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Abstract

Background: In prognosis and therapeutics of adrenal cortical carcinoma (ACC), the selection of the most active

areas in proliferative rate (hotspots) within a slide and objective quantification of immunohistochemical Ki67

Labelling Index (LI) are of critical importance. In addition to intratumoral heterogeneity in proliferative rate i.e. levels

of Ki67 expression within a given ACC, lack of uniformity and reproducibility in the method of quantification of Ki67

LI may confound an accurate assessment of Ki67 LI.

Results: We have implemented an open source toolset, Automated Selection of Hotspots (ASH), for automated

hotspot detection and quantification of Ki67 LI. ASH utilizes NanoZoomer Digital Pathology Image (NDPI) splitter to

convert the specific NDPI format digital slide scanned from the Hamamatsu instrument into a conventional tiff or

jpeg format image for automated segmentation and adaptive step finding hotspots detection algorithm.

Quantitative hotspot ranking is provided by the functionality from the open source application ImmunoRatio as

part of the ASH protocol. The output is a ranked set of hotspots with concomitant quantitative values based on

whole slide ranking.

Conclusion: We have implemented an open source automated detection quantitative ranking of hotspots to

support histopathologists in selecting the ‘hottest’ hotspot areas in adrenocortical carcinoma. To provide wider

community easy access to ASH we implemented a Galaxy virtual machine (VM) of ASH which is available from

http://bioinformatics.erasmusmc.nl/wiki/Automated_Selection_of_Hotspots.

Virtual Slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/

vs/13000_2014_216
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Background
Adrenal cortical carcinoma (ACC) is a rare type of endo-

crine malignancy with an estimated incidence of 0.7–2.0

cases per million population per year and a poor overall

prognosis [1]. According to recent evidence from the

European Network for the Study of Adrenal Tumors

(ENS@T) ACC study group, the resection status and the

Ki67 labelling index (LI) in both localized and advanced

ACC [2,3] constitute the most relevant prognostic param-

eters [4]. In this regard, it has been suggested that the

histopathology report should include Ki67 LI along with

confirmation of the adrenocortical origin on immunohis-

tochemical grounds, Weiss score and resection status [4].

Importantly, Ki67 LI has been integrated in treatment flow

charts for ACC patients with either tumor amenable to

radical resection or advanced disease [4].

Taken together, the production of accurate and reprodu-

cible Ki67 LIs remains a key issue and main responsibility

of pathologists. It should be recognized that various fac-

tors, such as pre-analytical, analytical, interpretation, scor-

ing, and data analysis, might affect Ki67 LI [5]. Given the

biological heterogeneity of Ki67 immunostaining across

tumor specimens [5,6], the area of slide read has been

controversial for Ki67 LI assessment e.g. in breast cancer

[5,7]. According to the European Society of Neuroendo-

crine Tumors (ENETS), the mitotic count and the Ki67 LI

should be assessed in areas with the highest proliferating

activity (hotspots) in order to determine the proliferation

grade in gastroenteropancreatic neuroendocrine tumors

(GEP-NETs) [8]. As far as ACCs are concerned, there is

not only lack of studies addressing the issues of a potential

biological heterogeneity of Ki67 staining and inter-

observer variation, but also different methods of objective

quantification of the Ki67 proliferative index.

In routine diagnostic practice, representative areas of

slides are manually selected by histopathologists using vis-

ual examination of whole mount Ki67-immuostained

slides at a low magnification. Of note, this process might

lack reproducibility and affect the Ki67 LI [5]. Since digi-

tized immunohistochemical (IHC) stained tissue sections

have become amenable to the application of computerized

image analyses, two independent groups have developed

either a hybrid clustering approach for the detection of

Ki67 hotspots in whole tumor slide images [9] or a sim-

plified computerized method for hotspot detection in

digitized IHC slides [10]. In this context, we developed

Automated Selection of Hotspots (ASH) to provide cli-

nical labs with the ability to determine the most active

areas in proliferative rate within a slide and subsequently

quantitate Ki67 LI using a desktop PC without requiring

extensive bioinformatics support. ASH uses Galaxy [11] as

a simple graphical user interface and to join the compo-

nents of ASH into an analytical workflow for hotspot de-

tection and this, Galaxy is contained in a VMware virtual

machine (VM) [12] which ensures that the system is plat-

form independent. The use of VM technology has been

highlighted by Nocq et al. [13], to improve the usability of

next generation sequencing software by simply sharing en-

tire installations.

We believe that this is the first time that Galaxy-VM

has been used to deliver single user (on a personal com-

puter) or as a multi-user (on a server) hotspot detection

software with the same easy access via the Galaxy graphical

user interface (GUI).

Method
ASH is delivered as a virtual machine which consists of

3 classes: NDPI Segmentation, Adaptive Step Finding

and Reporting Visualization (Figure 1). NDPI Segmenta-

tion used previously described NDPI splitter [14] to split

the input image files into A × B matrix followed by a

step shift of 1/2 split image and quantitation Ki67 in all

images using ImmunoRatio [15], implemented in ASH.

This preprocessing step provides an initial quantitative

ranking of all blocks from which the top 10 are used to

focus in on the actual ‘hotspot’ fields. To ascertain the

exact hotspot positions on the image we develop an

Adaptive Step Finding class to adaptively determine the

shifting step size, and trade-off between the hotspot detec-

tion resolution and system complexity. This Adaptive Step

Finding class uses three of the same functions (Image

shifting, ImmunoRatio and Ranking) that are used by

NDPI Segmentation (Figure 1), however in this class eight

blocks are created around the region selected by NDPI

Segmentation (Figure 2). The rectangle area is shifted by a

step size shrunk 50% every adaptive loop.

ASH provides an end to end workflow for hotspot de-

tection using the functionality of a Galaxy GUI to pro-

vide the user with a simple data upload and html style

reporting environment.

Implementation
The application is for digital images obtained on the

Hamamatsu NanoZoomer Digital Pathology (NDP) Sys-

tem (Hamamatsu Photonics K.K. Japan), in their pro-

prietary NDP Image (NDPI) file format. NDPI image

segmentation using NDPI-splitter is available from [16].

Quantitation of segmented blocks with ImmunoRatio is

available from [17]. For image processing, analysis, and

visualization, we adopted OpenCV [18]. The ASH

software tool is developed on the Ubuntu 12.04 [19]

Linux operating system, as a Galaxy application [11]

and is distributed as a VMware virtual machine [12] for

a Windows user.

The detection of hotspots uses adaptive step finding

methodology which has been utilized in engineering

for many years [20] and extensively evaluated and vali-

dated [21]. Experimental evaluation has demonstrated
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the effectiveness of the adaptive step size [22] and the

adaptive step finding method applied in ASH has the

same functionality. The selection of the step size is crit-

ical both from the point of view of computational effi-

ciency and detection performance.

To simplify the use of ASH, we have implemented a

Galaxy within the same virtual machine (VM) to provide a

standardized graphical user interface (GUI) for accessing,

running and visualizing ASH. Galaxy is an open, web-

based platform [23] and developed tools to upload

image files, to analyse the files by ASH in batch mode

and to deliver a html report of the selected image with

the quantitative ranking of the hotspots displayed in

that image. All components and dependencies were cre-

ated into a VMware virtual machine (VM) [12] which is

an environment that is used like any physical computer

[24] but also shared by download. The entire virtual

machine is usually contained in a few files on the host

computer (the physical machine that the virtual ma-

chine is running on). This means that all the depen-

dency’s required by ASH, including NDPI splitter,

ImmunoRatio, openCV and Galaxy, are replaced by just

having VMware installed.

Results
Automated selection of hotspots

The overall work flow for the image analysis outlined in

Figure 3 includes the main classes developed for ASH

which include NPI Segmentation, Adaptive Step Finding

and Visual Reporting.

NDPI segmentation

In the first class, the NDPI Segmentation, the whole

digital image scanned from Hamamatsu NanoZoomer is

first divided with the NDPI splitter (Figure 3). NDPI

splitter processes the basic split of the image from a

single (100 K × 100 K pixel) NDPI image into thousands

of smaller (2 K × 1 K pixels) images known as image

blocks. Step shifting of ½ the size of an image block is

performed to provide overlapping blocks, in order to

scan more area and improve ImmunoRatio detection

resolution. For the primary selection of hotspots, a

ranked list of these image blocks is determined based on

the quantitation, using ImmunoRatio, of each block

(Figure 4). “Step shifting” is illustrated in Figure 2 as well,

while the black block moving from the yellow block indi-

cates a 1/4 step shifting. ImmunoRatio provides quantitative

ASH Virtual Machine
(VMware : Windows)

NDPI 

splitter

NDPI 

Segmentation
(C++ & Java)

Immuno-

Ratio

Adaptive Step 

Finding
(C++ & Java)

Visualization 

and Reporting
(C++)

Image 

shifting

ASH
(Bash Script)

Galaxy
(Linux Ubuntu 12.04)

Get Data

Function
(XML & Python)

ASH Ranked 

Selection
(XML)

ASH HTML 

Reporting
(HTML)

Ranking Report

Figure 1 Software architecture overview: the ASH virtual machine contains both the ASH image analysis and the graphical user

interface provided by Galaxy. ASH image analysis, NDPI segmentation an Adaptive Step finding components use three of the same methods.
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Figure 2 Adaptive step finding. This figure represents ¼ step shift analysis; (A) Eight neighboring images are generated around each of the top

ten ImmunoRatio images (left hand side) obtained from the segmentation step of ASH; (B) this 3 × 3 image is divided into totally 81 image

blocks by step shifting ¼ and the ImmunoRatio is for each block; (C) image with highest ImmunoRatio among these 81 images is outlined (black)

and displayed on the right hand side.

Segmentation of ndpi 

image and ImmunoRatioI

Basic split of ndpi imageI

ImmunoRatio calculation

1/2 step shifting of image 

record top 10 regions

Adaptive Step finding

1/2  step shifting of image

(n = 2,3,4 ...) , test next n

ImmunoRatio calculation

Compare averaged top 10 

ratios to previous

Difference 
within the 
threshold

Visulization

Anntate final top 10 regions

List final top 10 ratios

Start

End

List final top 10 cell numbers 

YesNo

Figure 3 Image analysis workflow. The process is divided into the classes, NDPI Segmentation, Adaptive step finding and visual reporting.
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image analysis of estrogen receptor (ER), progesterone re-

ceptor (PR), and Ki67 immunostained tissue sections [15].

In our software, the ImmunoRatio result is ranked and used

to determine the hotspot areas.

The whole scanned image is segmented with NDPI

splitter, as shown from the left upper image to the right

upper image in Figure 4.

Based on the split images, we shift them by 1/4 of the

side length, as shown from the right upper image to the

bottom image in Figure 4. After the successful creation

of JPEG images from the NDPI files, we adopt Immu-

noRatio to calculate the IR% per block of the image, and

rank the top 10 IR% image blocks.

Adaptive step finding

In this part, a smaller step finding procedure is applied

to the top 10 images, regions of interest, obtained

from the previous segmentation, ImmunoRatio and

ranking procedure. The initial iteration uses 1/2 of

shifting step from last iteration followed by more sen-

sitive steps, such as 1/4 step (Figure 2) to precisely se-

lect the appropriate region of interest. Subsequently,

the averaged top 10 ratios of current iteration are

compared to the previous top ten ratios. The Step

Finding procedure stops when the slope of Immuno-

Ratio to block number (as shown in Figure 5B) within

a preset threshold of 0.01.

Visualization and reporting

In this part, we annotate the final top 10 regions in the

original image and generate a report to list final top 10

ratios and their corresponding locations. Figure 6 shows

an annotated image with Top 10 ImmunoRatio regions

marked with red rectangles.

Optimization of adaptive step selection

To determine the effect of step size of the performance of

ASH, we calculated the averaged ImmunoRatio as the step

size was decreased from 1/2 to 1/32 (Figure 5A). The ave-

raged ImmunoRatio increases when step decreases from

17.07% to a maximum of 18.35% (Figure 5 and Table 1).

The step size and its corresponding ImmunoRatio, block

number, and processing time are indicated in Table 1.

Figure 2 shows an example with 1/4 step shifting and its

81 (9×9) blocks. The more blocks are calculated, the more

chances to obtain the block with higher ImmunoRatio.

Decreasing the step size from 1/2 to 1/32 requires a non-

linear increase in the number of blocks that must be cal-

culated from 25 blocks up to 4225 blocks with an increase

in average calculation time increase of >150 fold (i.e. from

25 seconds to about 1 hour per image) using a single core

on an Intel Xeon X5650 CPU.

Validation of quantitative hotspot detection

Adaptive step finding has been utilized in engineering for

many years [20] and extensively evaluated and validated

by [21]. In [22], experimental evaluation demonstrates the

effectiveness of the adaptive step size, while the adaptive

step finding method applied in ASH had the same func-

tionality. We have tested ASH in a set of >60 whole-slide

digitally-scanned ACC images and in comparison with

manual assessment labelling index assessment achieved a

strong correlation (rho >0.8, p = 0) as calculated with

Spearman rank order metric (publication in progress).

Discussion
There are many commercial image analysis products

such as AQUA [25], Genie (Aperio) [26], TissueStudio

(Definiens) [27], InForm (PerkinElmer) [28] which are

capable of high quality image processing and Ki67

Part of the Image sample

1/2 step shifting of image block

Basic split of the Image

Figure 4 NDPI Segmentation: the image is segmented using followed by step shifting of these blocks by ½ their size prior to quantitation.
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quantitation, which are cited in other studies and are

not freely available for comparative testing. Whilst there

are several open source image analysis tools (e.g. ImageJ

[29], ImmunRatio [17]) and multiple custom built in

house applications (e.g. Seedlink [9]) and our require-

ments included that the applications be open source and

that it could provide hotspot detection and quantitative

Ki67 scoring in a desktop application. Thus, we devel-

oped ASH, an open source, open access, application

using Galaxy-VM technology, to support histopatholo-

gists in determining the most active areas in proliferative

rate within a slide based on Ki67 LI staining. Addition-

ally since ASH was developed in a Galaxy environment

the currently segmentation and quantitation methods

can be easily supplemented or replaced, in the central

ASH application (by the authors) or by a user (in their

local ASH instance), with improved methods developed

by other research teams.

We implemented an overlapping block creation method,

Step Shifting, since NDPI splitter is only capable of

splitting an image and not generating overlapping blocks

and to support our Adaptive Step Finding method which

has been utilised in multiple engineering projects over

many years [20-22].

When we shift the image block by different steps, we

can see that the averaged ImmunoRatio increases when

step decreases. Therefore, we developed an adaptive step

finding technique to obtain the tradeoff between hotspot

detection resolution and processing time. Whilst the ac-

curacy of the ImmunoRatio % per image block improves

there is an increased cost for calculation time. Optimal

calculation time to accuracy ratio occurs at 1/16 step size
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determined by ImmunoRatio (red line).
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with ~1000 block based on the time to calculate one

block is 1.0069 s based on a single core on an Intel Xeon

X5650 processor.

Seedlink, a hybrid clustering method [9], that provides

the users with automatic identification of hotspots is

comparable to ASH with respect to usability and output.

Seedlink requires a post-processing step to determine

true hotspots from the false positive hotspots to ensure

accurate determination of Ki67 whilst ASH provide a

ranked set of regions for from which the user can in-

clude or reject as part of the quantitation of Ki67. Thus

ASH simplifies the decision making process by integrat-

ing the visualization of the detected hotspots with the

quantitation of detected hotspots as a single output in

the Galaxy-VM GUI.

Since different types of colored pollutions and colour

interferences sometimes cause trouble to the hotspot de-

tection, Adobe photoshop or an alternative program en-

abling pathologists to delete parts of the scanned image

i.e. artifacts created during slide production, will im-

prove the accuracy of the hotspot detection. Whilst we

have tested ASH in a training set it is clear that there

are ‘inactive’ areas apparently with ‘low’ Ki67 Labelling

index. Hence it is more prudent to compare automated

selected hot spot areas versus hot spot areas as selected

by pathologists and further studies are warranted to con-

firm our findings in a lager cohort.

Galaxy provides the user with a simple GUI to apply

ASH using only standard web browser (see background,

reference Galaxy). Galaxy provides the remote access for

ASH, so people can benefit from the higher processing

speed and larger storage space than a local computer.

To ensure that ASH is available to individual researchers

and/or pathologists as well as those who are supported

by a bioinformatics team, we have implemented this

Galaxy as a VMware-VM. The combination of Galaxy in

a VM provides a multi-user environment in which users

can analyse their images in a password protected user

specific space, but with the additional functionality of

Galaxy and the capability to share any of the data,

analysis and results. The current Galaxy-VM has been

implemented to run using 1 CPUs, but can be scaled up

by resetting the VM once installed to run more CPUs

(see project website for help documentation).

Conclusions
We have developed ASH, an open source Galaxy virtual

machine application designed for Ki67 LI hotspot detec-

tion support, aimed at both individual and large diagnos-

tic laboratories who have little bioinformatics experience

or support. ASH is designed to assist pathologists and

A

B

Figure 6 Hotspot Reporting. (A) The original image input for ASH analysis is overlaid with the hotspots (red rectangles). (B) The inset image shows

the output from the adaptive step finding algorithm and the black box is the part that is displayed on the main image in (A) as a red rectangle.

Table 1 Optimization of ASH: The effect of step size on

the performance of ASH was determined by as the

average % ImmunoRatio (IR%), the number of blocks

(# blocks) and the time in seconds to completion (Time)

at decreasing step size intervals (Step size)

Step size IR (%) # blocks Time (sec)

1/2 17.06 25 25

1/4 17.42 81 82

1/8 17.85 289 291

1/16 18.25 1089 1097

1/32 18.35 4225 4254
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accelerate the time-consuming Ki67 hotspot selection

procedure, enhance the detection resolution and eventu-

ally lead to improved reproducible Ki67 LI reporting.

Prior to image processing, pathologists should initially

exclude with an interface tool various artifacts, such as

tissue folds, intrinsic/extrinsic pigmentation (deposit ar-

tifacts), necrotic areas, etc. ASH delivers a ranked list of

hotspots as a combination of images and quantitative

values for each hotspot detected, based on the Adaptive

step finding algorithm [20-22] developed as part of ASH.

The selection of the step size is critical both from the

point of view of computational efficiency and detection

performance and although we have successfully tested

ASH in a training set of whole-slide digitally-scanned

ACC images, further studies are warranted in to confirm

its efficiency with a larger ACC set.

Availability and requirements
Project name: Automated Selection of Hotspots (ASH)

Project home page: http://bioinformatics.erasmusmc.nl/

wiki/index.php/Automated_Selection_of_Hotspots which

has a Galaxy VM instance of ASH.

Operating system(s): Windows, Linux (Ubuntu 12.04).

Programming language: C++, Bash, Java.

Requirements: VM ware player, Hamamatsu SDK, JAI

1.1.3, JAI Image IO 1.1, Ant, Deep Zoom.

License: GNU GPL version 3 [30].
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