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Abstract. A multi-scale total variation model for image restoration is introduced. The
model utilizes a spatially dependent regularization parameter in order to enhance image
regions containing details while still sufficiently smoothing homogeneous features. The fully
automated adjustment strategy of the regularization parameter is based on local variance
estimators. For robustness reasons, the decision on the acceptance or rejection of a local
parameter value relies on a confidence interval technique based on the expected maximal local
variance estimate. In order to speed-up the performance of the update scheme a generalized
hierarchical decomposition of the restored image is used. The corresponding subproblems
are solved by a superlinearly convergent algorithm based on Fenchel-duality and inexact
semismooth Newton techniques. The paper ends by a report on numerical tests, a qualitative
study of the proposed adjustment scheme and a comparison with popular total variation
based restoration methods.

1. Introduction

During acquisition and transmission images are often blurred and corrupted by Gaussian
noise. In many applications, the deblurring and denoising of such images are fundamental
for subsequent image processing operations, such as edge detection, segmentation, object
recognition, and many more.

Suppose an image û is a real function defined on a bounded and piecewise smooth open
subset Ω of R

2 which, in applications, is typically only available in a degraded form z with

(1.1) z = Kû + η.

Here, K is a linear and continuous blurring operator from L2(Ω) to L2(Ω), i.e., K ∈ L(L2(Ω)),
which we assume to be known. The quantity η represents white Gaussian noise with zero mean
and standard deviation σ. The problem of restoring û from z with unknown η is known to be
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typically ill-posed [34]. Hence, stable reconstruction processes usually rely on regularization
techniques which are based on prior information on û.

In this direction and with the aim of preserving significant edges in images, in their seminal
work [26] Rudin, Osher and Fatemi proposed total variation regularization for image restora-
tion. In this approach (which we call the ROF-model in what follows), the recovery of the
image û is based on solving the constrained minimization problem

(1.2)
minimize J(u) :=

∫

Ω |Du| over u ∈ BV (Ω)

subject to
∫

Ω Kudx =
∫

Ω z dx,
∫

Ω |Ku − z|2dx = σ2|Ω|,
where BV (Ω) denotes the space of functions of bounded variation, i.e. u ∈ BV (Ω) iff u ∈
L1(Ω) and the BV -seminorm

∫

Ω
|Du| = sup

{
∫

Ω
u div~v dx : ~v ∈ (C∞

0 (Ω))2, ‖~v‖∞ ≤ 1

}

is finite. Here, (C∞
0 (Ω))2 is the space of vector-valued functions with compact support in Ω.

The space BV (Ω) endowed with the norm ‖u‖BV (Ω) = ‖u‖L1(Ω) +
∫

Ω |Du| is a Banach space;
see, e.g., [18]. Further, |Ω| denotes the volume or (two-dimensional) measure of the set Ω.

Usually, the ROF-model (1.2) is solved via the following optimization problem:

(1.3) minimize

∫

Ω
|Du| + λ

2

∫

Ω
|Ku − z|2dx over u ∈ BV (Ω)

for a given λ > 0. Observe in (1.3) that the second constraint of (1.2) occurs in a penalized
form. Moreover, assuming K · 1 = 1 and

∫

Ω |z|2 ≥ σ2 it is shown in [11] that the constraint
∫

Ω Kudx =
∫

Ω z dx is automatically satisfied and that (1.2) and (1.3) are equivalent provided
λ ≥ 0 is chosen appropriately. In this case, λ represents the Lagrange multiplier associated
with the corresponding constraint in (1.2). We also note that (1.3) can be equivalently
expressed as

(1.4) minimize
1

2

∫

Ω
|Ku − z|2dx + α

∫

Ω
|Du| over u ∈ BV (Ω)

where α = 1/λ > 0 is a regularization parameter.
The properties of the TV-term

∫

Ω |Du| are responsible for preserving edges during the
reconstruction. This edge preservation ability is one of the reasons why the ROF-model is
widely accepted as a reliable tool in image restoration. Over the years, various research efforts
have been devoted to studying, solving and extending the ROF-model; see, e.g., [10–13, 20,
21,23,25,30,31] as well as the monograph [34] and the many references therein.

In the optimization problems (1.3) and (1.4), both the Lagrange multiplier λ and the
regularization parameter α control the trade-off between a good fit of z and a smoothness
requirement due to the total variation regularization. In general, images are comprised of
multiple objects at different scales. This suggests that different values of λ and α localized at
image features of different scales are desirable to obtain better restoration results. Roughly
speaking, for small features, large λ, or equivalently small α, leads to little smoothing and
usually good detail preservation. On the other hand, for large features, small λ, or large α,
leads to smoothing so that noise is removed considerably. For this reason and based on (1.3)
or (1.4), in [3, 7, 29, 30] multi-scale total variation (MTV) models with a spatially varying
choice of parameters were considered. The corresponding multi-scale versions of (1.3) and
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(1.4) read

(1.5) minimize

∫

Ω
|Du| + 1

2

∫

Ω
λ(x)|Ku − z|2(x)dx over u ∈ BV (Ω),

and, for an appropriate function α,

(1.6) minimize
1

2

∫

Ω
|Ku − z|2dx +

∫

Ω
α(x)|Du| over u ∈ BV (Ω),

respectively. In fact, in [30] the notion of a scale of an image feature (that is the ratio
of the volume and the perimeter) is studied and a regularized gradient descent scheme for
(1.6) is used. While [30] merely studies the influence of the scale on the choice of α, the
subsequent work [29] proposes an update scheme for α. We note that the overall algorithm
has to determine several reference parameters for α such as a scale recognition probe and a
reference or threshold value and is primarily driven by geometric properties of image features.
Moreover, the α-update rule neither depends on the noise statistics nor on local estimators
for a robust adjustment scheme. The latter aspect is also true for the method proposed
in [7], which uses a pre-segmented image and considers λ (in the framework of (1.5)) to be
a piecewise constant function with the pieces defined by the segmentation output. In [7],
for the solution of (1.5) with a piecewise constant λ a regularized gradient descent method
is used. Then the λ-update rule follows an augmented Lagrangian scheme. Finally, in [3]
the automated choice of λ is based on local constraints through local variance estimates. In
a discrete setting, the method uses upper bounds of the expectancy of the maximal local
squared residual. Thus, it relies on probabilistic arguments taking into account the noise
statistics. The solution algorithm is finite dimensional, of proximal point type and converges
at a linear rate with the latter depending on the proximal point regularization.

In this paper, we study (1.5) on the continuous, i.e. function space, level, and we propose
a local variance estimator in order to decide, in a robust way, on the scales of the features
contained in z. The decision on the acceptance or rejection of a local λ-value uses a confidence
interval technique based on the expected maximal local variance estimate. The latter is
rigorously justified by the theory in [19]. Our results improve the ones, for instance, given
in [3], where the upper bound on the expected maximal local image residual depends on
ln(m)+ω2, where m×m is the discrete image size and ω2 is the number of pixels in the local
window for generating the local squared residuals. The bound derived in [3] is typically too
loose to yield accurate reconstructions. Instead, for the numerical results in [3] the heuristic
bound (1 + δ)σ2 with δ ∈ [0, 1] is used and the choice of δ is empirical. This leads to
infeasibility considerations for the associated minimization problem through the question of
how many pixels satisfy the local constraints. This latter aspect is addressed in [15, Sec.
7.1]. Further, our λ-adjustment is fully automated and, thus, requires no user interaction.
In order to accelerate the performance of the λ-update scheme we generalize the hierarchical
decomposition approach proposed by [32, 33] to spatially dependent λ. The corresponding
subproblems are solved by a superlinearly convergent algorithm based on Fenchel-duality and
inexact semismooth Newton techniques. The latter extends earlier work in [21]. We note
that, based on the relationship between (1.5) and (1.6), our subproblem solver can also be
adapted easily to handle (1.6), as well. Further, we mention that besides our analysis of the
localized constraints in the original function space context of (1.5), our solver strategy differs
significantly from previous work such as, e.g., [3], where Uzawa’s method is combined with
the iterative scheme of [10] yielding a linearly convergent scheme only. In particular, the
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convergence of Uzawa’s method is extremely slow with a rate of linear convergence rather
close to 1. As noted above, our TV-solver converges locally superlinearly and when combined
with the hierarchical decomposition scheme of [32] it converges extremely fast in practice.

The outline of the rest of the paper is as follows. In Section 2 we study the existence of
a solution of a version of (1.2) with localized constraints and relate this problem to (1.5).
Moreover, a first order optimality characterization is derived. In Section 3 we describe our
new spatially adapted parameter selection in detail and discuss the statistics of the expected
value of the maximal local residual estimates. The following Section 4 extends the algo-
rithm in [33] to the case where λ is spatially dependent. Utilizing our new spatially adapted
parameter selection rule, in Section 5 we introduce a primal-dual algorithm for solving the
MTV-problem. Section 6 gives numerical results to demonstrate the performance of the new
method. Moreover, we compare our method with several other popular methods. The numer-
ical results indicate that our method has the potential to outperform the other approaches in
both noise removal and detail preservation. Finally, conclusions are drawn in Section 7.

2. Spatially Adapted Regularization

Similar to [3, 17] we consider smoothed image residuals, which should ideally only contain
noise after restoration, for extracting information on the scale that we then use for automat-
ically adjusting λ in (1.5). Assume that w is a normalized filter, i.e. w ∈ L∞(Ω × Ω), w ≥ 0
on Ω × Ω with

∫

Ω

∫

Ω
w(x, y)dydx = 1 and

∫

Ω

∫

Ω
w(x, y)φ2(y)dy dx ≥ ǫ‖φ‖2

L2(Ω) ∀φ ∈ L2(Ω)(2.1)

for some ǫ > 0 (independent of φ). The second condition in (2.1) is required in the proof of
the radial unboundedness result of Proposition 1. By S(u) we denote the w-smoothed version
of the residual which is

(2.2) S(u)(x) :=

∫

Ω
w(x, y)(Ku − z)2(y) dy.

Note that S(u)(x) may be interpreted as a local variance. Observe that since (Ku − z)2 ∈
L1(Ω) and w ∈ L∞(Ω × Ω) we have S(u) ∈ L∞(Ω). Moreover, it can readily be shown that
S(·) is continuous as a mapping from L2(Ω) to L∞(Ω). The smoothed residual is now used
to formulate a version of the ROF-model (1.2) with local constraints (instead of the original
global constraint):

(2.3)
minimize J(u) over u ∈ BV (Ω)

subject to S(u) − σ2 ≤ 0 a.e. in Ω.

Here and below ‘a.e.’ stands for ‘almost everywhere’. For later use we define the feasible set

(2.4) U = {u ∈ BV (Ω) : S(u) ≤ σ2 a.e. in Ω}.
It is straightforward to show that U is closed and convex.

2.1. Existence of a solution. For the existence of a solution to (2.3) we start by adapting
a result due to [2]. We provide a proof for the sake of keeping the paper self-contained.

Proposition 1. Assume that K does not annihilate constant functions, i.e. KχΩ 6= 0, where
χΩ(x) = 1 for x ∈ Ω. Then ‖u‖BV → +∞ implies J (u) → +∞ with

J (u) = J(u) +

∫

Ω

∫

Ω
w(x, y)(Ku − z)2(y) dy dx.
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Proof. Any u ∈ BV (Ω) can be decomposed according to

(2.5) u = t + v with t =

(

∫

Ω udx

|Ω|

)

χΩ and

∫

Ω
v dx = 0.

Hence, we obtain

‖u‖BV ≤ ‖t‖BV + ‖v‖BV =

∫

Ω
|t|dx + J(t) +

∫

Ω
|v|dx + J(v)

≤ ‖t‖L1(Ω) + ‖v‖L1(Ω) + J(v)

≤ ‖t‖L1(Ω) + C2J(v)

for some C2 > 0. Recalling that Ω is bounded with a piecewise smooth boundary, note here
that we used the Sobolev inequality [18, p. 24] ‖v‖L2(Ω) ≤ C1J(v), with C1 > 0, to obtain the
last inequality above. Since K does not annihilate constants, there exists C3 > 0 independent
of t such that ‖Kt‖L2(Ω) ≥ C3‖t‖L1(Ω). Then, by (2.1) we get

J (u) ≥ J(v) + ǫ‖Kt + Kv − z‖2
L2(Ω) ≥ J(v) + ǫ‖Kt‖L2(Ω)(‖Kt‖L2(Ω) − 2‖Kv − z‖L2(Ω)).

Since ‖Kv − z‖L2(Ω) ≤ ‖K‖‖v‖L2(Ω) + ‖z‖L2(Ω) ≤ C1‖K‖J(v) + ‖z‖L2(Ω) we have

(2.6) J (u) ≥ J(v) + ǫ‖Kt‖L2(Ω)

(

C3‖t‖L1(Ω) − 2(‖K‖C1J(v) + ‖z‖L2(Ω))
)

.

If C3‖t‖L1(Ω) − 2(‖K‖C1J(v) + ‖z‖L2(Ω)) ≥ 1, then J (u) ≥ J(v) + ǫ‖Kt‖L2(Ω) and

(2.7) ‖t‖L1(Ω) ≤
1

C4
J (u)

for C4 = ǫC3 > 0, and further

(2.8) J(v) ≤ J (u).

Then, (2.7) and (2.8) yield

(2.9) ‖u‖BV ≤
(

1

C4
+ C2

)

J (u).

On the other hand, if C3‖t‖L1(Ω) − 2(‖K‖C1J(v) + ‖z‖L2(Ω)) < 1, then

‖t‖L1(Ω) <
1 + 2(‖K‖C1J(v) + ‖z‖L2(Ω))

C3

and hence

(2.10) ‖u‖BV −
1 + 2‖z‖L2(Ω)

C3
≤

(

2‖K‖C1

C3
+ C2

)

J (u).

Thus, (2.9) and (2.10) yield the assertion. ¤

Based on Proposition 1 it is immediate to argue existence of a solution to (2.3).

Theorem 2. Assume that K ∈ L(L2(Ω)) does not annihilate constant functions. Then
problem (2.3) admits a solution.
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Proof. We first note that J is bounded from below and choose an infimal sequence {un} ⊂ U .
Due to Proposition 1 {un} is bounded in BV (Ω). Hence, there exists a subsequence {unk

}
which converges weakly in L2(Ω) to some ũ ∈ L2(Ω), and {Dunk

} converges weakly as a
measure to Dũ [6, p. 47]. By the weak lower semicontinuity of J we obtain that

(2.11) J(ũ) ≤ lim inf
k→∞

J(unk
) = inf

u∈U
J(u).

Since K is a continuous linear operator, {Kunk
} converges weakly to Kũ. Moreover, since U

is closed and convex, we have S(ũ) ≤ σ2 a.e. in Ω. ¤

Next we establish a uniqueness result. For this purpose we require the following property
of the filter w.

Assumption 3. Let u1, u2 ∈ BV (Ω) denote two solutions of (2.3) with u1 6= u2. If there
exist δ > 0 and Ωδ ⊂ Ω with |Ωδ| > 0 such that

(

1

2
K(u1 + u2) − z

)2

≤ 1

2

(

(Ku1 − z)2 + (Ku2 − z)2
)

− δ a.e. in Ωδ

then there exists ǫδ > 0 such that

(2.12)

∫

Ω
w(x, y)

(

1

2
K(u1 + u2) − z

)2

(y)dy ≤ σ2 − ǫδ for almost all x ∈ Ω.

We note that Assumption 3 is satisfied for the mean filter

w(x, y) =

{ 1
w2

ǫ
if ‖y − x‖∞ ≤ ω

2 ,

ǫ0 else,

where x ∈ Ω is fixed, ω > 0 sufficiently small is the essential width of the filter window, 0 <
ǫ0 ≪ min(1, 1

w2
ǫ
) and wǫ such that

∫

Ω

∫

Ω w(x, y)dydx = 1. In this case we have ǫδ = ǫ0δ|Ωδ|.
It can also be shown that Assumption 3 holds true for the Gaussian filter.

The following uniqueness result generalizes a finite dimensional version due to [3].

Theorem 4. Let the assumptions of Theorem 2 hold true and suppose K1 = 1. In addition
we suppose that Assumption 3 is satisfied and that

(2.13) inf
c∈R

∫

Ω
w(x, y)(c − z)2(y)dy > σ2 a.e. in Ω.

Then, for every solution ũ of (2.3) Kũ has the same value.

Proof. Let u1, u2 ∈ BV (Ω) denote two solutions with u1 6= u2. Define ū = 1
2(u1 + u2). By

convexity we have

(Kū − z)2 ≤ 1

2

(

(Ku1 − z)2 + (Ku2 − z)2
)

If the inequality holds as an equality a.e. in Ω, then Ku1 = Ku2 a.e. in Ω; otherwise
there exist a δ > 0 and a set Ωδ ⊂ Ω of positive measure such that (2.12) holds true for a
suitable ǫδ > 0. Define us := sū for s ∈ [0, 1]. Then, for s close to 1, we have us ∈ U and
J(us) = sJ(ū) < J(ū) for all s ∈ [0, 1), unless J(ū) = 0. This implies ū ≡ c̄, and therefore
Kū = c̄ for some c̄ ∈ R. This, however, is impossible since infc∈R

∫

Ω w(x, y)(c−z)2(y)dy > σ2

a.e. in Ω by assumption. Hence, Ku1 = Ku2 a.e. in Ω. ¤

Note that (2.13) is almost surely satisfied when z is the addition of some regular (non-
constant) image and a white random field with variance σ2.
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2.2. First-order optimality characterization. We continue by characterizing a solution
of (2.3) and relate the problem to (1.5). For this purpose we define the penalty problem

(2.14) minimize Fγ(u) := J(u) +
γ

2

∫

Ω
max(S(u) − σ2, 0)2dx over u ∈ BV (Ω).

Here, γ > 0 denotes a penalty parameter.

Proposition 5. Let the assumptions of Theorem 2 be satisfied. Then problem (2.14) admits
a solution uγ ∈ BV (Ω) for every γ > 0. Moreover, for γ → +∞ {uγ} converges along a
subsequence weakly in L2(Ω) to a solution of (2.3).

Proof. Note that due to the continuity and (pointwise) convexity of S : L2(Ω) → L∞(Ω)
as well as max(·, 0) : L2(Ω) → L2(Ω) and the weak lower semicontinuity of J(u) according
to [5], Fγ : BV (Ω) → R is weakly lower semicontinuous. Let {un} ⊂ BV (Ω) denote an
infimal sequence, and let ũ be a solution of (2.3). Then, for all sufficiently large n we have
Fγ(un) ≤ Fγ(ũ) + 1 = J(ũ) + 1. Since S(u) ≥ 0 a.e. in Ω for any u ∈ BV (Ω), there exists a
constant C (independent of n and γ) such that ‖S(un)‖L2(Ω) ≤ C. By Proposition 1 {un} is
bounded in BV (Ω). Now similar arguments as in the proof of Theorem 2 yield the existence
of a solution uγ ∈ BV (Ω).

Concerning the convergence result we first note that similarly to the first part of this proof
one argues the boundedness of {uγ} in BV (Ω). Then by lower semicontinuity we have

J(ũγ) ≤ lim inf
γ→+∞

Fγ(uγ) ≤ J(ũ) = inf
u∈U

J(u),

where ũγ is a weak limit of a subsequence of {uγ} in L2(Ω) (which we still denote by {uγ}).
It remains to show that ũγ ∈ U . For this we observe that for all γ > 0

γ

2

∫

Ω
max(S(uγ) − σ2, 0)2dx ≤ J(ũ).

As a consequence, we obtain
∫

Ω
max(S(uγ) − σ2, 0)2dx → 0 as γ → ∞

and by the continuity of K, weak lower semicontinuity and Fatou’s Lemma S(ũγ) ≤ σ2 a.e.
in Ω. ¤

Observe that the arguments of the previous proof yield

(2.15) ‖max(S(uγ) − σ2, 0)‖L2(Ω) = O(1/
√

γ),

where O(an)/an → 0 for a sequence {an} ⊂ R+ with an → 0.
For our subsequent results, for arbitrarily fixed γ > 0 we define

λ◦
γ := γ max(S(uγ) − σ2, 0),(2.16)

λγ :=

∫

Ω
w(x, y)λ◦

γ(x) dx.(2.17)

Note that λγ is related to the Fréchet-derivative of the penalty term in (2.14). This derivative
at uγ applied to some direction v ∈ L2(Ω) is given by
∫

Ω
[2(Kuγ−z)Kv](y)

∫

Ω
γ max(S(uγ)−σ2, 0)(x)w(x, y) dxdy =

∫

Ω
[2(Kuγ−z)Kv](y)λγ(y) dy.
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Here we use the Fréchet-derivative S′(·) of S(·) : L2(Ω) → L2(Ω) with its action on v ∈ L2(Ω)
given by

S′(u)v = 2

∫

Ω
w(x, y)[(Ku − z)Kv](y) dy.

Now we are ready to state the first-order optimality characterization of a solution to (2.3).

Theorem 6. Let the assumptions of Theorem 2 hold, and let ũ denote a weak limit point of
{uγn} as γn → +∞. Moreover, we assume that ‖Kuγn‖L2(Ω) → ‖Kũ‖L2(Ω) as γn → +∞ and

that there exists C > 0 such that γn‖max(S(uγn) − σ2, 0)‖L1(Ω) ≤ C for all n ∈ N. Then

there exist λ̃ ∈ L∞(Ω), a bounded Borel measure λ̃◦ and a subsequence {γnk
} such that the

following properties hold true:

(i)
∫

Ω λγnk
f dx →

∫

Ω λ̃f dx for all f ∈ L1(Ω) and λ̃ ≥ 0 a.e. in Ω.

(ii) There exists j(ũ) ∈ ∂J(ũ) such that

〈j(ũ), v〉BV (Ω)∗,BV (Ω) + 2

∫

Ω
(K∗λ̃(Kũ − z))v dx = 0 for all v ∈ BV (Ω).

(iii)
∫

Ω ϕλ◦
γnk

dx →
∫

Ω ϕdλ̃◦ for all ϕ ∈ C(Ω̄), λ̃◦ ≥ 0 and
∫

Ω λ◦
γn

(S(uγn) − σ2) dx → 0.

Proof. We start by proving (i). First note that due to the properties of S, (2.17) and w ∈
L∞(Ω×Ω), we have λγn ∈ L∞(Ω). Thus,

∫

Ω λγnf dx is well-defined for all f ∈ L1(Ω). Under
our assumptions there exists a constant C ′ > 0 independent of γn such that

‖λγn‖L∞(Ω) ≤ γn‖w‖L∞(Ω×Ω)‖max(S(uγn) − σ2, 0)‖L1(Ω) ≤ C ′.

Now the first part of (i) follows from the weak∗ sequential compactness of the closed unit ball
in L∞(Ω) (according to the Banach-Alaoglu theorem; see [27, p. 66]). The non-negativity is
an immediate consequence of the definition of λγ .

Concerning (ii) we recall that from the proof of Proposition 5 we get the boundedness of
{uγn} in BV (Ω). From this and the continuity of J(·) at uγn , we infer the uniform (w.r.t. γn)
boundedness of ∂J(uγn). Now note that the first order (necessary and sufficient) optimality
condition for (2.14) is given by

(2.18) 0 ∈ ∂J(uγn) + γnS′(uγn)∗ max(S(uγn) − σ2, 0),

where S′(·)∗ denotes the adjoint operator of S′(·). From the boundedness of {uγn} in BV (Ω)
and of {∂J(uγn)} in BV (Ω)∗ we infer

(2.19) γn‖S′(uγn)∗ max(S(uγn) − σ2, 0)‖BV (Ω)∗ ≤ C ′′

for some constant C ′′ > 0 independent of γn. Moreover, for v ∈ BV (Ω) we have

γnk

2
〈S′(uγnk

)∗ max(S(uγnk
) − σ2, 0), v〉BV (Ω)∗,BV (Ω) =

∫

Ω
(Kuγnk

− z)(Kv)λγnk
dy

=

∫

Ω
(Kuγnk

− Kũ)(Kv)λγnk
dy +

∫

Ω
(Kũ − z)(Kv)(λγnk

− λ̃) dy

+

∫

Ω
(Kũ − z)(Kv)λ̃ dy →

∫

Ω
(Kũ − z)(Kv)λ̃ dy as k → +∞,

where, without loss of generality, ũ ∈ BV (Ω) denotes the weak limit of {uγnk
} in L2(Ω). This

proves (ii).
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Finally, from the boundedness assumption of this theorem, (2.16) and [5, Cor. 2.4.3] we

obtain the first result in (iii). The non-negativity of λ̃◦ is an immediate consequence of the
definition of λ◦

γ . Then, based on
∣

∣

∣

∣

∫

Ω
λ◦

γn

(

S(uγn) − σ2
)

dx

∣

∣

∣

∣

=γ
∥

∥max(S(uγn) − σ2, 0)
∥

∥

2

L2(Ω)
,

the third assertion in (iii),
∫

Ω λ◦
γn

(S(uγn) − σ2) dx → 0, follows from (2.15). ¤

We note that if (2.15) holds true with O(1/
√

γ) replaced by O(1/γ), then {λ◦
γn
}, with {γn}

as in Theorem 6, is uniformly bounded in L2(Ω). As a consequence, λ̃◦ ∈ L2(Ω) is the weak
limit of a subsequence {λ◦

γnk
}. In this case the system of Theorem 6(iii) becomes

λ̃◦ ≥ 0 a.e. in Ω, S(ũ) ≤ σ2 a.e. in Ω, lim
n→∞

∫

Ω
λ◦

γn
(S(uγn) − σ2) dx = 0.

If the last relation above holds as
∫

Ω λ̃◦(S(ũ) − σ2) dx = 0, then we may equivalently write

(2.20) λ̃◦ ≥ 0 a.e. in Ω, λ̃◦ = λ̃◦ + ρ max(S(ũ) − σ2, 0)

for arbitrary and fixed ρ > 0.
Setting λ = 2λ̃ in (1.5) we find that the first order optimality condition for (1.5) coincides

with Theorem 6(ii). This relates the constrained problem (2.3) and the unconstrained problem

(1.5) formally. Note that for the existence proof for (1.5) we need λ̃ ≥ ǫ̃ > 0 a.e. in Ω. A

rigorous investigation when (2.3) admits the existence of such a multiplier λ̃, however, goes
beyond the scope of the present paper.

3. Spatial adaptation by local variance estimators

We suppose that the variance σ2 of the Gaussian noise is at our disposal. In practice the
variance can be estimated, e.g., from homogeneous parts; see [4, 16] for various estimation
techniques. While the solution of the ROF-model satisfies the global constraint

(3.1)

∫

Ω
|Ku − z|2dx = σ2|Ω|,

(1.5) represents a localized version by allowing λ = λ(x). In order to enhance image details
while preserving homogenous regions, the choice of λ must be based on local image features.
Hence, we search for a reconstruction where the variance of the residual is close to the noise
variance in both the detail regions and the homogeneous parts. In order to achieve this goal
we introduce local variance estimators for an automated adaptive choice of λ. Our adjustment
rule makes use of the constraint in (2.3).

3.1. Local variance estimator. Our subsequent considerations are exemplarily based on
the mean filter introduced earlier. We mention, however, that the Wiener filter employed in
[17] or the Gaussian filter of the non-local means approach [9] may be used as well. Moreover,
from now on we proceed in discrete terms, but, for the sake of simplicity, we keep the notations
from the continuous context. We assume that the discrete image domain Ω contains m × m

pixels. Let r = z−Ku denote the discrete residual image with r, z, u ∈ R
m2

and K ∈ R
m2×m2

.
For convenience, for the remainder of this section we reshape r, z, and Ku as m×m-matrices.
We also note that in the discrete mean filter we may choose ǫ0 = 0 and ω is an odd integer as
the discrete version of Assumption 3 still holds true in this case. Further, let Ωω

i,j denote the



10 YIQIU DONG, MICHAEL HINTERMÜLLER, AND M. MONSERRAT RINCON-CAMACHO

(a) (b) (c) (d)

(e) (f) (g)

Figure 1. Local variance estimator Sω with different window sizes: (a) Original

image, (b) Noisy image (σ = 0.2, K = identity matrix), (c) Restored image obtained

from solving (1.3) with λ = 2.4, (d) Residual, (e) S5, (f) S7, (g) S9.

set of pixel-coordinates in a ω-by-ω window centered at (i, j) (with a symmetric extension at
the boundary), i.e.

Ωω
i,j =

{

(s + i, t + j) : −ω − 1

2
≤ s, t ≤ ω − 1

2

}

.

Then we apply the mean filter to the residual and obtain

(3.2) Sω
i,j :=

1

ω2

∑

(s,t)∈Ωω
i,j

(zs,t − (Ku)s,t)
2 =

1

ω2

∑

(s,t)∈Ωω
i,j

(rs,t)
2 .

Based on the current estimate λ and the pertinent reconstruction u, Sω is a local variance
estimator, which allows us to decide on the amount of details contained in the window around
(i, j). For illustration purposes, Figure 1 depicts Sω for ω = 5, 7, 9, respectively; see the plots
(e) − (g). The corresponding reconstruction u comes from solving the discrete version of
(1.3) with λ = 2.4 by the primal-dual algorithm introduced in [21]. With this small λ, the
restored image u is over-smoothed, and the residual contains noise and details. Observe that
Sω is typically large (indicated in light gray) in image regions which contain fine scale details.
Moreover we find that for fixed contrast, Sω is the larger the finer (smaller) the scale is. In
order to distinguish a region containing just noise from a region containing details we propose
to employ the confidence interval technique well-known from statistics [22,24].

3.2. Upper bound for the local variance. In the discrete setting, η (see (1.1)) can be
regarded as an array of independent normally distributed random variables with zero mean
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and variance σ2. Then the random variable

Tω
i,j =

1

σ2

∑

(s,t)∈Ωω
i,j

(ηs,t)
2

has the χ2-distribution with ω2 degrees of freedom, i.e. Tω
i,j ∼ χ2

ω2 . If u = û satisfies
η = z − Kû, then

Sω
i,j =

1

ω2

∑

(s,t)∈Ωω
i,j

(zs,t − (Kû)s,t)
2 =

1

ω2

∑

(s,t)∈Ωω
i,j

(ηs,t)
2 =

σ2

ω2
Tω

i,j .

If u is an over-smoothed restored image, then the residual z − Ku contains details, and we
expect

Sω
i,j =

1

ω2

∑

(s,t)∈Ωω
i,j

(zs,t − (Ku)s,t)
2 >

1

ω2

∑

(s,t)∈Ωω
i,j

(ηs,t)
2 =

σ2

ω2
Tω

i,j .

Therefore, we search for a bound B such that Sω
i,j > B for some pixel (i, j) implies that in

the residual there are some details left in the neighborhood of this pixel. For ease of notation,
below we write Tω

k := Tω
i,j with k = i + (m − 1)j for i, j = 1, . . . m.

Given m×m, the total number of pixels in the image, we propose to consider the expected

maximum of the m2 random variables σ2

ω2 Tω
k , k = 1, . . . ,m2, where–as before–each Tω

k has the

χ2-distribution with ω2 degrees of freedom. The bound B depends on the size of the image
(m × m) and on the size of the window (ω × ω). Thus, we write Bω,m = B(ω, m) with

(3.3) Bω,m :=
σ2

ω2
E( max

k=1,...,m2
Tω

k ),

where E represents the expected value of a random variable.

3.2.1. Distribution of the maximum of N random variables. In order to compute the expected
value of the maximum of the N = m2 random variables Tω

k , k = 1, . . . , N , we use [19],
disregarding certain dependencies. For the moment we drop the superscript ω. Let f be
the χ2-distribution with ω2 degrees of freedom, and let F denote its cumulative distribution
function, i.e.

(3.4) F(T ) =

∫ T

−∞
f(z)dz.

The maximum value of N observations distributed along f is denoted by Tmax. Our goal is
to describe the distribution fmax of this maximum value. According to [19] this distribution
is given by

(3.5) fmax[y(Tmax)] = N f(Tdom)e−y(Tmax)−e−y(Tmax)
,

where y(T ) = N f(Tdom)(T −Tdom) is the standardization of the variable T . Here, Tdom is the
so-called dominant value, which is such that

(3.6) F(Tdom) = 1 − 1

N
.

From (3.5), the cumulative distribution function Fmax of Tmax reads

(3.7) Fmax(T ) = P (Tmax ≤ T ) = e−e−y(T )
.
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The expected value and the standard deviation of the standardized variable y(Tmax) are

(3.8) E(y(Tmax)) = κ and d(y(Tmax)) =
π√
6
,

respectively, where κ = 0.577215 is the Euler-Mascheroni constant; for further details see [19].
According to the transformation of Tmax we have that its expected value and its standard
deviation are

(3.9) E(Tmax) = Tdom +
κ

βmax
and d(Tmax) =

π

βmax

√
6

with βmax = N fmax(Tdom).

3.2.2. Confidence interval. We observe that the size of the image influences the expected
maximum value given by (3.9). In fact, if N1 ≤ N2, then

E(T 1
max) ≤ E(T 2

max),

where T i
max corresponds to the maximum of Ni observations, i = 1, 2. In view of our above

findings, the following two choices for the bound Bω,m are natural: Either we take the expected
value of the random variables Tω

k , k = 1, . . . , N , which corresponds to (3.3) and our earlier
discussion, or we re-define Bω,m by adding the corresponding standard deviation d(Tmax) to
the first choice. The latter option is taken in (3.12) below.

The confidence level of these bounds is given by the cumulative distribution (3.7). The
probability that the maximum value is below or equal to E(Tmax) is

(3.10) P (Tmax ≤ E(Tmax)) = e−e−y(E(Tmax))
= e−e−κ

= 0.57037

and that the maximum value is not larger than E(Tmax) + d(Tmax) is

(3.11) P (Tmax ≤ E(Tmax) + d(Tmax)) = e−e−y(E(Tmax)+d(Tmax))
= e−e

−κ− π√
6

= 0.85580,

since

y(E(Tmax) + d(Tmax)) = N f(Tdom)

(

Tdom +
κ

N f(Tdom)
+

π

N f(Tdom)
√

6
− Tdom

)

= κ +
π√
6
.

Observe that (3.10) specifies the probability that all of the smoothed image residuals Tω
k ,

k = 1, . . . , m2, satisfy the constraints. A similar reasoning holds true for (3.11), which yields
a higher probability as the upper bound is relaxed. Then, even if there is only noise left in
the residual, using the first upper bound the constraints are satisfied by all Tω

k only with a
probability of 0.57. In the reconstruction process, this leads to difficulties in distinguishing
whether the violation of constraints is due to noise or image details still contained in the local
residuals. Therefore, subsequently we choose the second bound described in (3.11) above
yielding

(3.12) Bω,m :=
σ2

ω2
(E(Tmax) + d(Tmax)) .

3.2.3. Window size. The previous results are valid for any window size ω. We write

(3.13) Bω,m = τσ2,

then, from (3.12), we obtain

(3.14) τ =
1

ω2
(E(Tmax) + d(Tmax)) .

In Figure 2 we show the dependence of τ on the window size ω and the image size N . We
note that τ is always larger than 1, i.e. Bω,m is always larger than σ2. Our choice of ω should
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Figure 2. Different values of τ for different window sizes ω and image sizes N .

avoid the following unfavorable cases: (i) Bω,m ≫ σ2. In this case there is a relatively large
chance that regions with details are not recognized properly. (ii) Bω,m ≈ σ2. In this case
there is a likeliness that a region is identified which seemingly contains details although this
is not true. In addition, upon inspection of the graphs we find that the larger the window
size is, the tighter the bound on the local variance estimator becomes. Moreover, in view of
(2.17), increasing the window size reduces the “sharpness” of λ. Conversely, a small window
size yields a rather large bound and yields a λ, which better reflects the location of image
details. Further, from Figure 2 we observe that the upper bound depends on the window
size relatively to the image size. In our numerical experiments in Section 6 we also study the
effect of the window size on the reconstruction quality; see, e.g., Figure 11.

3.3. Selection of λ. We use the confidence interval technique for Sω to reduce the effect of
noise on the local variance estimators for detecting image details.

Recall that Sω
i,j represents the mean value of the squared residual in a given window Ωω

i,j .
Ideally, the residual should contain noise only. In this case

(3.15) Sω
i,j ∈ [0, Bω,m) ,

where Bω,m is given by (3.12). On the other hand, if (3.15) is not satisfied, we suppose
that this is due to image details contained in the residual image in Ωω

i,j . This motivates the

introduction of the following modified local variance estimator S̃ω defined by

(3.16) S̃ω
i,j :=

{

Sω
i,j if Sω

i,j ≥ Bω,m,

σ2 otherwise .

In the second row of Figure 3, the quantity S̃ω is depicted, which is based on the noisy image
and the restored image shown in Figure 1 (b) and (c), respectively. In order to understand
the performance of Bω,m better according to (3.13) and (3.14) we compare this bound with
the upper bound proposed in the recent work [15]. In that paper, the authors consider
local constraints similar to ours in (2.3). We should mention that in [15] a bilateral bound
is determined based on the constraint which is used for defining a stopping condition rather
than for updating the regularization parameter as in our case. Here, we only choose the upper
bound of [15] for a comparison with our bound in order to show that for distinguishing the
detail regions from other features in the residual the bound Bω,m as defined in (3.12) is more
suitable. Referring to [15], the value of (1+α)0.64σ2, with α > 0 such that (1+α)0.64 < 1, is
used as an upper bound for localized variance estimates (instead of σ2). It is motivated by the
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(a) (b) (c)

Figure 3. The modified local variance estimator S̃ for different window sizes with
different upper bounds (row 1: Bω,m = 0.64(1+α)σ2 defined as in [15] with α = 0.273,
0.188 and 0.143, respectively; row 2: Bω,m = τσ2 defined as in (3.13) and (3.14)): (a)

S̃5, (b) S̃7, (c) S̃9.

observation that in order to avoid loss of texture in images one should accept a higher total
variation. The latter can be achieved by employing a lower bound to the true variance, thus
yielding (1 + α)0.64 < 1. Based on [15], there exists the relation P (Sω ≤ (1 + α)0.64σ2) =

Γ( (1+α)ω2

2 , ω2

2 ), where Γ(a, x) =
∫ ∞
x

ta−1e−tdt is the incomplete gamma function. It provides
the expected fraction of the total number of image pixels satisfying the local constraints. In
order to compare with our upper bound, we set P (Sω ≤ (1 + α)0.64σ2) = 0.8, and calculate
the value α with ω = 5, 7, 9, respectively. Observe that a probability of 0.8 for the window
sizes under investigation keeps α in the range where (1 + α)0.64 < 1. We note that an upper
bound which is too tight—such as the one in [15] which is even less than σ2—produces a
modified local variance estimator which appears strongly influenced by noise; see the first
row in Figure 3 and compare it with the second row in Figure 3. In view of our update
strategy of λ which we discuss below, the bound of [15] would yield too large local λ-values
and, hence, too little regularization in homogeneous features. In such image regions, the
noise removal would be adversely affected. Our upper bound is adjusted automatically based
on the window size, the image size and the statistical properties of the maximum value of
the variance estimators. Thus, compared to Sω (see Figure 1), the influence of noise is

significantly reduced and S̃ω
i,j is more adaptive, i.e., it is larger than the noise level primarily

in image regions containing details; compare the second row of Figure 3.
For adapting λ algorithmically we proceed as follows. Initially we assign a small positive

value to λ, in order to obtain an over-smoothed restored image and to keep most details in
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the residual. Then we restore the image iteratively by increasing λ according to the following
rule: Let λ̃k denote a given discrete approximation of λ̃◦ in (2.20). Then we set

(λ̃k+1)i,j := (λ̃k)i,j + ρ max((S̃ω
k )i,j − σ2, 0) = (λ̃k)i,j + ρ((S̃ω

k )i,j − σ2),(3.17a)

(λk+1)i,j =
1

ω2

∑

(s,t)∈Ωω
i,j

(λ̃k+1)s,t,(3.17b)

where ρ > 0. Observe that (3.17a) is motivated by a discrete version of (2.20) and (3.17b)

by (2.17). Here and below, S̃ω
k is the modified local variance estimator obtained from uk.

Based on the definition in (3.16), S̃ω is always larger than σ2, which leads to the rightmost

consequence in (3.17a). We set ρ = ρk = ||λ̃k||∞/σ in order to keep the new λ̃k+1 at the same

scale as λ̃k.
Based on the iterative update of λ in (3.17), we have the following basic multi-scale total

variation algorithm.

Basic MTV-Algorithm.

1: Initialize λ0 := λ̃0 ∈ R
m×m
+ and set k := 0.

2: Let uk denote the solution of the discrete version of the minimization problem (1.5)
with discrete λ = 2λk.

3: Update λk+1 based on uk and (3.17).
4: Stop, or set k := k + 1 and return to step 2.

Our numerical experience indicates that this basic MTV-algorithm exhibits a rather slow
adjustment of λ, which, in particular for rather small initial λ0, leads to an unacceptably
large number of iterations; compare Table 1. In order to remedy this effect, in the next
section we extend the notion of hierarchical decompositions in image processing (see [32,33])
to spatially dependent regularization and combine it with our basic MTV-framework. This
results in a tremendous acceleration of the basic MTV-algorithm and an enhancement in the
reconstruction of image details. As a consequence, the associated algorithm (SA-TV, below)
favorably competes with several other image restoration techniques; see Section 6 for the
results and a comparison.

4. A hierarchical decomposition with spatially dependent λ

In [32,33] Tadmor, Nezzar and Vese (TNV) introduced a method for hierarchically decom-
posing an image into scales. They utilize concepts from interpolation theory to represent a
noisy and blurry image as the sum of “atoms” uk, where every uk extracts features at a scale
finer than for the previous uk−1. This method acts like an iterative regularization scheme,
i.e. up to some iteration index k̄ the method yields improving reconstruction results with a
deterioration (due to noise influence and ill-conditioning) beyond k̄; see, e.g., the iteration
sequence displayed in column (a) of Figure 8. In our context we use the TNV-scheme to im-
prove the basic MTV-algorithm. This results in a reduction of the number of iterations until
successful termination and in a robust method with respect to the choice of the initial λ0.
We also mention that while the approach in [33] relies on a scalar regularization parameter
λ, we extend the concept to a spatially varying one.

Considering dyadic scales, the resulting algorithm is as follows:
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(i) Choose λ0 > 0, λ0 ∈ L∞(Ω) and compute

(4.1) u0 := arg min
u∈BV (Ω)

∫

Ω
|Du| + 1

2

∫

Ω
λ0(Ku − z)2dx.

(ii) For j = 0, 1, 2 . . . set λj = 2jλ0 and vj = z − Kuj . Then compute

(4.2) ûj := arg min
u∈BV (Ω)

∫

Ω
|Du| + 1

2

∫

Ω
λj+1(Ku − vj)

2dx, uj+1 := uj + ûj .

Note that we assume here for simplicity that u0 and ûj , j = 0, 1, . . ., are unique. The following
results extending those in [33] can easily be proved. For the sake of completeness we provide
the proofs in Appendix A. For the formulation of these results we introduce ‖ · ‖∗, the dual
of the seminorm

∫

Ω |Du|, i.e.,

(4.3) ‖u‖∗ := sup∫
Ω |Dϕ|6=0

∫

Ω u ϕ dx
∫

Ω |Dϕ| .

Thus, we have

(4.4)

∫

Ω
u ϕ dx ≤ ‖u‖∗

∫

Ω
|Dϕ|, ∀ϕ ∈ BV (Ω).

The pair (u, ϕ) is called extremal if equality holds in (4.4). The following theorem character-
izes a solution of (1.5) in terms of ‖ · ‖∗.
Theorem 7. (i) u is a minimizer of (1.5) if and only if

(4.5)

∫

Ω
u K∗λ(z − Ku)dx = ‖K∗λ(z − Ku)‖∗

∫

Ω
|Du| =

∫

Ω
|Du|.

(ii) ‖K∗λz‖∗ ≤ 1 if and only if u = 0 is a minimizer of (1.5).
(iii) Assume that 1 < ‖K∗λz‖∗ < +∞. Then u is a minimizer of (1.5) if and only if

(K∗λ(z − Ku), u) is an extremal pair and ‖K∗λ(z − Ku)‖∗ = 1.
(iv) If ‖K∗λz‖∗ > 1, then the decomposition (4.1)–(4.2) yields λ0z ∼=

∑∞
j=0 λ0Kuj and

further

(4.6) ‖K∗λ0(z −
k

∑

j=0

Kûj)‖∗ =
1

2k
.

In order to extract image features at a finer scale in the spirit of the above localized version
of the TNV technique, we correspondingly modify the iterative adaption of λ in (3.17) by
setting

(λ̃k+1)i,j := ζ min

(

(λ̃k)i,j + ρ

(

√

(S̃ω
k )i,j − σ

)

, L

)

,(4.7a)

(λk+1)i,j =
1

ω2

∑

(s,t)∈Ωω
i,j

(λ̃k+1)s,t,(4.7b)

where ζ ≥ 1 and L is a large positive value to ensure uniform boundedness of {λ̃k}; otherwise if

λ̃k would become unbounded (possibly only on a non-empty subset of the discrete Ω), then the
local regularization effect would vanish and significant noise would remain. In our numerics we
choose ζ = 2, which comes from the notion of dyadic scales in the TNV-algorithm presented
above, to accelerate the adjustment of λ. In addition, since all images in our numerical
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tests have a dynamic range of [0, 1], and, thus, 0 < σ < 1, for scaling purposes we replace

(S̃ω
k )i,j − σ2 by

√

(S̃ω
k )i,j − σ.

In the next section we propose an algorithm which uses (4.7) to accelerate the parameter
adjustment and, hence, the image restoration.

5. Spatially adapted TV-algorithm

Based on the hierarchical decomposition of Section 4 and the local variance estimators and
confidence interval technique of Section 3 we propose the following algorithm.

SA-TV-Algorithm.

1: Initialize u0 = 0 ∈ R
m×m, λ0 = λ̃0 ∈ R

m×m
+ and set k := 0.

2: If k = 0, solve the discrete version of the minimization problem in (4.1), else compute
vk = z − Kuk and solve the discrete version of

min
u∈BV (Ω)

∫

Ω
|Du| + 1

2

∫

Ω
λ(Ku − vk)

2dx

with the discretization of λ equal to λk. Let ûk denote the corresponding solution.
3: Update uk+1 = uk + ûk.
4: Based on uk+1 and (4.7), update λk+1.
5: Stop, or set k := k + 1 and return to step 2.

A few remarks on the algorithm are in order: (i) We initialize λ by a relatively small
constant, i.e. λ0 = λ̄01 with λ̄0 > 0 small and 1 ∈ R

m×m the matrix with all entries equal
to 1. Extensive numerical results suggest that with a small λ̄0 our method is robust with
respect to the choice of λ0; see Section 6. (ii) The solution of the TV-problems in step 2 is
obtained by a superlinear convergent semismooth Newton method; see [21] for scalar λ and
the following subsection as well as Appendix B for an extension to the spatially dependent
case. The parameters in this method are chosen as in [21]. (iii) In our numerical practice
a 11-by-11 window turned out to yield reliable results. In order to support our choice, in
Section 6 we study the influence of the window size on the restoration quality. (iv) Similar
to the Bregman iteration proposed in [23], we stop the iterative procedure as soon as the
residual ‖z − Kuk‖2 drops below ξσ, where ξ > 1 relates to the image size. For m → ∞ we
have ξ → 1.

5.1. Primal-dual approach to spatially adapted total variation. In [21] an infeasible
primal-dual algorithm of generalized Newton-type was proposed for solving (1.5) with a scalar
λ. In the sequel we extend its key features to the case where λ = λ(x). Thus, the method
serves as a solver for the problems in step 2 of our SA-TV-algorithm.

Rather than operating on the original TV-model (1.5) the method is based on

(5.1) min
u∈H1

0 (Ω)

µ

2

∫

Ω
|∇u|22dx +

1

2

∫

Ω
λ|Ku − z|2dx +

∫

Ω
|∇u|2 dx,

where 0 < ǫ ≤ λ(x) ≤ λ̄ for almost all x ∈ Ω and 0 < µ ≪ λ̄−1. The µ-term serves the
purpose of a function space regularization for a “convenient” dualization in a Hilbert space
setting. Its effect on the restoration results is negligible since µ ≪ λ̄−1. We point out that
for µ → 0 the solution of (5.1) converges weakly in L2(Ω) to a solution of (1.5). Moreover,
in our numerics we even use µ = 0.
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Applying the Fenchel-Legendre calculus [14] analogously as in [21], the Fenchel-dual of
(5.1) reads

(P0) sup
~p ∈ L

2(Ω)
|~p(x)| ≤ 1 a.e. in Ω

−1

2
|||K∗λz − div~p|||2H−1 +

1

2

∫

Ω
λz2 dx,

where |||v|||2
H−1 = 〈Hµ,Kv, v〉H1

0 ,H−1 , v ∈ H−1(Ω) with Hµ,K = (K∗λK − µ△)−1, △ :

H1
0 (Ω) → H−1(Ω), and 〈·, ·〉H1

0 ,H−1 denotes the duality pairing between H1
0 (Ω) and its dual

H−1(Ω). Moreover, L2(Ω) := (L2(Ω))2. In order to avoid the non-uniqueness of the solution
of (P0), following [21] we consider a dual regularization:

(P ) sup
~p ∈ L

2(Ω)
|~p(x)| ≤ 1 a.e. in Ω

−1

2
|||K∗λz − div~p|||2H−1 +

1

2

∫

Ω
λz2 dx − β

2

∫

Ω
‖~p‖2

L2 .

where β > 0 is the associated regularization parameter. In order to study the effect of the
β-regularization of the Fenchel-dual we apply the Fenchel-Legendre calculus once more and
find that the dual of (P ) is given by

(P ∗) min
u∈H1

0 (Ω)

µ

2

∫

Ω
|∇u|22dx +

1

2

∫

Ω
λ|Ku − z|2dx +

∫

Ω
Φβ(∇u)dx,

where for ~w ∈ L2(Ω),

(5.2) Φβ(~w)(x) =

{

|w(x)|2 − β
2 if |w(x)|2 ≥ β,

1
2β
|w(x)|22 if |w(x)|2 < β.

Note that Φβ represents a local smoothing of
∫

Ω |∇u|2 dx in (5.1) to obtain uniqueness of the

dual solution ~p. In our numerics, we choose β = 10−3.
The first-order optimality conditions of (P ∗) characterize the solution ū and ~̄p of (P ∗) and

(P ), respectively, by

− µ△ū + K∗λKū − div~̄p = K∗λz in H−1(Ω),(5.3a)

max(β, |∇ū|2)~̄p −∇ū = 0 in L2(Ω).(5.3b)

Note that the system (5.3) is non-smooth, i.e. not necessarily Fréchet-differentiable. The
discrete version of this system can be solved efficiently by a semismooth Newton method; see
Appendix B for the semismooth Newton algorithm and details on the involved numerical linear
algebra. The generalized Newton solver converges globally, i.e. regardless of its initialization,
and locally at a superlinear rate [21].

6. Numerical Results

In this section we provide numerical results to study the behavior of the SA-TV method
with respect to its image restoration capabilities and its stability with respect to the choice
of the initial λ and ω. Unless otherwise specified we concentrate on image denoising, i.e., K
is the identity matrix, and use the window size ω = 11, as mentioned earlier. Further, in all
of our experiments reported on below the image intensity range is scaled to [0, 1].
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(a) (b) (c)

Figure 4. Example 1: Original images. (a) “Cameraman”, (b) Part 1 of “Barbara”,
(c) Part 2 of “Barbara”.

6.1. Comparison with other restoration techniques. We study the behavior of the SA-
TV-method and compare it with the “classical” total variation (TV) method [26], the Breg-
man iteration [23], the TNV-method [32], and the basic MTV-method introduced in Section
3.3. While the first two methods operate with a scalar λ, the TNV-method yields a genuine
hierarchical decomposition. The performance of these methods is compared quantitatively
by means of the peak signal-to-noise ratio (PSNR) [8], which is a widely used image quality
assessment measure, and the recently proposed structural similarity measure (MSSIM) [35],
which relates to perceived visual quality better than PSNR.

Example 1. Our first test examples are displayed in Figure 4, where the original im-
ages “Cameraman” (256-by-256) and “Barbara” (512-by-512) are shown. For a study of our
method in the case of texture-like structures we zoom into certain regions of the “Barbara”-
image; see the middle and right plots. The original images can be found in [1]. In this
example, we consider degraded images which are corrupted by Gaussian white noise with the
noise level σ = 0.1. The noisy images are shown in Figure 5–7 (a).

We start by comparing the SA-TV method with a few other methods listed in the beginning
of this section. The results are shown in Figure 5–7. For the TV-method we show the restored
image with α chosen such that the second constraint in (1.2) is satisfied; see [10]. In addition,
after many experiments with different α-values in the model (1.4), the one with the best
PSNR and the one with the best MSSIM are also presented here. Comparing these values
we find that the results with the largest MSSIM values match the human visual system
better than the one with the largest PSNR. The Bregman iteration is often used for contrast
enhancement, but it is also an excellent method for noise removal. Therefore, we also list its
results here for comparison. For a fair comparison, we use the same initial choices λ0 = 2.5 or
α0 = 0.4 and the same stopping rule for the Bregman iteration, the TNV-method, the basic
MTV-method of Section 3.3 and the SA-TV-method of Section 5 with µ = 0 and β = 10−3,
i.e, the respective algorithm is stopped as soon as the residual ‖z−uk‖2 drops below the noise
level σ.

From Figure 5–7 we find that our SA-TV-method performs best both visually and quan-
titatively. Note that in the images restored by the TV-method, we observe the usual result
that small α preserves details, but at the same time some noticeable noise remains; otherwise,
if α is large, the details are overregularized. Although the Bregman iteration removes most of
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5. Example 1: Results of different methods when restoring the noisy
image “Cameraman”. (a) Noisy image, (b) TV-method with [10] (α =
0.091, PSNR=27.04, MSSIM=0.801), (c) TV-method (α = 0.07, PSNR=27.42,
MSSIM=0.783), (d) TV-method (α = 0.085, PSNR=27.19, MSSIM=0.802), (e)
Bregman iteration (PSNR=27.34, MSSIM=0.809), (f) TNV-method (PSNR=26.96,
MSSIM=0.689), (g) Basic MTV-algorithm (PSNR=26.94, MSSIM=0.803), (h) Our
method (PSNR=27.90, MSSIM=0.825).

the noise, it still gives more heterogeneous results; see in particular Figure 5. Since the TNV-
method performs a hierarchical image decomposition, image details are added back in every
iteration, but at the same time some noise is also added back; see the background of Figure
5–7. For the images restored by the basic MTV-method we note that details and features at
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6. Example 1: Results of different methods when restoring part of
the noisy image “Barbara”. (a) Noisy image, (b) TV-method with [10] (α =
0.064, PSNR=22.07, MSSIM=0.659), (c) TV-method (α = 0.04, PSNR=22.81,
MSSIM=0.689), (d) TV-method (α = 0.045, PSNR=22.76, MSSIM=0.691), (e)
Bregman iteration (PSNR=21.34, MSSIM=0.688), (f) TNV-method (PSNR=22.65,
MSSIM=0.691), (g) Basic MTV-algorithm (PSNR=22.21, MSSIM=0.675), (h) Our
method (PSNR=23.32, MSSIM=0.767).

a larger scale are not as well resolved as in case of the TNV- or our new SA-TV method. This
is due to a slower update of λ. In fact, when initializing by a rather small λ0, our stopping
rule involving the global variance of the current reconstruction terminates the iteration even
before λ becomes sufficiently large in detail regions for recovering these regions sufficiently
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7. Example 1: Results of different methods when restoring part of
the noisy image “Barbara”. (a) Noisy image, (b) TV-method with [10] (α =
0.088, PSNR=25.32, MSSIM=0.723), (c) TV-method (α = 0.06, PSNR=25.97,
MSSIM=0.734), (d) TV-method (α = 0.07, PSNR=25.85, MSSIM=0.742), (e)
Bregman iteration (PSNR=25.23, MSSIM=0.747), (f) TNV-method (PSNR=25.92,
MSSIM=0.716), (g) Basic MTV-algorithm (PSNR=25.43, MSSIM=0.732), (h) Our
method (PSNR=26.45, MSSIM=0.785).

accurately; see, e.g., the camera in Figure 5. Further, large scale features appear somewhat
oversmoothed; see, e.g., the face of Barbara in Figure 7. At the cost of additional iterations,
a localized stopping rule improves the reconstructions. Note, however, that the basic MTV
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k = 1

k = 2

k = 3

k = 4
(a) (b) (c) (d)

Figure 8. Example 1: Comparison of iterations of the TNV-method and the SA-
TV-method when restoring the noisy image “Cameraman”. (a) Result of TNV-
method, (b) Residual of TNV-method, (c) Result of SA-TV-method, (d) Residual
of SA-TV-method.

based recovery of details and the reconstruction of homogeneous regions still favorably com-
pares with the results by the TV-method. The SA-TV-method, on the other hand, suppresses
noise successfully while preserving significantly more details. For instance, the sky in Figure 5
and the arms of Barbara in Figure 7 are smooth and the details of the camera in Figure 5 and
the features on the scarf in Figure 6 and 7 are preserved clearly without being degraded by
noise. With respect to PSNR and MSSIM, we also find quantitatively that our method gives
the best restoration results. On the other hand, a very close inspection shows, e.g., a slight
halo around the camera and still some heterogeneity in the lawn area of Figure 5. Related
heterogeneous effects can be found in Figure 6 and 7 . One might hope that these effects may
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“Cameraman” “Barbara”
CPU-Time k CPU-Time k

Bregman iteration 94.19 4 548.68 4
TNV-method 78.66 4 422.02 4

Basic MTV-method 213.38 22 1620.4 37
SA-TV-method 60.26 3 364.24 3

Table 1. CPU-time in seconds and the number of iterations by different methods.

get removed by an anisotropic smoothing of λ or by adaptive local windows, which opens up
interesting research perspectives.

Computational efficiency. In the SA-TV-method, we utilize the hierarchical decomposition
concept of the TNV-method. As a result, our adaptive choice of λ not only improves the
TNV-method with respect to its restoration capability (see Figure 5–7), but it also reduces
the number of iterations and, hence, the CPU-time until successful termination. In Figure
8, the restored image and the corresponding residual in each iteration of the TNV- and
the SA-TV-method are shown, respectively. In the first iteration, since we utilize the same
initial value of λ0 for both algorithms, both restoration results and their pertinent residuals
are identical; compare the first row of Figure 8. We note that the residual contains most
of the details. In the next iteration, for the TNV-method we have λ1 = 2λ0 in order to
extract features at a finer scale. The SA-TV-method, however, is based on (4.7) and the
associated λ1 is larger than 2λ0 in image regions corresponding to details. Thus, these details
are extracted better already in the second iteration; see the camera and the tripod in the
second row of Figure 8 (c) and (d). By similar reasons, in the third iteration more details
are added back by the SA-TV-method than by the TNV-method; see, e.g., the buildings in
the background. Then, the SA-TV-method satisfies the stopping condition first because it
has extracted the various image features much faster. Furthermore, when the TNV-method
satisfies the stopping condition, the result not only includes more details but also significant
noise. For this aspect observe the background regions.

For comparing the computational time, in Table 1 we list the CPU-times consumed by the
iterative methods in our comparison. All simulations are run in Matlab 7.5 (R2007b) on a
PC equipped with P4 3.0GHz CPU and 3G RAM memory. Since for all methods most of
the computations within each iteration are spent for solving a total variation type problem,
due to requiring the least number of iterations the SA-TV-method also spends least CPU-
time. Moreover, we find that with the original adaptive selection of λ in (3.17) the basic
MTV-method needs significantly more iterations to meet the stopping condition.

Dependence on λ̄0. Concerning the influence of the initial parameter λ̄0 on the restoration
behavior we observe that our method is rather stable with respect to λ̄0. In Figure 9, we plot
the PSNR- and MSSIM-values for the images restored by our method with λ̄0 varying from
0.1 to 3. Since λ controls the trade-off between a good data fit and the regularization coming
from the TV-term, it has large effect on the variance of the residual ‖z − uk‖2. This can be
seen from the left plot in Figure 9 where we also specify the number of iterations for each
PSNR-value. From the plots we can see that PSNR and MSSIM are rather stable. In order
to illustrate the influence on the restored images, in Figure 10 we show the results of part 1
of “Barbara” for several values of λ̄0.
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Figure 9. Example 1: PSNR and MSSIM for images restored by our method for
different initial λ̄0.

(a) (b) (c) (d)

Figure 10. Example 1: Images restored by our method with different λ̄0. (a)
λ̄0 = 0.1, (b) λ̄0 = 0.5, (c) λ̄0 = 1, (d) λ̄0 = 2.

4 6 8 10 12 14 16 18 20 22
25

25.5

26

26.5

27

27.5

28

28.5

29

ω

P
S

N
R

 

 

Cameraman
Barbara

4 6 8 10 12 14 16 18 20 22
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

ω

M
S

S
IM

 

 

Cameraman
Barbara

Figure 11. Example 1: PSNR and MSSIM for results obtained by our method with
different ω.

Dependence on ω. We also test our method for different values of the window size ω varying
from 3 to 23. Figure 11 shows the plots of the PSNR- and MSSIM-values of the denoising
results for the same denoising problems as in Figure 5 and 7 with λ̄0 = 1. Except for very
small window size, we observe a remarkable stability with respect to ω. This can also be
seen from the restored images in Figure 12. Too small window sizes (here ω = 3 and 5) yield
comparatively small PSNR and MSSIM values, which is a consequence of the small sample
sizes. Figure 12 shows that with ω = 3 some noise persists, whereas sufficiently large ω
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(a) (b) (c) (d)

Figure 12. Example 1: Restored images by our method with different ω. (a) ω = 3,
(b) ω = 7, (c) ω = 13, (d) ω = 17

reduces noise effects and recovers details; compare the rather constant graphs for the PSNR-
and MSSIM values for ω ≥ 11. If, however, ω becomes too large, then the regularization
parameter choice becomes rather global than local which compromises image details.

Example 2 (medical image restoration). In Figure 13 we show the results obtained by
the TV-method (c), the Bregman iteration (d) , the TNV-method (e) and our algorithm (f),
respectively, when denoising the magnetic resonance image of a rabbit heart at a resolution
of 1024× 1024 pixels (original (a) with (b) an enlarged part). For the TV-method we choose
α = 1/λ based on the algorithm in [10]. In the other iteration methods, we estimate the
noise level as the variance in a homogenous region, and set the parameter λ̄0 = 1. For a
better inspection of the result, we enlarge a part of the image in Figure 13. We note that the
classical TV-method is outperformed by the Bregman iteration, the TNV-method and our
method, with the Bregman iteration missing some of the details; see, e.g., the marked square
in the lower left corner. In this highlighted region we find that in subplot (c) many details
(fiber directions) are lost. In subplot (d) this effect is less pronounced, but nevertheless, when
compared to (e) and (f), the quality of the restored details is significantly reduced. While
the TNV-method and our method give visually similar results for this test image we observe
that our method requires the smallest number of iterations (also when compared with the
Bregman iteration).

Example 3 (simultaneous deblurring and denoising). Finally, we illustrate the
restoration ability of our method for noisy blurred images. The blurring is due to a Gaussian
convolution with a 9 × 9 window and a standard deviation of 1. Further we have Gaussian
white noise with σ = 0.02. Figure 14 depicts a part of the noisy blurred ”Barbara” image and
the restoration results. For the TV-method we use α = 1/λ according to [10]. For the other
methods we set λ̄0 = 1. Comparing the result obtained by our method with the others, we
find that our method preserves details better; see, e.g., the features on the scarf. Based on
PSNR and MSSIM, our method also outperforms the other methods. In addition, although
we use the same value of λ̄0 for the Bregman iteration as well as the TNV-method and our
algorithm, our method needs the smallest number of iterations. In this respect, we recall that
our method intertwines the TNV-hierarchical decomposition concept [33], but with a spatially
varying λ, with a confidence interval based λ-update. This fact is responsible for extracting
details faster and, thus, resulting in a smaller iteration number than the pure TNV-method.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Example 2: Results when restoring the medical image of rabbit heart:
(a) Original image, (b) Enlarged original part, (c) TV-method, (d) Bregman iteration
(k = 20), (e) TNV-method (k = 7), (f) SA-TV-method (k = 3)

.

6.2. Stability of our regularization parameter choice rule. Since the performance of
multi-scale total variation is mainly influenced by the selection of the parameter λ, in this
section we discuss the new spatially adaptive selection of λ in our method in case of various
noise levels.

Example 4. We consider a 300-by-300 test image as shown in Figure 15(a). The third row
of Figure 15 depicts the final values of the parameter λ upon termination of our method with
λ̄0 = 0.2. In all cases λ is large in detail regions and small in the homogeneous background.
Moreover, small scale features lead to large λ. When comparing the restoration results of
Figure 15 (second row) for different noise levels, i.e., σ = 0.1, 0.2, and 0.3, respectively,
we find that even for rather high noise level our method still is able to distinguish most of
the detail regions and assigns automatically a large value to λ in these regions. Thus, our
parameter choice rule appears to be robust with respect to noise.

In Figure 3 we compared our upper bound for the local variance estimator with the bound
in [15]. Here we continue the investigation of the stability of our upper bound by studying
its behavior when over- or underestimating the variance σ2. Figure 16 depicts the restoration



28 YIQIU DONG, MICHAEL HINTERMÜLLER, AND M. MONSERRAT RINCON-CAMACHO

(a) (b) (c)

(d) (e) (f)

Figure 14. Example 3: Results of different methods when restoring the blurred and
noisy image “Barbara”: (a) Original image, (b) Blurred noisy image, (c) TV-method
(PSNR=28.06, MSSIM=0.823), (d) Bregman iteration (PSNR=28.27, MSSIM=0.839,
k = 76), (e) TNV-method (PSNR=29.15, MSSIM=0.865, k = 9), (f) Our method
(PSNR=29.68, MSSIM=0.883, k = 4).

results for underestimated (see the plots (a) and (b)) and for overestimated variance (see the
plots (c) and (d)). We observe that an underestimated variance tightens the upper bound
resulting in an overestimation of λ and, hence, too little regularization such that noise appears
in the restoration; see plot (a) where the estimated σ is 0.08, whereas the true one is 0.1.
On the other hand, if σ is overestimated, λ is underestimated and too much regularization
takes place. The latter adversely affects the recovery of image details; compare plot (d) of
Figure 16. Obviously, the quality of the reconstruction depends on the quality of the estimate
of σ, where overestimation appears less critical than underestimation.

In Figure 17 we show the final values of λ obtained by our choice rule for the examples 1
to 3. Again in detail regions λ is large in order to preserve the details, and it is small in the
homogeneous regions to remove noise. Furthermore, for the noisy blurred image our method
is able to distinguish most of the detail regions properly; see Figure 17(e).

7. Conclusions

A spatially adapted regularization parameter λ in the ROF-model is justified by considering
an equivalent minimization problem subject to pointwise constraints. The introduction of a
local variance estimator of the residual image turns out to be an accurate instrument for
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Figure 15. Example 4: Results of the SA-TV-method for different noise levels σ
(row 1: noisy images; row 2: restored images; row 3: final values of λ). (a) σ = 0.1,
(c) σ = 0.2, (d) σ = 0.3.

updating λ within an iterative procedure. Even though the update of the regularization
parameter can be done gradually by using the local variance estimator only, combining the
updating process with the hierarchical decomposition approach proposed by Tadmor, Nezar
and Vese considerably reduces the number of iterations for adjusting λ according to the
image scales and it yields even better results with respect to the recovery of image details
when compared to the TNV-method as a stand-alone technique. Further, assuming that the
noise variance σ2 is known, the present algorithm is completely automatized, i.e., there is no
necessity of tuning regularization parameters. The overall method combines the hierarchical
decomposition based λ-adjustment scheme with an inexact semismooth Newton solver relying
on Fenchel duality for total variation regularized subproblems. The numerical results show
that the new method outperforms several popular TV-based methods with respect to both
noise removal and detail preservation.
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(a) (b) (c) (d)

Figure 16. Example 4: Results for restoring noisy image “Cameraman” with
σ = 0.1 by SA-TV-method with inaccurate noise level estimation σ̃. (a) With
σ̃ = 0.08 (PSNR=27.61, MSSIM=0.793, k = 3), (b) With σ̃ = 0.09 (PSNR=27.93,
MSSIM=0.824, k = 3), (c) With σ̃ = 0.11 (PSNR=25.90, MSSIM=0.766, k = 3), (d)
With σ̃ = 0.12 (PSNR=25.76, MSSIM=0.763, k = 3).

(a) (b) (c)

(d) (e)

Figure 17. Example 1-3: Final values of λ by our parameter choice rule for (a)-(c)
Example 1, (d) Example 2, (e) Example 3.
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Appendix A. Proofs of section 4

We provide a proof of Theorem 7 which extends the results of [33].

Proof. (i) Let ǫ > 0 be sufficiently small. Then, if u is a minimizer of (1.5), we have for all
ϕ ∈ BV (Ω)

∫

Ω
|D(u + ǫϕ)| + 1

2

∫

Ω
λ(K(u + ǫϕ) − z)2dx ≥

∫

Ω
|Du| + 1

2

∫

Ω
λ(Ku − z)2dx,(A.1)

∫

Ω
|D(u + ǫϕ)| + ǫ

∫

Ω
λ(Kϕ)(Ku − z)dx +

ǫ2

2

∫

Ω
λ(Kϕ)2dx ≥

∫

Ω
|Du|,(A.2)

∫

Ω
|Du| + ǫ

∫

Ω
|Dϕ| + ǫ

∫

Ω
λ(Kϕ)(Ku − z)dx +

ǫ2

2

∫

Ω
λ(Kϕ)2dx ≥

∫

Ω
|Du|.(A.3)

Dividing (A.3) by ǫ > 0 and letting ǫ → 0+ we get
∫

Ω
|Dϕ| ≥

∫

Ω
λ(Kϕ)(z − Ku)dx =

∫

Ω
ϕK∗λ(z − Ku)dx.

This yields

sup∫
Ω |Dϕ|6=0

∫

Ω ϕK∗λ(z − Ku)dx
∫

Ω |Dϕ| ≤ 1

and further ‖K∗λ(z−Ku)‖∗ ≤ 1. For the reverse inequality set ϕ = u and −1 < ǫ < 0. Then
starting from (A.2) we have

(1 + ǫ)

∫

Ω
|Du| + ǫ2

2

∫

Ω
λ(Ku)2dx ≥

∫

Ω
|Du| + ǫ

∫

Ω
λ(Ku)(z − Ku)dx.

Dividing by ǫ < 0 and letting ǫ → 0− we obtain
∫

Ω
|Du| ≤

∫

Ω
uK∗λ(z − Ku)dx ≤ ‖K∗λ(z − Ku)‖∗

∫

Ω
|Du| ≤

∫

Ω
|Du|.

For the sufficiency, we note that
∫

Ω
λ(z − K(u + ϕ))2dx =

∫

Ω
λ(z − Ku)2 − 2

∫

Ω
λ(z − Ku)(K(u + ϕ))dx+

2

∫

Ω
λ(z − Ku)(Ku)dx +

∫

Ω
λ(Kϕ)2dx.

The second term of the right hand side above is estimated by
∫

Ω
K∗λ(z − Ku)(u + ϕ)dx ≤ ‖K∗λ(z − Ku)‖∗

∫

Ω
|D(u + ϕ)| ≤

∫

Ω
|D(u + ϕ)|,

and because (K∗λ(z − Ku), u) is an extremal pair, the third term implies
∫

Ω
K∗λ(z − Ku)udx =

∫

Ω
|Du|.
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Hence, we have
∫

Ω
|D(u + ϕ)| + 1

2

∫

Ω
λ(z − K(u + ϕ))2dx

≥
∫

Ω
|D(u + ϕ)| + 1

2

∫

Ω
λ(z − Ku)2dx −

∫

Ω
|D(u + ϕ)|+

∫

Ω
|Du| + 1

2

∫

Ω
λ(Kϕ)2dx

≥1

2

∫

Ω
λ(z − Ku)2 +

∫

Ω
|Du|

which yields that u is a minimizer.

(ii) Let ‖K∗λz‖∗ ≤ 1. Given the characterization (4.5), we obtain
∫

Ω
|Du| =

∫

Ω
uK∗λzdx −

∫

Ω
uK∗λKu ≤ ‖K∗λz‖∗

∫

Ω
|Du| −

∫

Ω
(
√

λKu)2dx

≤
∫

Ω
|Du| −

∫

Ω
(
√

λKu)2dx.

Hence, Ku = 0 and
∫

Ω
|Du| + 1

2

∫

Ω
λ(Ku − z)2dx =

∫

Ω
|Du| + 1

2

∫

Ω
λz2dx.

Therefore, u must be a constant. Based on the properties of K, we have u ≡ 0.
Now, if u = 0 is a minimizer of (1.5), then for any ϕ ∈ BV (Ω) we have

1

2

∫

Ω
λz2dx ≤

∫

Ω
|Dϕ| + 1

2

∫

Ω
λ(Kϕ − z)2dx

and further
∫

Ω
λzKϕdx ≤

∫

Ω
|Dϕ| + 1

2

∫

Ω
(
√

λKϕ)2dx.

From a rescaling by setting ϕ 7→ ǫϕ, we obtain

ǫ

∫

Ω
λzKϕdx ≤ ǫ

∫

Ω
|Dϕ| + ǫ2

2

∫

Ω
(
√

λKϕ)2dx.

Next we divide by ǫ and let ǫ → 0+, which results in
∫

Ω
λzKϕ ≤

∫

Ω
|Dϕ|

for all ϕ ∈ BV (Ω). We conclude that ‖K∗λz‖∗ ≤ 1.

(iii) Given the result (4.5) we have to show that
∫

Ω |Du| does not vanish.
Let us suppose it does vanish. Then u is a constant. For any constant c and any ϕ ∈ BV (Ω)

with
∫

Ω |Dϕ|dx > 0 we have
∫

Ω K∗λz(ϕ + c)dx
∫

Ω |D(ϕ + c)| =

∫

Ω K∗λzϕdx
∫

Ω |Dϕ| + c

∫

Ω K∗λzdx
∫

Ω |Dϕ| .
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Based on the assumption ‖K∗λz‖∗ < +∞ and (4.3), this implies
∫

Ω K∗λzc dx = 0 for all
constants c. Thus,

1

2

∫

Ω
λ(Ku − z)2dx =

1

2

∫

Ω
λz2dx +

1

2

∫

Ω
(
√

λKu)2dx

is minimized when Ku = 0. From (ii) we conclude ‖K∗λz‖∗ ≤ 1, which yields a contradiction
to our assumption.

(iv) For u0 we have ‖K∗λ0(z − Ku0)‖∗ = 1, and for ûk there holds

‖K∗λk+1(vk − Kûk)‖∗ = 1,

or, with λk+1 = 2λk, we have

‖K∗λ0(z − Kuk − Kûk)‖∗ = ‖K∗λ0(z − Kuk+1)‖∗ = ‖K∗λ0(z −
k

∑

j=0

Kûj)‖∗ =
1

2k

for k = 0, 1, 2, · · · . ¤

Appendix B. Semismooth Newton method for solving (5.3)

We explain our semismooth Newton solver by means of the discrete version of (5.3) and
vector-valued variables. For this purpose let uℓ ∈ R

M , pℓ ∈ R
2M , λℓ ∈ R

M , for some M ∈ N

which depends on the image size m×m, denote the discrete image intensity, dual variable and
spatially dependent λ, respectively. The subscript ℓ refers to the ℓ-th element of a sequence
generated by the semismooth Newton solver introduced below. Further, let z ∈ R

M denote the
discrete data vector. We define the discrete gradient operator ∇ ∈ R

2M×M and the discrete
operator Bµ,λ = −µ△ + K⊤D(λ)K with △,K⊤D(λ)K ∈ R

M×M and K⊤ the transpose of

K ∈ R
M×M . Here D(λ) = diag(λ1, . . . , λM ). We use mℓ = max(βe, ̺(∇uℓ)) ∈ R

2M , where

e = (1, 1, · · · , 1)⊤ ∈ R
2M and (̺(v))i = (̺(v))i+M = |((vx)i, (vy)i)

⊤|2 =
√

|(vx)i|2 + |(vy)i|2
(1 ≤ i ≤ M) for v ∈ R

2M = (v⊤x , v⊤y )⊤ with vx, vy ∈ R
M . Moreover, χAℓ+1

= D(tℓ) ∈ R
2M×2M

with

(tℓ)i =

{

1, if (̺(∇uℓ))i ≥ β,
0, else,

and N denotes the Jacobian of the function ̺, i.e.

N (v) = (D(̺(v)))−1

(

D(vx) D(vy)
D(vx) D(vy)

)

.

The discrete version of (5.3) at (uℓ, pℓ) is given by

Bµ,λu + ∇⊤p = K⊤D(λ)z,(B.1a)

D(mℓ)p −∇u = 0.(B.1b)

Applying a generalized Newton step to (B.1) at (uℓ, pℓ) yields
(

Bµ,λ ∇⊤

(−D(e) + χAℓ+1
D(pℓ)N (∇uℓ))∇ D(mℓ)

)(

δu
δp

)

=

(

−Bµ,λuℓ −∇⊤pℓ + K⊤D(λ)z
∇uℓ − D(mℓ)pℓ

)

,(B.2)

where δu ∈ R
M and δp ∈ R

2M denote the update directions.
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Since D(mℓ) is invertible, we eliminate δp from (B.2) and obtain the reduced system

(B.3) Hℓδu = fℓ,

where

Hℓ = Bµ,λ + ∇⊤D(mℓ)
−1

[

D(e) − χAℓ+1
D(pℓ)N (∇uℓ)

]

∇,

fℓ = −Bµ,λuℓ + K⊤D(λℓ)z −∇⊤D(mℓ)
−1∇uℓ.

We note that δu is a decent direction for the discrete objective in (5.1) if Hℓ is positive
definite. Similar to [21, Cor.3.2] the positive definiteness is guaranteed under the following
condition

(C) ̺(pℓ)i ≤ 1 and (bℓ,i + cℓ,i)
2 ≤ 4aℓ,idℓ,i for all i = 1, . . . , M,

where

aℓ,i =1 − (̺(∇uℓ))
−1
i (pℓ)i(∇xuℓ)i,

bℓ,i = − (̺(∇uℓ))
−1
i (pℓ)i(∇yuℓ)i,

cℓ,i = − (̺(∇uℓ))
−1
i (pℓ)i+M (∇xuℓ)i,

dℓ,i =1 − (̺(∇uℓ))
−1
i (pℓ)i+M (∇yuℓ)i.

In the following theorem λmin(·) refers to the smallest eigenvalue of a matrix.

Theorem 8. Let the condition (C) hold for all i ∈ {1, · · · ,M} and ℓ ∈ N. Then, for all
ℓ ∈ N, the matrix Hℓ is positive definite, and λmin(Hℓ) ≥ λmin(Bµ,λ) > 0. Moreover, the

sequence {H−1
ℓ }ℓ∈N is uniformly bounded.

In order to satisfy (C) in our algorithm we proceed as follows: Replace ((pℓ)i, (pℓ)i+M ) by
max(1, ̺(pℓ)i)

−1((pℓ)i, (pℓ)i+M ) =: ((p̂ℓ)i, (p̂ℓ)i+M ) and check whether (bℓ,i + cℓ,i)
2 ≤ 4aℓ,idℓ,i

is satisfied by ((p̂ℓ)i, (p̂ℓ)i+M ). If this is not the case, then bℓ,i and cℓ,i are replaced by νℓ,ibℓ,i

and νℓ,ick,i with νℓ,i = 2
√

aℓ,idℓ,i/|bℓ,i + cℓ,i|; otherwise bℓ,i and cℓ,i are kept. After these

modification, we obtain a positive definite matrix H+
ℓ which replaces Hℓ in (B.3). It can be

shown that H+
ℓ → Hℓ as uℓ converges to the solution of the discrete version of (5.1).

The above considerations result in the following semismooth Newton solver.

Semismooth Newton for step 2 of the SA-TV-algorithm.

1: Initialize (u0, p0) ∈ R
M × R

2M and set ℓ := 0.
2: Estimate the active sets, i.e., determine χAℓ+1

∈ R
2M×2M .

3: If the condition (C) is not satisfied, then compute H+
ℓ ; otherwise set H+

ℓ := Hℓ.

4: Solve H+
ℓ δu = fℓ for δu and let δuℓ denote the solution.

5: Use δuℓ to compute δpℓ by means of the second equation of (B.2).
6: Update uℓ+1 := uℓ + δuℓ, pℓ+1 := pℓ + δpℓ.
7: Stop; or set ℓ := ℓ + 1 and return to step 2.

Similar as in [21] it can be shown that this algorithm converges at a superlinear rate provided
that u0 is sufficiently close to the solution of the discrete version of (5.1). Moreover, the
algorithm may be equipped with a line search or damping procedure. In this case, in addition
to the fast local convergence the method converges globally, i.e., regardless of the initial choice
u0. For details on the globalization we refer to [21].

Finally we note that the system in step 4 of the above algorithm is solved iteratively by
the BICGSTAB-method [28]. We further point out that we use an inexact Newton solver,
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i.e., the stopping tolerances for the BICGSTAB-solver become more and more stringent as
we approach the solution.
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[7] M. Bertalmio, V. Caselles, B. Rougé, and A. Solé. TV based image restoration with local constraints.

Journal of Scientific Computing, 19:95–122, 2003.
[8] A. Bovik. Handbook of Image and Video Processing. Academic Press, 2000.
[9] A. Buades, B. Coll, and J.M. Morel. A review of image denoising algorithms, with a new one. SIAM

Interdisciplinary Journal, 4(2):490–530, 2005.
[10] A. Chambolle. An algorithm for total variation minimization and application. Journal of Mathematical

Imaging and Vision, 20:89–97, 2004.
[11] A. Chambolle and P-L. Lions. Image recovery via total variation minimization and related problems.

Numerische Mathematik, 76:167–188, 1997.
[12] Q. Chang and I-L. Chern. Acceleration methods for total variation-based image denoising. SIAM J.

Applied Mathematics, 25:982–994, 2003.
[13] D.C. Dobson and C.R. Vogel. Convergence of an iterative method for total variation denoising. SIAM J.

Numer. Anal., 34:1779–1791, 1997.
[14] I. Ekeland and R. Témam. Convex Analysis and Variational Problems. Classics Appl. Math. 28, SIAM,

Philadelphia, 1999.
[15] G. Facciolo, A. Almansa, J.-F. Aujol, and V. Caselles. Irregular to regular sampling, denoising and

deconvolution. SIAM Journal on Multiscale Modeling and Simulation, 7(4):1574–1608, 2009.
[16] N.P. Galatsanos and A.K Ketsaggelos. Methods for choosing the regularization parameter and estimating

the noise variance in image restoration and their relation. IEEE Trans. Image Process., 1:322–336, 1992.
[17] G. Gilboa, N. Sochen, and Y.Y. Zeevi. Texture preserving variational denoising using an adaptive fi-

delity term. In in Proceeding of the IEEE Workshop on Variational, Geometric and Level Set Methods in
Computer Vision, pages 137–144, Nice, France, 2003.

[18] E. Giusti. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston, 1984.
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