
AIP Advances 11, 045003 (2021); https://doi.org/10.1063/5.0040863 11, 045003

© 2021 Author(s).

Automated segmentation of left
ventricular myocardium using cascading
convolutional neural networks based on
echocardiography
Cite as: AIP Advances 11, 045003 (2021); https://doi.org/10.1063/5.0040863
Submitted: 16 December 2020 • Accepted: 10 March 2021 • Published Online: 01 April 2021

 Shenghan Ren, Yongbing Wang, Rui Hu, et al.

ARTICLES YOU MAY BE INTERESTED IN

Numerical study of a Whitham equation exhibiting both breaking waves and continuous
solutions
AIP Advances 11, 045002 (2021); https://doi.org/10.1063/5.0047582

Magneto-hydrodynamics (MHD) flow analysis with mixed convection moves through a
stretching surface
AIP Advances 11, 045001 (2021); https://doi.org/10.1063/5.0047213

A DMD based UV lithography method with improved dynamical modulation range for the
fabrication of curved microstructures
AIP Advances 11, 045008 (2021); https://doi.org/10.1063/5.0045641

https://images.scitation.org/redirect.spark?MID=176720&plid=1857063&setID=378289&channelID=0&CID=683467&banID=520740869&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=b199dc9a1699d095151e69aa161c89367dfa542f&location=
https://doi.org/10.1063/5.0040863
https://doi.org/10.1063/5.0040863
http://orcid.org/0000-0003-3319-7885
https://aip.scitation.org/author/Ren%2C+Shenghan
https://aip.scitation.org/author/Wang%2C+Yongbing
https://aip.scitation.org/author/Hu%2C+Rui
https://doi.org/10.1063/5.0040863
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0040863
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0040863&domain=aip.scitation.org&date_stamp=2021-04-01
https://aip.scitation.org/doi/10.1063/5.0047582
https://aip.scitation.org/doi/10.1063/5.0047582
https://doi.org/10.1063/5.0047582
https://aip.scitation.org/doi/10.1063/5.0047213
https://aip.scitation.org/doi/10.1063/5.0047213
https://doi.org/10.1063/5.0047213
https://aip.scitation.org/doi/10.1063/5.0045641
https://aip.scitation.org/doi/10.1063/5.0045641
https://doi.org/10.1063/5.0045641


AIP Advances ARTICLE scitation.org/journal/adv

Automated segmentation of left ventricular
myocardium using cascading convolutional
neural networks based on echocardiography

Cite as: AIP Advances 11, 045003 (2021); doi: 10.1063/5.0040863
Submitted: 16 December 2020 • Accepted: 10 March 2021 •

Published Online: 1 April 2021

Shenghan Ren,1,2 Yongbing Wang,1,2 Rui Hu,1 Lei Zuo,1 Liwen Liu,1,a) and Heng Zhao2

AFFILIATIONS

1Department of Ultrasound of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University,

Xi’an, Shaanxi 710032, China
2Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology,

Xidian University, Xi’an, Shaanxi 710071, China

a)Author to whom correspondence should be addressed: liuliwen@fmmu.edu.cn

ABSTRACT

Quickly and accurately segmenting the left ventricular (LV) myocardium from ultrasound images and measuring the thickness of the inter-
ventricular septum and LVwall play an important role in hypertrophic cardiomyopathy. However, the segmentation of the LVmyocardium is
a challenging task due to image blurring and individual differences.We attempted to perform LV segmentation in ultrasound images using the
encoder–decoder architecture of U-Net and other networks and found it to be not accurate enough. Therefore, we propose a novel multi-task
cascaded convolutional neural network (called MTC-Net) to segment the LV myocardium from echocardiography. MTC-Net contains two
parts: One is pre-trained Resnet-34 followed by two decoder branches for mask and boundary detection, and the other module is pre-trained
with many improved novel encoder–decoder architectures for extracting more detailed features. Both parts of the network use the atrous
spatial pyramid pooling module to capture high-level text information. A hybrid loss function is engaged for mask and contour prediction.
The network is trained and evaluated with echocardiographic images, which are labeled manually by doctors. The comparison study with
other networks shows that MTC-Net has better accuracy and performance. MTC-Net achieves state-of-the-art performance on the test set.
The mean value of the dice coefficient is 0.9442 and the mean value of intersection over union is 0.8951.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0040863

I. INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is a common autosomal
dominant cardiovascular disease, which is associated with thicken-
ing of the left ventricular (LV) myocardium, most commonly at
the interventricular septum (IVS) below the aortic valve, caused LV
outflow tract obstruction (LVOTO). It is usually without LV cavity
enlargement and necessary to exclude hypertension, aortic steno-
sis, and congenital aortic valve septum caused by increased load
such as LV wall thickening. As the most common genetic cardiomy-
opathy, HCM occurs in approximately 1 in 500 to 1 in 200 of the
general population.1,2 We proposed the Liwen procedure to reduce
the thickness of IVS and LVOTO in patients.3 The result proves that
the Liwen procedure is a safe and effective treatment approach for

HCM. However, HCM is a common disease that still poses a threat
to human health.

Cardiac imaging plays a crucial role in HCM. The diagnosis of
HCM rests on the detection of increased LV wall thickness by any
imaging modality. According to the guidelines, in an adult, HCM is
defined by a wall thickness ≥15mm in one or more LV myocardial
segments and genetic disorders can present with wall thickness ≥13
mm1,4 as measured by any imaging technique [echocardiography,
cardiac magnetic resonance imaging (CMR), or computed tomog-
raphy (CT)]. Compared with other imaging methods, echocardio-
graphy has become our preferred imaging modality due to its real-
time and non-radiation advantages. Standard echocardiography is
an important tool for rapid assessment and quantification of left
ventricular wall thickness and identification of specific details.
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Therefore, the accurate assessment of pathophysiology and anatomy
is essential for diagnosis.

However, the diagnosis of HCM is based on the thickness of
the thickest segment of left ventricular myocardium at the end of
diastole, which is measured by doctors based primarily on their
clinical experience. It is a challenging task to segment the LV
myocardium on echocardiography automatically. Echocardiogra-
phy is highly anisotropic and position-dependent. The reflection
intensity, spatial resolution, and signal-to-noise ratio depend on
the depth and angle of incidence of the echocardiographic beam
as well as on user-controlled depth gain settings. The backscatter-
ing of incident wavefront hitting the tissue microstructure produces
speckle noise, resulting in the poor quality of the echocardiograms.
The echocardiographic ultrasound images have low signal-to-noise
ratios and blurred borders. Most tissues are not distinguished by
their intensity value or texture. In addition, due to weak echo and
patient obesity, there were missing pixels in the region of interest
(ROI) of the LV, as shown in the red box in Fig. 1.

Many approaches for automatic segmentation of echocardio-
graphic ultrasound images have been proposed in recent years. Tra-
ditional segmentation methods include the level set method,5 active
shape model,6 and active contour method7 etc. Lin et al. proposed
a multi-scale level set framework for echo image segmentation.8

The method uses different level set methods at different scale levels
and fuses region and edge information with spatial scales, result-
ing in a good segmentation with the boundary shape constraint.
Chen et al. built an active contour algorithm with a prior intensity
and shape.9 The segmentation results indicated that the proposed
model provides close agreement with expert traced borders. How-
ever, these methods need to empirically initialize the contour model
andmanually adjust the parameters according to the target to obtain
better segmentation results. Other approaches such as conventional
machine learning methods10,11 require features to be extracted man-
ually first, and these methods take a long time for extracting the
features of the medical image due to the large differences in left
ventricular myocardial anatomy between HCM patients.

FIG. 1. The poor quality of echocardiographic ultrasound images (the red box is
the part with the missing pixels).

In recent years, convolutional neural networks (CNNs) have
been widely used inmedical image segmentation due to their power-
ful feature extraction capabilities.12,13 State-of-the-art performance
has been achieved in medical image segmentation tasks based on
encoder–decoder architectures such as U-Net.14 In order to reduce
the effect of information loss at the up-sampling stage,15 U-Net
fuses the features of the encoder and decoder through a cascade
approach. However, due to its simple architecture, U-Net segmen-
tation in our ultrasound image data, which was trained using the
traditional cross-entropy loss function, does not give good results.
This is mainly due to the following drawbacks of this type of archi-
tecture. First, encoder–decoder networks suffer from spatial infor-
mation loss due to down sampling operations performed via max-
pooling layers. Second, this architecture mostly uses cross-entropy
loss and dice loss as loss functions, but cross-entropy loss may lead
to over-segmentation and under-segmentation when the categories
are unbalanced. The disadvantage of dice loss is that it penalizes false
negative and false positive equally, resulting in a high precision and
low recall of the segmentation.

In order to overcome the above drawbacks of U-Net, we pro-
posed a novel multi-task cascaded CNNmodel calledMTC-Net with
a mixed loss function in this paper. The main contributions of our
paper are as follows: We proposed MTC-Net cascades’ two mod-
ules together. The first module uses two decoder branches for mask
and contour prediction, respectively. After passing the model, the
approximate area of interest is obtained. The original inputs, pre-
dicted masks, and boundaries are cascaded and passed into a second
module. We use the output of the second model as the final pre-
diction. The predicted mask boundaries are smoother due to the
inclusion of boundary information during the training of the sec-
ond network. By combining cross-entropy loss, structural similarity
index (SSIM) loss,16 and dice loss, we proposed a new hybrid loss
function that optimizes the network at three levels: pixel, patch,
andmap-level, respectively, which can significantly improve the pre-
diction result of the model. Using commonly used segmentation
metrics including dice similarity coefficient (DSC) and intersection
over union (IOU), we compared our model with the predictions of
other models, and the results showed that our model is more accu-
rate and robust. Our model is better than other models on all met-
rics with over-segmentation and under-segmentation significantly
reduced.

This paper is organized as follows: The details of the proposed
segmentation method are introduced in Sec. II. The dataset and
experiments are presented in Sec. III. The segmentation results are
analyzed in Sec. IV. Finally, discussion and conclusion are made in
Sec. V.

II. METHOD

A. Architecture of the network

The overview of the architecture ofMTC-Net is shown in Fig. 2.
The network contains two modules: the candidate masks’ predic-
tion module and the reinforced learning module. The first mod-
ule uses a pre-trained Resnet-34 for feature extraction, followed by
two decoder branches: one is for mask prediction and the other
is for contour prediction. The problem of spatial information loss
due to max-pooling and stepwise convolution is solved by fusing
the feature map of the encoder part corresponding to the decoder
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FIG. 2. Architecture of MTC-Net for segmentation of LV from echocardiographic ultrasound images.

by summing operations. The second module is a multi-task net-
work with a typical encoder–decoder architecture. The low-level
feature maps are merged with high-level feature maps by using
the concatenate method in the second module. The probabil-
ity ROI mask, boundary contour generated by the first mod-
ule, and the input image are concatenated together and fed to
the second module. Finally, a softmax layer is used for mask
and contour predictions. Considering that atrous convolution
can expand the feature reception field without sacrificing fea-
ture spatial resolution,17 we use atrous convolution pyramid pool-
ing (ASPP) in both modules. We define a hybrid loss function
that allows the network to be trained end-to-end for both two
modules.

B. Encoder and decoder explanation

The encoders in our first module use pre-trained Resnet-34,
then followed by a ASPP module, which employs multiple filters
with different rates to capture objects and context at multiple scales.
Following the up-sampling, feature maps from the ASPPmodule are
concatenated with feature maps from Resnet-34 and subsequently

passed to the softmax layer for ROI mask or boundary contour pre-
diction. The predicted boundary contour and ROI mask as well as
the original image are concatenated together and passed into the
second module.

Since dilated convolution18 can effectively increase the recep-
tive field without changing the resolution, we consider how to
increase the receptive field in the encoder of the second module. In
the second module, we use four encoder blocks to extract the feature
maps [shown in Fig. 3(a)]. Each encoder block first performs a 3 × 3
convolution, then followed by four parallel atrous convolutions with
dilated rates of 1, 4, 6, and 8 and the global average pooling layer. The
parallel layers are cascaded together and passed to a 3 × 3 convolu-
tion layer. Each convolution of the encoder block is followed by a
batch normalization, which can reduce the internal co-variant shift
and increases the speed of convergence. The rectified Linear Unit
(ReLU) is severed as the activation function. Finally, the feature map
is followed by the max-pooling layer to halve the spatial dimension
and pass into the next encoder block.

We use different strategies for the decoder implementation of
the two modules. In the first module, the feature map is up-sampled
by transposed convolution, then followed by a 3 × 3 convolution.
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FIG. 3. (a) Structure of the encoder block in module 2 and (b) structure of the decoder block in module 2.

Finally, the feature map of the corresponding encoder part is added
to enhance the feature representation further. In the second module,
the decoder block first performs a 2 × 2 bi-linear up-sampling on the
feature map, and then the up-sampled feature map is cascaded with
the feature map of the corresponding encoder part. The cascaded
feature map performs a 3 × 3 convolution and depth-wise convolu-
tion19 [Fig. 3(b)]. Each convolution of the decoder block is followed
by a batch normalization and ReLU activation function to introduce
nonlinearity to the model.

C. Loss function

The loss function of MTC-Net consists of four components.
The proposed hybrid loss function is used for mask, and the
cross-entropy loss function is used for contour. The total loss
is given by

Ltotal = Lmodel1−mask + Lmodel1−contour + Lmodel2−mask

+ Lmodel2−contour , (1)

where Lmodel1−mask and Lmodel1−coutour are the losses of the ROI
mask and predicted contour in the first module, respectively, while
Lmodel2−mask and Lmodel2−coutour are the losses of the ROI mask and
contour in the second module, respectively. Each part of the loss
function in Eq. (1) is calculated by a hybrid loss function, which is
defined as follows:

Lhybrid = Lmodel∗ = Lbce + Ldice + Lssim, (2)

where Lbce, Ldice, and Lssim denote the losses of cross-entropy, dice
coefficient, and SSIM. Lssim is defined as follows:

Lssim = 1 −
(2μxμy + C1)(2σxy + C2)

(μ2x + μ
2
y + C1)(σ2x + σ

2
y + C2)

, (3)

where μx and μy are the average densities of two images, σ2x and

σ2y are the variances of the density of two images, σxy is the covari-
ance between two images, and C1 and C2 are two constants to avoid

dividing by 0 and defined as C1 = (k1L)
2 and C2 = (k2L)

2, where
k1 = 0.01, k2 = 0.03, and L is the dynamic range of pixel values.

The cross-entropy loss Lbce and dice loss Ldice calculate the clas-
sification error from the pixel and map-level, respectively. They are
calculated as

Lbce =
N

∑
i=1

gi log pi +
N

∑
i=1

(1 − gi) log(1 − pi), (4)

Ldice = 1 −
2∑N

i=1pigi

∑N
i=1p

2
i +∑

N
i=1g

2
i

, (5)

where p represents the output of the network after the sigmoid
function and g is the true label.

III. DATASET AND EXPERIMENTS

A. Dataset preparation

In this study, the dataset from Xijing Hypertrophic Cardiomy-
opathy Center (Xijing hospital) contains a total of 200 cases of
echocardiography of the horizontal short-axis view of the mitral
valve and passes the ethic approvals. All the data were acquired
at end diastole in order to obtain stable ultrasound images. The
image is pre-processed using contrast-adaptive histogram equaliza-
tion (CLAHE)20 to improve the image contrast. In order to avoid
over-fitting, we augment the training data to 10 times by using rota-
tion. In order to eliminate the influence of background and accel-
erate the training process, we crop the approximate area of the
LV myocardium and unify the size to 448 × 448. The dataset was
divided into the training set, validation set, and a test set accord-
ing to the ratio of 8:1:1. The physician performs the task of marking
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the endocardium and epicardium to segment the LV myocardium
using the interactive segmentation software for training. Five doc-
tors are engaged in manual segmentation. Each doctor labeled the
image data as a separate atlas. In order to maintain the inter-rater
reliability and consistency, the similarity between different atlases
was calculated and the atlas with the lowest similarity was removed.
The ground truth is obtained from the selected atlases by using a
majority voting strategy, which is implemented by SimpleITK.

B. Training and implementation details

For the training step, 20 images were randomly selected from
the dataset to evaluate the performance ofMTC-Net during training.
Another 20 images were randomly selected for testing. The segmen-
tation errors from these images were used to adjust the weights in
different layers of the networks. We use the Adam optimizer with an
initial learning rate of 1 × 10−4 and a batch size of 4 for all exper-
iments. The model was trained with 100 epochs and periodically
assessed against the validation set. All the models are implemented
using PyTorch. The training was parallelly run on the graphics
processing unit (GPU) (NVIDIA GeForce GTX 1070).

C. Evaluation metrics

In order to evaluate the MTC-Net quantitively, DSC, precision,
and IOU are engaged as the standards for comparison. The dice
coefficient and IOU are calculated as follows:

DSC = 2
∣RG ∩ RS∣

∣RG∣ + ∣RS∣
, (6)

IOU =
∣RG ∩ RS∣

∣RG ∪ RS∣
, (7)

where RG and RS represent the ground truth region and the segmen-
tation result, respectively, and ∣⋅∣ denotes the number of pixels.

D. Thickness measurement

The measurement of thickness of the IVS and LV wall plays an
important role in HCM. As shown in Fig. 4, the thickness is mea-
sured based on the results of our model segmentation. Since our
equipment obtains the ultrasound image resolution at 96 dpi in both

the horizontal and vertical direction, the thickness can be calculated
with the steps shown in Fig. 4. First, obtain the segmentation result
of LV myocardium and find the center line of the region of LV wall.
Then, calculate the Euclidean distance transformation of the center
line to the boundary of region 1 [shown in Fig. 4(a)], and we can
obtain the point of the maximum distance to the boundary in region
1, which is depicted by point O in Fig. 4(b). Considering each inch
contains 96 pixels in our ultrasound image, the maximum thick-
ness (mm) can be represented by line AB through point O, which
is perpendicular to the center line of the LV wall and calculated as

Dis(AB) = Px(OA) × 2 × 25.4/96(mm). (8)

IV. RESULTS

A. Overview

In this study, we compare MTC-Net with other segmentation
networks, such as U-Net,14 Conv-MCD,21 DeepLabv3+,22 and CE-
Net.23 We can find that our proposed method MTC-Net has DSC,
IOU, and accuracy of 0.9442, 0.8951, and 0.9424, respectively, which
are better than other methods in terms of DSC, IOU, and accuracy.
T-test and P-value on DSC are also listed in Table I. The detailed
comparison result shown in Table I proved that MTC-Net is better
than all other models.

We randomly select five cases of the test result to compare
MTC-Net with other models visually, which are shown in Fig. 5.
The red curves are the ground truth labeled by doctors, while the
green curves are the segmentation result by different models. From
Fig. 5, we can find that our proposed method is much more accu-
rate than other models. Due to that, we add the shape information
of LV myocardium in our model during training, and compared
with other models, over-segmentation or under-segmentation is sig-
nificantly reduced. The boundaries of the segmentation results are
smoother, and isolated noise is significantly reduced in MTC-Net.
The predicted results by MTC-Net are more closely aligned with the
ground truth labeled by doctors.

B. Evaluate with clinical metric

In order to evaluate MTC-Net clinically, we measured
the thickness of LV myocardium. The number of images for

FIG. 4. The process to measure the thickness of the IVS and LV wall. (a) Segmentation result of LV myocardium, (b) result of Euclidean distance transformation, and (c) the
line AB represents the maximum thickness.
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TABLE I. Comparison of U-Net, Conv-MCD, DeepLabv3+, CE-Net, and MTC-Net based on our datasets in terms of DSC,
IOU, and precision. The best results are highlighted in bold.

Method DSC IOU Precision T-test on DSC P-value on DSC

U-net 0.9064 ± 0.0298 0.8301 0.8782 8.35 2.037 × 10−7

Conv-MCD 0.9182 ± 0.025 0.8496 0.9005 5.42 4.577 × 10−5

DeepLabv3+ 0.9198 ± 0.0204 0.8522 0.9124 3.85 0.001 28
CE-net 0.9355 ± 0.0188 0.8794 0.9371 2.93 0.009 35
MTC-net 0.9442 ± 0.0221 0.8951 0.9424 . . . . . .

evaluation is the same as the above segmentation experiment. As
shown in Fig. 6, the red points stand for the ground truth labeled
by doctors, while the green points stand for the results obtained by
MTC-Net. We can find that the results by MTC-Net have a good
consistency with the ground truth. The average error of the thick-
ness measured by MTC-Net has only 1.278 ± 0.1425mm distance
to the ground truth. The results proved that MTC-Net has a great
potential in clinical application.

C. Ablation experiments

We also performed the ablation experiments to analyze which
trick is effective in MTC-Net. The ablation result shows that the
boundary information and parallel atrous convolutions play an
important role in our method. First, we remove the boundary infor-
mation from MTC-Net to test its performance, which is called
MTC-Net-BF. Specifically, the boundary branch in module 1 and

FIG. 5. Results of the LV myocardium segmentation, from left to right: original test image, result by MTC-Net, U-Net, Conv-MCD, DeepLabv3+, and CE-Net, respectively.
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FIG. 6. Thickness measurement based on the segmentation results: The red points represent the ground truth labeled by doctors, and the green points represent the result
obtained by MTC-Net.

the boundary loss in module 2 are removed in MTC-Net-BF. Sec-
ond, to verify the contribution of the encoder–decoder block in
module 2 to the performance improvement, we replace the encoder
and decoder blocks in MTC-Net module 2 with two convolu-
tional layers, called MTC-Net-ED. Table II shows that DSCs of
both MTC-Net-BF and MTC-Net-ED drop to 0.9379 and 0.9308,
respectively, compared with MTC-Net. IOU and precision of both
MTC-Net-BF and MTC-Net-ED are also dropped. The MTC-Net-
BF obtains a better result than MTC-Net-ED in DSC and IOU. T-
test and P-value on DSC are also listed in Table II. T-test on DSC
between MTC-Net-BF and MTC-Net shows that MTC-Net-BF gets
almost the same performance with MTC-Net, which proves that
boundary information is not obvious to improve the segmentation
accuracy.

V. DISCUSSION

In this paper, we proposed amultitaskingmethod based on cas-
cading convolutional neural networks for echocardiographic image
segmentation. The method contains two modules: a pre-trained
Resnet-34 followed by two decoder branches for mask and bound-
ary detection and the other module with many improved novel
encoder–decoder architectures. Both modules are involved in ASPP
for extension of the receptive field and capturing high level features.
Compared to U-Net, MTC-Net has more parameters and hence a
longer learning time. Therefore, we use depth-wise separable convo-
lution to reduce the computational complexity of decoding block in
the second module. MTC-Net employs a new hybrid loss function
that can significantly improve the prediction results of the model.

TABLE II. Comparison of our method and ablation method on our datasets in terms of DSC, IOU, and precision. The boldface
values are the results of MTC-Net.

Method DSC IOU Precision T-test on DSC P-value on DSC

MTC-net-BF 0.9379 ± 0.0244 0.8840 0.9222 1.396 0.180 8
MTC-net-ED 0.9308 ± 0.0155 0.8709 0.9264 3.63 0.002 07
MTC-net 0.9442 ± 0.0221 0.8951 0.9424 . . . . . .
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FIG. 7. Prediction results for low quality images using MTC-Net. The red curve is the ground truth, and the green curve is the result of MTC-Net. [(a)–(c)] The prediction
results of over-segmentation and under-segmentation images with blurred boundaries using MTC-Net. (d) The prediction result of images with ROI missing pixels.

We compare MTC-Net with other models, and the results show that
our model is more accurate and robust.

In the ablation study, we compare different MTC-Net mod-
els, includingMTC-Net-BF andMTC-Net-ED. The boundary infor-
mation in MTC-Net-BF is ablated, and the encoder as well as the
decoder block in MTC-Net-ED is replaced by a convolutional layer.
The results show that both MTC-Net-BF and MTC-Net-ED are
worse than MTC-Net. We can find that the boundary information
can improve the segmentation results, especially for medical images
with blurred boundaries. MTC-Net-ED is worse than MTC-Net-
BF, which proves that the extension of the receptive field plays an
important role in the semantic segmentation.

However, we also found that MTC-Net still needs improve-
ment in dealing with low quality ultrasound images. Figure 7 shows
the prediction results for low quality images using MTC-Net, with
the upper line being the test image and the lower line being the
prediction result. The red curve is the ground truth, and the green
curve is the prediction results of MTC-Net. Figures 7(a)–7(c) show
the results of over-segmentation and under-segmentation of images
with blurred boundaries using MTC-Net. Figure 7(d) shows the
results of MTC-Net when processing images with ROI missing pix-
els. Although we have tried to add many tricks to improve segmen-
tation performance in MTC-Net, processing images with missing
pixels in the ROI is a tough task. A better solution is to acquire high-
quality ultrasound images or supplement them with other types of
images, such as CMR or CT.

In future study, we plan to apply our model to other med-
ical image segmentation tasks. Compared to U-Net, our model
has more parameters, leading to longer learning time. We will
focus on simplifying the network model and reducing the network

parameters without losing network performance. Many other types
of encoder–decoder networks24–26 such as CDED-net and M-
Net also can be used for echocardiographic image segmentation.
We will do more study on encoder–decoder networks in future
research. We also note that recent breakthroughs in neural architec-
ture search27 (NAS) have motivated various applications of seman-
tic segmentation in natural scenes. This technique is different from
traditional neural networks. The architecture is obtained through
search and optimization and thus performs even better than hand-
crafted networks. We will try this technique in our dataset in future
studies.

VI. CONCLUSION

In this paper, we proposed a novel cascaded convolutional
neural network to segment the left ventricular myocardium from
echocardiography. The network produces satisfactory results due
to our proposed tricks, such as hybrid loss function, expansion of
inception field, depth-wise convolution, and boundary information.
Compared with other methods, MTC-Net is more accurate and
robust.
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