in a

thread can escape into other threads. Considering Stamped-

Lock, it returns a stamp value after acquiring the lock, and

leverages this stamp value to release the lock. CLOCK should

make sure that the variable stamp will not escape out of the

scope of the current thread. If the pointer to the variable stamp

escapes to the other threads, its value will likely be changed,

making the lock unreleased and finally leading to deadlock.

When converting from the synchronized lock to the

StampedLock via CLOCK, the stamp is a local variable and

the scope is within a method. The local variable stamp cannot

be returned and passed to another method. Hence, CLOCK

ensures the variable stamp will not escape.

D. AVOIDING SWITCHING BETWEEN UPGRADING AND

DOWNGRADING LOCKS FREQUENTLY

The upgrading/downgrading lock enables concurrent pro-

grams to upgrade a read lock to a write lock or to downgrade

a write lock to a read lock. If a code segment contains more

than one upgrading/downgrading operation, lock mode will

be switched frequently so that acquiring and releasing lock

operations dominate the execution time, which will definitely

decrease the performance. CLOCK uses a write lock instead

of multiple upgrading/downgrading locks to avoid such a

frequent switching.

V. IMPLEMENTATION

We implement our refactoring in a prototype tool called

CLOCK as an extension to Eclipse IDE. The screenshot of the

CLOCK implementation is presented in Figure 6. The left-

hand side of Figure 6 presents a customized class SyncTest

that includes three fields and five methods, while the right-

hand side of Figure 6 shows the refactored results by using

StampedLock.

VI. EVALUATION

This section first introduces the experimental setup and

benchmarks, and then presents the research questions and

illustrates the experimental results.

A. EXPERIMENTAL SETUP AND BENCHMARKS

All experiments are conducted on a MacBook Pro with a

2.5GHz Intel Core i7 CPU, 16GB RAM, and 6MB cache.

104906 VOLUME 7, 2019

Y. Zhang et al.: Automated Refactoring for Stampedlock

FIGURE 6. CLOCK converts synchronized locks (left-hand side) into StampedLocks (right-hand side).

The machine runs OS X EI Capitan and has JDK 1.8.0_25,

Eclipse 4.4.1 and WALA 1.4.2 installed.

To evaluate the usefulness of CLOCK, we run it on

3 projects including the SPECjbb2005 [11] benchmark and

two real-world applications: Xalan [12] and FOP [13].

SPECjbb2005 was developed by the Standard Performance

Evaluation Corporation as a benchmark for evaluating the

performance of server side Java by emulating a 3-tier sys-

tem with an emphasis on the middle tier. It provides an

enhanced workload to reflect realistic applications. Xalan

is the open source software library from the Apache

project that can transform XML documents into HTML,

text or other XML document types using the XSLT stan-

dard stylesheet. We use its Java version 2.7.2. A format-

ting objects processor (FOP) is also part of the Apache

project, reads a formatting object tree and renders the

resulting pages to a specific output. Its version is 2.3. For

each benchmark, we apply CLOCK to all synchronized

methods and blocks. CLOCK checks the preconditions and

makes the transformation when they pass the precondition

validation.

B. RESEARCH QUESTIONS

We evaluate the effectiveness of CLOCK by answering the

following questions:

• RQ1: How applicable is the refactoring? In other words,

how many synchronized methods and blocks can meet

the refactoring precondition?

• RQ2: Are these refactorings correct?

• RQ3: Can CLOCK save developer effort when

refactoring?

We answer RQ1 by counting how many code fragments

meet the refactoring preconditions and thus are refactored

by CLOCK. We also report the number of times that the

precondition failed. RQ2 is answered by inspecting these

changes and reporting the possible inference. To measure

how many efforts a developer would spend on manu-

ally refactoring, RQ3 is answered by reporting the num-

ber of files [14] modified by the refactoring. We also

report the number of modified SLOC. SLOC is generated

using SLOCCount [15]. These numbers approximately esti-

mate the programmer effort that is saved when refactoring

with CLOCK.

VOLUME 7, 2019 104907

Y. Zhang et al.: Automated Refactoring for Stampedlock

FIGURE 7. Experimental results for CLOCK.

C. RESULTS

Figure 7 tabulates the results for CLOCK. For each original

benchmark, it shows the number of synchronized methods

and blocks as well as SLOC. For each refactored benchmark,

we demonstrate how many write locks, read locks, opti-

mistic read locks, upgrading locks and downgrading locks

are inferred and refactored. We also report how many syn-

chronized methods and blocks cannot be refactored.

1) RESULTS FOR RQ1

Column 10 in Figure 7 shows the number of classes that can

be refactored, while column 11 shows the number of classes

that cannot be refactored. The number of synchronized meth-

ods and synchronized blocks that cannot be refactored is

shown in columns 12 and 13. A total of 79 synchronized

methods and 24 synchronized blocks fail the validation of

preconditions. However, these synchronized locks are spread

across a small range of classes.

For SPECjbb2005, the original benchmark contains

168 synchronized methods and 22 synchronized blocks that

are widely spread across 23 files. Moreover, 61% of synchro-

nized methods and blocks meet the refactoring preconditions.

There are 4 classes (including Company, DeliveryTransac-

tion, TimerData, and Warehouse) that are not transformed

because they fail the validation of preconditions. In addition,

57 synchronized methods and 18 synchronized blocks cannot

be refactored. Two reasons lead to the failure.

• The most commonly failed preconditions are caused

by lock reentrance. Both direct reentrance and indi-

rect reentrance are found by CLOCK. For example,

the primeWithDummyData() method of the Company

class called the loadInitialOrders()method in this class.

Both of them are synchronized methods and use the

instance of the Company class as the monitor. It is direct

reentrance. Indirect reentrance also exists. For example,

the process() method of the DeliveryTransaction() class

calls the handleDelivery() method of the DeliveryHan-

dler class, and then the handleDelivery() method calls

the display()method of the DeliveryTransaction() class.

Both process() and display() are synchronized methods

with the same monitor.

• The remainder of failed preconditions is caused by

thread communication operations that are included in

the synchronized blocks. CLOCK cannot convert them

because StampedLock does not support the conditional

operation.

For Xalan, the original project has 51 synchronized

methods and 31 synchronized blocks. Moreover, 68% of

synchronized methods and blocks meet the refactoring pre-

condition. However, there are 20 synchronized methods and

6 synchronized blocks that cannot be refactored. Almost all

failed preconditions for synchronized blocks are caused by

thread communication operations that StampedLock cannot

handle. For synchronized methods that fail the validation of

preconditions, 15 synchronized methods are caused by the

reentrance and 5 of them are caused by thread communication

operations. These synchronized locks that cannot be refac-

tored are spread across only 4 classes.

For FOP, the original project has 25 synchronized methods

and 7 synchronized blocks. Furthermore, 94% of synchro-

nized locks meet the refactoring precondition. Only 2 syn-

chronized methods cannot be refactored because they are

reentrant.

The experimental results show that some synchronized

locks cannot be refactored due to the limitation of Stamped-

Lock. However, we notice that they are only spread across

a small range of 9 classes. When a method in a class fails

the validation due to reentrance, this leads to the failure of

validating other methods in this class. From the perspective

of the number of classes, CLOCK still has a high level of

applicability.

2) RESULTS FOR RQ2

A total of 123 write locks, 27 read locks, 34 optimistic

read locks, 16 upgrading locks and 1 downgrading lock are

inferred by CLOCK.We check each transformation manually

and find that CLOCK transforms all synchronized locks and

does not miss any refactorings. To check if these refactorings

are correct or not, wemanually inspect all the refactored locks

to determine 1) if a correct kind of lock is inferred or not; 2) if

a lock is inserted into a correct position or not; 3) if a lock

104908 VOLUME 7, 2019

Y. Zhang et al.: Automated Refactoring for Stampedlock

structure is used correctly or not; and 4) if the critical section

is protected safely or not.

During the inspection, we find that each critical section

has been inferred with the kind of lock according to the lock

inference strategy (see Section III-C) and almost all of them

are accurate. However, we also find that the inferred locks

for some critical sections can be improved by using other

locks. These cases are reported as follows. We should note

that these cases are related to the kinds of locks that are used

and are not related to the correctness of programs and validity

of CLOCK.
• The critical section that is inferred to use a write lock can

be improved by using an upgrading/downgrading lock.

For example, method removeOldNewOrders() of class

District in the SPECjbb2005 benchmark first contains

a read operation, then a write operation, and finally all

read operations, which may use a downgrading lock.

However, a write lock is inferred according to our infer-

ence strategy.

• The critical section that is inferred to use a read lock

can be improved by using an optimistic read lock.

For example, method display() of class District in the

SPECjbb2005 benchmark reads three fields. According

to our lock inference strategy, reading just one field

recommends to use an optimistic read lock. This method

does not meet the reference strategy for an optimistic

read lock. Therefore, a read lock is inferred for this

method.

We do not find any refactorings that change lock semantics.

More precisely, all locks are inserted into the position where

they should be and thus all critical sections are protected

safely by locks. We also inspect the lock structures and find

that all of them are used correctly. For example, for read/write

lock, all acquire operations are inserted before the critical

sections and all release operations are put into the ‘finally’

blocks. As for optimistic read lock, the direct read operations

are validated. If they fail the validation, a read lock is used to

protect reading again.

To make sure that all benchmarks work well, we run

the refactored programs. For the SPECjbb2005 benchmark,

we run it against the number of threads (1 thread to a max-

imum of 16 threads). It shows the score and heap memory

usage for each run if there is no error. For Xalan and FOP,

we run them by using the samples published with the source

code to transform or render an XML document. We find that

they all run smoothly without reporting any errors.

3) RESULTS FOR RQ3

Measuring the developer effort in terms of a precise eval-

uation is truly difficult. Ideally, we would have observed

developers while they refactor and determined how much

time they spend. However, given the differences in famil-

iarity with concurrent programming for different developers,

the refactoring time may vary. To approximately estimate

the effort of manual refactoring, we select three graduate

students who are familiar with the StampedLock and let them

transform each project manually. As a result, they take 5 hours

on average to accomplish the transformation.

We count the number of synchronized locks together with

the number of code changes. These figures represent that a

developer would have spent time in searching for synchro-

nized locks and transformed the code manually. In total, all

benchmarks have 244 synchronized methods and 60 syn-

chronized blocks that are spread across 395KSLOC. A total

of 66 classes are modified by applying the refactoring, with

an average of 22 classes per project. The refactorings modify

1084 SLOC, with an average of 361 SLOC per project. When

refactoring the SPECjbb2005 benchmark, developers need

to search for synchronized locks in 23 files out of 33 files

in total, and eventually 190 refactorings are found; then,

developers determine which lock should be used and perform

transformations. The synchronized locks are clustered in the

SPECjbb2005 benchmark so that developers can find these

locks quickly. However, the situation is quite different for

the other two benchmarks, in which the refactorings are not

strongly clustered. If developers transform Xalan manually,

they need to search 920 files to find synchronized locks

existed only in 29 files. It is labor-intensive to search in such a

large amount of files to find a small amount of locks and con-

vert them to StampedLock. Eventually, 82 locks are required

to be transformed manually by developers, and 321 SLOC

are modified. For FOP, 32 synchronized locks are spread

across 2004 Java files. If a developer refactored manually,

he/she would have had to jump across many files. Finally,

only 224 SLOC are modified.

By contrast, our tool is fully automatic. For SPECjbb2005,

a total of 19 classes are modified by applying the refac-

toring. CLOCK infers 65 write locks, 14 read locks, and

36 optimistic read locks. For Xalan, CLOCK infers 43 write

locks, 3 read locks, 2 optimistic read locks and 8 upgrad-

ing locks. We check 8 upgrading locks manually and find

that most of them are similar to our proposed motivation

presented in Figure 1. For FOP, CLOCK infers 15 write

locks, 6 read locks, 8 upgrading locks, and 1 downgrading

lock. The downgrading lock occurs in the generateNewID

method of the ActionSet class where a write operation is

followed by several read operations; this pattern is similar to

our proposed motivation in Figure 2. It takes no more than

thirty seconds per project. These results show that CLOCK

can save considerable developer efforts.

VII. RELATED WORKS

In this section, we first investigate programming libraries and

tools that support the upgrading/downgrading lock, and then

present refactoring for locks. Finally, we examine the works

on refactoring for different synchronization mechanisms.

A. PROGRAMMING TOOLS THAT SUPPORT THE

UPGRADING/DOWNGRADING LOCK

Many programming libraries and frameworks have pro-

vided mechanisms to support upgrading/downgrading

lock operations. Early after the JDK 1.5 proposal, the

VOLUME 7, 2019 104909

Y. Zhang et al.: Automated Refactoring for Stampedlock

ReentrantReadWriteLock class allowed downgrading from a

write lock to a read lock. However, upgrading from a read

lock to a write lock is not feasible. Importantly, since JDK

1.8, StampedLock has supported both the upgrading and

downgrading lock. Furthermore, the optimistic read lock is

recommended for all new development of accessing fields.

The .NET Framework provides the ReaderWriterLock-

Slim [16] class to support three modes: read mode, write

mode, and upgradable read mode. ReaderWriterLockSlim

is similar to ReaderWriterLock, but the performance of

ReaderWriterLockSlim is significantly better than that of

ReaderWriterLock. An upgradable mode is intended for cases

where a thread usually reads from the protected resource

but might need to write to it if some condition is met.

ReaderWriterLockSlim has simplified rules for the upgrading

and downgrading lock state. However, the .NET framework

does not support the automated refactoring for these read and

write locks.

Intel Threading Building Blocks(TBB) provide methods

downgrade_to_reader and upgrade_to_writer to support the

downgrading/upgrading lock [17]. However, TBB does not

provide refactoring for these methods.

B. REFACTORING FOR LOCKS

Many previous works of concurrency-oriented refactoring

focused on how to convert locks.

McCloskey et al. [18] presented Autolocker to automati-

cally convert the pessimistic atomic section into lock-based

code. Autolocker retained many of the advantages of opti-

mistic atomic sections and reduced the most burdens of lock-

based programming. In addition, they allowed programmers

to extract more parallelism through fine-grained locking.

Schäfer et al. [5] presented algorithms to convert built-

in monitor locks into ReentrantLocks and ReentrantRead-

WriteLocks. They also claimed that their future works would

involve helping developers to safely downgrade write locks

to read locks. Inspired by their work, our work presented an

algorithm to upgrade read locks to write locks, downgrade

write locks to read locks and use optimistic read locks.

Tao and Qian [6] proposed an automated refactoring

approach for Java concurrent programs based on synchro-

nization requirements. Their work had the ability to find

the refactoring opportunities for splitting locks, splitting the

critical section and converting it to the atomic section. Zhang

et al. [19] presented a refactoring approach for lock based on

bytecode transformation.

Some commercial refactoring tools, such as concurrency-

oriented refactoring for JDT [7] and LockSmith [8], have

been integrated into IntelliJ IDEA and Eclipse respectively.

Both of them can split and merge locks, convert among locks,

and make the field atomic.

Although many refactorings for locks had been performed,

most previous works mainly concentrated on read/write locks

and fewworks focused on the upgrading/downgrading lock or

optimistic read lock.

C. REFACTORING FOR DIFFERENT SYNCHRONIZATION

MECHANISMS

There has been considerable interest in refactoring programs

among different synchronization mechanisms.

Deng et al. [20] proposed a tool SyncGen to automati-

cally synthesize complex synchronization implementations

from formal high-level specifications. SyncGen also pro-

vided checkable redundancy for verifying the correctness of

synthesized implementations, and exploited synchronization

specifications for state-space reduction of general correctness

properties.

The refactoring tool CONCURRENCER of Dig et al. [21]

aims to convert synchronized locks to atomic blocks. Pro-

grammers can replace all int field accesses with calls of

AtomicInteger thread-safe APIs. Regarding the difference

between locks and atomic blocks, CONCURRENCER can

only transform those synchronized blocks that contain one-

field accesses.

Ishizaki et al. [22] proposed a refactoring approach to sup-

port atomic refactoring. Their tool transforms more refactor-

ing cases for the java.util.concurrent.Atomic.AtomicInteger

class.

Zhang [23] proposed an aspect-oriented synchronization

library FlexSync. FlexSync enabled programmers to choose

synchronization control among lock, atomic block and STM

only by adding aspect-oriented annotation. Programmers

could evaluate the performance of Java programs using differ-

ent synchronization control mechanisms. FlexSync supported

complex Java systems simultaneously working with multiple

synchronization mechanisms without any code changes.

VIII. CONCLUSION

StampedLock has been designed to enhance the synchro-

nization control for concurrent programs by providing the

upgrading lock and optimistic read lock, which are Java locks

that were previous unavailable. This paper first illustrates

several motivations that might improve the design by using

StampedLock, and then presents the analysis and algorithms

of refactoring that enable Java developers to convert the syn-

chronized lock to StampedLock. CLOCK is implemented as

the Eclipse plugin and evaluated with three large applications.

The evaluation shows that a total of 66 classes are modified

by searching approximately 395KSLOC and applying the

refactoring, with an average of 22 classes per benchmark.

Experimental results provide confidence that the proposed

algorithms and implementation can help the developer with

refactoring and save developer effort.

A threat to validity of our evaluation is that the bench-

mark programs may not be representative of all programs.

Considering that different kinds of programs have different

characteristics, they may exhibit all kinds of lock behaviors.

Although StampedLock provides promising lock opera-

tions, it introduces some obstacles (e.g. unsupported reen-

trancy and conditional operations) for refactoring. If JDK

were to provide an advanced lock (similar to StampedLock)

104910 VOLUME 7, 2019

Y. Zhang et al.: Automated Refactoring for Stampedlock

together with support of reentrance and condition operations,

CLOCK could achieve a higher refactoring success rate.

Future works include our endeavors to find more refac-

toring patterns for the upgrading/downgrading lock and to

work on how to ensure consistency when converting locks.

Although carefully developed and tested, CLOCK is a proto-

type tool that may contain bugs and still needs more efforts

to make it sufficiently mature. However, our tool can still be

applied in several applications.Wewill continuously improve

our tool to ensure its correctness. Furthermore, we will work

on the recommend approach for locks. Importantly, it will be

constructive if a tool can recommend the best lock in advance

rather than resort to refactoring.

ACKNOWLEDGMENT

The authors would like to thank the insightful comments

and suggestions of the reviewers, which have improved the

presentation.

REFERENCES

[1] E. Silvestri, S. Economo, P. Di Sanzo, A. Pellegrini, and F. Quaglia,

‘‘Preemptive software transactional memory,’’ in Proc. IEEE/ACM Int.

Symp. Cluster Cloud Grid Comput., May 2017, pp. 294–303.

[2] A. Khyzha, H. Attiya, A. Gotsman, and N. Rinetzky, ‘‘Safe privatization

in transactional memory,’’ ACM SIGPLAN Symp. Princ. Pract. Parallel

Program., vol. 53, no. 1, pp. 233–245, 2018.

[3] D. Hendler, N. Shavit, and L. Yerushalmi, ‘‘A scalable lock-free stack

algorithm,’’ J. Parallel Distrib. Comput., vol. 70, no. 1, pp. 1–12, 2010.

[4] H. M. Kabutz. (2008). Starvation With ReadWriteLocks. [Online]. Avail-

able: https://www.javaspecialists.eu/archive/Issue165.html

[5] M. Schafer, M. Sridharan, J. Dolby, and F. Tip, ‘‘Refactoring java programs

for flexible locking,’’ in Proc. 33rd Int. Conf. Softw. Eng., May 2011,

pp. 71–80.

[6] B. Tao and J. Qian, ‘‘Refactoring java concurrent programs based on

synchronization requirement analysis,’’ in Proc. IEEE Int. Conf. Softw.

Maintenance Evol., Sep./Oct. 2014, pp. 361–370.

[7] K. Ahti. (2010). Concurrency-Related-Refactorings-for-JDT. [Online].

Available: https://wiki.eclipse.org/Concurrency-related-refactorings-for-

JDT

[8] Sixth and Red River Software. (2008). LockSmith: Concurrency-Oriented

Refactorings for IntelliJ IDEA. [Online]. Available: https://intellij-support.

jetbrains.com/hc/en-us/community/posts/206761105–Ann-LockSmith-

concurrency-oriented-refactorings-for-IntelliJ-IDEA

[9] (2018). The T. J. Watson Libraries for Analysis. [Online]. Available:

https://github.com/wala/WALA

[10] J. Wloka, M. Sridharan, and F. Tip, ‘‘Refactoring for reentrancy,’’ in Proc.

ACM SIGSOFT Symp. Found. Softw. Eng., 2009, pp. 173–182.

[11] SPEC. (2013). SPEC JBB2005. [Online]. Available: http://www.spec.

org/jbb2005/

[12] A. S. Foundation. (2019). Xalan-Java Version 2.7.2. [Online]. Available:

https://xalan.apache.org/xalan-j/index.html

[13] Apache. (2019). The Apache FOP Project. [Online]. Available: https://

xmlgraphics.apache.org/fop/

[14] A. Gyori, L. Franklin, D. Dig, and J. Lahoda, ‘‘Crossing the gap from

imperative to functional programming through refactoring,’’ in Proc. 9th

Joint Meeting Found. Softw. Eng., 2013, pp. 543–553.

[15] D. A. Wheeler. (2018). SLOCCount. [Online]. Available: https://dwheeler.

com/sloccount/

[16] Microsoft. (2018). ReaderWriterLockSlim Class. [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/api/system.threading.

readerwriterlockslim?view=netframework-4.7.2

[17] Intel. (2018). Intel Threading Building Blocks Documentation. [Online].

Available: https://software.intel.com/en-us/node/506088

[18] B. McCloskey, F. Zhou, D. Gay, and E. Brewer, ‘‘AutoLocker: Synchro-

nization inference for atomic sections,’’ in Proc. 33rd ACM SIGPLAN-

SIGACT Symp. Princ. Program. Lang., 2006, pp. 346–358.

[19] Y. Zhang, S. Shao, H. Liu, J. Qiu, D. Zhang, and G. Zhang, ‘‘Refactoring

java programs for customizable locks based on bytecode transformation,’’

IEEE Access, vol. 7, pp. 66292–66303, 2019.

[20] X. Deng, M. B. Dwyer, J. Hatcliff, and M. Mizuno, ‘‘SyncGen: An aspect-

oriented framework for synchronization,’’ in Proc. Int. Conf. Tools Algo-

rithms Construct. Anal. Syst. (TACAS), 2004, pp. 158–162.

[21] D. Dig, J. Marrero, and M. D. Ernst, ‘‘Refactoring sequential java code for

concurrency via concurrent libraries,’’ in Proc. IEEE 31st Int. Conf. Softw.

Eng., May 2009, pp. 397–407.

[22] K. Ishizaki, S. Daijavad, and T. Nakatani, ‘‘Refactoring java programs

using concurrent libraries,’’ in Proc. Workshop Parallel Distrib. Syst.. Test.,

Anal., Debugging, 2011, pp. 35–44.

[23] C. Zhang, ‘‘FlexSync: An aspect-oriented approach to Java synchroniza-

tion,’’ in Proc. IEEE 31st Int. Conf. Softw. Eng., May 2009, pp. 375–385.

YANG ZHANG received the Ph.D degree from

the School of Computer, Beijing Institute of

Technology. He is currently an Associate Pro-

fessor with the School of Information Science

and Engineering, Hebei University of Science and

Technology. His research interests include parallel

programming model and software refactoring for

parallelism.

SHICHENG DONG is currently pursuing themas-

ter’s degree with the Hebei University of Science

and Technology. His research interests include par-

allel programming and software refactoring for

parallelism.

XIANGYU ZHANG received the Ph.D. degree

from the Computer Science Department, The Uni-

versity of Arizona. He is currently a Professor

with the Department of Computer Science, Purdue

University. His research interests include program

analysis, security, deep learning security, depend-

ability, and interpretability.

HUAN LIU is currently pursuing the master’s

degree with the Hebei University of Science and

Technology. Her research interests include par-

allel programming and software refactoring for

parallelism.

DONGWEN ZHANG received the Ph.D. degree

from the Beijing Institute of Technology. She is

currently a Professor with the School of Informa-

tion Science and Engineering, Hebei University

of Science and Technology. Her research interests

include parallel programming model and software

refactoring for parallelism.

VOLUME 7, 2019 104911

	INTRODUCTION
	MOTIVATING EXAMPLES
	REFACTORING FOR STAMPEDLOCK
	REFACTORING FRAMEWORK
	PRECONDITION
	CONDITIONAL OPERATIONS
	REENTRANCE ANALYSIS

	INFERRING LOCKS
	TRANSFORMATION

	HANDLING PRACTICAL ISSUES
	EARLY RETURNING
	THE CHANGE OF THE VARIABLE SCOPE
	ESCAPING
	AVOIDING SWITCHING BETWEEN UPGRADING AND DOWNGRADING LOCKS FREQUENTLY

	IMPLEMENTATION
	EVALUATION
	EXPERIMENTAL SETUP AND BENCHMARKS
	RESEARCH QUESTIONS
	RESULTS
	RESULTS FOR RQ1
	RESULTS FOR RQ2
	RESULTS FOR RQ3

	RELATED WORKS
	PROGRAMMING TOOLS THAT SUPPORT THE UPGRADING/DOWNGRADING LOCK
	REFACTORING FOR LOCKS
	REFACTORING FOR DIFFERENT SYNCHRONIZATION MECHANISMS

	CONCLUSION
	REFERENCES
	Biographies
	YANG ZHANG
	SHICHENG DONG
	XIANGYU ZHANG
	HUAN LIU
	DONGWEN ZHANG

