
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Publications and Research Hunter College

2017

Automated Refactoring of Legacy Java Software to Default Automated Refactoring of Legacy Java Software to Default

Methods Methods

Raffi T. Khatchadourian
CUNY Hunter College

Hidehiko Masuhara
Tokyo Institute of Technology

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/hc_pubs/287

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/hc_pubs
https://academicworks.cuny.edu/hc
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/hc_pubs/287
https://academicworks.cuny.edu/hc_pubs/287
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

Automated Refactoring of Legacy Java Software to
Default Methods

Raffi Khatchadourian
City University of New York

raffi.khatchadourian@hunter.cuny.edu

Hidehiko Masuhara
Tokyo Institute of Technology

masuhara@acm.org

Abstract—Java 8 default methods, which allow interfaces to
contain (instance) method implementations, are useful for the
skeletal implementation software design pattern. However, it
is not easy to transform existing software to exploit default
methods as it requires analyzing complex type hierarchies,
resolving multiple implementation inheritance issues, reconciling
differences between class and interface methods, and analyzing
tie-breakers (dispatch precedence) with overriding class methods
to preserve type-correctness and confirm semantics preservation.
In this paper, we present an efficient, fully-automated, type
constraint-based refactoring approach that assists developers in
taking advantage of enhanced interfaces for their legacy Java
software. The approach features an extensive rule set that covers
various corner-cases where default methods cannot be used.
To demonstrate applicability, we implemented our approach
as an Eclipse plug-in and applied it to 19 real-world Java
projects, as well as submitted pull requests to popular GitHub
repositories. The indication is that it is useful in migrating skeletal
implementation methods to interfaces as default methods, sheds
light onto the pattern’s usage, and provides insight to language
designers on how this new construct applies to existing software.

Keywords-refactoring; java; interfaces; default methods

I. INTRODUCTION

With the introduction of enhanced interfaces in Java 8,
developers can now write default (instance) methods, which
include an implementation that implementers will inherit if
they do not provide their own [1]. Although the original
motivation was to enable developers to add new functionality
to existing interfaces without breaking clients [2], default
methods can be used [3] as a replacement of the skeletal
implementation pattern [4, Item 18]. This pattern centers
around creating an abstract skeletal implementation class,
which implementers extend, that provides a partial interface
implementation, making the interface easier to implement.

While there are many advantages in migrating legacy
code using the skeletal implementation pattern to instead use
default methods, e.g., foregoing the need for subclassing,
having classes inherit behavior (but not state) from multiple
interfaces [3], facilitating local reasoning [5], doing so may
require significant manual effort, especially in large projects.
Particularly, there are subtle language and semantic restric-
tions, e.g., interfaces cannot declare instance fields. It requires
preserving type-correctness by analyzing complex type hierar-
chies, resolving issues arising from multiple (implementation)
inheritance, reconciling differences between class and inter-
face methods, and ensuring tie-breakers with overriding class

methods, i.e., rules governing dispatch precedence between
class and default methods with the same signature, do not
alter semantics, all of which will be elaborated on later.

We propose an efficient, fully-automated, semantics-
preserving refactoring approach that assists developers in
taking advantage of enhanced interfaces. The approach, based
on type constraints [6,7], works on large-scale projects with
minimal intervention and features an extensive rule set, cov-
ering various corner-cases where default methods cannot be
used. It identifies instances of the pattern and safely migrates
class method implementations to interfaces as default methods.

The related PULL UP METHOD refactoring [7,8] safely
moves methods from a subclass into a super class. Its goal
is to solely reduce redundant code, whereas ours includes
opening classes to inheritance, allowing classes to inherit mul-
tiple interface definitions, etc. Moreover, our approach deals
with multiple inheritance, a more complicated type hierarchy
involving interfaces, semantic differences due to class tie-
breaking, and differences between class method headers and
corresponding interface method declarations.

The refactoring approach is implemented as an open source
Eclipse (http://eclipse.org) plug-in. The experimental evalua-
tion used a set of 19 Java projects of varying size and domain
with a total of ∼2.7 million lines of code. Additionally, we
submitted pull requests (patches) of the refactoring results
to popular GitHub (http://github.com) repositories. Our study
indicates that (i) the analysis cost is practical, with average
running time of 0.115 seconds per input method and 0.144
seconds per thousand lines of code, (ii) the skeletal imple-
mentation pattern is commonly used in legacy Java software,
and (iii) the proposed approach is useful in refactoring method
implementations into default methods despite language restric-
tions. It also provides insight to language designers on how
this new language constructs applies to existing software.

This work makes the following specific contributions:
Approach design. We present a novel automated refactoring

approach for migration to Java 8 enhanced interface default
methods. The approach infers which methods can be safely
migrated to default methods via an exhaustive formulation
of refactoring preconditions. We present new type constraints
involving default methods and other modern Java constructs,
as well as a scheme for semantics preservation in the context
of tie breaking rules with classes. Furthermore, we identify
all code changes required to perform the migration, including

http://eclipse.org
http://github.com

removal and replacement of skeletal implementation classes.
Implementation and experimental evaluation. The

approach is implemented as an open source Eclipse
plug-in to ensure real-world applicability. A study on 19
Java programs indicates that the proposed techniques are
effective and practical, and a pull request study demonstrates
that the results are well-grounded. These results advance the
state of the art in automated tool support for the evolution
of legacy Java code to modern Java technologies.

II. MOTIVATING EXAMPLE

In this section, we present an example that will be used
throughout the paper to highlight the motivation of using
default methods in legacy Java code, the refactoring challenges
involved, and how our approach applies in particular situations.

Fig. 1 portrays a hypothetical collection type hierarchy
snippet. Fig. 2 contains the corresponding UML class diagram.
The hierarchy has been simplified for presentation, with only
portions relevant to our refactoring shown, and illustrates
specific issues that can arise with the refactoring. The original
system (white space added for alignment) is pictured in
Fig. 1(a), while Fig. 1(b) depicts the same system with several
methods migrated to interfaces as default methods. Removed
code is struck through, added code is underlined, and replaced
code is both underlined and emphasized. Both systems are
type-correct and semantically equivalent.

Several interfaces, including Collection and List, with
the latter extending the former, meaning that any concrete class
extending List must provide or inherit implementations of
methods declared in both interfaces, are shown in Fig. 1(a).
Note that, unlike classes, Java interfaces can extend multiple
interfaces. Methods exist for determining a Collection’s
size(), adding an element, whether it isEmpty(), its
capacity(), and whether it is atCapacity(). Note that the
abstract keyword is optional for interface methods.

Several methods also exist for Lists, including setting a
List’s size, removing its last element, adding an element
(line 12), whose declaration overrides that of the super inter-
face Collection (commonly done for documentation [10]),
replacing an element at a specified position, printing it to a
specified stream, and copying it. Several methods are denoted
as so-called optional operations as, e.g., not all list types may
support modification. In such cases, implementers may throw
an exception when these methods are invoked.
AbsList, an abstract class providing a skeletal imple-

mentation of a sequential, variable length List, is declared
on line 18. Its purpose is to assist (concrete) classes in
implementing the interface by declaring appropriate instance
fields (line 20) and basic method implementations for the
more primitive operations. Since it is abstract, it is not re-
quired to implement all interface methods. For the optional
removeList(), the provided implementation (line 28) simply
throws an UnsupportedOperationException. This way,
concrete implementers extending AbsList that support ele-
ment removal can override it with a working implementation,
while others need not override it. The provided implementation

of print() sends the standard string representation of the
List to the stream. AbsLists are also Copiable (line 17),
the provided implementation of which returns null instead of
throwing an exception in the case that copying is unsupported.

A Queue interface snippet (line 36) contains two methods
(one default) for offering and adding elements, respectively,
with the former returning true if the operation was successful
and false otherwise (e.g., if the queue is full) and the latter,
written in terms of the former, throwing an exception.
AbsQueue (line 40) provides a skeletal implementation

of Queue1 by extending AbsList, similar to an adapter
pattern [11]. Unlike AbsList, it supplies functioning imple-
mentations for removeLast() (useful for a pop operation,
not shown) and add(), while also customizing the print()

method. Another extension of AbsList, AbsUnmodList,
which does not support the add operation, is declared on
line 51. AbsStack (line 55) specializes AbsContainer,
and both it and AbsSet (line 58) implement Collection,
providing isEmpty() implementations. Types implement-
ing the Comparator interface (line 61) can order objects;
DefaultComparator (line 63), of which CComparator

(line 66) extends, supplies a basic ordering using hashes.
Lastly, a main method (line 68) declares several concrete
subclasses of various skeletal implementations of classes via
anonymous inner classes (line 70).

Fig. 1(a) illustrates the skeletal implementation pattern,
several drawbacks for which include:
Inheritance. Due to single-class inheritance restrictions, there
is no clean way for AbsQueue to simultaneously benefit from
AbsList and subclass another class. Moreover, AbsQueue
could not easily take advantage of skeletal implementations
split over multiple abstract classes [12].2

Modularity. There is no syntactic path between List and
AbsList, i.e., no syntax exists in List that refers to
AbsList. In general, a whole program analysis may be
required to find suitable skeletal implementers for interfaces
as they may be split across different files and packages [5].

Bloated libraries. AbsList implements many of List’s
methods. This extra class can further complicate large li-
braries and make maintenance difficult. Additionally, method
declarations are needed in both interfaces and classes to
represent a single method and its default implementation.

Java 8 Default Methods. Default methods enable skele-
tal implementations in interfaces, thereby foregoing separate
classes. Moreover, interface implementers need not search
for separate skeletal implementations classes. Lastly, imple-
menters can extend other classes, as well as inherit behaviors
(but not state) from multiple interfaces, which can reduce the
need for code duplication and forwarding methods [3].

Fig. 1(b) shows a refactored version of the running example,
in which several skeletal implementations in classes have
been migrated to interfaces as default methods. In the ab-

1offer() uses a double to demonstrate issues related to strictfp.
2Implementers already extending a class can use the pattern via delegation

to an internal class [4] at the expense of auxiliary forwarding code.

1 interface Collection<E> {
2 int size();
3 void add(E elem); // add to this collection (optional).
4 boolean isEmpty();
5 int capacity();
6 abstract boolean atCapacity();}
7

8 interface List<E> extends Collection<E> {
9 void setSize(int i) throws Exception;

10 void removeLast(); // optional operation.
11

12 void add(E elem); // append to this list (optional).
13

14 void set(int i, @NamedArg(value="elementToSet") E e);
15 void print(PrintStream stream);
16 List<E> copy();}
17 interface Copiable<E> {E copy();}
18 abstract class AbsList<E> implements List<E>,
19 Copiable<List<E>> {
20 Object[] elems; int size; // instance fields.
21 @Override public int size() {return this.size;}
22 @Override public void setSize(int i) {this.size = i;}
23 @Override public boolean isEmpty(){return this.size()==0;}
24 @Override public int capacity(){return this.elems.length;}
25 @Override public boolean atCapacity()
26 {return this.size() == this.capacity();}
27 @Override public void removeLast()
28 {throw new UnsupportedOperationException();}
29 @Override public void set(int i, @NamedArg(value="el")E e)
30 {this.elems[i] = e;}
31 @Override public void print(PrintStream out)
32 {out.println(this);}
33 @Override public AbsList<E> copy() {
34 try {return (AbsList<E>) this.clone();}
35 catch (Exception e) {return null;}}}
36 @FunctionalInterface strictfp interface Queue<E> {
37 boolean offer(E elem);
38 default void add(E elem)
39 {if (!offer(elem)) throw new RuntimeException("full");}}
40 abstract class AbsQueue<E> extends AbsList<E> implements
41 Queue<E> {
42 @Override public void removeLast()
43 {if (!isEmpty()) this.setSize(this.size()-1);}
44 @Override public void add(E elem) { // resize if necessary.
45 this.set(this.size(),elem);this.setSize(this.size()+1);}
46 @Override public void print(PrintStream out)
47 {super.print(out); out.println("Printing queue ...");}
48 @Override @ManagedOperation public boolean offer(E elem) {
49 if (size() + 1.0 < capacity()) {add(elem); return true;}
50 else return false;}}
51 abstract class AbsUnmodList<E> extends AbsList<E> {
52 @Override public void add(E elem)
53 {throw new UnsupportedOperationException();}}
54 abstract class AbsContainer {/* ... */}
55 abstract class AbsStack<E> extends AbsContainer implements
56 Collection<E> {
57 @Override public boolean isEmpty(){return this.size()==0;}}
58 abstract class AbsSet<E> implements Collection<E> {
59 @Override public boolean isEmpty()
60 {int size = this.size(); return size == 0;}}
61 interface Comparator<T> {int compare(T o1, T o2);}
62

63 abstract class DefaultComparator<T> implements Comparator<T>{
64 @Override public int compare(T o1, T o2) {
65 return Objects.hashCode(o1)-Objects.hashCode(o2);}}
66 class CComparator<T> extends DefaultComparator<T>{/*...*/}
67 class Main {
68 public static void main(String[] args) {
69 AbsQueue<Integer> queue1 = new AbsQueue<Integer>() {};
70 queue1.removeLast();
71 AbsList<Integer> queue2 = queue1.copy();
72 Queue<String> queue3 = (s) -> true;
73 assert(new AbsUnmodList<String>() {}.isEmpty());
74 AbsStack stack = //...
75 Collection col = stack;
76 AbsContainer container = stack;}}

(a) Using abstract skeletal implementation classes to ease interface implementation.

1 interface Collection<E> {
2 int size();
3 void add(E elem); // add to this collection (optional).
4 default boolean isEmpty() {return this.size()==0;}
5 int capacity();
6 abstract default boolean atCapacity()
7 {return this.size() == this.capacity();}}
8 interface List<E> extends Collection<E> {
9 void setSize(int i) throws Exception;

10 default void removeLast() // optional operation.
11 {throw new UnsupportedOperationException();}
12 default void add(E elem) // append to this list (optional).
13 {throw new UnsupportedOperationException();}
14 void set(int i, @NamedArg(value="elementToSet") E e);
15 default void print(PrintStream out) {out.println(this);}
16 List<E> copy();}
17 interface Copiable<E> {E copy();}
18 abstract class AbsList<E> implements List<E>,
19 Copiable<List<E>> {
20 Object[] elems; int size; // instance fields.
21 @Override public int size() {return this.size;}
22 @Override public void setSize(int i) {this.size = i;}
23 @Override public boolean isEmpty(){return this.size()==0;}
24 @Override public int capacity(){return this.elems.length;}
25 @Override public boolean atCapacity()
26 {return this.size() == this.capacity();}
27 @Override public void removeLast()
28 {throw new UnsupportedOperationException();}
29 @Override public void set(int i, @NamedArg(value="el")E e)
30 {this.elems[i] = e;}
31 @Override public void print(PrintStream out)
32 {out.println(this);}
33 @Override public AbsList<E> copy() {
34 try {return (AbsList<E>) this.clone();}
35 catch (Exception e) {return null;}}}
36 @FunctionalInterface strictfp interface Queue<E> {
37 boolean offer(E elem);
38 default void add(E elem)
39 {if (!offer(elem)) throw new RuntimeException("full");}}
40 abstract class AbsQueue<E> extends AbsList<E> implements
41 Queue<E> {
42 @Override public void removeLast()
43 {if (!isEmpty()) this.setSize(this.size()-1);}
44 @Override public void add(E elem) { // resize if necessary.
45 this.set(this.size(),elem);this.setSize(this.size()+1);}
46 @Override public void print(PrintStream out)
47 {super.print(out); out.println("Printing queue ...");}
48 @Override @ManagedOperation public boolean offer(E elem) {
49 if (size() + 1.0 < capacity()) {add(elem); return true;}
50 else return false;}}
51 abstract class AbsUnmodList<E> extends AbsList<E> {
52 @Override public void add(E elem)
53 {throw new UnsupportedOperationException();}}
54 abstract class AbsContainer {/* ... */}
55 abstract class AbsStack<E> extends AbsContainer implements
56 Collection<E> {
57 @Override public boolean isEmpty(){return this.size()==0;}}
58 abstract class AbsSet<E> implements Collection<E> {
59 @Override public boolean isEmpty()
60 {int size = this.size(); return size == 0;}}
61 interface Comparator<T> {default int compare(T o1, T o2)
62 {return Objects.hashCode(o1)-Objects.hashCode(o2);}}
63 abstract class DefaultComparator<T> implements Comparator<T>{
64 @Override public int compare(T o1, T o2) {
65 return Objects.hashCode(o1)-Objects.hashCode(o2);}}
66 class CComparator<T> implements DefaultComparator<T>{/*...*/}
67 class Main {
68 public static void main(String[] args) {
69 AbsQueue<Integer> queue1 = new AbsQueue<Integer>() {};
70 queue1.removeLast();
71 AbsList<Integer> queue2 = queue1.copy();
72 Queue<String> queue3 = (s) -> true;
73 assert(new AbsUnmodList<String>() {}.isEmpty());
74 AbsStack stack = //...
75 Collection col = stack;
76 AbsContainer container = stack;}}

(b) Improvements after our refactoring is applied.

Fig. 1. A running example of a collection type hierarchy (inspired by [7,9]).

Fig. 2. Collection type hierarchy UML class diagram.

stract classes, the migrated methods were completely removed,
including the method header and @Override annotations.3

For each migrated method, the default keyword was in-
serted before the method return type and the delimiter was
replaced with the body from the abstract class. In the case of
Collection.atCapacity(), the abstract keyword on the
method was removed (line 6) as the method is now concrete.
For List.print(), the parameter name was altered to match
that of the migrated method implementation.4

Now, developers considering implementing the interfaces
can clearly recognize List.removeLast() as optional and
what should happen when it is not implemented. Classes can
inherit the default method Collection.isEmpty() without
the need for finding and inheriting from a separate class or
duplicating existing or writing new forwarding code.
AbsUnmodList and DefaultComparator were com-

pletely removed in Fig. 1(b). CComprator now implements
Comparator rather than extending DefaultComparator

(line 66) and inherits the default implementation of
compare() from the interface, freeing it to extend other
classes. Similar transformations are also required for classes
extending AbsUnmodList but are slightly different depending
on context. For example, the anonymous inner class (AIC)
declared on line 73 now uses the interface rather than the class
in its constructor call, making developer intent more explicit.

III. PROBLEM ANALYSIS

To highlight refactoring challenges, we examine Fig. 1(a)
more carefully, revealing the following:
• In AbsList, methods isEmpty(), atCapacity(),
removeLast(), print(), in AbsUnmodList, method
add(), in AbsStack, method isEmpty(), and in
DefaultComparator, method compare() can be
migrated without affecting type-correctness and program
semantics as classes now inherit them as default methods.
The transformation also occurs unambiguously; each
method has a well-defined, unique “destination” interface.
Several methods are migrated to “indirect” interfaces, i.e.,
those not explicitly implemented by their declaring class
but rather a super class up the type hierarchy.

• The target method Collection.isEmpty() has
multiple source methods: AbsList.isEmpty(),
AbsStack.isEmpty(), AbsSet.isEmpty(). Only the
first two were migrated due to common implementations.5

3The @Override annotation is not carried over to the default method
since the method body is no longer in an overriding relationship.

4Alternatively, each parameter reference could have been modified to match
the interface parameter, however, changing only one location is less invasive.

5AbsSet.isEmpty() contains an unjustifiably different implementation
to demonstrate issues that arise in complicated type hierarchies.

• Methods size(), setSize(), capacity(), and set() in
AbsList cannot be migrated because they access instance
fields of the receiver, which cannot be migrated. Also,
offer() in AbsQueue cannot be migrated because size()
and capacity() are not declared in Queue. Nevertheless,
exploring composite refactorings that may compensate in
certain cases is an area for future work.

• Methods add() in AbsUnmodList and copy() in
AbsList have multiple interface abstract target methods
for which they provide implementations. Specifically, since
AbsUnmodList extends AbsList, AbsList implements
List, and List extends Collection, AbsUnmodList

provides an add() implementation for methods in both
interfaces. The migration must be to List, otherwise, mi-
grating to Collection would result in a compilation error
at line 73 because the (new) default implementation would
be squelched by the corresponding abstract method in List

further down the hierarchy. In the case of copy(), since
AbsList implements multiple interfaces, the ambiguity
occurs across the type hierarchy as both the List and
Copiable interfaces declare a copy() method.

• Method setSize() in AbsList also cannot be migrated to
List as AbsList.setSize() does not declare that an ex-
ception is thrown, while List.setSize() does (note that
this is type-correct). Migrating it would result in a compile-
time error at the call at line 43 because removeLast()

does not deal with the declared thrown exception. Also,
in the same class, copy() cannot be migrated to List as
doing so would result in a compile-time error at line 71
because queue1.copy() would return List, which is not
(a subtype of) AbsList. The same method could also
not be migrated to Copiable because the returned value
of AbsList<E> (line 34) is not type-compatible with the
generic return type E from Copiable.

• copy() in AbsList also cannot be migrated because it calls
clone(), which is a protected method of Object. While
interfaces do not extend Object, they implicitly declare
abstract methods for (only) each public Object method,
which does not include clone() [13, Ch. 9.2]. Moreover,
print() in AbsQueue cannot be migrated as it contains
an unqualified reference to super, which is disallowed in
interfaces to prevent the diamond problem [14,15].

• Note that Queue is functional (via the annotation at line 36),
meaning that lambda expressions can be used to represent
types implementing the interface. An interface may also
be effectively functional, i.e., an annotation is not required
to instantiate an interface using a lambda expression. It is
required that functional interfaces have exactly one abstract
method so that it is not ambiguous as to which method
is invoked when the lambda expression is evaluated [13,
Ch. 9.8]. As such, migrating offer() from AbsQueue to
Queue would result in a type-incorrect program because
Queue would no longer have any abstract methods, thus
invalidating the lambda expression on line 72.

• Method add() in AbsQueue would be otherwise fine to
migrate to List, however, doing so would produce a type-

incorrect program as AbsQueue would “inherit” multiple
interface methods, i.e., add() from List and Queue. Such
a situation is disallowed by Java’s typing rules.6 Note that
this situation would also arise even if Queue.add() were
default. Furthermore, the same problem would emerge in
AbsQueue had add() been defined in one of its subclasses.

• Queue is strictfp (line 36), meaning all calculations
within its methods use strict floating-point math. While
not related to type-correctness, migrating offer() from
AbsQueue (line 48) to Queue could possibly alter semantics
as it is not strictfp. The modifier can also be used at the
method level, where a similar mismatch can occur. Addition-
ally, there is an difference in annotation types between the
two methods, possibly affecting processing frameworks like
dependency injection. set() in AbsList (line 29) also has
an annotation difference with the method in List (line 14),
except here the difference is in the annotation value.

• Migrating method removeLast() in AbsQueue (line 42)
to List does not result in any type-incorrect code, however,
semantics would be altered as the run time target of the call
at line 70 would change to the method in AbsList. This
is because AbsQueue would inherit two different different
versions of removeLast(), one from class AbsList and
the other from interface List. In this situation, classes take
precedence over interfaces. Moreover, we would have this
problem had the conflicting method come from a directly
implemented interface rather than from the class hierarchy.

• As a result of the refactoring, AbsUnmodList (line 51) is
now empty, i.e., no methods, fields, or inner types remain.
As such, it can be removed and the reference at line 73 can
be replaced with its super class (see Fig. 1(b)).

• Although AbsStack (line 55) is now also empty, it cannot
be removed because replacing the reference at line 74 with
its super class would produce an error at line 75 as it
does not implement Collection. Replacing it with the
implemented interface would also cause an error at line 76
as AbsContainer is not (a super type of) Collection.

• DefaultComparator (line 63) is now empty as well and
can be removed with the reference at line 66 being replaced
with the implemented interface and changing extends to
implements. However, we must ensure that subclasses like
CComparator do not contain references to super that are
not type-compatible with their new super class Object.

IV. MIGRATION APPROACH

Assumptions. Our approach operates on a closed-world
assumption that assumes full accessibility to all source code
that could possibly affect or be affected by the refactoring.
We also assume that method calls and references to fields and
types can be statically resolved and that the original program
successfully compiles under a Java 8 compiler. §V discusses
how we relax several of these in our implementation.

6In this situation, the interface method to inherit must be explicitly selected
by overriding the method, e.g., in AbsQueue, by calling one of them, e.g.,
List.super.add(). However, doing so would be in conflict with our
goals as we would be delegating the class method to the default one.

Top-level Processing. Our input is concrete instance meth-
ods declared in abstract classes that implement at least one in-
terface. §V discusses how using only abstract classes increases
the likelihood that these methods would make suitable default
methods; §VII considers pattern variations. Each method must
have a body and not be final nor synchronized, as such
methods are disallowed in interfaces [13].

Type Constraints. To determine whether migrating a method
to an interface as a default method results in a type-correct
program, we build upon an existing framework of type con-
straints [6,7]. For each program element, type constraints
denote the subtyping relationships that must hold between
corresponding expressions for that portion of the system to
be considered well-typed. Thus, a complete program is type-
correct if all constraints implied by all program elements hold.

Notation and Terminology: In line with [7], we will use
the term declaration element to represent declarations of local
variables, method parameters, fields, and method return types.
We will use v to denote variables, M for methods, F for fields,
C for classes, I for interfaces, Ex for exceptions, and T types
(either a class, interface, or enum). We should note that the
symbol M represents a method along with its signature, return
type, and exception information, as well as a reference to its
declaring type. Likewise, F and C denote a field and a type,
respectively, along with its name, type in which it is declared,
and its declaring type in the case of fields. Furthermore, we
will use E to represent an expression or declaration element
in a specific point in the program’s abstract syntax tree. Type
information regarding expressions and declaration elements
are assumed to be available from the compiler.

Next, we define notions of virtual methods and root defini-
tions, taken directly from [7] for expressing the type constraint
for method overriding. A method M is virtual if M is not a
constructor, M is not private and M is not static. Def. 1 defines
the concept of overriding.7

Definition 1 (overriding). A virtual method M in type C
overrides a virtual method M ′ in type B if M and M ′ have
identical signatures and C is equal to B or C is a subtype of
B.8 In this case, we also say that M ′ is overridden by M .

Def. 2 pertains to the concept of root definitions.
For a method M , RootDefs(M) is the set containing
the most general methods in the type hierarchy
that are overridden by M . Using our motivating
example in Fig. 1, RootDefs(AbsQueue.add()) =
{Queue.add(), Collection.add()}.

Definition 2 (root definitions). Let M be a method. Define:

RootDefs(M)= {M ′ |M overrides M ′, and there exists no
M ′′ (M ′′ 6=M ′) such that M ′ overrides M ′′}

Def. 3 presents a new notion of exception handling spe-
cific to our paper, particularly helpful in dealing with ex-

7This definition expresses that a virtual method overrides itself.
8We ignore access rights as interface methods are always public, whose

visibility cannot be reduced. Throws clauses are a topic for future work.

[E] the type of expression or declaration element E.
[M] the declared return type of method M .
Decl(M) the type that contains method M .
Param(M, i) the i-th formal parameter of method M .
T ′ ≤ T T ′ is equal to T , or T ′ is a subtype of T .
T ′ < T T ′ is a proper subtype of T , i.e., T ′ ≤ T ∧ T � T ′.
super(C) the super class of class C.
Class(T) iff type T is a class.
Interface(T) iff type T is an interface.
Default(M) iff method M is a default method.
Public(M) iff method M is a public method.
Abstract(M) iff method M has no body.

Fig. 3. Type constraint notation (inspired by [7]).

ception throws clause differences between source and tar-
get methods. For a given method call expression E.m(. . .),
Handle(E.m(. . .)) is the set of checked exceptions either
thrown (declared by the enclosing method) or caught (by a
surrounding try-catch block) at the expression. It is computed
by intersecting the checked exceptions declared as being
thrown by the compile-time target of E.m(. . .) with those
appearing in corresponding catch blocks surrounding the call.

Definition 3 (handled exceptions). Let E.m(. . .) be a method
call expression. Define:

Handle(E.m(. . .)) = {Exh | Exh is a checked exception
either thrown or caught at E.m(. . .)}

Another concept specific to our paper is that of a functional
interface, captured by Def. 4. It is useful in preventing existing
lambda expressions from being invalidated.

Definition 4 (functional). An interface I is functional iff I is
annotated with @FunctionalInterface or if there exists a
lambda expression implementing I , in which case I has exactly
one abstract method (effectively functional).

Fig. 3 portrays the notation, including several helper pred-
icates, we will use to describe type constraints. Let α be a
constraint variable, which can be a type constant T , [E],
i.e., the type of an expression or declaration element E,
Decl(M), i.e., the type declaring method M , or Decl(F), the
type declaring field F . Then, a type constraint can be one
of: (i) αi , αj , i.e., αi is defined to be the same as αj ,
(ii) αi ≤ αj , i.e., αi must be equal to or a subtype of αj ,
(iii) αi = αj , i.e., αi ≤ αj ∧ αj ≤ αi, and (iv) αi < αj , i.e.,
αi ≤ αj ∧ αj � αi. Note that if T ′ is a class and T is an
interface, T ′ < T means that T ′ implements T . If both T ′ and
T are interfaces, then T ′ < T means that T ′ extends T .

Inferring Type Constraints: Fig. 4 shows several rules for
generating type constraints for many Java constructs. Con-
straints (5), (12)–(14), (16)–(18), (25), and (26) are new. The
remaining are from [7]. Of these, due to space limitations, we
only show those that are relevant here. Constraints (21)–(24)
define the types of declaration elements, while constraints (25)
and (26) are for default method migration.

As an example, for a virtual method call E.m(E1, . . . , En)
that statically resolves to a method M , by rule (2), the type
of the method call expression is that of M ’s return type. It

is also required by rule (3) that each method argument Ei be
a subtype or equal to each method parameter Param(M, i).
Furthermore, the type of the receiver expression E must either
declare or inherit the called method, expressed by rule (4)
using Def. 2. For each of the thrown exceptions M declares,
there must exist an exception handled at the call such that
the thrown exception is a subtype or equal to the handled
exception, expressed by our new rule (5) and Def. 3.

For convenience, let us combine rules 9 and 10 into a
single “nearly” overriding relation NOverrides(M ′,M) ≡
[Param(M ′, i)] = [Param(M, i)] ∧ [M ′] ≤ [M], which is a
looser version of the constraints for method overriding, not
requiring any relationship between the declaring types of M
and M ′. Rule (13) expresses that interfaces, unlike classes and
enums, do not inherit from Object (cf. rule (12)), although
they are subtypes of Object [16]. They do, however, have
public methods (Public(M)) from Object (Decl(M) ,
java.lang.Object) available to them (Decl(M ′) , I ∧
NOverrides(M ′,M)), i.e., they can be called whether or not
they are explicitly declared by the interface [13, Ch. 9.2].

Rule (14) ensures that functional interfaces (see Def. 4)
declare exactly one abstract method. For types other than
interfaces, the type of super in method M is defined to be that
of the super class of M (rule (16)). Otherwise, an unqualified
super reference is undefined. For interface qualified super
references where the declaring type of M implements the
referenced interface, the type is defined to be that interface
(rule (17)). Rule (18) defines the type of anonymous inner
class (AIC) creation expressions.

Rule (25) is enforced for each method declared in an
interface. For each method M declared in interface I , the rule
applies if there is an unrelated interface J , another method
M ′ declared either in J or inherited by J such that both M ′

and M have similar method signatures (NOverrides(M ′,M))
and at least one of them is a default method. In these cases,
for all classes C such that C implements both I and J , there
must exist a public class method M ′′ disjoint from M ′ and
M such that C either declares or inherits M ′′, and M ′′ either
implements or overrides at least one of the corresponding
methods in I and J . If rule (25) is not satisfied, the underlying
program will not be type-correct as C and its subtypes will
“inherit” at least two different versions of the same interface
method. Note that this problem arises even if not all the
inherited methods are default. An example application of this
and the following rule is provided in the next subsection.

Rule (26) ensures that any concrete type T implementing
an interface I that declares a method M defines or inherits
an implementation for M . The clause T ≤ Decl(M ′) ∧
NOverrides(M ′,M) is equivalent to the constraints for
method overriding. It states that there must exist such a
method M ′ with a body (i.e., ¬Abstract(M ′)) and, more-
over, that there are no methods M ′′ between the two (i.e.,
T < Decl(M ′′) < Decl(M ′)) in the type hierarchy that is
abstract, thus squelching the inherited implementation.

Checking Migration Preconditions. We will apply the type
constraints to determine if migrating a class method to its

program construct implied type constraint(s)
assignment Ei = Ej [Ej] ≤ [Ei] (1)

method call
E.m(E1, . . . , En)

to a virtual method M
(throwing exceptions
Ex t1, . . . ,Ex tj)

[E.m(E1, . . . , En)] , [M] (2)
[Ei] ≤ [Param(M, i)] (3)

[E] ≤ Decl(M1) ∨ · · · ∨ [E] ≤ Decl(Mk) (4)
where RootDefs(M) = {M1, . . . ,Mk}

∀Ex t ∈ {Ex t1, . . . ,Ex tj} (5)
∃Exh ∈ Handle(E.m(E1, . . . , En))[[Ex t] ≤ [Exh]]

access E.f to field F
[E.f] , [F] (6)

[E] ≤ Decl(F) (7)
return E in method M [E] ≤ [M] (8)

M ′ overrides M,
M ′ 6= M

[Param(M ′, i)] = [Param(M, i)] (9)
[M ′] ≤ [M] (10)

Decl(M ′) < Decl(M) (11)
for every class (and enum) C C ≤ java.lang.Object (12)

for every interface I
I � java.lang.Object ∧ ∀M [Decl(M) , java.lang.Object∧

Public(M) =⇒ ∃M ′[Decl(M ′) , I ∧NOverrides(M ′,M)]] (13)

for every functional interface I
∃M [Decl(M) , I ∧Abstract(M)

∧ ∀M ′[Decl(M ′) , I ∧M ′ 6= M =⇒ ¬Abstract(M ′)]] (14)
implicit declaration of this in method M [this] , Decl(M) (15)

implicit declaration of super in method M ¬Interface(Decl(M)) =⇒ [super] , super(Decl(M)) (16)
implicit declaration of I.super in method M Decl(M) < I =⇒ [I.super] , I (17)

expression new T (E1, . . . , En) ... [new T (E1, . . . , En) ...] ≤ [T] (18)
declaration of method M (declared in type T) Decl(M) , T (19)

declaration of field F (declared in type T) Decl(F) , T (20)

explicit declaration of variable or method parameter T v [v] , T (21)
declaration of method M with return type T [M] , T (22)

declaration of field F with type T [F] , T (23)
cast (T)E [(T)E] , T (24)

declaration of method M declared in interface I

∃J,M ′[Interface(J) ∧ J � I ∧ I ≮ J ∧ J ≤ Decl(M ′)
∧NOverrides(M ′,M) ∧ (Default(M ′) ∨Default(M))]

=⇒ ∀C | Class(C) ∧ C < I ∧ C < J [∃M ′′[M ′′ 6= M ′ ∧M ′′ 6= M
∧ Class(Decl(M ′′)) ∧ C ≤ Decl(M ′′) ∧ Public(M ′′)

∧NOverrides(M ′′,M ′)]] (25)

declaration of concrete type T implementing interface I
declaring method M

∃M ′[T ≤ Decl(M ′) ∧NOverrides(M,M ′)
∧ ¬Abstract(M ′) ∧ ∀M ′′[T < Decl(M ′′) < Decl(M ′)∧

NOverrides(M ′′,M ′) =⇒ ¬Abstract(M ′′)]] (26)

Fig. 4. Type constraints for a subset of core Java features.

implementing method in an interface as a default method
affects type-correctness using Fig. 1(a):

• Migrating AbsList.size() to the method it implements,
i.e., Collection.size() as a default method implies
that [this] = Collection, violating constraint (7) that
[this] ≤ [AbsList]. Migrating AbsQueue.offer() to
Queue implies that Queue ≤ Collection, violating con-
straint (4) that [this] ≤ Decl(Collection.capacity()).

• Migrating AbsUnmodList.add() to
Collection (Col) implies that
AbsUnmodList<..>(){} ≤ Decl(Col.add()) ∧
NOverrides(AbsUnmodList<..>(){}, Col.add()) ∧
¬Abstract(Col.add()) violating con-
straint (26) because AbsUnmodList<..>(){} <
Decl(List.add()) < Decl(Col.add()) ∧
NOverrides(List.add(), Col.add()) ∧
Abstract(List.add()). Migrating to List, however,
does not violate the type constraint. The ambiguity
arising from identifying the destination interface for
AbsList.copy() is not as easily resolvable. We discuss

handling ambiguity across the type hierarchy further below.
• Migrating AbsList.setSize() to List implies that the

method now throws an Exception, violating constraint (5)
as Handle(this.setSize(this.size()-1)) = ∅. Mi-
grating AbsList.copy() to Copiable<E> implies that
[(AbsList<E>)this.clone()] = AbsList<E>, which
violates constraint (8) that [AbsList<E>] ≤ [E].

• Migrating AbsList.copy() to List implies that
[this] = [List], violating constraint (4) that
[this] ≤ Decl(Object.clone()) as List � Object

(cf. rule (13)). By rule (13), clone() is not
available to interfaces as it is protected. By migrating
AbsQueue.print() to List, the type of the unqualified
super reference would be undefined by rule (16).

• Migrating AbsQueue.offer() to Queue implies that
Queue has no abstract methods, violating constraint (14).

• Migrating AbsQueue.add() to either List or
Collection implies that AbsQueue now inherits multiple
add() interface methods, one of which contains a body,
and does not override the method, violating constraint (25).

Note that the constraint would also have been violated had
add() been defined in an AbsQueue subclass.

• While not related to type-correctness, migrating
AbsQueue.offer() to Queue may alter the semantics
of floating-point calculations. To solve this, we implicitly
propagate all type-level strictfp modifiers to all
constituent methods and require that the source method
modifier match that of the target. A similar technique is
employed for annotations but if an annotation value is
present, as is the case with migrating AbsList.set() to
List, the values, which are always statically available,
must also match. The @Overrides annotation is excluded
as it is removed. Type constraints are not used for these
cases because they are not related to type-correctness
but rather semantics-preservation. Since type constraints
express relationships over only a single program versions,
they are not typically used to preserve semantics [7].

• Migrating AbsQueue.removeLast() to List also does
not raise any type-correctness issues but does alter seman-
tics. To prevent this, we disallow from migration methods
that override methods (using Def. 1) in both classes and
interfaces. In this way, the migrated method, that would now
reside in an interface rather than a class, will never lose in
a tie to a class method with a similar signature.

• Replacing AbsStack with its super class AbsContainer

on line 74 implies [stack] , AbsContainer

by rule (21), which violates constraint (1) that
[AbsContainer] ≤ [Collection], generated from
line 75. Replacing AbsStack with its implemented
interface Collection instead also violates the constraint
that Collection ≤ AbsContainer, generated from
line 76. Cases where the class to remove implements
multiple interfaces is discussed further below.

• By removing the explicit super class of CComparator,
the type of super in any of its methods changes from
DefaultComparator to Object per rule (16). Any uses
of super in CComparator to reference elements of
DefaultComparator would violate type constraints.
Ambiguous Destination Interfaces. When the destination

interface is ambiguous, if the ambiguity lies up the type
hierarchy, we select the “closest” method to the source method
up the hierarchy, which is akin to selecting a method not
violating constraint (26). When the ambiguity is across the
hierarchy, more input is needed. Currently, such methods
fail preconditions to facilitate full automation, however, in
our experiments, this accounted for only 0.87% of failures.
Nevertheless, §VII explores dealing with such ambiguity.

Ambiguous Substitutable Interfaces. When classes become
empty, we determine the type, which can be specific to each
reference, to use in replacing references. Where the class has
no (explicit) super class, one of the implemented interfaces
is used. If multiple valid interfaces, i.e., those that do not
violate any type constraints when substituted, are available at a
particular reference expression, choosing any of them suffices.

Target Methods with Multiple Source Methods. As seen
with Collection.isEmpty(), there may not be a one-

subject KL KM cnds dflts fps δ -δ tm (s)

ArtOfIllusion 118 6.94 16 1 34 1 0 3.65
Azureus 599 3.98 747 116 1366 31 2 61.83
Colt 36 3.77 69 4 140 3 0 6.76
elasticsearch 585 47.87 339 69 644 21 4 83.30
Java8 291 30.99 299 93 775 25 10 64.66
JavaPush 6 0.77 1 0 4 0 0 1.02
JGraph 13 1.47 16 2 21 1 0 3.12
JHotDraw 32 3.60 181 46 282 8 0 7.75
JUnit 26 3.58 9 0 25 0 0 0.79
MWDumper 5 0.40 11 0 24 0 0 0.29
osgi 18 1.81 13 3 11 2 0 0.76
rdp4j 2 0.26 10 8 2 1 0 1.10
spring 506 53.51 776 150 1459 50 13 91.68
Tomcat 176 16.15 233 31 399 13 0 13.81
verbose 4 0.55 1 0 1 0 0 0.55
VietPad 11 0.58 15 0 26 0 0 0.36
Violet 27 2.06 104 40 102 5 1 3.54
Wezzle2D 35 2.18 87 13 181 5 0 4.26
ZKoss 185 15.95 394 76 684 0 0 33.95
Totals: 2677 232.2 3321 652 6180 166 30 383.17

TABLE I
EXPERIMENTAL RESULTS. JAVA8 IS THE JAVA. PACKAGE OF THE JDK 8.

to-one correspondence between source and target methods.
In these cases, choosing any of the source methods pass-
ing preconditions to migrate would be safe as the non-
migrated methods would override the new default method,
as such, we migrate the largest number of equivalent
source methods, as seen with AbstractList.isEmpty()

and AbsStack.isEmpty(). For this, we categorize viable
source method bodies into equivalence sets, which are deemed
equivalent by performing an AST differencing algorithm [17]
after fully qualifying any constituent elements. Methods in
the largest set are chosen for migration, while the others fail
preconditions. Although exploring other techniques is a topic
of future work, this case accounted for 0.31% of failures.

V. EVALUATION

Implementation. Our approach is implemented as an open
source plug-in to the Eclipse IDE, chosen for its existing
refactoring framework [18] and that it is completely open
source for all Java development. Eclipse ASTs with source
symbol bindings were used as an intermediate representation.
Our implementation is completely separate from the type
constraints generated by the Eclipse Java Developer Tools.

To increase real-world applicability, we relaxed the closed-
world assumption (§IV). For example, if an input method’s
destination interface is outside of the considered source code, it
is conservatively labeled as non-migratable. Several options for
reducing client impact exist, e.g., empty skeletal implementa-
tion classes can be either removed or deprecated. Furthermore,
if such classes extend a super class not implementing all of the
implemented interfaces, regardless of client code, the class is
not removed. We additionally require no mismatches involving
exception throws clauses and return types between source
and target methods. An option to not consider non-standard
(outside java.lang) annotation differences is available.

Experimental Evaluation. 19 open-source Java applications
and libraries of varying size and domain (Table I) were used to

Precondition Fails

P1 MethodContainsInconsistentParameterAnnotations 1
P2 MethodContainsCallToProtectedObjectMethod 1
P3 TypeVariableNotAvailable 10
P4 DestinationInterfaceIsFunctional 17
P5 TargetMethodHasMultipleSourceMethods 19
P6 MethodContainsIncompatibleParameterTypeParameters 42
P7 NoMethodsWithMultipleCandidateDestinations 53
P8 TypeNotAccessible 64
P9 SourceMethodImplementsMultipleMethods 72
P10 SourceMethodProvidesImplementationsForMultipleMethods 79
P11 MethodContainsTypeIncompatibleThisReference 79
P12 IncompatibleMethodReturnTypes 104
P13 ExceptionTypeMismatch 105
P14 MethodContainsSuperReference 147
P15 SourceMethodOverridesClassMethod 258
P16 AnnotationMismatch 305
P17 SourceMethodAccessesInstanceField 463
P18 MethodNotAccessible 1,679
P19 FieldNotAccessible 2,565

TABLE II
PRECONDITION FAILURES.

evaluate our approach’s effectiveness. Column KL is the num-
ber of non-blank, non-comment thousands of lines of code,
ranging from ∼2K for rdp4j to ∼600K for Azureus. The
analysis was executed 5 times on an Intel Xeon E5 machine
with 8 cores and 15GB RAM and a 8GB maximum heap size.
Running time is shown in column tm (s), averaging ∼0.144
secs/KLOC, which is practical even for large applications.

Default Method Migration: Column KM is the number
of all methods in thousands. These are separated into two
categories; the first is (filtered) methods that definitely cannot
be refactored or be participating in the targeted design pattern.
This includes methods not meeting the following criteria:
(i) ones whose source is available, writable, and not gener-
ated, (ii) non-native, concrete instance methods (excluding
constructors) declared in abstract classes implementing at least
one interface whose source is also available, writable, and
not generated, (iii) neither synchronized nor final, and
(iv) overriding at least one non-default interface method. The
remaining are candidates (column cnds). That these methods
are declared in interface-implementing abstract classes is a
strong indication that they are participating in the targeted
pattern, i.e., they are meant to be subclassed and override
an interface method. This increases the likelihood that these
methods are general enough to be suitable default methods.

Our approach was able to automatically migrate 19.63%,
accounting for 652 methods across 19 projects, of the methods
that could possibly be participating in the targeted skeletal
implementation pattern (column dflts for defaults) in spite
of its conservative nature. Since we migrate methods having
only a single target, it is unlikely that a more suitable default
implementation exists, with the only possible caveat being
methods that are eliminated in smaller equivalence sets, but
this accounted for only 0.31% of failure cases (explained next).

The tool was unable to refactor the remaining 80.37% of
candidate methods. Column fps portrays the total number
of failed preconditions, averaging ∼2.32 per unmigratable
method. Table II categorizes failures by kind, many of which

correspond to the situations illustrated in §III, others are more
fine-grained. For instance, P3 and P6 occurs when there is
either a method- or type-level mismatch in the number of
type parameters or when they are not assignment compatible
between source and target methods, respectively. P5 occurs
for methods residing in non-selected equivalence sets, while
P7 corresponds to the situation where there are ambiguous
destination interfaces. P9 and P10 coincide with violations of
type constraints (25) and (26), respectively, whereas P11 is a
violated type constraint involving this in the source method
body. P8, P18, and P19 arise when the source method body
accesses (e.g., private) elements not visible from or inher-
ited by the destination interface, and P15 preserves program
semantics by circumventing tie breakers to classes. Failures of
type P17 involve accessible fields violating constraint (7).

Skeletal Implementation Class Removal: Column δ depicts
the number of skeletal implementation classes that contained
methods that were migrated. Of those, column -δ shows the
number that can be safely removed, constituting 18.07%.
The remaining 81.93% were not removable largely because
the class was not completely empty after the refactoring,
accounting for 66.02%, 18.93% had a super class not im-
plementing a destination interface, and 15.05% had no super
class but subclasses had incompatible super references. The
total number of references to removable classes (not shown)
averaged ∼9 per removed class and was as high as 106.

Discussion: Precondition failures are not unequivocally due
to the analysis capabilities or conservative nature of our ap-
proach; portions are solely due to language constraints and/or
limitations, and reporting these may give significant insight to
language designers. P2, e.g., could be fixed in Java by having
interfaces extend Object. To alleviate errors arising from
P10, designers could choose to not allow the squelching of
default methods up the hierarchy by abstract methods down the
hierarchy. In other words, the ability of subclasses to “hide”
default methods could be removed; a similar consideration is
discussed in [3, §3.6]. Insight is also given into how well
this new language construct integrates into existing code, thus
answering some of the questions raised by [3, §10].

Conversely, several failures may be alleviated by either
further analysis or transformation. P8, P19, and P18, e.g., may
sometimes be mitigated by prompting developers to increase
element visibility. For P18, the inaccessible method could
be declared in the destination interface if each implementer
already provides an implementation. P17 may sometimes be
reduced by a composite refactoring that first encapsulates
the field and then copies the setter/getter declarations to the
destination interface. Note, however, this would not have fixed
the field access failures related to size() and setSize() in
Fig. 1(a) as they already encapsulate size.

While each of these are interesting areas of future work,
they may require manual input from the developer or result in
more invasive source code changes. In favor of a conservative,
automated solution, we chose not to implement them at this
time so that developers can take advantage of default methods
on a mass scale with minimal code changes. P10 could be fixed

by creating a delegate method in the source method’s declaring
type that calls the migrated default method. However, doing
so does not reduce bloat, one of the motivations of this work.

As discussed previously, 18.07% of classes containing mi-
grated methods could be completely removed. Thus, 81.93%
of such classes were only partially migrated to interfaces.
Despite the small percentage of completely migrated classes,
there are many benefits to partial migration, including forgoing
the need to extend a skeletal implementation class when the in-
terface default methods suffice and less maintenance between
the interface and skeletal class for the migrated methods (e.g.,
modifying duplicate method header annotations) [5].

Pull Request Study. To assess our approach’s usability,
we also submitted pull requests to popular open source Java
projects on GitHub. We ensured that projects compiled cor-
rectly and had identical unit test results and compiler warnings
before and after the refactoring. In some instances, minor
manual intervention was required, e.g., to merge javadoc. Due
to space limitations, study details can be found on our website
http://cuny.is/interefact. Of the issued 19 pull requests, 4 have
been successfully merged, 5 are open, and 10 were closed
without merging. Ranging in size and domain, the merged
requests are to projects and frameworks from organizations
such as Eclipse, AOL, and NHL (National Hockey League),
and include the popular Eclipse (formally Goldman Sachs)
Collections framework. In all, the merged projects total 163
watches, 1071 stars, and 180 forks. Several other projects,
although enthusiastic about the approach, rejected our pull
requests, citing reasons such as that they had not yet moved to
Java 8 or needed to support older Java clients at the time. We
expect demand for Java 8 features to increase, especially since
they are now (at least partially) supported by Android [19].

As the code’s organization is changing, our refactoring may
have engineering and design implications. While improving
design is a motivating factor, enhancing modularity and reduc-
ing library bloat are others (see §II). The acceptance of our
refactoring results, totaling the addition of 349 and the removal
of 647 LOC, to large and popular frameworks during this study
increases confidence that the resulting design is acceptable.

Verifiability: Our plug-in is available at http://git.io/v2nX0
and subject source is available on our aforementioned website.

VI. RELATED WORK

Goetz [10] also formalizes (using [20], an early version of)
default methods. Constraints (25) and (26) have similar pur-
poses as the type checking rules there, however, [10] does not
deal with exceptions, functional interface invalidation, method
body compatibility, and class removal. Type constraints are
also well-established in many refactoring approaches.

A constraint-based approach to refactoring is also utilized
in [21]. There, constraints are generated to assist refactorings
in avoiding access control violations. [22] also develops con-
straints for averting such violations but for use in a broader
transformation framework to simplify refactorings. These
problems are related yet orthogonal to ours, however, these

approaches could be used to augment our approach. [23] tack-
les the foresight problem typically found in constraint-based
refactorings where new constraints are needed as a result of
applying the refactoring. However, since our approach moves
(method) bodies rather than declarations, no new constraints
should be necessary as a result of the move.

Similar to the PULL UP METHOD refactoring [7], the “move
original method to superclass” law [24] uses rules expressing
when such a transformation is semantically equivalent. The
declaration constraints there, however, do not apply here since
no method declarations are being moved but rather bodies.
Our approach fundamentally builds upon the other constraints,
and we could have expanded this law to account for multiple
inheritance issues and tie breakers with classes.

Our preliminary work [5] solely explored the feasibility
of improving modularity via default methods. [25] inquires
about using default methods for trait-oriented programming
or mixins. [26] also analyzes differences between arguments
and parameters names. Many refactorings use type constraints
for type checking [7], type inference [27–29], and semantics
preservation [30]. [7,31,32] deal with reorganizing type hierar-
chies, [33] and [34] refactor Java programs to use lambda ex-
pressions and enumerated types, respectively. [35] demacrofies
C++11 programs. [36] refactors to use cloud-based services,
and [37] automatically migrates CSS to preprocessors.

VII. CONCLUSION & FUTURE WORK

We have presented an efficient, fully-automated, type
constraint-based, semantics-preserving approach, featuring an
exhaustive rule set, that migrates the skeletal implementation
pattern in legacy Java code to instead use default methods. It
is implemented as an Eclipse IDE plug-in and was evaluated
on 19 open source projects. The results show that our tool
scales and was able to refactor, despite its conservativeness
and language constraints, 19.63% of all methods possibly
participating in the pattern with minimal intervention. Our
study highlights pattern usage and gives insight to language de-
signers on applicability to existing software. Moreover, 4 pull
requests were merged into GitHub repositories, which include
large, widely used frameworks from reputable organizations.

In the future, we will explore pattern variations, e.g., al-
lowing input methods from concrete classes, which requires
analyzing instantiations and determining suitable default meth-
ods from concrete classes. Compensating for source methods
directly accessing fields or methods outside destination inter-
faces will also be investigated, as well as javadoc merging,
transforming build scripts for migrations across modules, other
heuristics for method equivalence set elimination, machine
learning to disambiguate destination interfaces, improving
efficiency [38], and alternate testing techniques [39–42].

ACKNOWLEDGMENT

Many thanks to Olivia Moore and Md Arefin for their
assistance with experiments. This material is based upon work
supported by PSC-CUNY under award #69165-00 47 and the
Tokyo Institute of Technology Research Abroad program.

http://cuny.is/interefact
http://git.io/v2nX0

REFERENCES

[1] Oracle Corporation, “Java Programming
Language Enhancements.” [Online]. Avail-
able: http://docs.oracle.com/javase/8/docs/technotes/
guides/language/enhancements.html

[2] ——, “Default methods,” 2016. [Online]. Avail-
able: http://docs.oracle.com/javase/tutorial/java/IandI/
defaultmethods.html

[3] B. Goetz, “Interface evolution via virtual extensions
methods,” Oracle Corporation, Tech. Rep., Jun.
2011. [Online]. Available: http://cr.openjdk.java.net/
~briangoetz/lambda/Defender%20Methods%20v4.pdf

[4] J. Bloch, Effective Java. Prentice Hall, 2008.
[5] R. Khatchadourian, O. Moore, and H. Masuhara, “To-

wards improving interface modularity in legacy java
software through automated refactoring,” in Compan-
ion Proceedings of the 15th International Conference
on Modularity, ser. MODULARITY Companion 2016.
New York, NY, USA: ACM, 2016, pp. 104–106.

[6] J. Palsberg and M. I. Schwartzbach, Object-oriented type
systems. John Wiley and Sons Ltd., 1994.

[7] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban,
and B. De Sutter, “Refactoring using type constraints,”
ACM Transactions on Programming Languages and Sys-
tems, vol. 33, no. 3, pp. 9:1–9:47, May 2011.

[8] M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999.

[9] Oracle Corporation, “JavaTM platform, standard edition
8 api,” 2016. [Online]. Available: http://docs.oracle.com/
javase/8/docs/api

[10] B. Goetz and R. Field, “Featherweight defenders:
A formal model for virtual extension methods in
java,” Oracle Corporation, Tech. Rep., 2012. [Online].
Available: http://cr.openjdk.java.net/~briangoetz/lambda/
featherweight-defenders.pdf

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
patterns: elements of reusable object-oriented software.
Boston, MA, USA: Addison-Wesley, 1995.

[12] C. S. Horstmann, Java SE 8 for the Really Impatient.
Addison-Wesley Professional, 2014.

[13] J. Gosling, B. Joy, G. L. S. Jr., G. Bracha, and A. Buck-
ley, The Java Language Specification, 8th ed. Addison-
Wesley Professional, 2014.

[14] G. B. Singh, “Single versus multiple inheritance in object
oriented programming,” SIGPLAN OOPS Mess., vol. 6,
no. 1, pp. 30–39, Jan. 1995.

[15] M. Sakkinen, “Disciplined inheritance,” in European
Conference on Object-Oriented Programming, 1989.

[16] A. Lundblad, “Java: Do interfaces inherit from object?”
2016. [Online]. Available: http://programming.guide/
java/do-interfaces-inherit-from-object.html

[17] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change
distilling: Tree differencing for fine-grained source code
change extraction,” IEEE Transactions on Software En-
gineering, vol. 33, no. 11, pp. 725–743, Nov. 2007.

[18] D. Bäumer, E. Gamma, and A. Kiezun, “Integrating
refactoring support into a Java development tool,” in
ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Appli-
cations, 2001.

[19] Google Inc., “Use java 8 language features
| android developers.” [Online]. Available: http:
//developer.android.com/guide/platform/j8-jack.html

[20] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight
java: A minimal core calculus for java and gj,” ACM
Transactions on Programming Languages and Systems,
vol. 23, no. 3, pp. 396–450, May 2001.

[21] F. Steimann and A. Thies, “From public to private to
absent: Refactoring java programs under constrained ac-
cessibility,” in European Conference on Object-Oriented
Programming, ser. ECOOP’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 419–443.

[22] M. Schafer, A. Thies, F. Steimann, and F. Tip, “A
comprehensive approach to naming and accessibility in
refactoring java programs,” IEEE Transactions on Soft-
ware Engineering, vol. 38, no. 6, pp. 1233–1257, Nov.
2012.

[23] F. Steimann and J. von Pilgrim, “Constraint-based
refactoring with foresight,” in European Conference on
Object-Oriented Programming, ser. ECOOP’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 535–559.

[24] P. Borba, A. Sampaio, A. Cavalcanti, and M. Cornélio,
“Algebraic reasoning for object-oriented programming,”
Science of Computer Programming, vol. 52, no. 1-3, pp.
53–100, Aug. 2004.

[25] V. Bono, E. Mensa, and M. Naddeo, “Trait-oriented
programming in java 8,” in Principles and Practices of
Programming on the Java Platform: Virtual Machines,
Languages, and Tools, ser. PPPJ ’14. New York, NY,
USA: ACM, 2014, pp. 181–186.

[26] H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, and Y. Luo,
“Nomen est omen: Exploring and exploiting similarities
between argument and parameter names,” in Interna-
tional Conference on Software Engineering, ser. ICSE
’16. New York, NY, USA: ACM, 2016, pp. 1063–1073.

[27] A. Kiezun, M. D. Ernst, F. Tip, and R. M. Fuhrer,
“Refactoring for parameterizing java classes,” in Inter-
national Conference on Software Engineering, ser. ICSE
’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 437–446.

[28] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller,
“Efficiently refactoring java applications to use generic
libraries,” in European Conference on Object-Oriented
Programming, ser. ECOOP’05. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 71–96.

[29] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support
for class library migration,” in ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA
’05. New York, NY, USA: ACM, 2005, pp. 265–279.

[30] B. De Sutter, F. Tip, and J. Dolby, “Customization of

http://docs.oracle.com/javase/8/docs/technotes/guides/language/enhancements.html
http://docs.oracle.com/javase/8/docs/technotes/guides/language/enhancements.html
http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
http://cr.openjdk.java.net/~briangoetz/lambda/Defender%20Methods%20v4.pdf
http://cr.openjdk.java.net/~briangoetz/lambda/Defender%20Methods%20v4.pdf
http://docs.oracle.com/javase/8/docs/api
http://docs.oracle.com/javase/8/docs/api
http://cr.openjdk.java.net/~briangoetz/lambda/featherweight-defenders.pdf
http://cr.openjdk.java.net/~briangoetz/lambda/featherweight-defenders.pdf
http://programming.guide/java/do-interfaces-inherit-from-object.html
http://programming.guide/java/do-interfaces-inherit-from-object.html
http://developer.android.com/guide/platform/j8-jack.html
http://developer.android.com/guide/platform/j8-jack.html

java library classes using type constraints and profile in-
formation,” in European Conference on Object-Oriented
Programming. Springer Berlin Heidelberg, 2004, pp.
584–608.

[31] I. Moore, “Automatic inheritance hierarchy restructuring
and method refactoring,” in ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA ’96. New
York, NY, USA: ACM, 1996, pp. 235–250.

[32] Z. Alshara, A.-D. Seriai, C. Tibermacine, H. L. Bouziane,
C. Dony, and A. Shatnawi, “Migrating large object-
oriented applications into component-based ones: Instan-
tiation and inheritance transformation,” in ACM SIG-
PLAN International Conference on Generative Program-
ming: Concepts and Experiences, ser. GPCE 2015. New
York, NY, USA: ACM, 2015, pp. 55–64.

[33] A. Gyori, L. Franklin, D. Dig, and J. Lahoda, “Cross-
ing the gap from imperative to functional programming
through refactoring,” in ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE
2013. New York, NY, USA: ACM, 2013, pp. 543–553.

[34] R. Khatchadourian, “Automated refactoring of legacy
java software to enumerated types,” Automated Software
Engineering, pp. 1–31, 2016.

[35] A. Kumar, A. Sutton, and B. Stroustrup, “Rejuvenating
c++ programs through demacrofication,” in International
Conference on Software Maintenance, ser. ICSM ’12.
Washington, DC, USA: IEEE Computer Society, 2012,
pp. 98–107.

[36] Y.-W. Kwon and E. Tilevich, “Cloud refactoring: Auto-
mated transitioning to cloud-based services,” Automated
Software Engineering, vol. 21, no. 3, pp. 345–372, Sep.
2014.

[37] D. Mazinanian and N. Tsantalis, “Migrating cascading
style sheets to preprocessors by introducing mixins,” in
International Conference on Automated Software Engi-
neering, ser. ASE 2016. New York, NY, USA: ACM,
2016, pp. 672–683.

[38] J. Kim, D. Batory, D. Dig, and M. Azanza, “Improving
refactoring speed by 10x,” in International Conference
on Software Engineering, ser. ICSE ’16. New York,
NY, USA: ACM, 2016, pp. 1145–1156.

[39] X. Ge and E. Murphy-Hill, “Manual refactoring changes
with automated refactoring validation,” in International
Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 1095–1105.

[40] G. Soares, R. Gheyi, and T. Massoni, “Automated behav-
ioral testing of refactoring engines,” IEEE Transactions
on Software Engineering, vol. 39, no. 2, pp. 147–162,
Feb. 2013.

[41] M. Mongiovi, “Safira: A tool for evaluating behavior
preservation,” in Proceedings of the ACM International
Conference Companion on Object Oriented Program-
ming Systems Languages and Applications Companion,
ser. OOPSLA ’11. New York, NY, USA: ACM, 2011,
pp. 213–214.

[42] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Auto-
mated testing of refactoring engines,” in ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
ser. ESEC-FSE ’07. New York, NY, USA: ACM, 2007,
pp. 185–194.

	Automated Refactoring of Legacy Java Software to Default Methods
	Automated Refactoring of Legacy Java Software to Default Methods

