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Automated Segmentation of
MR Images of Brain Tumors1

An automated brain tumor segmenta-
tion method was developed and vali-
dated against manual segmentation
with three-dimensional magnetic res-
onance images in 20 patients with
meningiomas and low-grade gliomas.
The automated method (operator time,
5–10 minutes) allowed rapid identi-
fication of brain and tumor tissue with
an accuracy and reproducibility com-
parable to those of manual segmenta-
tion (operator time, 3–5 hours), mak-
ing automated segmentation practical
for low-grade gliomas and meningio-
mas.

Computer-assisted surgical planning and
advanced image-guided technology have
become increasingly used in neurosur-
gery (1–5). The availability of accurate
anatomic three-dimensional (3D) models
substantially improves spatial informa-
tion concerning the relationships of crit-
ical structures (eg, functionally signifi-
cant cortical areas, vascular structures)
and disease (3,4,6). In daily clinical prac-
tice, however, commercially available in-
traoperative navigational systems provide
the surgeon with only two-dimensional
(2D) cross sections of the intensity-value
images and a 3D model of the skin. The
main limiting factor in the routine use of
3D models to identify (segment) important
structures is the amount of time and effort
that a trained operator must spend on the
preparation of the data (3,6). The develop-
ment of automated segmentation methods
has the potential substantially reduce the
time for this process and to make such
methods practical.

Although 2D images accurately depict
the size and location of anatomic objects,
the process of generating 3D views to
visualize structural information and spa-
tial anatomic relationships is a difficult
task, which is usually carried out in the
clinician’s mind. Image-processing tools
provide the surgeon with interactively
displayed 3D visual information that is

somewhat similar to the view of the sur-
geon during surgery; the use of these
tools facilitates comprehension of the en-
tire anatomy. For example, the (mental)
3D visualization of structures that do not
readily align with the planes of the im-
ages (eg, the vascular tree) is difficult if it
is based on 2D images alone.

Image-based modeling requires the use
of computerized image-processing meth-
ods, which include segmentation, regis-
tration, and display. Segmentation with
statistical classification techniques (7,8)
has been successfully applied to gross tis-
sue type identification. Because the ac-
quisition of tissue parameters is insuffi-
cient for successful segmentation due to
the lack of contrast between normal and
pathologic tissue (9,10), statistical classi-
fication may not allow differentiation be-
tween nonenhancing tumor and normal
tissue (11–13). Explicit anatomic infor-
mation derived from a digital atlas has
been used to identify normal anatomic
structures (14–16).

We developed an automated segmen-
tation tool that can be used to identify
the skin surface, ventricles, brain, and
tumor in patients with brain neoplasms
(17,18). The purpose of the current study
was to compare the accuracy and repro-
ducibility of this automated method with
those of manual segmentation carried
out by trained personnel.

Materials and Methods

Imaging Protocol

The heads of patients were imaged in
the sagittal and transverse planes with a
1.5-T magnetic resonance (MR) imaging
system (Signa; GE Medical Systems, Mil-
waukee, Wis) and a contrast material–
enhanced 3D sagittal spoiled gradient-re-
called acquisition with contiguous sec-
tions (flip angle, 45°; repetition time
msec/echo time msec, 35/7; field of view,
240 mm; section thickness, 1.5 mm; ma-
trix, 256 3 256 3 124). The acquired MR
images were transferred to a Unix net-
work via an Ethernet connection.
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Brain Tumor Patients

Twenty patients were selected from a
neurosurgical database of images in ap-
proximately 260 patients with brain tu-
mors. Cases of the 260 patients had been
postprocessed for image-guided neuro-
surgery by using a combination of semi-
automated techniques and manual out-
lining of the skin surface, brain, ven-
tricles, vessels, and tumor.

Two neurosurgeons (including A.N.)
were asked to select 20 cases with menin-
giomas and low-grade gliomas of differ-
ent sizes, shapes, and locations to pro-
vide a representative selection. These two
types were selected because they are rel-
atively homogeneous and have well-de-
fined imaging characteristics. Pathologic
diagnoses included six meningiomas
(cases 1–3, 11, 12, 16), and 14 low-grade
gliomas (cases 4–10, 13–15, 17–20). In
this study, six of six meningiomas were
well enhancing, and 14 of 14 low-grade
gliomas were nonenhancing.

Cases 1–10 formed the development
database used for the design and valida-
tion of the automated segmentation
method. To ensure that the method pro-
duced correct results when applied to
cases other than those of the develop-
ment database, validation was carried out
separately with the validation data sets
from cases 11–20 in addition to valida-
tion with the 10 development cases.

Automated Segmentation of Brain
and Tumor

General segmentation framework.—We
adopted a general algorithm called adap-
tive template–moderated classification
(see references 17 and 18 and the Appen-
dix for details). The technique involves
the iteration of statistical classification to
assign labels to tissue types and nonlin-
ear registration to align (register) a digital
anatomic atlas (presegmented anatomic
map) to the patient data (Fig 1). Statisti-
cal classification was used to divide an
image into different tissue classes on the

basis of the signal intensity value. If dif-
ferent tissue classes have the same or
overlapping grey-value distributions (eg,
cerebrospinal fluid and fluid within the
eyeballs), such methods fail. Therefore,
additional information about the spatial
location of anatomic structures was de-
rived from a registered anatomic atlas
(manually segmented MR image of a sin-
gle subject) (6). Objects of interest were
identified on the classified images with
local segmentation operations (math-
ematic morphology and region growing)
(19).

Application to tumor segmentation.—For
the task of brain tumor segmentation,
the order in which the structures of in-
terest were segmented followed a simple
hierarchical model of anatomy (Fig 2). By
proceeding hierarchically from the out-
side to the inside of the head, each seg-
mented structure defined a refined region
of interest for the next structure to be
segmented. Five different tissue classes
were modeled: background, skin (fat and
bone), brain, ventricles, and tumor. Be-
cause of the homogeneous tissue compo-
sition of meningiomas and low-grade gli-
omas, one tissue class was sufficient for
the statistical model.

An atlas of normal anatomy does not
include pathologic structures. As a result,
templates from the atlas were derived for
only the head, brain, and ventricles. First,
the whole head was segmented from the
background by using thresholding and
local segmentation strategies. On the ba-
sis of the segmentation of the head, an
initial alignment of the atlas to the pa-
tient was established. Next, the intracra-
nial cavity (ICC) was segmented from the
head in two segmentation iterations (sta-
tistical classification, local segmentation
strategy, and reregistration of the atlas).

At this point, all voxels belonging to
the brain, ventricles, and tumor were la-
beled as ICC. In the first iteration, the
ICC was segmented by using the head
and ICC template from the initially reg-
istered atlas. The atlas was then realigned
on the basis of the whole head and ICC
of the patient. This step was followed by
a second classification and local segmen-
tation step. The ventricles were seg-
mented from the ICC in a third segmen-
tation iteration. At this point, the ICC
contained only voxels belonging to the
brain and tumor.

Having defined a region of interest for
the tumor, which was located inside the
brain and outside the ventricles and skin
(fat and bone), the tumor was segmented
in two iteration cycles. In the first itera-
tion, the tumor was classified by using

the anatomic knowledge from only the
atlas; this step was followed by applica-
tion of the local segmentation strategy.
Because there was no tumor template in
the atlas, a straightforward registration
was not possible. Consequently, tumor
voxels were relabeled as ICC voxels prior
to the registration process. As a result, a
spatial correspondence between the atlas
and patient data set was established for
every voxel, since the patient data set
contained no voxels labeled as tumor at
the time registration of the atlas was car-
ried out.

In the second iteration, tumor segmen-
tation from the first iteration was used as
an anatomic template. Although this tem-
plate was approximate, the additional in-
formation about the location of the tumor
prevented misclassification of voxels dis-
tant to the atlas template as tumor.

Initialization of the automated segmenta-
tion method.—To reduce noise on the MR
image without blurring object edges, an
anisotropic diffusion–filtering method
was applied (20). For the initialization of
the automated segmentation method, a
graphical user interface was developed
for the 2D display of MR imaging sec-
tions and the selection of example tissue
points with use of a mouse (Fig 3). The
only interaction required by the operator
(see Validation Experiments) was the se-
lection of three to four example points
for each tissue class, that is, skin (fat and
bone), brain, ventricles, and tumor. The
program calculated a statistical model for
the distribution of the gray values on the
basis of these manually selected tissue
prototypes.

Manual Segmentation of Brain
and Brain Tumor

For manual segmentation of the brain
and tumor, an interactive segmentation
tool was used (MRX; GE Medical Sys-
tems) on an Ultra 10 workstation (Sun
Microsystems, Mountain View, Calif).
Human operators outlined the structures
section by section (see Validation Exper-
iments) by pointing and clicking with a
mouse. The program connected consecu-
tive points with lines. An anatomic ob-
ject was defined by a closed contour, and
the program labeled every voxel of the
enclosed volume.

Validation Experiments

Because of the lack of an acceptable
standard (eg, realistic phantom) for com-
parison, our definition of a segmentation
standard was based on the manual seg-
mentations with interactive computer

Figure 1. Diagram of the tumor segmenta-
tion scheme.
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segmentation tools. However, manual
segmentation is subject to interobserver
variability and human error (6). To min-
imize the influence of these factors while
maintaining a means of measuring the
segmentation accuracy of the individual
raters, the standard was defined on the
basis of the segmentations of four inde-
pendent human observers. A single 2D
section was randomly selected from the
subset of the MR imaging volume that
showed the tumor. The four human ob-
servers then independently outlined the
brain and tumor on this section by hand.
The standard segmentation of brain and
tumor in each patient data set was de-
fined as the area of those voxels in which
at least three of four raters agreed regard-
ing their identification. All other voxels
were labeled as background.

To assess accuracy, the automated seg-
mentation tool was trained once with a
single MR imaging section containing all
tissue types of interest and was executed
on the full 3D data set. This process re-
sulted in segmentation of the entire data

set. For each data set, the structures skin
(fat and bone), brain, ventricles, and tu-
mor were segmented.

The interrater variability of the four
independent manual and the four inde-
pendent automated segmentations was
measured on the basis of all 20 cases. For

the measurement of intraobserver vari-
ability, one of the medical experts also
manually segmented the selected 2D sec-
tion four times during 1 week in each of
the 20 cases. Training of the automated
method was also carried out four times
during 1 week in all 20 cases.

Figure 2. Diagram of the hierarchical segmentation method, which
proceeds from A to D.

Figure 3. Graphical user interface for the automated segmentation
method to allow the 2D display of MR sections and the selection of
example tissue points with a mouse.

Figure 4. Example of a spoiled gradient-recalled image. A, Menin-
gioma. B, Manual segmentation, C, Statistical classification. D, Tem-
plate-moderated segmentation.
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During all experiments, the times for
manual outlining, training, and compu-
tation for the automated segmentation
method were recorded.

Statistical Analysis

Qualitative analysis was carried out on
the basis of volume-of-overlap compari-
son with standard (accuracy) and overall
volume variability (reproducibility) in
the 2D section selected. Segmentation ac-
curacy was defined as the percentage of

correctly classified voxels (in object and
background) with respect to the total
number of voxels V on the image, that is,
(TP 1 TN)/V, where TP is the number of
true-positive voxels and TN is the num-
ber of true-negative voxels (21). The
mean and SDs of the accuracy values
with respect to the 20 test cases were also
calculated (Matlab version 4.1; Math-
works, Cambridge, Mass).

To assess the inter- and intrarater vari-
ability error, the coefficient of variation

CV% was calculated as follows: CV% 5
100(SDvolume/Meanvolume). The coeffi-
cient of variation does not measure the
correctness of segmentation, only the
change in the volume of objects in seg-
mentations of different raters.

Results

Examples of manual and automated
segmentation of a meningioma (Fig 4)
and low-grade glioma (Fig 5) indicate the
similarity between the results with the
two methods.

Segmentation accuracy with the auto-
mated method was high and within the
range of accuracy of the manual method.
The overall mean accuracy for tumor seg-
mentation for all 20 cases was 99.68% 6
0.29% (SD) with the automated method
and 99.68% 6 0.24% with the manual
method (Fig 6), while the mean accuracy
for brain segmentation for all 20 cases
was 98.40% 6 0.57% and 98.81% 6
0.88%, respectively (Fig 7).

Intraobserver variability (coefficients
of variation) for both the automated
and manual methods was low. For brain
and tumor segmentation, mean in-
traobserver variability for all 20 cases
with the automated method was 0.10%–
3.57% and 0.14%–4.70%, while the
manual method had coefficient of varia-
tion values of 0.24%–4.11% and 0.80%–
3.28% (Table).

Interobserver variability was lower
with the automated method than with
the manual method. Mean interobserver
variability for all 20 cases with the auto-
mated method was 0.33%–4.72% and
0.99%–6.11% for brain and tumor seg-
mentation, respectively, while the man-
ual method achieved coefficient of varia-
tion values of 2.62%–10.51% and 3.58%–
14.42% (Table).

Automated segmentation of a com-
plete 3D image volume required ap-
proximately 75 minutes of unsuper-
vised computation time (Sun ES 6000
server, 20 central processing units with
250-MHz speed and 5 Gbyte of random-
access memory; Sun Microsystems). The
overall operator time for training of the
automated method was approximately
5–10 minutes (selection of example voxels
for each of the relevant tissue classes).
Manual outlining of brain and tumor re-
quired 1–3 minutes per section. Time for
manual segmentation of the 3D volume
was on the order of 3–5 hours.

Discussion

Our findings show that brain, menin-
giomas, and low-grade gliomas can be

Figure 5. Example of manual and automated segmentation of a low-grade glioma. A, On a
spoiled gradient-recalled image. B, With manual segmentation. C, With template-moderated
segmentation.

Figure 6. Brain segmentation accuracy of the
manual (mean, minimum, and maximum)
and automated methods (ATmC) in the 20
brain tumor cases (meningioma cases, 1–3, 11,
12, 16; low-grade glioma cases, 7–10, 13–15,
17–20). Accuracy with the automated method
was consistent with that of manual segmenta-
tion in most cases.

Figure 7. Tumor segmentation accuracy of
the manual (mean, minimum, and maximum)
and automated methods (ATmC) in the 20
brain tumor cases (meningioma cases, 1–3, 11,
12, 16; low-grade glioma cases, 7–10, 13–15,
17–20). Accuracy with the automated method
was consistent with that of manual segmenta-
tion in most cases.

Intra- and Interobserver Variability for All 20 Cases

Segmented Volume and
Tumor Histologic Type

Manual Method Automated Method

Intraobserver Interobserver Intraobserver Interobserver

Brain
Meningioma 0.42 6 0.03 4.93 6 1.75 0.36 6 0.45 1.84 6 0.65
Low-grade glioma 1.79 6 1.53 6.31 6 2.85 1.44 6 1.33 2.71 6 1.68

Tumor
Meningioma 1.58 6 0.98 7.08 6 2.18 0.66 6 0.72 2.66 6 0.38
Low-grade glioma 2.08 6 0.78 13.61 6 2.21 2.06 6 1.73 2.97 6 1.58

Note.—Data are the mean coefficient of variation percentage plus or minus the SD.
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accurately and reproducibly segmented
by means of automated processing of gra-
dient-echo MR images. We have shown
that our algorithm allows complete seg-
mentation of the brain and tumor and
requires only the manual selection of a
small sample of example voxels (21–28
voxels).

The goals of the development of auto-
mated segmentation tools are to make
segmentation of MR images more practi-
cal by replacing manual outlining, which
reduces operator time, without a measur-
able effect on the results and to improve
reproducibility. However, the validity of
our segmentations is difficult to assess
without the availability of a standard.
Therefore, our validation study was de-
signed to determine how closely the rat-
ers agreed within a single method (auto-
mated and manual) and how closely the
segmentation results correlated between
the two methods.

Segmentation accuracy with the auto-
mated method was high and within (max-
imum difference, 0.6%) the accuracy range
of the manual method. The errors with
automated brain segmentation were in
part due to over- and undersegmentation
in the area of the tentorium and the lateral
sulcus with abundant vessels. The algo-
rithm tended to cause oversegmentation in
these areas if parts of the neck near the
cerebellum were misclassified as brain and
if the ICC template derived from the atlas
was misaligned.

The size of the structure affects seg-
mentation accuracy. Segmentation errors
occur on the boundary of surfaces. Thus,
the larger the surface of an object, the
more voxels on the entire image that can
potentially be misclassified. Therefore,
accuracy is lower with larger objects than
with smaller objects.

Reproducibility was higher with the
automated method because only the se-
lection of a few example points is re-
quired, not decision making for every
voxel on the image during manual seg-
mentation. The reproducibility of brain
and tumor segmentation was high. Nev-
ertheless, the inter- and intraobserver
reproducibility of both methods was
higher with the brain than with the tu-
mor. Larger objects tend to have a volu-
metric reproducibility that is higher than
the overall segmentation accuracy. Be-
cause the surface-to-volume ratio be-
haves approximately like 1/r (where r is
the object radius), the disagreement
about voxel classes on the surface of
larger objects with respect to the overall
volume is less consequential than it is
with smaller objects.

Interobserver variability was substan-
tially reduced with the automated method.
Manual interobserver variability was par-
ticularly high for low-grade gliomas,
which were more difficult to segment,
causing deviating expert opinions. Auto-
mated segmentation is more robust to
expert variation because it involves only
the selection of typical example points
for training the algorithm, while manual
segmentation requires a human decision
for every boundary voxel, which is diffi-
cult due to, for example, partial volum-
ing. However, intraobserver variability
was improved only with meningioma
segmentation. For low-grade gliomas,
manual intraobserver variability is sub-
stantially lower than interobserver vari-
ability because the execution of manual
segmentation varies, but the opinion
regarding the shape of the tumor does
not. Therefore, compared with manual
segmentation, automated segmentation
does not reduce interobserver variability
substantially.

Reproducibility was higher with me-
ningiomas with both methods. This find-
ings can be explained by comparing the
gray-value distributions of the meningio-
mas or low-grade gliomas with that of the
brain. The meningioma tissue class par-
tially overlaps parts of the skin, the fat in
the neck, and the straight and superior
sagittal sinuses, and it was well distin-
guishable from brain tissue with the ap-
plication of a contrast agent. When the
region of interest was restricted to the
ICC, the tissue that showed signal inten-
sity overlap with the meningioma was
excluded, and the meningioma was suc-
cessfully segmented.

In some cases of low-grade glioma,
the ICC may not have been a sufficient
ROI for accurate tumor segmentation
due to the similar signal intensities of
the tumor and surrounding gray mat-
ter. False classifications cannot be cor-
rected if the brain misclassified as tu-
mor tissue is adjacent to the tumor
boundary (oversegmentation) or vice
versa (undersegmentation). The incor-
poration of T2-weighted images, which
clearly distinguish the tumor as hyper-
intense tissue, may enable the precise
definition of the tumor boundaries. If
the voxels of the brain misclassified as
tumor are distant to the tumor bound-
ary, if they are connected to the tumor
by only thin structures, or if tumor vox-
els inside the tumor are falsely classified
as brain, false classifications can be cor-
rected.

The algorithm developed in this work
is based on template-driven segmenta-

tion in which an anatomic atlas is used to
guide a statistical classification process
(8,14,17,18,23). Clark et al (27) proposed
a method for automatic detection and seg-
mentation of glioblastoma multiforme on
a combination of T1-, T2-, and intermedi-
ate-weighted MR images with use of classi-
fication and an anatomic knowledge data-
base; accuracy was greater than 90%.
Bonnie et al (24) recently reported results
with use of an interactive tumor segmen-
tation method. However, its value is diffi-
cult to assess because no detail on the seg-
mentation technique is given. Approaches
based on MR imaging data alone with use
of active contours (25) or multispectral
classification (12,13) work well if the tu-
mor shows sufficient contrast to the brain.
However, active contours require good ini-
tialization, which is difficult to automate,
while multispectral classification reveals
problems with overlapping intensity distri-
butions.

The lack of automated segmentation
methods results in tedious manual labor.
This result has been one of the reasons
why 3D models have been typically lim-
ited to university research settings. The
reduction in operator time (3–5 hours to
5–10 minutes) makes it practical to con-
sider the integration of computerized
segmentation into daily clinical practice
for presurgical 3D planning and intraop-
erative navigation in routine neurosurgi-
cal procedures. A technician carries out
the initial work, and a radiologist verifies
the result is verified while softreading the
images. Our software is currently used on
a powerful computer; systems such as
ours are becoming increasingly afford-
able (26).

In conclusion, accurate segmentation
is possible for meningiomas and low-
grade gliomas with our automated
method. Further work is required to ex-
tend the tools to a broader range of brain
tumors (eg, glioblastoma multiforme).
Future clinical studies on the accuracy
and reproducibility of our technique in a
larger population will be necessary to de-
termine its practical use in a clinical set-
ting.

Appendix

In the following, we give the parameter
settings and features used. (For algorith-
mic details, see references 17 and 18.)
The following parameter settings were
used: anisotropic diffusion filtering, two
iterations; dt 5 0.2; k 5 5.2; kNN classi-
fication k, 5; number of classes C, five;
affine registration, nine degrees of free-
dom; image resolution levels, three; dis-
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tance transform saturation distance, 100;
nonlinear registration, three resolution
levels; window size w, 9 3 9 3 9; mor-
phologic operators, spherical element;
size, 7 3 7 3 7; region growing, connec-
tivity of 18.

Four classification-registration itera-
tions were used for ICC segmentation,
one iteration was used for ventricle seg-
mentation, and two iterations were used
for tumor segmentation. The brain and
ventricle are also resegmented during tu-
mor segmentation.

For segmentation of normal structures
(ie, skin, fat, and bone; brain; ventricles),
the pattern used in this work was vi 5
[v1

i, . . ., v5
i]

T, where i is the index to
voxel location xi. The elements vj

i result
from image processing operations Tj as
follows: v1

i 5 T1[I(xi)], where T1 is aniso-
tropic diffusion filtering ; v2

i 5 T2[A(xi)],
where T2 is the distance transform of
skin, fat, and bone; v3

i 5 T3[A(xi)], where
T3 is the distance transform of the back-
ground of skin, fat, and bone; v4

i 5
T4[A(xi)], where T4 is the distance trans-
form of brain; and v5

i 5 T5[A(xi)], where
T5 is the distance transform of the back-
ground of the brain. The elements are
applied to the MR image I(xi) or the im-
age of the registered anatomic atlas A(xi).
While T1 is carried out only during the
preprocessing stage, the operators T2 to
T5 are applied to the reregistered atlas in
every segmentation iteration cycle.

For the first tumor segmentation cycle,
the patterns are also vi 5 [v1

i, . . ., v5
i]

T.
For the second tumor segmentation cycle,
the patterns are vi 5 [v1

i, . . ., v6
i]

T, where
v1

i for i 5 1–5 are defined as above but with
the additional pattern v6

i 5 T6[A(xi)], T6:
distance transform of initial tumor seg-
mentation where Ib is the resultant image
of the first tumor segmentation.
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