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Automated Segmentation of Intraretinal Cystoid
Fluid in Optical Coherence Tomography

Gary R. Wilkins, Odette M. Houghton, and Amy L. Oldenburg*

Abstract—Cystoid macular edema (CME) is observed in a vari-
ety of ocular disorders and is strongly associated with vision loss.
Optical coherence tomography (OCT) provides excellent visual-
ization of cystoid fluid, and can assist clinicians in monitoring the
progression of CME. Quantitative tools for assessing CME may
lead to better metrics for choosing treatment protocols. To ad-
dress this need, this paper presents a fully automated retinal cyst
segmentation technique for OCT image stacks acquired from a
commercial scanner. The proposed method includes a computa-
tionally fast bilateral filter for speckle denoising while maintaining
CME boundaries. The proposed technique was evaluated in images
from 16 patients with vitreoretinal disease and three controls. The
average sensitivity and specificity for the classification of cystoid
regions in CME patients were found to be 91% and 96%, respec-
tively, and the retinal volume occupied by cystoid fluid obtained by
the algorithm was found to be accurate within a mean and median
volume fraction of 1.9% and 0.8%, respectively.

Index Terms—Biomedical imaging, computer-aided diagnosis,
macular edema, optical coherence tomography (OCT).

I. INTRODUCTION

CYSTOID macular edema (CME) is a pathological con-
sequence of several ocular disorders including diabetic

retinopathy, retinal vein occlusion, ocular inflammation, and
age-related macular degeneration [1], [2]. Diabetic retinopa-
thy and age-related macular degeneration are leading causes of
irreversible blindness in the U.S. [3]. The number of people
expected to experience vision loss is predicted to double over
the next 30 years. The presence of CME in these conditions is
often associated with loss of visual acuity. New and improved
methods are needed for the identification and characterization
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Fig. 1. B-mode OCT image of human retina exhibiting CME. (Top panel)
Original color image acquired from the Cirrus OCT. Retinal layers have been
indicated as follows: RPE, OPL, ONL, ganglion cell layer, inner nuclear layer,
inner plexiform layer, and NFL. (Bottom panel) Grayscale version of top image,
with arrows indicating regions of cystoid fluid. Scale box: 250 μm × 250 μm.

of CME to enhance prevention and inform treatment options for
vision loss [4], [5].

Optical coherence tomography (OCT) depth resolves optical
reflections from internal structures in biological tissues by using
noninvasive, low-coherence light [6]. OCT is widely employed
for the assessment of macular diseases [7] and has enabled de-
tailed characterizations of CME [8]–[10]. As shown in Fig. 1,
OCT is highly effective for visualizing CME because the cys-
toid fluid has less optical scattering than the surrounding retinal
tissues. Typical methods for OCT-based assessment in disor-
ders associated with CME involve the measurement of foveal
thickness because of its strong anticorrelation with visual acu-
ity [8]–[10]. However, a recent study describes CME in the
absence of macular thickening in several retinal disorders and
recognizes that CME may not always be associated with macu-
lar thickening [4]. Measurements of macular thickness can also
be more error prone in the presence of subretinal fluid [11],
[12].
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Structurally, CME comprises a contiguous fluid-filled space
containing columns of tissue; these spaces may falsely appear as
separated cysts when viewed by OCT [13]. Recent findings sug-
gest that retinal tissue volume can be a better predictor of visual
acuity than central macular thickness in CME patients [13]. As
such, we expect that the volume occupied by cystoid fluid in the
retina may be a useful diagnostic metric. Automated methods
for segmentation of the intraretinal cystoid fluid are necessary to
efficiently assess an entire 3-D OCT image stack and to estimate
the total cyst volume. In this paper, we describe an automated al-
gorithm to segment fluid-filled regions within a 3-D image stack
acquired from a Cirrus HD-OCT Model 4000 system (Carl Zeiss
Meditech, Dublin, CA), and subsequently to compute the cys-
toid fractional volume, using only the information available via
standard features on the OCT system.

Before segmentation in OCT images can be successfully
achieved, denoising must be performed to mitigate the effects
of speckle. Speckle occurs in both OCT and ultrasonic imag-
ing, and arises from the random interference of waves reflected
from subresolution variances within the object [14], [15]. Main-
taining edge-like features in the image after speckle denoising
is particularly important in segmentation applications. Specifi-
cally, in retinal image segmentation applications, OCT speckle
denoising has been performed by various methods including a
spatially adaptive wavelet filter [16], anisotropic diffusion fil-
ters [17]–[19], Bayesian least-squares estimation [20], and a
combination of bilateral and median filtering [21], the latter of
which is employed in this study. Importantly, we have adapted
a new bilateral filter algorithm reported in [22] for OCT speckle
denoising that provides a significant speed advantage over stan-
dard filters, enabling rapid processing of the OCT image stack.

Numerous methods for segmentation of retinal layers in OCT
are available [17], [18], [21], [23], [24], including user-friendly
software applications [25]. To our knowledge, however, there are
currently no methods reported for the automated segmentation
of the cystoid fluid volume in CME. This paper presents a fully
automated process that identifies regions of cystoid fluid within
the 3-D retinal stack, while eliminating false positives (FP) from
regions of interest (ROIs) that lack the characteristics of the
intraretinal fluid spaces.

II. METHOD

The Cirrus HD-OCT Model 4000 (Carl Zeiss Meditech) was
used to acquire the OCT images with software version 5.2. OCT
images were acquired from 16 patients with vitreoretinal disor-
ders and evidence of intraretinal cysts, and three patients without
intraretinal cysts. Images were acquired at the Kittner Eye Cen-
ter, University of North Carolina at Chapel Hill, Chapel Hill, and
were anonymized to comply with Health Insurance Portability
and Accountability Act privacy standards. OCT image stacks
comprised a 6 mm × 6 mm × 2 mm data cube with a voxel size
of 15 μm × 47 μm × 7.4 μm in x × y × z, respectively. They
were stored and analyzed in x–z (B-mode) frames of 405 ×
270 pixels. We analyzed four full datasets (one CME and three
control) which extended over 128 frames in y, and 15 partial
datasets (all CME) which extended over 8–20 frames centered

over the macula in y. These partial stacks were used because
manual evaluation of the accuracy of the algorithm was time
consuming; since intraretinal cysts appeared only in a distinct
subset of the full set, small subsets allowed us to rapidly assess
a larger number of patients.

In overview, our method involves the following steps in se-
quence: conversion to grayscale, retinal layer segmentation,
median filtering, signal-to-noise ratio (SNR) balancing, bilat-
eral filtering, thresholding, boundary tracing, and rejection of
FPs. The entire method is written in MATLAB version R2010a,
MathWorks, Inc. It is fully automated and runs as a single func-
tion, with the only user-defined input being the image stack files
obtained directly from the Cirrus OCT. Each step is described
sequentially in the following.

A. Color Mapping and Retinal Layer Segmentation

Initially, images obtained from the Cirrus OCT system are in
a 24-bit color bitmap format, and contain a white segmentation
line for the nerve fiber layer (NFL) and a black segmentation
line for the retinal pigment epithelium (RPE) layer. We use
these segmentation lines to define the upper and lower bounds,
respectively, of the retina (retinal ROI) in which we segment the
cystoid fluid.

First, to condition the images for analysis, we map the color
bitmap to a grayscale image according to the National Televi-
sion System Committee standard using the MATLAB function
“rgb2gray.” While this function is not the true inverse of the pro-
prietary color mapping used in the Cirrus OCT, it importantly
maintains the relevant contrast between tissue and cystoid fluid
regions (see Fig. 1). This step allows one to implement this
algorithm on other OCT imaging devices without the need for
proprietary software. We note that software to directly obtain the
gray level values and segmentation lines of data obtained from
the Cirrus is available under a contractual agreement with Zeiss.
Next, we identify the locations of the Cirrus NFL and RPE lines
using the fact that they are each two rows thick with values of
255 and 0, respectively. An initial top-to-bottom search in the
leftmost column is used to identify row positions for each line,
and each adjacent column is, then, searched within the immedi-
ately neighboring rows. However, in the instances where NFL
and RPE lines are noncontiguous, the algorithm resorts to inter-
polating the NFL and RPE layers by an intensity density method,
where the average within a 5 × 5 pixel window is thresholded
by empirically determined values of >35 and <22 for the white
NFL curve and the black RPE curve, respectively. The highest
row that satisfies these threshold conditions in each column is
recorded, and each line is, then, interpolated by a fifth-order
polynomial. Identification of these lines is, then, used to define
our retinal ROI in each B-mode image (see Fig. 2).

B. Median Filtering and Signal-to-Noise Balancing

To suppress shot noise, we, then, used median filtering
(MATLAB function “medfilt2”) over 3 × 3 pixels in x × z.
We, then, balance the apparent SNR of each retinal scan. This
is performed because the SNR of OCT images is variable from
patient to patient, and adjustment of the SNR ensures consistent
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Fig. 2. OCT image in Fig. 1 after identification of the RPE and NFL seg-
mentation lines (shown in red), which define the lower and upper bounds of the
retinal ROI, respectively.

Fig. 3. (Top panel) Median-filtered and SNR-balanced OCT image. (Bottom
panel) Bilaterally filtered OCT image.

segmentation of cystoid fluid. The apparent noise N in an im-
age stack is taken as the mean pixel value within a 27 × 40
window in the upper left portion of the image. The signal S is
taken as the mean pixel value within a 27 × 40 window located
54 pixels from the rightmost image side proceeding from the
rows adjacent to the bottommost row of the NFL interpolated
curve. The values for N and S are averaged across the stack in
y. The image data are, then, SNR balanced using the equation
If = (I0 − N)/(S − N), where I0 is the initial pixel value and
If is the final pixel value, which is stored as a floating point
value between 0 and 1 (see Fig. 3, top panel).

C. Bilateral Filtering

Bilateral filtering acts to preserve edges while smoothing im-
age data by weighing neighboring pixels based both on distance
and similarity in pixel intensity. However, computation of a
bilateral filter in its Gaussian functional form is computationally
expensive and impractical for OCT image stack analysis. Here,
we employ a fast bilateral filtering method described in [22] that
extends the 2-D image to a 3-D space and strategically down-
samples to speed up the filter without adversely influencing
the quality of the results. The photometric spread and the ge-
ometric spread were, respectively, σp = (intensity range/10) =
(1/10) = 0.1 and σg = (width/16) = (270/16) = 17 pixels.
The computation time per B-mode image by a traditional
bilateral filter (MATLAB function “bfilter2”) is ∼4 s, while
the computation time per image by the method in [22] is
only ∼0.4 s. We note that this per-image processing time
is competitive with CPU times reported for other speckle
denoising methods [19], [20], with the caveat that an exact
comparison can only be drawn using the same image data on
the same processor. As shown in the bottom panel of Fig. 3,
the bilateral filter is effective at denoising the speckle while
maintaining crisp edges between cystoid fluid and retinal tissue.

D. Thresholding and Boundary Tracing

Potential cystoid ROIs were, then, defined by contiguous pixel
regions within the retinal ROI that were below an empirical
value of 31, as shown in the top panel of Fig. 4. We chose
this threshold to be very sensitive but with low specificity, with
the plan to reject FPs in the following step. To enable this
next step, we traced the thresholded pixel boundaries using a
Moore-neighbor tracing algorithm modified by Jacob’s stopping
criteria [26], [27] in each 2-D B-mode image, as provided by the
“bwboundaries” function in MATLAB. This defines a discrete
number of contiguous regions (the cystoid ROIs) in each B-
mode image.

E. Rejection of FPs

While the process described previously was tailored to catch
as many cystoid ROIs as possible, we found that, in practice,
it also identified a number of FP CME regions. In order to
improve upon the specificity, we employed two criteria to reject
FP ROIs. First, cystoid ROIs had to have a traced area of at least
7 pixels. As shown by comparing the top and bottom panels of
Fig. 4, this tended to remove FPs within the outer plexiform layer
(OPL) where the optical scattering signal was lower. Second, we
found that true positives (TPs) had a pixel intensity distribution
that was reasonably uniform, and therefore, we rejected regions
with pixel values exhibiting a standard deviation greater than an
empirically determined value of 45. This tended to reject FPs
from blood vessels that have a shadowing artifact extending into
the layer immediately below. However, we found that in stacks
of low SNR this criterion also caused rejection of some TPs. For
this reason, the pixel uniformity metric was assigned a switch.
If the SNR was ≥22, the pixel uniformity metric was applied;
if not, the data were processed without it.



1112 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 59, NO. 4, APRIL 2012

Fig. 4. Thresholded OCT images. (Top panel) Before cyst discrimination.
(Bottom panel) After cyst discrimination.

Fig. 5. Overlay of an original grayscale OCT image with the final cystoid
ROIs displayed as white.

Fig. 5 displays the final cystoid ROIs overlayed on the original
retinal image in Fig. 2.

III. EXPERIMENTAL RESULTS AND DISCUSSION

To assess the performance of this automated method, the
method was applied to all 19 OCT image stacks, and the results
were manually evaluated to determine the specificity and sen-
sitivity of its ability to segment cystoid ROIs. The evaluation
was performed under the supervision of a board-certified oph-
thalmologist specializing in vitreoretinal disorders. A custom
GUI was implemented in MATLAB to enable easy recogni-
tion and tabulation of both FPs (noncystoid regions incorrectly
assigned as cystoid ROI) and false negatives (FNs) (cystoid
regions that were not identified by the algorithm). The num-
ber of TPs was, then, defined as the difference in the total

TABLE I
RESULTS OF CME SEGMENTATION IN 16 PATIENTS WITH VITREORETINAL

DISEASE AND THREE CONTROLS USING THE METHODS DESCRIBED

number of cystoid ROIs and the number of FPs. While true
negatives (TNs) are defined as noncysts correctly identified as
noncysts, within the context of this study we defined them as
initially identified cysts elicited by the process of thresholding
(see Section II-D) that were discarded after the rejection pro-
tocols (see Section II-E). The sensitivity and specificity were,
then, calculated according to sensitivity = TP/(TP + FN), and
specificity = TN/(TN + FP).

The computational time needed to perform this method is
minimal. We find that a full (noncontrol) stack of 128 frames is
processed in 2.6 min on a 32-bit PC with 3 GB of RAM and a
2-GHz processor. The step that consumes the most time is the
bilateral filtering (44%). Further reduction in computation time
might be obtained by implementing the algorithm in a compiled
programming language.

We, then, tabulated the total volume occupied by cystoid ROIs
identified by the algorithm, the volume occupied by the sum of
the TP and FN cystoid ROIs (the total actual volume), and the
total retinal ROI volume. The fractional volumes of cystoid ROIs
within the retina (both according to the algorithm and the true
values) were, then, computed and are displayed in Table I. As
shown, the average sensitivity and specificity are 91% and 96%,
respectively, and in all but one case were both ≥86% for the
patients presenting with CME. In the one case where this was
not true (the second to last dataset), we found poor sensitivity
(74%) due to poor contrast in that image set. We also note that
the third dataset (a control) exhibited an unusually large volume
error of 12%; this was due to the image set having excessively
poor SNR resulting in the outer plexiform and outer nuclear
layers (ONLs) being falsely identified as CME.

On average, the cystoid fractional volume in the CME patients
was 10% by the algorithm and 12% by manual inspection. (We
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Fig. 6. Example of FPs that are rejected by the algorithm based on size and
pixel uniformity. (Top panel) OCT image. (Middle panel) Associated cystoid
ROIs before discrimination. (Bottom panel) Cystoid ROIs after discrimination.
Small cyst ROIs tend to lie in the OPL and are rejected by the size criterion
(≤6 pixels). Several larger cyst ROIs in this image are associated with blood
vessels that exhibit a characteristic shadow artifact, and are rejected based on
pixel nonuniformity. Scale box: 250 μm × 250 μm.

note that, since partial stacks were used in 15 out of 16 CME
cases, the fractional volumes may be an overestimate of that
for the entire stack.) The slight (2%) underestimation by the
algorithm is due to FNs. An example of this can be seen by
comparing Figs. 1 and 5, where the cystoid ROI second from the
right is rejected by the algorithm. This occurs because, despite
the efficacy of the filters, erosion of the perimeters of cystoid
ROIs is still possible, and the intensity of the inner area may
be brightened just enough that they do not survive the threshold
procedure. Generally, these FNs occur for small regions which
have less impact on the total volume. FPs, on the other hand, tend
to occur in regions of low signal arising from structures such as
blood vessels; however, our pixel uniformity criterion tends to
reject a large portion of these, as shown in Fig. 6. Others have
reported discrimination of blood vessels based upon shadow
artifacts, [21], which may be one way of improving this method
in future work.

This study has focused on OCT images obtained from a Cirrus
4000 OCT system. Because the method includes SNR balancing,
we expect that retinal images from other OCT systems with
similar SNR and resolution can be segmented using the same
settings and threshold value as in this study. More advanced
and research-grade systems may require some modifications
as follows: 1) higher spatial sampling per resolution volume
would require a proportionally higher geometric spread in the
bilateral filter; 2) higher dynamic range may require a higher

photometric spread in the bilateral filter; 3) higher SNR may
dictate a lower threshold value; and 4) higher spatial sampling
would dictate a proportionally larger number of cystoid ROI
pixels for the rejection of FPs. Currently, the accuracy of the
segmentation algorithm is limited primarily by poor SNR, which
should improve with newer systems that offer higher SNR.

IV. CONCLUSION

This paper presented a method to segment and quantify the
total volume occupied by CME from OCT image stacks, in
order to provide a metric that can be evaluated as a potential
diagnostic for visual acuity. While the average sensitivity, de-
fined by counting individual cystoid ROIs, was 91%, we found
that missed cystoid ROIs were typically small and did not con-
tribute much error to the total volume estimation. The average
fractional volume of CME in our sample set of 16 CME pa-
tients was 10%, and our average error in fractional volume was
1.9% when comparing against results by manual inspection. Im-
portantly, the median difference between the cystoid fractional
volume by the algorithm and by manual inspection was only
0.8%. This suggests that, in most patients, (excepting a few out-
liers in our study), this algorithm represents an accurate method
of total cystoid volume assessment.

To establish this method as an effective tool, further validating
studies are needed to determine whether the specificity, sensi-
tivity, and reproducibility are sufficient using a broader patient
base. In particular, it is important to verify that this technique has
the ability to distinguish intraretinal cysts from other features
such as subretinal fluid or an epiretinal membrane draped over
an irregular inner retinal surface. While the 2.6 min process-
ing time is sufficient, further reduction in the processing time
may allow for more extensive studies. Another important feature
would be incorporation of a graphical interface to compare in-
traretinal cysts over multiple time points. Currently, this method
is fully automated and operates on images directly obtained from
a Cirrus HD-OCT system with only standard features. As such,
we expect that this method can be broadly employed and will
provide a new and accurate metric for clinical analysis.
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