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ABSTRACT Sonographic features associated with margins, shape, size, and volume of thyroid nodules

are used to assess their risk of malignancy. Automatically segmenting nodules from normal thyroid

gland would enable an automated estimation of these features. A novel multi-output convolutional

neural network algorithm with dilated convolutional layers is presented to segment thyroid nodules,

cystic components inside the nodules, and normal thyroid gland from clinical ultrasound B-mode

scans. A prospective study was conducted, collecting data from 234 patients undergoing a thyroid

ultrasound exam before biopsy. The training and validation sets encompassed 188 patients total; the

testing set consisted of 48 patients. The algorithm effectively segmented thyroid anatomy into nodules,

normal gland, and cystic components. The algorithm achieved a mean Dice coefficient of 0.76, a mean

true positive fraction of 0.90, and a mean false positive fraction of 1.61 × 10−6. The values are on

par with a conventional seeded algorithm. The proposed algorithm eliminates the need for a seed

in the segmentation process, thus automatically detecting and segmenting the thyroid nodules and

cystic components. The detection rate for thyroid nodules and cystic components was 82% and 44%,

respectively. The inference time per image, per fold was 107ms. The mean error in volume estimation of

thyroid nodules for five select cases was 7.47%. The algorithm can be used for detection, segmentation,

size estimation, volume estimation, and generating thyroid maps for thyroid nodules. The algorithm has

applications in point of care, mobile health monitoring, improving workflow, reducing localization time,

and assisting sonographers with limited expertise.

INDEX TERMS Deep learning, segmentation, thyroid nodule, thyroid nodule volume, ultrasound.

I. INTRODUCTION

The increase in incidence of thyroid cancer is faster than

any other cancer at 4.5% per year over the last 10 years [1].

In 2018, an estimated 53,990 new thyroid cancer cases

were diagnosed in the United States alone, and an estimated

2,060 people died due to thyroid cancer [2]. Thyroid nodules

are mostly benign with a malignancy rate of 4.5-6% [3]. The

United States Preventive Services Task Force recommends

against screening, including neck palpation and ultrasound

The associate editor coordinating the review of this manuscript and

approving it for publication was Kemal Polat .

(US), for thyroid cancer in asymptomatic adults [1]. Due to

the lack of a screening process, thyroid nodules are found

incidentally by palpation or diagnostic imaging modalities

like ultrasonography, computed tomography, magnetic res-

onance imaging, or positron emission tomography. Ultra-

sonography is the commonly used diagnostic tool for thyroid

cancer as it is inexpensive and readily available. Besides

differentiating between solid nodules and those consisting of

cystic components, ultrasonography features are related to

the pathology of the nodule. The sonographic features that

indicate an increased risk of malignancy include hypoechoic

solid nodules, taller-than-wide nodules, irregular margins,
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extra-thyroidal extension, and presence ofmicro-calcifications.

Contrarily, presence of peripheral vascularity, round shape,

hyper- or isoechogenicity, spongiform appearance, smooth

margins, and cystic composition are associated with benign

disease [4]–[6]. Sub-centimeter nodules identified by US

are not recommended for fine needle aspiration (FNA) [7],

as they lack the potential to be clinically significant thyroid

cancers. Thus, estimating the size, volume, and shape of

nodules plays a crucial role in the decision making process

of FNA biopsy. Segmenting the thyroid nodules from normal

thyroid gland using US images can help in estimating the

above-mentioned parameters.

Segmenting US images is challenging due to the poor

contrast between different anatomies and the presence of a

granular speckle pattern. Different segmentation techniques

for thyroid nodules have been proposed using US images,

including radial basis function neural network [8], vari-

able background active contour [9], genetically-optimized

variable background active contour [10], localization-based

active contour [11], local region-based active contour [12],

geodesic active contour level set [13], active contour bilat-

eral filtering [14], hybrid multi-scale model [15], identi-

fying thin hyperechoic lines associated with the lobes of

thyroid glands [16], extreme learning machine [17], nor-

malized cut [18], random forest and U-net convolutional

neural network (CNN) [19], and manually segmenting the

boundaries [20]. Most of the algorithms mentioned above

use a manually drawn boundary, referred to as a seed, to

initiate the segmentation algorithm. A seeded boundary is a

rough estimate of the nodule boundary drawn by a user on the

B-mode image. Drawing a seed impedes the algorithms from

operating in real-time, limiting the use of seeded algorithms

for retrospective analysis only. A seedless approach to seg-

menting thyroid nodules can enable real-time applications of

segmentation algorithms in clinical workflow.

Thyroid nodules can be solid, cystic, predominantly solid,

or predominantly cystic. Segmenting the cystic components

inside a thyroid nodule can help to identify the nodule’s com-

position. Cystic components appear as hypoechoic regions

under US imaging. However, hypoechoic regions inside the

thyroid gland could be cystic components and should not

be mistaken for arteries or veins present outside the thyroid

gland, which are also hypoechoic structures. The segmenta-

tion algorithm needs to learn where the thyroid gland is on the

ultrasound image and then look for cystic components inside

the nodules.

Deep learning algorithms leverage the improvements in

graphics processing units’ computing power to develop larger

and more complex neural networks capable of segmenting

ultrasound images for various anatomies [21]–[25]. Deep

learning algorithms do not require a seed and are fully auto-

mated with an inference time in the range of milliseconds,

enabling real-time implementation. In this paper, we propose

a novel multi-prong CNN to semantically segment normal

thyroid gland, thyroid nodules, and cystic components inside

nodules from B-mode images. The algorithm can help the

user detect and segment thyroid anatomy in real-time. The

application of the algorithm includes detection, segmentation,

size estimation, volume estimation, and generation of thyroid

maps of thyroid nodules. The performance of the algorithm is

validated against a manually segmented mask and compared

against a conventional seeded algorithm.

II. MATERIALS AND METHODS

A. PATIENT POOL

A prospective study was conducted from April 2015 to

September 2018. The study was approved by the Institutional

Review Board and was Health Insurance Portability and

Accountability Act compliant. Written consent was obtained

from each patient. A total of 234 patients (177 female,

57 male; age 57±15 yrs.) underwent a clinical thyroid US

exam using a GE LOGIQ E9 (GE Healthcare; Wauwatosa,

Wisconsin USA) US scanner. The imaging protocol consisted

of gathering B-mode images of all thyroid nodules for both

longitudinal and transverse cross-sections by a board cer-

tified sonographer. Probe type, center frequency, time gain

compensation, and imaging technique were optimized by the

sonographer. A total of 914 thyroid US images were obtained

from 234 patients. Images not showing the thyroid gland and

images from patients that previously had a thyroidectomy

were excluded. The dataset was divided into training, vali-

dation, and testing sets. The training and validation sets were

comprised of 766 images corresponding to 186 patients. The

testing set was comprised of 148 images corresponding to

48 patients. A 10-fold cross-validation techniquewas used for

the training and validation set resulting in 10 unique models

with different training and validation sets. The validation set

was prepared by secluding 10% of data from the training set.

B. PRE-PROCESSING

The clinical US images were reshaped into a square sized

320 by 320 pixels with zero padding to preserve the image

aspect ratio. Pixels in the images were normalized to a range

between 0 and 1.

C. ARCHITECTURE

Fig. 1 illustrates the proposed architecture of a prong CNN

algorithm. The prong refers to the shape of the network due

to splitting of the architecture to create multiple outputs. The

proposed architecture was inspired from multi-scale context

aggregation by dilated convolutions technique [26]. A 10-fold

cross-validation techniquewas adopted to improve the perfor-

mance and reduce variance in prediction. Ten different prong

CNN algorithms were trained by changing the training and

validation sets using the 10-fold cross-validation technique.

Throughout this manuscript the 10-fold cross-validated prong

CNN algorithm is referred to as the multi-prong CNN

(MPCNN). The output of the ten prong CNNs was post-

processed to obtain the segmentation mask as described

later in the post-processing section. The MPCNN model was

adapted from the Fully Convolutional Network[27], which in
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FIGURE 1. Architecture of a multi-prong convolutional neural network. N is the number of filters. Input is a
B-mode image and output is the normal thyroid, thyroid nodule, and cyst mask.

TABLE 1. Parameters for multi prong convolutional neural network algorithm.

FIGURE 2. Training and validation characteristics of loss and accuracy for all stages of training. The blue line is the mean
results on the training set during each epoch and the red line is the results on the validation at the end of each epoch.

turn is based on the VGG-16 [28] classification network. The

MPCNN consists of 6 convolutional blocks. The first four

collect features at both the local and global levels. The last

two blocks used dilated convolutions to expand the recep-

tive field. The MPCNN was modified to have two separate

outputs in order to simultaneously segment various thyroid

anatomies. The first sigmoid output predicted the location

of normal thyroid; the second softmax output predicted the

position of the nodule, cystic component inside the nodule,

and background. The two output approach allowed the net-

work to predict overlaps in the normal thyroid gland, thyroid

nodule, and cystic components. The parameters used in the
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MPCNN algorithm are summarized in Table 1. The model

weights and filters were initialized using random numbers

from a random uniform distribution scaled by the number

of inputs. The negative Sørensen-Dice coefficient has been

commonly used as a loss function to assess the accuracy

of segmentation [21]. A weighted negative Dice coefficient

of different anatomies was used as a loss function. Due to

the complexity associated with training VGG-16 networks,

a three stage approach was adapted for training the model:

the first stage comprised of the first four convolution blocks,

the second added the fifth block, and the third stage added the

sixth block. There are a total of 184,638,040 trainable param-

eters and a training time of ten hours per model. Attempts

were made to utilize a VGG-16 model pretrained on the

ImageNet [29] benchmark dataset. One channel ultrasound

images was converted to a three channel image by copying

the input. Attempts were made to retrain the model using the

ultrasound dataset by retraining the whole model, retraining

the last three blocks and retraining the last block. Retrain-

ing was attempted using learning rates between 1e-4 and

1e-6 without success. It is possible that the datasets are too

different for the thyroid segmentation model to benefit from

pretraining on the ImageNet dataset. Hyper-parameter opti-

mization was performed by a combination of grid search and

fine tuning using the python Spearmint library [21]. Training

performance of the model is shown in Fig 2 showing training

and validation loss and accuracy across all stages of training.

There is a degree of overfit present in the model indicating

greater performance is possible with more data or a different

training scheme. The effect of introducing new layers can be

seen as a periodic drop in performance until the new layers

are trained. The algorithm was developed using Python (ver-

sion 2.7.11, Python Software Foundation) and open-source

deep learning libraries Tensorflow (version 0.9.0) [30] and

Keras (version 1.1.0) [31].

D. DATA AUGMENTATION

Overfitting and small datasets are challenges often encoun-

tered in generalizing the results. The problem of overfitting

is particularly apt for CNNs. Overfitting occurs due to the rel-

atively high number of parameters in the algorithm compared

to the number of features provided by US images. The most

common approach used to avoid overfitting is to increase

the amount of data using label-preserving transformations or

simple image manipulations (e.g. rotating an image but not

swapping color pallets). To ensure that data augmentationwas

done while observing the rules of US physics and preserving

its associated sonographic features, only horizontal axis flip-

ping was used. Conversely, vertical axis flipping was rejected

due to the deep acoustic shadowing/enhancement feature.

E. POST-PROCESSING

A ten-fold prong net was developed resulting in ten different

models. Post-processing was used to combine the results of

the ten models into one. Equally weighted binary pixels from

the ten-fold cross-validated MPCNN were averaged, and a

threshold was used to implement majority voting. The major-

ity voting threshold was set at 0.5. Using multiple models

ensured that the algorithm did not converge to a local min-

imum and removed the uncertainty associated with randomly

initialized seed.

F. LEVEL OF SUSPICION AND HISTOPATHOLOGICAL

EXAMINATION

All thyroid nodules were categorized as low, intermedi-

ate, or high level of suspicion based on their sonographic

pattern, as specified by American Thyroid Association guide-

lines [32]. Out of the 234 patients, 71 were evaluated as low

suspicion, 82 as intermediate suspicion, and 81 as high sus-

picion. Patients with suspicious thyroid nodules underwent

FNA biopsy or surgical excision biopsy after the US study

as part of the clinical procedure. Using US guidance and

standard sterile technique, a 25-gauge needle was used by

one of our board-certified radiologists to obtain up to six fine

needle aspirates for each nodule. Cytological diagnosis was

made by a cytologist with more than 15 years of experience.

Surgical histopathology results were considered conclusive

over FNA biopsy results. Cytological and histopathological

results were used to compare the performance of the seg-

mentation algorithm in benign, malignant, and indeterminate

thyroid nodules.

G. PARAMETERS FOR EVALUATION OF SEGMENTATION

The proposed MPCNN algorithm was evaluated using the

Sørensen–Dice coefficient, true positive fraction (TPF), and

false positive fraction (FPF). The Sørensen–Dice coefficient

is a measure of similarity between the predicted area and

the ground truth and will be referred to as Dice coefficient.

Dice coefficient, TPF, and FPF range between 0 and 1. Dice

coefficient and TPF values closer to 1 are indicative of a good

prediction, whereas a FPF value closer to 1 indicates a bad

prediction. Box plot distributions showing the performance of

the above mentioned three parameters against different cross-

sectional orientations, suspicion levels, and pathology were

analyzed. These parameters will be collectively referred to as

evaluation metrics.

H. COMPARISON WITH SEEDED ALGORITHM

To compare the performance of the MPCNN with a conven-

tional seeded algorithm, a distance regularized level set seg-

mentation (DRLS) algorithm [33] was implemented. Similar

to MPCNN the clinical images were down-sampled to a size

of 320 by 320 pixels. The seed for the algorithm was created

by dilating the true mask with 20 pixels. An initial random

search followed by a finer grid search was performed to

find the seeded algorithm’s optimal parameters, which were

lambda = 10, alpha = −0.9, and epsilon = 3; as defined by

Chunming Li et al. [33]. A two-tailed unpaired t test was

used to assess statistical significance between the various

evaluation parameters for the two algorithms. P values less

than 0.05 were considered significantly different.
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TABLE 2. Mean and standard deviation values of evaluation metrics from testing set versus suspicion level for thyroid nodules using the multi-prong
convolutional neural network (MPCNN) algorithm and the distance regularized level set (DRLS) algorithm.

TABLE 3. Mean and standard deviation values of evaluation metrics from testing set versus normal thyroid gland containing nodules classified according
to suspicion level using the multi-prong convolutional neural network (mpcnn) algorithm and the distance regularized level set (DRLS) algorithm.

I. DETECTION OF THYROID NODULES AND CYSTIC

COMPONENTS

To quantify the detection rate, a hypothesis test was defined

for thyroid nodules and cystic components as shown by equa-

tion 1.

Hnodule/cysticcomponent

=

{

1 : Detect all nodules or cystic component in an image

0 : Otherwise

(1)

A high detection rate could enable the correct classification of

thyroid nodules as either solid or cystic, potentially reducing

their localization time.

J. VOLUME ESTIMATION

Volume for the largest thyroid nodule in the thyroid gland

was measured in 5 patients. Two orthogonal images were

used to estimate the three axes of the nodule. The length

was measured from the longitudinal image as the maximal

distance from the most cranial to the most caudal part of the

nodule. The depth was also measured from the longitudinal

image as the maximal distance from the most superficial to

the deepest part of the nodule. The width of the nodule was

measured from a transverse image as the maximal distance

from the most medial to the most lateral part. The thyroid

nodule was assumed to be an ellipsoid and the volume was

estimated using the above three axes by the formula shown in

equation 2.

Vellipsoid =
π

6
∗ Dlength∗Dwidth ∗ Ddepth (2)

The selected five cases were used to demonstrate the ability

of the algorithm to segment different nodules and estimate

nodule volume. The estimated volume was compared against

the volume calculated by the board certified radiologist.

III. RESULTS

The clinical suspicion level versus the mean and standard

deviation values of evaluation metrics achieved during test-

ing of the thyroid nodules and normal thyroid glands are

summarized in Tables 2 and 3, respectively. The mean and

standard deviation values for all evaluation metrics for the

cystic components inside the thyroid gland are summarized

in Table 4. The box plots for Dice coefficient, TPF, and

FPF versus suspicion level using the MPCNN and DRLS

algorithms are shown in Fig. 3,4, and 5 respectively. The

mean and standard deviation values of different metrics ver-

sus pathology achieved during testing for thyroid nodules and

normal thyroid glands are summarized in Tables V and VI,

respectively. The box plots for Dice coefficient, TPF, and FPF

versus pathology using the MPCNN and DRLS algorithms

are shown in Fig. 6, 7, and 8, respectively. The mean and

standard deviation values of different metrics versus probe

orientation achieved during testing for thyroid nodules, nor-

mal thyroid gland, and cystic components are summarized

in Table 7. The box plots for Dice coefficient, TPF, and

FPF versus probe orientation using the MPCNN and DRLS

algorithms are shown in Fig. 9, 10, and 11, respectively.

Fig. 12 depicts the variation in mean values of the Dice

coefficient versusmajority voting threshold values for thyroid

nodules, normal gland, and cystic components. The MPCNN

and DRLS algorithms both produced a mean Dice coefficient

of 0.78 for the three thyroid anatomies, and a mean TPF
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TABLE 4. Mean and standard deviation values of evaluation metrics from testing set for all cystic regions using the multi-prong convolutional neural
network (MPCNN) algorithm and the distance regularized level set (DRLS) algorithm.

FIGURE 3. Boxplots showing the Dice coefficient versus different suspicion levels using the multi-prong convolutional neural network (MPCNN) and
distance regularized level set (DRLS) algorithms for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.

FIGURE 4. Boxplots showing the true positive fraction versus different suspicion levels using the multi-prong convolutional neural network (MPCNN) and
distance regularized level set (DRLS) algorithms for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.

FIGURE 5. Boxplots showing the false positive fraction versus different suspicion levels using the multi-prong convolutional neural network (MPCNN)
and distance regularized level set (DRLS) algorithms for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.

of 0.77. The mean FPFs for the three thyroid anatomies

using MPCNN and DRLS algorithms were 0.55 × 10−6 and

0.34×10−6, respectively. The inference time per image for a

singlemodel was 107ms using the pascal architecture TITAN

Xp GPU (Nvidia, Santa Clara, CA, USA). The MPCNN had

an inference time of 1.07 seconds per image. Detection rates
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TABLE 5. Mean and standard deviation values of evaluation metrics from testing set versus pathology for thyroid nodules using the multi-prong
convolutional neural network (MPCNN) algorithm and the distance regularized level set (DRLS) algorithm.

TABLE 6. Mean and standard deviation values of evaluation metrics from testing set versus normal thyroid gland containing nodules classified according
to pathology using the multi-prong convolutional neural network (MPCNN) algorithm and the distance regularized level set (DRLS) algorithm.

FIGURE 6. Boxplots showing the Dice coefficient versus pathology using the multi-prong convolutional
neural network (MPCNN) and distance regularized level set (DRLS) algorithms for (a) thyroid nodules and
(b) normal thyroid.

for thyroid nodules and cystic components were 82% and

44%, respectively. The mean size of thyroid nodules was

9.67±10.04 mm, and the mean size of cystic components was

2.22±2.99 mm. An overall pixel accuracy for the combined

model output is 93.0% for thyroid, 84.3% for nodules and

67.4% for cysts.

Review of Selected Cases: The results of 5 different cases

are reviewed to demonstrate the performance of the algorithm

in the presence of different pathologies and sonographic fea-

tures. Table 8 shows the estimated volume of the five review

cases. The mean percentage error in volume estimation was

7.47%.

Case 1: Fig. 13(a) shows the B-mode image of a benign

thyroid nodule with a characteristic smooth boundary typi-

cal for benign nodules. The manually segmented boundaries

for the thyroid nodule and normal thyroid gland are shown

in Fig. 13(b) using red and blue lines, respectively. The

predicted boundaries are shown in Fig. 13(c). The mean Dice

coefficient for the MPCNN was 0.95. The algorithm was

able to capture both the normal thyroid gland and the thyroid

nodules; it was not able to capture the low contrast edge of the

thyroid gland on the top right side of the image. Moreover,

the algorithm over-predicted the nodule region.

Case 2: The B-mode image of a benign thyroid nodule

with degenerative changes is shown in Fig. 14(a). Almost

the entire thyroid gland was covered by the nodule. The

nodule had a cystic component. The manually segmented

boundaries for the thyroid nodule, normal thyroid gland, and

cystic component are shown in Fig. 14(b) using red, blue, and

green lines, respectively. The predicted boundaries are shown

in Fig. 14(c). The mean Dice coefficient for the MPCNN

was 0.95. The algorithm correctly predicted both the thyroid
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FIGURE 7. Boxplots showing the true positive fraction versus pathology using the multi-prong convolutional neural
network (MPCNN) and distance regularized level set (DRLS) algorithms for (a) thyroid nodules and (b) normal thyroid.

FIGURE 8. Boxplots showing the false positive fraction versus pathology using the multi-prong convolutional neural
network (MPCNN) and distance regularized level set (DRLS) algorithms for (a) thyroid nodules and (b) normal thyroid.

TABLE 7. Mean and standard deviation values of evaluation metrics from testing set versus probe orientation for thyroid nodules, thyroid gland and
cystic components using the multi-prong convolutional neural network (MPCNN) algorithm and the distance regularized level set (DRLS) algorithm.

gland and the cystic components inside the nodule while

missing the top right corner of the nodule. Furthermore, the

predicted thyroid nodule boundaries were not as smooth as

the manually segmented boundaries.

Case 3: The B-mode image of a benign thyroid nodule

with degenerative changes is shown in Fig. 15(a). The nod-

ule had three cystic components. The manually segmented

boundaries for the thyroid nodule, normal thyroid gland,

and cystic components are shown in Fig. 15(b) using red,

blue, and green lines, respectively. The predicted boundaries

are shown in Fig. 15(c). The mean Dice coefficient for the

MPCNNwas 0.93. The algorithmwas able to predict multiple

cystic regions inside the thyroid nodule. The algorithm under-

predicted the thyroid nodule and the nodule boundaries were

not as smooth as the manual segmentation.

Case 4: The B-mode image of a suspicious thyroid nodule

with cytological features suspicious for follicular neoplasm

is shown in Fig. 16(a). Calcifications were seen inside the

nodule, which covered almost the entire thyroid gland. The

manually segmented boundaries for the thyroid nodule and
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FIGURE 9. Boxplots showing the Dice coefficient versus orientation using the multi-prong convolutional neural network (MPCNN) and
distance regularized level set (DRLS) algorithms for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.

FIGURE 10. Boxplots showing the true positive fraction versus orientation using the multi-prong convolutional neural network (MPCNN)
and distance regularized level set (DRLS) algorithms for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.

FIGURE 11. Boxplots showing the false positive fraction versus orientation using the multi-prong convolutional neural network (MPCNN) and distance
regularized level set (DRLS) algorithms for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.

TABLE 8. Volume estimation of the five review cases using the multi-prong convolutional neural network (MPCNN) algorithm, compared against
estimation by the board certified radiologist.

normal thyroid gland are shown in Fig. 16(b) using red and

blue lines, respectively. The predicted boundaries are shown

in Fig. 16(c). The mean Dice coefficient for the MPCNN was

0.94. The algorithm predicted the thyroid gland and most of

the thyroid nodule.

Case 5: The B-mode image of a malignant thyroid nodule

with cytological features consistent with papillary thyroid

carcinoma is shown in Fig. 17(a). The nodule had multi-

ple calcifications. The manually segmented boundaries for

the thyroid nodule and normal thyroid gland are shown
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FIGURE 12. Dice coefficient values versus number of models along with error bars for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.

FIGURE 13. (a) B-mode image of a benign thyroid nodule. (b) Manual segmentation by a board-certified sonographer with thyroid nodule in red and
normal thyroid in blue. (c) Predicted boundaries using the MPCNN algorithm.

FIGURE 14. (a) B-mode image of a benign thyroid nodule with degenerative changes. (b) Manual segmentation by a
board-certified sonographer with the thyroid nodule in red, normal thyroid in blue, and cyst in green. (c) Predicted
boundaries using the multi-prong convolutional neural network with the thyroid nodule in red, normal thyroid in blue, and
cyst in green. A mean Dice coefficient of 0.95 was achieved.

in Fig. 17(b) using red and blue lines, respectively. The

predicted boundaries are shown in Fig. 17(c). The mean Dice

coefficient for the MPCNN was 0.94. The algorithm under-

predicted the thyroid nodule due to low contrast at the edges.

IV. DISCUSSION

In this paper we presented a MPCNN algorithm which seg-

mented the thyroid anatomy into thyroid nodule, normal thy-

roid gland, and cystic components. The proposed algorithm

worked without user interference with a mean Dice coef-

ficient on par with the conventional user-dependent, seed-

based DRLS algorithm. The DRLS algorithm performed

better in segmenting the thyroid nodule and normal thyroid

gland; however, it performed poorly in segmenting cystic

components. The better performance of the seeded algorithm

in the thyroid nodule and normal thyroid gland was due to

the choice of the seed. The seed was selected by dilating the

manually segmented masks by 20 pixels. The seed selection
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FIGURE 15. (a) B-mode image of a benign thyroid nodule with degenerative changes. (b) Manual segmentation by a
board-certified sonographer with thyroid nodule in red, normal thyroid in blue, and cysts in green (c) Predicted boundaries
using the multi-prong convolutional neural network with thyroid nodule in red, normal thyroid in blue, and cysts in green.
A mean Dice coefficient of 0.93 was achieved.

FIGURE 16. (a) B-mode image of a suspicious thyroid nodule with cytological features suspicious for a follicular neoplasm. (b) Manual
segmentation by a board-certified sonographer with thyroid nodule in red and normal thyroid in blue. (c) Predicted boundaries using the
multi-prong convolutional neural network with thyroid nodule in red and normal thyroid in blue. A mean Dice coefficient of 0.94 was
achieved.

was deliberate to highlight the capability of the MPCNN

algorithm. The proposed algorithm did not require an initial

seed and automatically identified the region of normal thyroid

gland, thyroid nodule, and cystic components present inside

the thyroid gland region. The proposed algorithm learned to

differentiate between hypoechoic regions inside and outside

the thyroid gland and only assigned the hypoechoic region

inside the thyroid as cystic components. The complexity of

the deep learning algorithmwas dependent on the architecture

and the data used to train the algorithm. A larger dataset

with more unique and diverse cases could further improve

algorithm performance. The poor performance of the DRLS

algorithm for cystic components was due to the selection of

DRLS parameters, which were fine-tuned for thyroid nodule

and gland. The Dice coefficient of the MPCNN algorithm

decreased with increasing suspicion level due to the irregular

margins associated with higher suspicion cases. Similarly,

the TPF decreased with increasing suspicion.

As shown in Table 2, the majority of the images used

for testing were in the intermediate and high suspicion cat-

egories. The MPCNN algorithm had a lower mean Dice

coefficient, lower mean TPF, and higher mean FPF than the

DRLS algorithm for thyroid nodule and normal thyroid gland,

as shown in Tables II and III, respectively. The lower TPF and

higher FPF values indicate that theMPCNNalgorithmmissed

and overestimated the boundaries of the thyroid nodules and

normal thyroid gland. Low suspicion cases showed the best

Dice coefficients and TPF performance for the MPCNN

algorithm. Intermediate and high suspicion cases were more

challenging to segment compared to low suspicion cases

due to the irregular boundaries associated with increased

suspicion level. The MPCNN algorithm had a higher mean

Dice coefficient and mean TPF than the DRLS algorithm for

cystic components, as shown in Table 4. The performance

of both algorithms in cystic components was low compared

to thyroid nodule and thyroid gland. The MPCNN showed

a higher FPF than DRLS, indicating over-prediction of the

cystic components. The poor performance of the DRLS was

due to the failure of the algorithm to stop converging at the

edges.

The MPCNN algorithm had higher variance for both the

Dice and TPF than the DRLS algorithm for all three thyroid

regions. The difference in variance was small, indicating

that the MPCNN and DRLS algorithms demonstrated equal

reliability. The variance for high suspicion thyroid nodules

was higher than that of low and intermediate suspicion, which
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FIGURE 17. (a) B-mode image of a malignant thyroid nodule with cytological features consistent with papillary thyroid carcinoma. (b) Manual
segmentation by a board-certified sonographer with thyroid nodule in red and normal thyroid in blue. (c) Predicted boundaries using the multi-prong
convolutional neural network with thyroid nodule in red and normal thyroid in blue. A mean Dice coefficient of 0.94 was achieved.

could be attributed to the irregular margins associated with

high suspicion cases. The variance for cystic components

was high, reflecting the challenge in identifying cystic com-

ponents. The DRLS performed statistically better than the

MPCNN algorithm for the Dice coefficient in thyroid nod-

ules, and for the Dice, TPF, and FPF in normal thyroid gland.

However, the MPCNN algorithm performed statistically bet-

ter than the DRLS for the Dice, TPF, and FPF in cystic

components.

The performance of the MPCNN algorithm was slightly

higher for malignant compared to benign thyroid nodules,

as shown in Table 5. However, higher variance was also

shown in malignant nodules with irregular margins, indicat-

ing the lower reliability associated with that characteristic.

Thyroid gland from benign nodules showed the highest Dice

and TPF, as shown in Table 6. Large malignant thyroid nod-

ules that covered most of the thyroid gland made it harder

to distinguish normal gland from nodule. Cystic components

were easier to identify in malignant nodules compared to

benign, as shown in Table 7 ; however, the reliability was low,

indicated by the high variance of the Dice and TPF values.

The mean Dice and TPF performances for the MPCNN

algorithm were higher for all three structures in the longitudi-

nal orientation compared to transverse, as shown in Table 8.

However, the FPF was also higher in the longitudinal orienta-

tion, indicating that the algorithm over-predicted in that direc-

tion. The variances of Dice and TPF were also low for the

MPCNN algorithm for the three anatomies in the longitudinal

orientation compared to the transverse. The better longitudi-

nal orientation performance could be attributed to the higher

contrast of the edges which arises from better contact with

the neck, larger cross-sectional area of the thyroid gland, and

less motion from the carotid artery compared to the transverse

orientation.

The performance of the Dice coefficient for thyroid nod-

ules, normal thyroid, and cystic components increased with

an increasing number of models. Increasing the number

of models removed the uncertainty associated with the

algorithm converging in a local minimum by initializing the

algorithm differently, but it did not improve the performance

drastically. Although the improvement in mean value of the

Dice was low, the decrease in variance suggests more reliable

and reproducible results could be obtained with higher num-

bers of models. Furthermore, majority voting also contributed

to the performance improvement by removing the regions

which were predicted with low confidence. Increasing the

number of models increased the inference time proportion-

ally. Depending upon the application, the number of models

could be traded off for faster performance. Real time applica-

tions require an inference time of a few tens of milliseconds.

Using a single model, faster graphical processing unit and

optimized code, the inference time of a few tens of millisec-

onds could be easily achieved.

The detection rate of thyroid nodules was higher than

that of cystic components due to their larger size. Cystic

components can be quite small, and the detection was a strict

binary criterion; thus, all cystic components within the image

had to be detected for a positive detection. Also, the detection

criterion established for cystic components was very strict.

Typically, very small cystic components would be ignored;

thus, to set high standards for the algorithm, a strict crite-

rion was used. The algorithm faces challenges in detecting

small cystic components. This challenge is partly associated

with the small input size, 320 by 320 pixels, of the thyroid

image. If the size of the cystic component inside the nodule

in pixels is comparable to the convolutional filter size, it is

hard to extract that feature. Larger image input size may

perform better in segmenting small cystic components. The

ROC curve is displayed in Fig 18 was created by replacing

the sigmoid and softmax output of the MPCNN with linear

outputs. The output of each model was normalized between

0 and 1, the outputs of all models was summed and renor-

malized. Each pixel in the test set was treated as a binary

classification problem; feature or not-feature for the thyroid,

nodules and cysts. Fig 18 indicates high performance for the

thyroid class and similar performance for both the nodule and
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FIGURE 18. ROC curve for the thyroid, nodules and cyst classes.

cyst classes. This is likely reflects the bulk performance of the

segmentation which correct segments the centers of features

and struggles with the margins. This ROC curve ignores

inter-class relationships in the normal MPCNN output that

ultimately prioritizes one class over others; likely the model

prioritizes nodule segmentation over cyst segmentation.

Most of the previous work done on segmentation of the

thyroid gland, nodules, and cystic components was done

with semi-automated algorithms, limiting their use to post-

sonographic exams. A recent paper segmented the thyroid

gland using a U-net based convolutional neural network that

had a Dice coefficient of 0.876 [19]. The performance of

our algorithm was slightly better than their U-net based

approach. Application of an original U-net based convolu-

tional neural network [34] to our data set resulted in a low

Dice value of 0.538 for the thyroid gland. We did not apply

the U-net algorithm to the nodules and cysts, anticipating

poor performance (results not reported). Chang et. al. used the

radial basis function neural network, a patch based classifica-

tion trained achieved an accuracy of 96.52, but on manually

selected thyroid ROIs [8].

Freesmeyer et. al. have demonstrated that manual tracing is

superior to ellipsoid model for healthy and deformed thyroid

phantoms. An automatic segmentation model could provide

similar improvements without additional the time commit-

ments necessary for an expert to provide manual segmen-

tations [35]. A recent study using three different computer

segmentation approaches on 3D thyroid healthy ultrasound,

selecting the features inside and outside of the thyroid and

using Level Set, Graph Cut, and Pixel Classifier resulted

in mean Dice Coefficients of 0.713, 0.748, and 0.601 [36].

These results underperformed compared to our model and

do not attempt to perform segmentations of nodules or of

thyroids with nodules present which may have lowered

performance.

Another study using variable Background Active Contour

Model (VBAC) was able to achieve a mean IoU of 0.91 over

the established ACWE which achieved an IoU of 0.848 [9].

IoU is a similar segmentation evaluation metric to Dice coef-

ficient. Dice and IoU cannot be directly compared, however

in my experience IoU is a ‘harsher’ metric and indicates

that VBAC significantly outperforms our MPCNN model.

They test using a smaller dataset and limit themselves only

to hypoechoic cases.

The interobserver variability in estimating thyroid nod-

ule volume is approximately 23.69% using the ellipsoid

method [37]. The percentage error in volume estimation

using the MPCNN algorithm was much lower than the value

reported in the literature. The low percentage error in volume

estimation showcases the feasibility of using the algorithm

for estimating volume of thyroid nodules while decreasing

the subjectivity associated with different observers.

Segmenting the thyroid anatomy into normal gland ver-

sus nodules and cystic components has various applications.

In the clinic, estimating thyroid nodule size and volume is

important as they are features that can be used for selecting

the nodule for biopsy. After segmenting the thyroid nodule,

its size and volume can be estimated. Lobulated or irregular

margins, and taller-than-wider shape are also associated with

increased risk in the stratification process. These features

could be estimated after segmenting the thyroid nodule within

the thyroid gland. Another possible application in the clinical

setting could include the generation of thyroid maps, which

are rough sketches showing the location of all thyroid nod-

ules, their size and composition (i.e., solid or cystic). Fur-

thermore, many clinics have an established protocol which

includes collection of thyroid cine clips. These clips are

gathered by traversing the probe from superior to inferior

thyroid in transverse probe orientation. Each cine clip frame

can be segmented to identify the location of thyroid nodules

and cystic components; with this information, size and vol-

ume of each nodule can be estimated. Since the algorithm

can predict cystic regions inside a nodule, it can also be

used to classify the nodule as solid, cystic, predominantly

solid, or predominantly cystic depending upon the percentage

of cystic components inside the nodule. The algorithm can

also be used in the continuing education of sonographers.

Limitations: During two-dimensional US scanning the

sonographer had access to various planar views of the thyroid

by varying the probe angle, orientation, and pre-compression.

Probe angle can change the planar view, along with the

deep acoustic shadowing or enhancement, allowing better

visualization of anatomical parts. Pre-compression increases

the contrast of nodule edges with respect to normal thyroid

gland. Orientation can give a wider perspective of the nodule

shape in three dimensions. During live scanning the sonog-

rapher was able to rock and angle the US probe to view the

thyroid nodule from different directions, angles, orientations,

and at different pre-compression levels. After the scanning

the sonographer manually segmented the thyroid nodule.

During manual segmentation the sonographer had access to

prior information for the selection of boundaries gained from

the experience of utilizing the previously mentioned probe

motion techniques. On the other hand, the algorithm only
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had access to the single two-dimensional planar images when

delineating the boundaries. Thus, the algorithm showed a

fair performance compared to manual segmentation from the

sonographer. For better segmentation, a three-dimensional

view of the nodule from multiple angles, at different com-

pression levels, and different orientations should be com-

bined together. The algorithm was able to identify multi-

ple cystic regions; however, it failed to identify very small

ones. Even though the algorithm performed poorly on cystic

components, it was significantly better than the conventional

algorithm.

V. CONCLUSION

The MPCNN algorithm can segment the thyroid gland, nod-

ules, and cystic components in real time without the need

for an initial seed, and it performs on par with contemporary

seeded algorithms (DRLS). The number of models in the

algorithm can be traded for higher accuracy or faster perfor-

mance. The algorithm can identify thyroid nodules and cystic

components from normal thyroid gland; however, it fails to

segment very small cystic components. The error in volume

estimation for thyroid nodules was low, making the algorithm

a feasible objective tool for volume estimation. The algorithm

has applications in point of care, mobile health monitoring,

improving workflow, reducing localization time and assisting

sonographers with limited expertise.

ACKNOWLEDGMENT

(Viksit Kumar and Jeremy Webb are co-first authors.) The

authors are grateful to Barbara Foreman, our clinical coor-

dinator, Erin Jarrod, and Jennifer Poston for administrative

support. They are grateful to Dr. Desiree Lanzino (Ph.D.) for

her help in editing this manuscript.

REFERENCES

[1] K. Bibbins-Domingo, ‘‘Screening for thyroid cancer: US preventive ser-

vices task force recommendation statement,’’ Jama, vol. 317, no. 18,

pp. 1882–1887, 2017.

[2] A. Bikas and K. D. Burman, ‘‘Epidemiology of thyroid cancer,’’ in The

Thyroid and Its Diseases, M. Luster, L. Duntas, and L. Wartofsky, Eds.

Basel, Switzerland: Springer, 2019, pp. 541–547.

[3] J.-D. Lin, T.-C. Chao, B.-Y. Huang, S.-T. Chen, H.-Y. Chang, andC. Hsueh,

‘‘Thyroid cancer in the thyroid nodules evaluated by ultrasonography and

fine-needle aspiration cytology,’’ Thyroid, vol. 15, no. 7, pp. 708–717,

2005.

[4] W.-J. Moon, ‘‘Benign and malignant thyroid nodules: US differentiation-

multicenter retrospective study,’’ Radiol., vol. 247, no. 3, pp. 762–770,

2008.

[5] M. C. Frates, ‘‘Management of thyroid nodules detected at US: Society

of radiologists in ultrasound consensus conference statement,’’ Radiology,

vol. 237, no. 3, pp. 794–800, 2005.

[6] J. P. Brito, M. R. Gionfriddo, A. Al Nofal, K. R. Boehmer, A. L. Leppin,

C. Reading, M. Callstrom, T. A. Elraiyah, L. J. Prokop, M. N. Stan,

M. H. Murad, J. C. Morris, and V. M. Montori, ‘‘The accuracy of thyroid

nodule ultrasound to predict thyroid cancer: Systematic review and meta-

analysis,’’ J. Clin. Endocrinol. Metabolism, vol. 99, no. 4, pp. 1253–1263,

Apr. 2014.

[7] E. L. Mazzaferri, ‘‘Management of a solitary thyroid nodule,’’ New Eng-

land J. Med., vol. 328, no. 8, pp. 553–559, 1993.

[8] C.-Y. Chang, Y.-F. Lei, C.-H. Tseng, and S.-R. Shih, ‘‘Thyroid segmenta-

tion and volume estimation in ultrasound images,’’ IEEE Trans. Biomed.

Eng., vol. 57, no. 6, pp. 1348–1357, Feb. 2010.

[9] D. E. Maroulis, M. A. Savelonas, D. K. Iakovidis, S. A. Karkanis,

and N. Dimitropoulos, ‘‘Variable background active contour model for

computer-aided delineation of nodules in thyroid ultrasound images,’’

IEEE Trans. Inf. Technol. Biomed., vol. 11, no. 5, pp. 537–543,

Sep. 2007.

[10] D. K. Iakovidis, M. A. Savelonas, S. A. Karkanis, and D. E. Maroulis,

‘‘A genetically optimized level set approach to segmentation of thy-

roid ultrasound images,’’ Appl. Intell., vol. 27, no. 3, pp. 193–203,

2007.

[11] N. Singh and A. Jindal, ‘‘A segmentation method and comparison of

classification methods for thyroid ultrasound images,’’ Int. J. Comput.

Appl., vol. 50, no. 11, pp. 43–49, 2012.

[12] N. H. Mahmood and A. H. Rusli, ‘‘Segmentation and area measurement

for thyroid ultrasound image,’’ Int. J. Sci. Eng. Res., vol. 2, no. 12, pp. 1–8,

2011.

[13] E. N. Kollorz, D. A. Hahn, R. Linke, T. W. Goecke, J. Hornegger, and

T. Kuwert, ‘‘Quantification of thyroid volume using 3-D ultrasound imag-

ing,’’ IEEE Trans. Med. Imag., vol. 27, no. 4, pp. 457–466, Mar. 2008.

[14] H. A. Nugroho, A. Nugroho, and L. Choridah, ‘‘Thyroid nodule segmenta-

tion using active contour bilateral filtering on ultrasound images,’’ in Proc.

Int. Conf. Qual. Res. (QiR), Aug. 2015, pp. 43–46.

[15] S. Tsantis, N. Dimitropoulos, D. Cavouras, and G. Nikiforidis,

‘‘A hybrid multi-scale model for thyroid nodule boundary detection

on ultrasound images,’’ Comput. Methods Programs Biomed., vol. 84,

nos. 2–3, pp. 86–98, Dec. 2006.

[16] E. G. Keramidas, D. K. Iakovidis, D. Maroulis, and S. Karkanis, ‘‘Efficient

and effective ultrasound image analysis scheme for thyroid nodule detec-

tion,’’ in Proc. Int. Conf. Image Anal. Recognit., 2007, pp. 1052–1060.

[17] D. Selvathi and V. S. Sharnitha, ‘‘Thyroid classification and segmenta-

tion in ultrasound images using machine learning algorithms,’’ in Proc.

Int. Conf. Signal Process., Commun., Comput. Netw. Technol., Jul. 2011,

pp. 836–841.

[18] J. Zhao, W. Zheng, L. Zhang, and H. Tian, ‘‘Segmentation of ultrasound

images of thyroid nodule for assisting fine needle aspiration cytology,’’

Health Inf. Sci. Syst., vol. 1, no. 1, p. 5, Dec. 2013.

[19] P. Poudel, A. Illanes, D. Sheet, and M. Friebe, ‘‘Evaluation of commonly

used algorithms for thyroid ultrasound images segmentation and improve-

ment using machine learning approaches,’’ J. Healthcare Eng., vol. 2018,

Sep. 2018, Art. no. 8087624.

[20] S. Schlögl, ‘‘The use of three-dimensional ultrasound for thyroid, volume-

try,’’ Thyroid, vol. 11, no. 6, pp. 569–574, 2001.

[21] V. Kumar, J. M. Webb, A. Gregory, M. Denis, D. D. Meixner, M. Bayat,

D. H. Whaley, M. Fatemi, and A. Alizad, ‘‘Automated and real-time seg-

mentation of suspicious breast masses using convolutional neural net-

work,’’ PLoS ONE, vol. 13, no. 5, 2018, Art. no. e0195816.

[22] F. Milletari, S.-A. Ahmadi, C. Kroll, A. Plate, V. Rozanski, J. Maiostre,

J. Levin, O. Dietrich, B. Ertl-Wagner, K. Bötzel, and N. Navab, ‘‘Hough-

CNN: Deep learning for segmentation of deep brain regions in MRI

and ultrasound,’’ Comput. Vis. Image Understand., vol. 164, pp. 92–102,

Nov. 2017.

[23] J. Yang, L. Tong, M. Faraji, and A. Basu, ‘‘IVUS-net: An intravascular

ultrasound segmentation network,’’ 2018, arXiv:1806.03583. [Online].

Available: http://arxiv.org/abs/1806.03583

[24] C. Azzopardi, Y. A. Hicks, and K. P. Camilleri, ‘‘Automatic carotid ultra-

sound segmentation using deep convolutional neural networks and phase

congruency maps,’’ in Proc. IEEE 14th Int. Symp. Biomed. Imag. (ISBI),

Apr. 2017, pp. 624–628.

[25] P. Looney, G. N. Stevenson, K. H. Nicolaides,W. Plasencia, M.Molloholli,

S. Natsis, and S. L. Collins, ‘‘Automatic 3D ultrasound segmentation of the

first trimester placenta using deep learning,’’ in Proc. IEEE 14th Int. Symp.

Biomed. Imag. (ISBI), Apr. 2017, pp. 279–282.

[26] F. Yu and V. Koltun, ‘‘Multi-scale context aggregation by dilated con-

volutions,’’ 2015, arXiv:1511.07122. [Online]. Available: http://arxiv.org/

abs/1511.07122

[27] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks

for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[28] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks

for large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online].

Available: http://arxiv.org/abs/1409.1556

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:

A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

VOLUME 8, 2020 63495



V. Kumar et al.: Automated Segmentation of Thyroid Nodule, Gland, and Cystic Components From Ultrasound Images

[30] M. Abadi, ‘‘Tensorflow: A system for large-scale machine learning,’’

OSDI, vol. 16, pp. 265–283, 2016.

[31] F. Chollet, ‘‘Keras,’’ Google Inc., San Francisco, CA, USA, 2015. [Online].

Available: https://github.com/fchollet/keras

[32] B. R. Haugen, E. K. Alexander, K. C. Bible, G. M. Doherty,

S. J. Mandel, Y. E. Nikiforov, F. Pacini, G. W. Randolph, A. M. Sawka,

M. Schlumberger, K. G. Schuff, S. I. Sherman, J. A. Sosa, D. L. Stew-

ard, R. M. Tuttle, and L. Wartofsky, ‘‘2015 American thyroid association

management guidelines for adult patients with thyroid nodules and dif-

ferentiated thyroid cancer: The American thyroid association guidelines

task force on thyroid nodules and differentiated thyroid cancer,’’ Thyroid,

vol. 26, no. 1, pp. 1–133, Jan. 2016.

[33] C. Li, C. Xu, C. Gui, and M. D. Fox, ‘‘Distance regularized level set

evolution and its application to image segmentation,’’ IEEE Trans. Image

Process., vol. 19, no. 12, pp. 3243–3254, Dec. 2010.

[34] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional networks

for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image

Comput. Comput.-Assist. Intervent. Basel, Switzerland: Springer, 2015,

pp. 234–241.

[35] M. Freesmeyer, L. Knichel, C. Kuehnel, and T. Winkens, ‘‘Stitching of

sensor-navigated 3D ultrasound datasets for the determination of large

thyroid, volumes-a phantom study,’’Med. Ultrasonography, vol. 20, no. 4,

pp. 480–486, 2018.

[36] T. Wunderling, B. Golla, P. Poudel, C. Arens, M. Friebe, and C. Hansen,

‘‘Comparison of thyroid segmentation techniques for 3D ultrasound,’’

Proc. SPIE Int. Soc. Opt. Photon., vol. 10133, Feb. 2017, Art. no. 1013317.

[37] V. Brauer, P. Eder, K. Miehle, T. Wiesner, H. Hasenclever, and R. Paschke,

‘‘Interobserver variation for ultrasound determination of thyroid nodule

volumes,’’ Thyroid, vol. 15, no. 10, pp. 1169–1175, 2005.

63496 VOLUME 8, 2020


