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Abstract— Quantitative studies of dynamic behaviors of live neurons

are currently limited by the slowness, subjectivity, and tedium of

manual analysis of changes in time-lapse image sequences. Challenges

to automation include the complexity of the changes of interest, the

presence of obfuscating and uninteresting changes due to illumination

variations and other imaging artifacts, and the sheer volume of recorded

data.
This paper describes a highly automated approach that not only detects

the interesting changes selectively, but also generates quantitative analyses

at multiple levels of detail. Detailed quantitative neuronal morphometry

is generated for each frame. Frame-to-frame neuronal changes are

measured and labeled as growth, shrinkage, merging or splitting, as

would be done by a human expert. Finally, events unfolding over longer

durations, such as apoptosis and axonal specification, are automatically

inferred from the short-term changes.
The proposed method is based on a Bayesian model selection criterion

that leverages a set of short-term neurite change models and takes

into account additional evidence provided by an illumination-insensitive

change mask. An automated neuron tracing algorithm is used to identify

the objects of interest in each frame. A novel curve distance measure and

weighted bipartite graph matching are used to compare and associate

neurites in successive frames. A separate set of multi-image change

models drives the identification of longer-term events.
The method achieved frame-to-frame change labeling accuracies rang-

ing from 85−100% when tested on 8 representative recordings performed

under varied imaging and culturing conditions, and successfully detected

all higher-order events of interest. Two sequences were used for training

the models and tuning their parameters; the learned parameter settings

can be applied to hundreds of similar image sequences, provided imaging

and culturing conditions are similar to the training set. The proposed

approach is a substantial innovation over manual annotation and change

analysis, accomplishing in minutes what it would take an expert hours

to complete.

Index Terms— Change detection, change understanding, morphological

dynamics, assay automation, statistical model selection, curve similarity,

event analysis.

I. INTRODUCTION

Technologies for time-lapse imaging of live cells in vitro enable

the observation of complex morphological and functional changes as

a function of time. Of particular interest here is phase-contrast time-

lapse imaging of live neurons grown in culture [1], [2]. The recorded

image sequences are challenging to analyze due to the complexity of

the neuronal structures, the presence of a mixture of interesting and

nuisance changes, and their sheer size. Figure 1 illustrates several

events observed in neuronal cultures (in vitro). The boxes in this

figure highlight the merging of a pair of neurites, while the arrows
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indicate neuronal growth and shrinkage. The pair of images in the top

row (Sequence A) was drawn from a longer sequence composed of

147 frames, taken five minutes apart, where each frame is 1470×1180
pixels in size, and each pixel has a depth of 12 bits. The pair of images

in the bottom row (Sequence B) was drawn from a similar sequence

composed of 200 frames, implying a total data size close to 200 MB

for each sequence.

Numerous such image sequences are currently captured in the

neurobiology research community in the context of diverse studies

(e.g. [3], [4]). There is a compelling need for automated methods

to analyze these sequences in support of conventional hypothesis-

driven studies, as well as emerging studies in cell and tissue engi-

neering, automated assays, and high-throughput discovery research.

Many studies require careful, detailed, and intelligent markup of the

images, including tracing of neurites, quantitative morphometry, and

analysis of complex spatio-temporal changes, to characterize neuronal

structures and dynamic events of interest (e.g. [5]). While some of

these changes occur from one image frame to the next, others only

become apparent over much longer durations. Previous research on

automating the analysis of these image sequences has mostly relied

upon tedious interactions with computer-assisted markup tools to

extract objects of biological interest, without any automatic higher-

level reasoning about the changes they undergo.

Achieving highly automated, human-like analysis of neuronal

imagery on a large scale requires multiple advances reported here.

First, we adapt a fast, accurate, and fully automated algorithm for

tracing neurites originally developed for fluorescence imagery [6]

to phase-contrast microscopy. Second, we adopt robust registration,

background modeling, and pixel-level change detection algorithms

to generate a binary change mask for each image pair. Third, we

design and validate mathematical models describing the morpho-

logical dynamics of cultured neuronal networks. To successfully fit

these models to neurite traces, we propose a novel curve distance

measure. Finally, we integrate the above building blocks into a

principled Bayesian model selection framework that is robust to

imaging artifacts and image analysis errors. The model selection uses

a bipartite-graph-based algorithm to associate neurites between each

image pair, even when such associations are not one-to-one. Finally,

events unfolding over longer durations, such as apoptosis and axonal

specification, are automatically inferred from the short-term changes.

The paper is organized as follows. The next section describes

related work from the neurobiology and computer vision literature.

Section III goes into detail on each of the building blocks in the

change understanding framework. Section IV gives a performance

analysis of the algorithm and presents automatically generated tables

and graphical output resulting from applying the framework to several

image sequences of cultured neurons in vitro. Finally, Section V

concludes and discusses ideas for future work.
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Fig. 1. Illustrating events in cultured neuron image sequences. Images were collected using a phase-contrast microscope. (a) and (b), sample frames from an
image sequence of neurons cultured on a smooth surface. The sequence contains 147 frames taken five minutes apart, 1470× 1180 pixels each, with 12 bits
depth. (c) and (d), sample frames from an image sequence of neurons cultured on a patterned surface. The sequence contains 200 frames taken five minutes
apart, 1300× 1080 pixels each, with 12 bits depth. The boxes highlight the merging of two neurites, while the arrows indicate neurite growth/shrinkage. An
automated analysis system should detect such phenomena automatically and describe them intuitively.

II. RELATED WORK

Analyzing changes in time-lapse images of live neurons in culture

is of widespread interest [1], [2]. Neurobiologists are often interested

in studying the effects of different regulators on neurite outgrowth

and orientation. Understanding neurite outgrowth is important to

brain and spinal cord research, because promoting neurite outgrowth

potentially has curative effects in nerve-injury-related diseases such

as Alzheimer’s, Parkinson’s disease, and spinal cord injury [7]. For

the most part, time-lapse image sequences are currently analyzed

manually using pointing tools (e.g. mice and tablets) and annotation

software. Judgements about important changes in the image se-

quences are rarely made automatically. For example, Zhang et al. used

substrates with smooth and patterned surfaces to control neurite

outgrowth and orientation [8]. Neurite lengths and orientations were

measured using a computer-aided tool [9], and analysis of changes

was performed manually. Rozovsky et al. studied the influence of

aging astrocytes on neurons by associating aging with neurite atrophy

[10]. After manually identifying image regions where neurites are

present, neurite centerlines were extracted by thresholding followed

by skeletonization. These centerlines were manually analyzed to

determine atrophy. Lin et al. investigated the role of netrin-1 and slit-

2 proteins in regulating and orienting axonal outgrowth [11]. While

a computer assisted tool [12] was used to measure neurite lengths,

axonal outgrowth was analyzed manually. Esch et al. investigated
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Fig. 2. Building blocks of the proposed change understanding system. A neurite tracing and soma segmentation algorithm operates on each of the sequence
images, extracting the interesting objects in it along with their attributes. Images are registered, and a binary change mask is estimated for each pair of

images. The neurite tracing output for a successive pair of images ({λt−1
i } and {λt

j}), the registration parameters Ψ, and the change mask B are fed into a

model selection algorithm, provided with a set of neurite-level change models {mk(θk)}. The model selection algorithm generates an optimal matching M∗

between elements of {λt−1
i } and {λt

j}, along with the corresponding change models and their parameters. The change results from the frame pairs can then

be fed into a multi-image event analysis algorithm that detects and describes important sequence-level semantic changes.

the effects of cell adhesion molecules NgCAM and N-cadherin

on neuronal outgrowth [5], [13]. While the neurite lengths were

measured using a computer assisted tool, analysis of changes was

performed manually. Nathan et al. studied the effect of apolipopro-

teins E3 and E4 on neurite outgrowth from cultured adult mouse

cortical neurons [3]. Neurite length measurement as well as outgrowth

analysis was performed manually. Withers et al. investigated the

effect of bone morphogenetic protein-7 on dendritic development of

cultured hippocampal neurons [4]. Neurite lengths were measured

using a computer assisted tool [12], while outgrowth analysis was

performed manually.

Several methods for detecting and describing changes in time-

lapse image sequences have also been described in the broader

biomedical image analysis literature. For example, Kauffmann et

al. segmented cartilage volumes from three dimensional magnetic

resonance imaging (3D MRI) images with an active contour model

[14]. Cartilage volumes for the same patient at different sessions

were then registered, and local volume changes were measured and

reported. Meyer et al. segmented liver volumes from CT images

using a liver atlas [15]. Segmented liver volumes for the same

patient at different sessions were then registered, and local volume

changes greater than a threshold were labeled as abnormal. Sbeh et

al. segmented regions of retinal images corresponding to drusen (a

retinal disease appearing as yellowish deposits) using active contours

[16]. Retinal images for a patient at different sessions were registered,

and drusen boundary changes were measured, which were manually

used to describe the progression of the disease.

Our work is also inspired by advances in non-biomedical areas,

especially surveillance. For example, Wren et al. used a human model

for tracking people and interpreting their behaviors [17]. The model

contained “blobs” for a person’s head, hands, torso, etc. The blob

segmentation for the hands was also used with a hidden Markov

model to interpret the American Sign Language. Haritaoglu et al. [18]

and Oliver et al. [19] used similar human models to track people

and detect certain behaviors such as people carrying, exchanging and

depositing objects. In another video surveillance application, Collins

et al. segmented and tracked moving objects, and classified them into

known types using neural networks [20]. Humans were additionally

classified as either walking or running based on the changes in gait

angle.

III. ALGORITHMS AND METHODS

The proposed method processes a sequence of images to generate

a semantic, quantitative description of the changes, using the frame-

work illustrated in Figure 2. We briefly summarize the algorithm

here and provide the details in the following subsections. First, every

adjacent pair of sequence images is registered using normalized cross

correlation, to avoid introducing false changes due to misalignment

(Section III-A). The registered image pair is fed to a pixel-level

change detection algorithm, which produces a binary change mask B

indicating the estimated presence or absence of change at each pixel

in the second image (Section III-B). In parallel, a neurite tracing algo-

rithm operates on each registered image, extracting neurite centerlines

denoted {λt
i} for the image at time t (Section III-C). Mathematically,

these are described as curve segments, with attributes such as length,

width, and branch points. While we concentrate here on changes

that can be expressed in terms of the neurites, the somas are also

segmented in each image.

The traced neurites and segmented somas, the registration param-

eters, and the binary change mask are processed by an integrative

block termed the “Change Model Selection Algorithm” in Figure

2. This block is provided with a set of neurite change models

{mk}, each of which is associated with a semantic description of

the change it represents (Section III-D). For each curve segment λt−1
i
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corresponding to a neurite centerline trace in image It−1, we estimate

the best change model to map it into another curve segment λt
j in

It. Model parameters θ
ij
k for model mk acting on λt−1

i and λt
j are

estimated as:

θ̂
ij
k = arg min

θk

d
(

λ
t
j , mk(λt−1

i , θk)
)

, (1)

where d(·, ·) is a novel distance measure expressing the similarity

between two curve segments (Section III-E). The model that best

describes the change between λt−1
i and λt

j is selected as:

m
ij
k = arg max

k
p

(

λ
t−1
i , λ

t
j | mk(θ̂ij

k ), B
)

, (2)

where p(·) measures the a posteriori probability of observing the

neurite pair given model mk and the change mask B (Section III-F).

After identifying the model that best describes the change for every

feasible match (λt−1
i , λt

j), the model selection algorithm operates on

{λt−1
i } and {λt

j} to determine the best overall matching between

the two sets, using a bipartite-graph-based algorithm (Section III-

G). Once the frame-to-frame changes have been estimated, they are

further processed by a longer-term event analysis block that detects

semantic events at the sequence level (Section III-I). In the following,

each of the above building blocks is described in greater detail.

A. Registration of Successive Image Frames

Each neuron culture was mounted on a microscope x-y stage,

and images were acquired every five minutes. The cultures were

not removed or remounted throughout each experiment. However,

sequence images were found to be misaligned by up to 10 pixels

between consecutive images due to x-y stage vibrations. Hence, each

image was registered with the previous one, using a translational

model estimated with normalized cross correlation, i.e.

(û, v̂) =

arg max
(u,v)

∑

x,y

([

It−1(x, y) − Īt−1

] [

It(x − u, y − v) − Īt

])

[

∑

x,y

(

It−1(x, y) − Īt−1

)2
∑

x,y

(

It(x − u, y − v) − Īt

)2

]1/2
,

(3)

where Īt−1, Īt are the average intensities of It−1, It respectively [21].

When tested over a sequence of 100 images, the average registration

error was less than one pixel compared to manual registration ground

truth. For different applications, one might need to consider more

sophisticated transformations and estimation methods; see Zitova et

al. [22] for a recent survey.

B. Illumination-Insensitive Change Mask Estimation

A simplified version of Toyama et al.’s Wallflower algorithm [23] is

used to generate a binary change mask Bt for each pair of adjacent

images (It−1, It), where a pixel value of 1 indicates change and

0 indicates otherwise. The change mask is used to add robustness

to errors in the neurite tracing and soma segmentation output by

providing independent evidence as to the presence or absence of

change.

First, the pixel intensity values in every image were normalized to

have the same mean and variance as in the first image. Next, a Wiener

filter [24] is used to make a linear prediction of the pixel values in It,

based on the ten previous images. Any pixel whose intensity deviates

significantly from the predicted value is declared as a change. The

change mask was post-processed using a median filter to remove salt-

and-pepper noise. As above, different applications may require more

sophisticated change detection algorithms; see Radke et al. [25] for

a recent survey.

C. Neurite Tracing and Soma Segmentation

For cultured neuron sequences, the main objects of interest are the

neurites, which can be described mathematically by curve segments.

To extract and describe these curves, we use a tracing algorithm

that automatically locates neurite centerlines [6], [26]. Based on the

assumption that the neurites are bounded by nearly parallel edges, the

algorithm starts by automatically finding seed points along neurites,

then traces them in an exploratory manner by following the neuronal

topology, guided by responses of multiple directional correlation

kernels. We note that this algorithm is only one of many that have

been proposed for automated neurite tracing (see, e.g. [27], [28], [29],

[30], [31], [32]).

Somas were automatically segmented in the first frame of each

sequence using the following simple algorithm. First, bright halos

surrounding somas (due to the halo artifact in phase contrast mi-

croscopy [2]) were detected and segmented by adaptive thresholding

[33]. Next, morphological closing was applied to the segmentation,

followed by connected component analysis. Connected components

smaller than a threshold (30 pixels) were rejected, and ellipses were fit

to the remaining objects as illustrated in Figure 3. Somas segmented

in the first frame of the sequence were then automatically tracked in

subsequent frames using normalized cross correlation. The output of

the neurite tracing and soma segmentation algorithm is illustrated in

Figure 8-a, where the curve segments ({λt−1
i }) and the soma ellipses

are overlaid on top of a gray scale image It−1.

(a) (b) (c)

Fig. 3. Illustrating automatic soma segmentation. (a) First frame of sequence
C, (b) automatic thresholding followed by morphological closing, and (c)
ellipses fit to the valid segmented objects as described in text.

While in this paper, we only consider change models that can be

described in terms of the neurites, one can imagine more sophisticated

studies involving both neurons and somas, which can easily be

accommodated into our framework.

D. Mathematical Models for Short-Term Changes in Neurons

Mathematical modeling of short-term (frame-to-frame) changes in

neuronal structures enables us to formulate the problem of describ-

ing these changes in a statistical model selection framework. We

constructed three basic models for neuronal changes: no change,

growth/shrinkage, and merging/splitting. If the study warrants, this

“library” of models can be extended to describe a richer set of

behaviors using the principles described below.

In the following description, we fix a time t, and denote the set

of traced neurites at times t − 1 and t as {λt−1
i , i = 1, . . . , Nt−1}

and {λt
j , j = 1, . . . , Nt} respectively. The numbers of elements in

these sets are not assumed to be equal. Given a specific pair of

neurites λt−1
i and λt

j , and a set of change models {mk}, our first

goal is to find the model that best describes the change between

these two neurites, as well as optimal estimates of any necessary

model parameters, denoted θk. A change model mk acts on the

curve segment λt−1
i and deforms it in a way that represents a valid

neurite behavior, such that the result is as similar as possible to λt
j .
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The similarity between λt−1
i after deformation and λt

j (described

in the next subsection) reflects how well mk describes the change.

Realistically, we need not consider every possible match between

curve segment pairs in {λt−1
i } and {λt

j}, since many matchings are

infeasible for a given scenario. For example, the neurites in Figure 1

do not move by a large amount between acquired images, but rather

locally deform. Hence, when searching for matches, we need only

consider candidates in a local spatial neighborhood. We note that this

largely mitigates any problems with computational complexity as the

number of neurites grows.

We model the likelihood of every change model as the weighted

sum of two probability density functions: one that depends on the

distance between curve segments, and one that depends on the binary

change mask estimated previously. Namely,

p(λt−1
i , λ

t
j |mk(θ̂ij

k ), Bt) =

δ · pdist(λ
t−1
i , λ

t
j |mk(θ̂ij

k ))

+ (1 − δ) · pmask(λt−1
i , λ

t
j |mk(θ̂ij

k ), Bt), (4)

where θ̂
ij
k are the parameters of change model mk estimated for curve

segments λt−1
i and λt

j . The value of δ reflects our confidence in the

output of the neurite tracing algorithm. In practice, the neurite tracing

algorithm generates a few minor errors, so we use a value of δ slightly

less than 1, to take into account the independent evidence provided

by the change mask (see below). In the following, we describe the

two component densities pdist and pmask for each of our basic

change models. We note that at this stage, the various models include

several tuning parameters that influence the overall performance of

the algorithm. We discuss how each of these tuning parameters is

estimated from processing a small set of manually labeled training

data in Section IV-A.

1) No Change: The no-change model corresponds to the identity

transformation– that is, we assume that any apparent position differ-

ence between the neurites λt−1
i and λt

j is due to sensor noise, tracing

errors, or minor neurite deformation. The two components of (4) for

the likelihood of the no-change model are:

pdist(λ
t−1
i , λ

t
j |mno change) = τe

−τd(λt−1

i
,λt

j)
(5)

pmask(λt−1
i , λ

t
j |mno change, Bt) = ϕe

−ϕr
. (6)

We show in Section IV-A that exponential distributions are good

approximations for these densities, and describe how the parameters

τ, ϕ are estimated. Here, the function d is the integral area distance

for curve segments, which we define in the next subsection. The

variable r in (6) is the fraction of ones in the change mask Bt,

evaluated over the union of the regions surrounding λt−1
i and λt

j .

Under the no change model, we expect r to be small. Figure 4

illustrates the intuition behind this rule for an example containing a

neuron tracing error. The neurite in Figure 4b is not fully traced. With

no information other than the traces, we would mistakenly infer that

the neurite shrank between the image frames. However, the binary

change mask in the potential shrinkage region is almost entirely 0,

indicating low evidence for shrinkage and biasing the model selection

towards no-change.

2) Growth/Shrinkage: This model describes the growth or shrink-

age of curve segment λt−1
i into the segment λt

j . To fit a growth

model, we extrapolate λt−1
i beyond its growing end (the one not

attached to the soma or another neurite) in the direction of the tangent

at that end. This change model has a single parameter s, which

indicates the positive length (in pixels) by which λt−1
i has grown

to become λt
j . s is estimated as in (1) such that the distance between

mgrow(λt−1
i , ŝ) and λt

j is minimized. This process is illustrated in

Figure 5: curve segment λt−1
i is extended along the broken line (Panel

(a) (c)

t

(b)

(d) (f)(e) (g)

Fig. 4. Illustrating change mask contribution to the likelihood of different
change models. (a,b) Corresponding regions and traces cropped from a pair of
consecutive images from Sequence B. This situation should be labeled as “no-
change” but is in danger of being labeled “shrinkage” due to a tracing error.
(c) The corresponding binary change mask region. (d,e) Regions surrounding

λt−1
i and λt

j . (f) d XOR e, (g) f ∩ c. Since the change mask is almost entirely

0 in the region of interest, the likelihood pmask is very low, which is enough
to tip the model selection decision from shrinkage to no-change.

a), and s is estimated such that the integral area distance is minimized

(Panel b). Hence,

p
dist

(λt−1
i , λ

t
j |mgrow )=τe

−τd(mgrow (λt−1

i
,ŝ),λt

j) (7)

p
mask

(λt−1
i , λ

t
j |mgrow , Bt)=ϕe

−ϕ(1−r)
, (8)

where ŝ is the estimate for s as in (1). r in (8) is defined in the

same way as the no-change case. However, pmask has 1 − r in the

exponent as opposed to r in the no-change model, since in this case

we expect to see more change mask ones than zeros in the region of

interest. The shrinkage model is the same as the growth model, with

the roles of λt−1
i and λt

j reversed (in this case, the parameter s is

negative).

s = 0

t

(a)

o
shf

s = 40

s

s0

t
d(    , mgrow (    ,s))

(b)

t

s = 40s

Fig. 5. Illustrating the integral area distance measure between two curve
segments. (a) We want to estimate the number of pixels to extend curve

segment λt−1
i along the tangent at its end (broken line) to best match λt

i .

(b) The integral area distance between λt
i and the extension of λt−1

i as a

function of s. The minimum distance was found was achieved when λt−1
i

was extended by ŝ pixels.

3) Merge/Split: The merge model describes the merging of two

curve segments λt−1
i and λt−1

j in image It−1 into one segment λt
k

in image It. To evaluate this model, we create a new “neurite” λt−1
ij

in It−1 by connecting λt−1
i and λt−1

j by their two nearest endpoints,

and measure the distance of this curve to λt
k. Hence,

pdist(λ
t−1
i , λ

t−1
j , λ

t
k|mmerge)=τe

−τd(λt−1

ij
,λt

k)
(9)

pmask(λt−1
i , λ

t−1
j , λ

t
k|mmerge, Bt)=ϕe

−ϕ(1−r)
. (10)

As in the growth model, 1 − r is used in the expression for

pmask. The split model is similar to the merge model, except the
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new “neurite” is created from two neurons in the second image It

and matched to a single neurite in It−1.

E. A Curve Distance Measure for Comparing Neurite Segments

As mentioned above, we require a measure for the distance

between two curve segments that enables us to obtain reasonable

estimates for how much one curve must be grown or shrunk to

best match another. We propose a novel curve distance measure, the

integral area distance, that is robust and enables us to obtain good

estimates of the growth/shrink parameter. Let λi : [0, 1] → R
2, and

λj : [0, 1] → R
2 be curve segments parameterized with constant

speed. The integral area distance is defined as:

d(λi, λj) = min
ω∈P

∫ 1

0

||λi(l) − λj(ω(l))|| dl, (11)

where P is the class of continuous, non-decreasing functions ω

with ω(0) = 0 and ω(1) = 1. We use dynamic programming

(i.e. Dijkstra’s algorithm [34]) to find the function ω that minimizes

the integral in (11).

The integral area distance for a pair of curve segments as a function

of the growth parameter is illustrated in Figure 5b. The integral area

distance is minimized (suggesting the curves are most similar) when

λt−1
i is extended by ŝ pixels, which reflects our notion of similarity

between neurites. Recall that the images have already been registered

to each other by a global transformation, so we assume any additional

neurite deformations should be quantified by the distance measure.

We considered several other curve distance measures, including the

Fréchet distance [35], Hausdorff distance [36], and turning function

distance [37]. However, we found these measures to be unsuitable for

robust estimation of the growth parameter. For example, in Figure 5a,

both the Fréchet and Hausdorff distances would suggest extending

λt−1
i only to the point shf , while the turning function distance

would suggest no extension at all. As a secondary consideration,

these distance measures are not robust, in that changing an arbitrarily

small portion of one curve can produce large changes in the distance

measure. Space precludes a detailed comparison of the different curve

distance measures here, but we plan to present the details in a future

publication.

F. Model Selection at the Neurite Level

The next step is to decide on the model that best describes the

change between a given pair of neurites. One option is to use

maximum likelihood estimation based on (4). However, in our case,

we use the Bayesian maximum a posteriori (MAP) criterion, since

we can obtain good estimates of the prior probabilities of the models

and their parameters. Thus, we choose

m
ij
k = arg max

k

{

P (mk(θk))p(λt−1
i , λ

t
j |mk(θ̂ij

k ), Bt)
}

. (12)

The model priors P (mk(θk)) reflect initial domain-based beliefs

about the likelihood of each model. We also need priors on any model

parameters (e.g. the extension parameter in the growth model). For

example, while the growth model itself may be likely, it would be

unlikely that a segment grows ten times in size between two frames.

Hence, we use a model prior of the form:

P (mgrowth/shrinkage(s)) =

P (mgrowth/shrinkage)P (s|mgrowth/shrinkage). (13)

In Section IV-A, we describe how the priors are estimated based

on manually labeled training data.

G. Model Selection at the Frame Level

Our goal is to find the set of matches and models that maximizes

the total goodness of fit between the sets {λt−1
i , i = 1, . . . , Nt−1}

and {λt
j , j = 1, . . . , Nt}. We use a weighted bipartite graph [38] to

solve this problem. As illustrated in Figure 6, a weighted bipartite

graph G is represented by a set of vertices V and a set of undirected

edges E connecting these vertices. V is the union of two disjoint

sets, V1 and V2, corresponding to the elements of {λt−1
i } and {λt

j},

respectively. Each edge eij connects a vertex in V1 with one in V2,

and is associated with a positive weight wij . For an edge eij matching

λt−1
i to λt

j , wij is set to the a posteriori probability of the change

model chosen in (12). We again emphasize that in practice, the graph

G is never complete, and is in fact quite sparse, containing only

matches that are considered feasible based on distance considerations

discussed below.

(a) (b)

t−1 t

λ4

t−1

λ2

t−1

λ1

t−1

λ5

t−1

λ3

t−1

λ7

t−1

λ8

t−1

λ6

t−1

λd

t

λb

t

λa

t

λe

t

λc

t

λg

t

λh

t

λf

t

λ1 λ2 λ3 λ8

.  .  .  .  .  .  .  .

λa λb λc λh

.  .  .  .  .  .  .  .

. . . . . . . . . . . .

w1a w1cw2bw1bw2a w8hw1hw2c w3c

(c)

t t t t

t−1t−1t−1t−1

Fig. 6. Illustrating the bipartite graph method for establishing correspon-
dences between neurites and change models. (a) and (b), sample sequence

images taken at times t− 1 and t, respectively, with neurite tracing ({λt−1
i }

and {λt
j}) and soma segmentation overlaid. (c) Bipartite graph used to

match curve segments. The graph consists of two disjoint sets of vertices

corresponding to {λt−1
i } and {λt

j}, respectively. The weight associated with

every edge, denoted wij , is set equal to the likelihood of the model that best

describes the change between λt−1
i and λt

j .

In a bipartite graph, a matching is a subset of edges M ⊆ E such

that for all vertices v ∈ V , at most one edge of M is incident on

v. A maximum weighted matching M∗ is a matching such that the

sum of edge weights is maximized:

M
∗ = arg max

M

{

∑

e∈M

w(eij)

}

. (14)

We use the standard Hungarian algorithm [39] to find the maximum

weighted matching M∗.

We note that as stated above, the bipartite graph only allows

for one-to-one matching between neurites. Whenever a merge/split

change model (λt−1
i , λt−1

j ) → λt
k is feasible, we create a new

graph, G′, where the vertices corresponding to (λt−1
i , λt−1

j ) in G

are removed, as well as edges incident on them. A new vertex

corresponding to λt−1
ij is added, and the edge connecting λt−1

ij with
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λt
k is given a weight as described in Section III-D.3. The new graph

G′ is bipartite, and a maximum matching can again be found using

the Hungarian algorithm. Given the two maximum matchings M∗

and M
′∗, we take the one with larger total weight as the solution. In

practice, there are only a few merge/split hypotheses for the neurite

application that pass the feasibility test. In particular, out of over

900 images used in the eight testing sequences, only 37 merge/split

matchings were considered as feasible, out of which 28 were actually

selected. Furthermore, there was never more than one merge/split

hypothesis considered between a given image pair.

H. Derived Change Models

After the optimal matching of objects in each image and the

determination of the basic change models describing each match

(i.e. no change, growth/shrinkage, or split/merge), we can determine

several additional semantic labels.

For example, if a segment λt−1
i was unmatched, we consider the

intersection of the change mask Bt with a region surrounding λt−1
i .

If the number of ones in this region is greater than the number

of zeros (i.e. the mask suggests a change is present), then the

segment is labeled “deleted segment”. Otherwise, it is labeled as

“incorrect neurite tracing”. Similarly, an unmatched segment in It

that has sufficient change mask evidence is labeled “new segment”,

or otherwise “incorrect neurite tracing”. If one of a new or deleted

segment’s end points is closer to an existing segment than twice the

average neurite width, it is labeled as “new/deleted branch” instead.

I. Multi-Image Change Models Describing Longer-Term Events

Finally, we can build change models that combine frame-to-

frame change results along the sequence to detect phenomena that

unfold gradually. For example, a key phenomenon of interest is the

development of cell polarity, or axonal specification (see Figure 9).

When neurites first form, they cannot be distinguished as either axons

or dendrites. Until the axon reaches a length at least 10-15 µm more

than that of any other neurite stemming from the same soma, it

is morphologically and molecularly indistinguishable from the other

neurites [5], [13]. We can detect axonal specification by aggregating

frame-level changes for all neurites stemming from each soma; the

neurite that grows to become 15 µm longer than the rest is labeled

as an axon, and the corresponding time index is reported.

A second phenomenon of interest is cell apoptosis (Figure 9). This

process is characterized by the collapse of all the neurites stemming

from a particular soma, which can be automatically detected when

all the neurites associated with a soma are labeled as deleted.

IV. EXPERIMENTAL RESULTS

We developed and tested our algorithms on ten diverse image

sequences of cultured neurons. Two image sequences were reserved

for model training, and the remaining eight were used for testing. In

the next section we describe how the different parameters used in the

frame-level models were estimated from the training data. In Section

IV-B, we present example analysis and graphical output automatically

generated from the experiments to validate our method. We show that

the semantic frame-to-frame changes of interest can be robustly and

correctly detected, that these changes enable the accurate detection

of axonal specification and apoptosis, and that the intelligent data

reduction resulting from the proposed method is quite useful.

A. Model Training and Parameter Selection

As mentioned in Section III-D, the values of several parameters

defining the model distributions must be estimated in order to

optimize performance of the overall framework. The key observation

is that the same parameter values can be applied to any image

sequence collected with similar conditions. Hence, the effort required

to estimate the tuning parameters once can be tolerated when a large

number of image sequences is collected under similar conditions,

which is often true in hypothesis testing and assays.

We selected two training image sequences to estimate the various

parameters used in our models. The first sequence consisted of 100

images of neurites growing on a smooth surface, while the second

sequence consisted of 200 images of neurites growing on a patterned

surface. The two sequences were selected based on visual inspection

to ensure that many examples of the various changes of interest

were present. For each adjacent training image pair, we manually

traced the neurites, determined the neurite matches, and recorded

the change model relating each match (i.e. no change, grow/shrink,

or merge/split). We note that this process was extremely tedious,

requiring more than nine hours to manually process both sequences,

underscoring the need for a fast, automatic algorithm to do the same

job.

We began by estimating the most appropriate sampling period for

processing a neuronal image sequence. Ideally, we could analyze

every frame in each sequence for changes. However, the tracing

algorithm we use has a certain inherent precision; it can terminate

prematurely before the neurite ends, or it can continue beyond the

neurite tip by few pixels (usually due to the complex structure of

growth cones). Hence, we must subsample the image sequences with

an appropriate period ∆t in order to avoid detecting “changes” below

the tracing precision. We compared the automated tracing results

with the manual ground truth, and estimated the tracing precision as

the average number of pixels the automated tracing adds or misses,

counting only from the neurite end. For the training data, the neurite

tracing algorithm was found to have a precision of 8 pixels. Next,

for a range of sampling periods ∆t, we measured the average pixel

difference in centerline traces (counting only pixels from the neurite

end) corresponding to the same neurites between consecutive images.

The first value of ∆t for which the average difference was greater

than the tracing precision was selected as the sampling period. For

neurons cultured on patterned surfaces, the sampling period was

estimated as ∆t = 8, while for neurons cultured on smooth surfaces,

the sampling period was estimated as ∆t = 6.

The parameter δ used to weigh the two distributions in (4) was

estimated to maximize the probability of making the correct frame-

level model decision PD , which is plotted as a function of δ for

the training data in Figure 7-a. The value of δ = 0.7 was found to

maximize performance (PD = 0.91) for the training sequences. This

figure also reveals that if the complementary information provided

by the change mask is ignored (δ = 1), the performance drops to PD

= 0.79. Conversely, if the binary change mask is used as the sole

evidence (δ = 0), the performance is very poor (PD = 0.18).

As shown in Figure 7-b, the distribution of the distances between

manually matched no-change segments in (5) was best fit by an

exponential distribution with parameter τ = 0.12 (estimated with

maximum-likelihood). Similarly, the distribution for the ratio r in (6)

was best fit by an exponential distribution with parameter ϕ = 1.8

(Figure 7-c). To estimate the prior on the growth model parameter s

in (13), a histogram of the number of growth/shrinkage pixels was fit

to a Gaussian distribution with mean µ = 4.0 and standard deviation

σ = 48 (Figure 7-d). Finally, based on the manual labeling of the

frame-level changes, we computed the model priors as P (no change)
= 0.46, P (growth/shrinkage) = 0.45, and P (merge/split) = 0.09.

Except for the sampling period, estimates for all model parameters

were found to be similar under both smooth and patterned culturing

conditions.
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Fig. 7. Illustrating model training and parameter estimation. (a) δ in (4) was estimated to maximize the probability of correct frame-level model decision
in the training data. (b-d) Normalized histograms of the observations were used to estimate the probability density functions that best describe them. (b)

d(λt−1
i , λt

j) for the no-change model was estimated to follow an exponential distribution with parameter τ = 0.12; (c) the ratio r was also estimated to

follow an exponential distribution with parameter ϕ = 1.8; (d) the prior on the growth model parameter s in (13) was estimated to follow a Gaussian with
mean µ = 4 and standard deviation σ = 48.

B. Experiments on Testing Data

All the image sequences used for validation of the algorithms were

collected using a phase-contrast microscope. The pixel resolution for

the collected images was 0.1067 µm along the x and y dimensions.

Images were collected every 5 minutes. All of our experiments were

implemented using unoptimized Matlab 7.0 code, except for the

tracing algorithm, which was implemented in C++. All experiments

were run on a Pentium III 1.8 GHz computer with 1 GB of memory.

The algorithms are entirely automatic, and required no manual

intervention or editing.

Table I reports the overall performance of the algorithm on each of

the eight testing sequences. The median probability of correct frame-

level model decision PD was 96.5%. The detection performance

results were computed with respect to manual ground truth generated

by a single human expert aided by the automated tracing results.

We note that quantitative ground-truthing of the detailed neurite

morphometry would be incredibly tedious and time-consuming. For

example, we estimate that manually tracing a neurite 150 pixels in

length requires 25 seconds. Hence, Sequence C of 200 frames, with

an average of 37 neurites per image, would require over 6 hours to

manually trace every eighth frame, and a comparable amount of time

to determine and quantify changes, whereas our algorithm does the

same task in 43 minutes.

The reported execution times include the time required to run

the entire algorithm on each sequence, and were found to increase

roughly linearly with the number of neurites per image. This is the

case because we impose spatial constraints on our feasible matches;

only those segments within the same local neighborhood were con-

sidered for matching (i.e. the two nearest endpoints between λt−1
i and

λt
j must be closer than fifty pixels). Without the spatial constraint,

running times would increase quadratically with the number of

segments.

Here, we provide a few examples of the graphical output and

automatically extracted semantic descriptions from the testing dataset

to indicate the utility of the technique. First, we consider Sequence

A, consisting of 147 images, in which every sixth image was

processed. This sequence was processed in 29 minutes. Two images

from this sequence were illustrated in Panels a & b of Figure 1.

The neurite tracing and soma segmentation output for Figure 1-

a is illustrated in Figure 8-a, and the extracted semantic change

description for the frame pair is illustrated in Figure 8-b. Table II-a is

an accompanying high-level text summary generated by the proposed

method, expressed in terms of the neurites and their behaviors.

The first two columns indicate the corresponding neurite indices

as they appear in Panel 8-a. The third column shows the type of

change automatically detected between the corresponding neurites.

The value between parentheses is the a posteriori probability of

change, as detailed in Section III-F. Table II-b illustrates the wealth of

quantitative analysis results automatically generated by our algorithm

that is immediately available to the user, using the second row of

Table II-a as an example. Morphometric measurements are shown for

each neurite, such as length, width, start, end, the originating soma,

and curvature. The curvature reflects the neurite tortuosity; a line has

zero curvature, whereas a circle has a curvature of one. Quantitative

measurements of change are also presented, including the direction

and amount by which the neurite shrank. These types of quantitative

measurements, automatically generated by our method, would require

significant effort to generate manually. In this sequence, an average

of nineteen neurites were extracted by the neurite tracing algorithm

in every frame. 85% of the detected neurite changes in the sequence

were labeled correctly; a detailed analysis of the results is shown in

Table II-c. A significant fraction of the errors reported in Table II-c

were due to tracing errors; for example, short neurites stemming from

the soma are sometimes not traced due to the halo artifact around the

soma body.

Next, we consider Sequence B, consisting of 200 images of

neurons cultured on a patterned surface, in which every eighth image

was processed. This sequence was processed in 22 minutes. Two

images from this sequence were illustrated in Panels c & d of Figure

1. The neurite tracing and soma segmentation output for Figure 1-

c is illustrated in Figure 8-c, and the extracted semantic change

description for the frame pair is illustrated in Figure 8-d. 89% of

the detected neurite changes in this sequence were labeled correctly.

Figure 9 shows several frames from Sequence C, consisting of

200 images. An invisible biochemical grid pattern was imprinted on

the surface, and growth patterns as well as interactions between the

different neurons on this imprinted surface were studied. The goal

was to detect sequence-level events that span more than a pair of

consecutive images. In particular, two such events of special interest

were automatically detected in this sequence: axonal specification and

apoptosis. A total of four neurons were captured in the microscope’s

field of view. Somas and neurites were automatically extracted as

illustrated in Figure 10-a, and neuronal changes were automatically

detected and described between successive images. Neurite lengths

were automatically measured as illustrated in Figure 10-b. Given

the sequence of frame-to-frame changes and neurite lengths, axonal

specification was automatically detected as described in Section III-

I for two of the neurites (indexed A-1 and C-6) at times t = 325
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TABLE I

PERFORMANCE SUMMARY OF THE EXPERIMENTS ON THE EIGHT TEST IMAGE SEQUENCES.

Sequence # Frames Frame Size Avg. # Segments PD Run Time (min) Smooth/Patterned

A 147 1470 × 1180 19 85% 29 smooth

B 200 1300 × 1080 17 89% 22 patterned

C 200 1301 × 1080 37 87% 43 patterned

D 109 314 × 295 6 100% 6 smooth

E 60 474 × 484 7 99% 8 smooth

F 52 638 × 812 11 98% 10 smooth

G 70 348 × 438 12 95% 10 smooth

H 74 650 × 515 9 99% 9 smooth
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Fig. 8. Illustrating sample semantic change analysis results for the image pairs in Figure 1. (a) Output of the neurite tracing and soma segmentation overlaid
on the grayscale image of Figure 1-a. (b) Automatically generated graphical description of the changes between the image pair in Figure 1-a,b. 85% of the
detected changes in this 147-frame sequence were labeled correctly. (c) Output of the neurite tracing and soma segmentation overlaid on the grayscale image
of Figure 1-c. (d) Automatically generated graphical description of the changes between the image pair in Figure 1-c,d. 89% of the detected changes in this
200-frame sequence were labeled correctly.
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TABLE II

SEMANTIC DESCRIPTION OF THE CHANGES BETWEEN THE PAIR OF IMAGE FRAMES SHOWN IN FIGURE 1-A,B. (A) TEXTUAL SUMMARY ACCOMPANYING

THE GRAPHICAL OUTPUT IN FIGURE 8-B, INDICATING ONLY THE CHANGES. A “U” INDICATES A NEURITE UNASSOCIATED WITH ANY SOMA IN THE

FIELD OF VIEW. (B) AUTOMATICALLY GENERATED EXCERPT DETAILING THE CHANGES FOR THE SECOND ROW IN (A). (C) CONFUSION MATRIX, THE

ROW LABELS INDICATE THE TRUE CHANGE MODEL (DETERMINED MANUALLY), WHILE THE COLUMN LABELS INDICATE THE AUTOMATICALLY

DETECTED CHANGE MODELS. THE ENTRIES IN THE MATRIX ARE THE NUMBER OF TIMES THAT A COMBINATION OF TRUE AND DETECTED MODELS

OCCURRED IN THE EXPERIMENT.

Frame 1 Frame 2 Detected Change

segments segments (a posteriori probability)

– A-6 tracing error (0.023)

B-3 B-3 shrinkage (0.027)

B-9 B-9 shrinkage (0.033)

– B-11 tracing error (0.019)

C-2, B-4 C-13 merge (0.045)

C-7 C-7 shrinkage (0.031)

– C-12 tracing error (0.022)

– C-13 tracing error (0.019)

U-6 U-6 shrinkage (0.036)

U-10 U-10 growth (0.039)

– U-16 tracing error (0.025)

Measurement λt−1
i λt

j

length (pixels) 149 97

avg. width (pixels) 7.6 7.3

start (207, 514) (207, 515)

end (352, 410) (298, 442)

soma index B B

total curvature 0.082 0.079

shrinkage length 51

shrinkage direction 126◦

(a) Object-level Summary (b) Morphometric Detail

Detected

True no change growth/shrinkage merge/split new/deleted tracing error

no change 194 (92%) 7 0 5 5

growth/shrinkage 18 218 (87%) 0 7 7

merge/split 0 0 2 (100%) 0 0

new/deleted 3 2 0 20 (62%) 7

tracing error 1 5 1 16 41 (64%)

(c) Confusion Matrix

and t = 445 min, respectively. In addition, the neuron indexed B

was automatically detected to undergo apoptosis at time t = 565

min. Overall, an average of 37 segments were traced per frame in

this sequence, and every eighth frame was processed for changes

as described earlier. 87% of the detected neuronal changes in the

sequence were labeled correctly, and the sequence was processed in

43 minutes.

V. CONCLUSIONS AND DISCUSSION

We demonstrated the practical feasibility of automatically gener-

ating concise, high-level descriptions of changes occurring in time-

lapse imagery of cultured neurons. This enables far more rapid quanti-

tative and qualitative understanding of the image changes compared to

manual markup methods and simple computational strategies such as

pixel-level change detection. Rapid and clear understanding is aided

by data reduction, a high level of abstraction in the computer vision

hierarchy (neurites instead of pixels), and analysis of both short and

long time scales. Behind the concise summary is a wealth of detailed

quantitative image analysis results that are available to the user. For

example, when a curve segment is labeled as growing, the amount

of growth is also measured, along with a list of these pixels, and the

growth direction.

The high rate of success of the system in scoring the changes

for the studied data sets indicates that it presents a significant

improvement over the manual approaches in current use. Such robust

automation can enable the neuroscientist to design far more ambitious

studies. For instance, it is desirable to process a large number of

neurons when a subtle neurobiological effect is being studied. The

proposed approach can eliminate the subjectivity inherent to manual

analysis and potentially improve both speed and accuracy. Though

the system described here was not specifically optimized for speed,

it is still significantly faster than comparable manual scoring. Indeed,

it runs more quickly than the rate of time-lapse data collection.

As demonstrated in [6], automatically generated traces tend to

be more accurate compared to manual traces. On the other hand,

automated tracing systems also tend to make more gross errors such

as missing neurites/fragments, compared to manual tracing, especially

in low-contrast, ambiguous image regions. For the studies described

here, almost half of the (however few) change model errors ultimately

arose from neurite tracing errors that in turn resulted from imaging

artifacts such as the halo effect in phase-contrast microscopy. With

other modalities, the sources of errors are likely to be different. For

instance, use of fluorescence microscopy will likely yield tracing

errors from non-uniform staining and/or noise. However, depending

on the study, the longer-term events in the image sequence may

be of more interest, and the detection of these should be robust to

occasional model selection errors, as demonstrated here.

On a broader scale, the integrative framework, as depicted in

Figure 2 and described in the text, is simple, extensible, modular,

and adaptable to time-lapse image sequences from many other

domains. Each of the major modules in Figure 2 can potentially be

improved separately, or substituted entirely for a given application. If

higher throughput is desired (e.g. for culture arrays), there are many

opportunities for pipelined and/or parallel processing (e.g. evaluation

of the change models).

In summary, this work not only presents the live-cell biologist

with a practically useful tool that addresses a real need, but also

enables future advances in the field. Future studies can be far more

ambitious in terms of the numbers of cells analyzed, as well as the

types of structural and functional measurements that can be made.

The algorithms could facilitate high-throughput automated inspection

systems to be used in a variety of areas including assay automation,
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sequence (C)

t = 245 min t = 285 st = 325

t = 365 t = 405

s

t = 445

t = 485 t = 525

a

t = 565

Fig. 9. Illustrating the multi-image events axonal specification and apoptosis. A sample showing nine frames from a sequence (Sequence C) with 200 frames
collected for neurons cultured on a patterned surface. Two of the four neurons captured undergo axonal specification (arrows highlighted with the letter s),
while a third neuron undergoes apoptosis (arrow highlighted with the letter a).

drug discovery, and optimization of culturing parameters for neuronal

engineering. They also set the stage for quantifying the relationship

between neuronal structure revealed by phase-contrast microscopy

and a potentially unlimited number of functional indicators revealed

by fluorescent labels. We have applied the same framework dis-

cussed here to multi-spectral (phase-contrast and fluorescence) image

sequences to investigate the role of protein transport in axonal

specification, and will report the results in a separate publication.

VI. ACKNOWLEDGMENTS

This work was supported in part by CenSSIS, the Center for

Subsurface Sensing and Imaging Systems, under the Engineering Re-

search Centers Program of the National Science Foundation (Award

Number EEC-9986821), and by Rensselaer Polytechnic Institute. The

authors would like to thank Harihar N. Iyer for his help in reviewing

the paper.

REFERENCES

[1] G. Banker and K. Goslin, Eds., Culturing Nerve Cells, 2nd ed. Cam-
bridge, Massschusetts: Bradford Books, September 1998.

[2] A. Bennett, H. Osterberg, H. Jupnik, and O. Richards, Phase Mi-

croscopy: Principles and Applications. New York: John Wiley and
Sons, 1951.

[3] B. Nathan, Y. Jiang, G. K. Wong, F. Shen, G. J. Brewer, and R. G.
Struble, “Apolipoprotein E4 inhibits, and apolipoprotein E3 promotes
neurite outgrowth in cultured adult mouse cortical neurons through the
low-density lipoprotein receptor-related protein,” Brain Research, vol.
928, no. 1-2, pp. 96–105, February 2002.

[4] G. S. Withers, D. Higgins, M. Charette, and G. Banker, “Bone
morphogenetic protein-7 enhances dendritic growth and receptivity to
innervation in cultured hippocampal neurons,” European Journal of

Neuroscience, vol. 12, no. 1, pp. 106–116, January 2000.

[5] T. Esch, V. Lemmon, and G. Banker, “Local presentation of substrate
molecules directs axon specification by cultured hippocampal neurons,”
The Journal of Neuroscience, vol. 19, no. 15, pp. 6417–6426, August
1999.

[6] K. A. Al-Kofahi, A. Can, S. Lasek, D. Szarowski, D. M. Natalie,
W. Shain, J. N. Turner, and B. Roysam, “Median-based robust algorithms
for tracing neurons from noisy confocal microscope images,” IEEE

Trans. Inform. Technol. Biomed., vol. 7, no. 4, pp. 302–317, Dec 2003.

[7] J. V. Pelt, I. Vajda, P. Wolters, M. Corner, and G. Ramakers, “Dy-
namics and plasticity in developing neuronal networks in vitro,” in
Development, Dynamics and Pathology of Neuronal Networks From

Molecules to Functional Circuits, Progress in Brain Research, J. V. Pelt,
M. Kamermans, C. N. Levelt, A. V. Ooyen, G. J. A. Ramakers, and P. R.



12

A

B

1

2

3

1

2

4

3

1

2

3

1

2
3

1

2

3

1

2

4

3

1

2

3

1

2

4

3

5

6

5

4

5

4 6

5

4 6

1

2

3

1

2

4

3

5

6

5

4 6

1

2

3

1

2

4

3

5

5

4 6

1

2

3

1

2

4

3

5

5

4 6

1

2

3

1

2

4

3

5

6

5

4 6

7 1

2

3
5

4 6

7

C

D

1

2
3

4
5

6

1

2
3

4
5

6

1

2
3

4
5

6
7

1

2
3

4
5

6

1

2
3

4
5

6
7

1
2

3

4
5

6

8

1

2
3

4

5
6

7

8

1

2
3

4

5
6

7

8

1

2
3

4

5
6

7

8

t = 245 min t = 285 t = 325

t = 365 t = 405 t = 445

t = 485 t = 525 t = 565

sequence (C)

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

(a)

0 200 400 600 800
0

10

30

50

70

0 200 400 600
0

10

20

30

0 200 400 600 800

12

20

28

36

length ( m) length ( m) length ( m)

time (min)time (min) time (min)

1

6
5

3
2

4

7
8

soma A soma B soma C

sequence (C)

4

(b)

Fig. 10. Illustrating detection of axonal specification and apoptosis for Sequence C. (a) Neurite tracing and soma segmentation output for the images in
Figure 9. (b) Neurite lengths as a function of time for the images in (a). Axonal specification and apoptosis are automatically detected from the frame-to-frame
changes and neurite lengths.
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TABLE III

GLOSSARY OF SYMBOLS USED.

Symbol Description

It Image captured at time t.

Bt Binary change mask between It−1 and It.

λt
i ith neurite centerline trace extracted by the

neurite tracing algorithm for image It.

mk Change model k.

θk Parameters for model k.

θ̂
ij
k Parameters for model mk estimated to map

λt−1
i into λt

j .

m
ij
k The change model selected to describe the

change between λt−1
i and λt

j .

δ Weight used for the mixture density for model

selection in (4), estimated as δ = 0.70 in our

experiments.

P (mk(θk)) Prior for model mk with parameters θk.

τ Exponential parameter for the likelihood term

that depends on the distance between curve

segments. Estimated as τ = 0.12 in our experi-

ments.

ϕ Exponential parameter for the likelihood term

that depends on the change mask. Estimated as

ϕ = 1.8 in our experiments.

s Growth/shrinkage parameter. Indicates the num-

ber of pixels a curve segment grew or shrunk.

µ Mean of the growth parameter s, estimated as

µ = 4.

σ Standard deviation of the growth parameter s ,

estimated as σ = 48.

G, E, V A graph, its edges, and its vertices, respectively.

eij , wij A graph edge connecting vertex vi to vj and its

non-negative weight.

M∗ Maximum weighted matching on a graph.

ω Continuous and non-decreasing parametrization

of a curve segment.
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