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Abstract—With the increasing popularity of Building Informa-
tion modelling (BIM), the demand for accurate as-built models
of existing buildings is rising. However, the manual creation of
these models is labour intensive and error prone. Therefore,
automation of the process is a must. One of the key factors in
the automated Scan-to-BIM process is the labelling of the data
for further reconstruction. Currently, semantic labelling is still
ongoing research.

This paper presents a flexible method to automatically label
highly cluttered vector models of existing buildings. In our
proposed method, a reasoning framework is used that exploits
geometric and contextual information. A major advantage to
our approach is that our algorithm can label both cluttered
environments and large data sets very efficiently. Unlike other
solutions, this allows us to label entire buildings at once. In
addition, the implementation of our algorithm and the platform
we use allows for flexible data processing, visualisation of the
results and improvement of the labelling process. Our work
covers the entire labelling phase and allows the user to label
data sets with a minimal amount of effort.

Keywords - Semantic labelling; Scan-to-BIM; Vector model;
Building modelling

I. INTRODUCTION

The popularity of intelligent three dimensional data models

like Building Information Modelling (BIM) is rapidly increas-

ing. Most commonly, these models are created during the

designing phase of a structure to support the construction

process. Afterwards, stakeholders can employ the BIM model

for a wide variety of applications such as facility management,

energy performance analysis, project planning, etc [1], [2], [3].

However, the BIM model created during the designing phase

often deviates from the actual conditions. Therefore, the need

exists for as-built BIM models, where the as-design models are

updated to as-built conditions. Experiencing the advantages of

BIM, the industry now looks to implement as-built models for

existing buildings. With no prior BIM available, these models

have to be created from scratch. In general, as-built models

are created from point clouds. Commonly, a terrestrial laser

scanner is employed to acquire scans from different locations.

The individual data sets are then aligned using cloud-based or

target-based registration techniques [4]. Once a complete point

cloud is acquired, the data is exported to a modelling software

and BIM objects are fitted onto the points. This process is titled

Fig. 1. Overview of intermediate results of the Scan-To-BIM Workflow: From
left to right, Point Cloud (a), Vector model (b), labelled Vector model (c) and
as-built BIM model (d).

Scan-to-BIM. However, the creation of such a model is labour

intensive and time consuming. One of the main problems is the

amount of manual labour required in the modelling process.

Therefore, the industry would greatly benefit from automation

in the Scan-to-BIM process [5], [6], [7]. Our goal is to develop

methods to automate this workflow.

A. Modelling Process

The Scan-to-BIM process can be divided into several

phases [8]. Some intermediate results of the different stages

are shown in Fig. 1. First, the point cloud is segmented

into different clusters. Many solutions has been presented

to tackle this problem [9], [10], [11]. Once the clusters are

identified, primitives or meshes are fitted onto the data. While

complex surfaces provide a more accurate approximation of

the as-built conditions, planar surfaces are generally employed

to model the structural elements of buildings. Commercial

software like Pointfuse [12] already provide fully automated

plane reconstruction. In the robotics industry, vector models

are often considered as the deliverable of the reconstruction

process [13], [14], [15]. However, in the case of Scan-to-

BIM, intelligence should be added to the model. This phase

is titled ”Semantic Labelling”. The vector model is processed

by reasoning frameworks that provide the individual surfaces

with labels such as walls, floors, ceilings, etc. Several ap-

proaches have been presented using heuristic or probabilistic

techniques [16], [17], [18]. However, most of these solutions

only handle small scale data e.g. a single room. Our method

provides a reasoning framework that will work on any scale

of data, even entire buildings. Considering complete structures

allows us to consider some contextual information that is not



available in smaller data sets. Following the semantic labelling,

the individual surfaces can be grouped and used as a basis to

reconstruct the as-built BIM.

B. Existing buildings

The focus of this research is on the reconstruction of

existing buildings e.g. hospitals, office buildings, schools,

houses etc. It is important to know that the data sets of these

structures have varying properties. Some of the key factors for

the semantic labelling are:

a) Noise: The goal of our research is provide an algo-

rithm that works for realistic data. This means that furniture

and clutter (such as small objects, persons, etc) will be present

in the data sets. This introduces a high degree of confusion in

labelling since some furniture can show great resemblance to

structural elements. E.g. a built-in closet can be mistaken for

a wall or several adjacent tables can be seen as a floor.

b) Varying zones: Typical for real structures is the wide

variety of zones inside the building. They contain staircases,

attics or other unusual spaces. The characteristics of these

zones deviate from regular rooms which causes problems in

the labelling process.

c) Type of data set: Depending on project deliverables

and methodology, the type of point cloud data differs. Some

data sets only contain a portion of a structure while oth-

ers consist out of the entire building and the surroundings.

Common examples of different types of data sets are multi-

storey and single-storey: The former represents a data set that

contains the entire structure (both interior and exterior across

all floors). The latter only contains a part of the building,

consisting of one floor. The use of single-storey data sets is a

common strategy in the Scan-to-BIM industry since treating

each floor as a separate project has computational advantages.

However, the data characteristics of both types are inherently

different. For instance, single-storey data sets do not contain

some of the contextual information present in multi-storey data

sets. This proves problematic for reasoning algorithms. E.g. a

potential ceiling cannot not have a floor above in a single-

storey data set. Therefore, filters employing this information

are meaningless. Even worse, some filters even have a counter-

productive impact on the labelling if they expect information

that is not present in the data.

C. Automation

Traditional, manual modelling relies on the user to interpret

the point cloud. In this case, the segmentation of the data, the

labelling and the primitive fitting is purely done visually. It is

up to the operator to identify the type of object and where to

place it.

Automation of the Scan-to-BIM process looks to aid the

user in the different phases. Two approaches are currently

being developed: Fully Automated Reconstruction and Assisted

Manual Reconstruction. The emphasis of the former is on

the creation of an initial proposal of the objects, effectively

removing all user input. Commercial software such as Edge-

wise [19] focus on this strategy. On the other hand, the

latter strives to provide the user with a set of tools that

facilitate the modelling process. Software pursuing this course

are FARO Pointsense [20] and Leica Cloudworxs [21]. While

the Fully Automated Reconstruction process is faster, it is

limited to generic objects, and thus can only provide an initial

solution. The Assisted Manual Reconstruction can aid the

operator to a further extent but requires additional labour. We

believe a promising solution is to merge the two approaches.

For example, automated algorithms could provide an initial

proposal during each stage of the Scan-to-BIM process. In

addition, the user would be provided with a set of tools to

easily update or modify the proposals before continuing. The

goal of our research is to automatically provide the user with

such an initial BIM model on a flexible adjustment platform.

This article describes our recent work on the automation of

the Scan-to-BIM process. More specifically, we address the

problem of semantic labelling. Our method provides a reason-

ing framework that labels elements that frequently appear in

typical existing buildings. It identifies floors, ceilings, roofs,

walls, windows and doors. The output of our algorithm is a

labelled data set that can be easily adjusted by the user for

further reconstruction.

The rest of this article is organized as follows. A section

of related work is presented in II. Our proposed algorithm is

explained in section III. The experimental results are shown

in section IV. Finally, in section V, the conclusions and future

work are presented.

II. RELATED WORK

Semantic labelling is being investigated from multiple

points of view. A lot of work is performed in the area of

computer vision, where labelling is often utilized for object

recognition. One of the popular approaches is the use of neural

networks such as Conditional Random Fields [22], [23]. By

connecting several nodes into a graph, probabilistic reasoning

allows likelihood maximisation of the different labels for the

nodes. Researchers employing this approach have published

promising results for small scale building scenes [5], [16],

[17], [24], [25], [26]. However, these reasoning algorithms

require extensive learning and are computationally expensive.

Other approaches present algorithms that employ geometric

and contextual rules [18], [27], [28], [29]. Typical, they encode

”features”, which represents a characteristic of the candidate

object. These features are used to specify a set of rules.

E.g. a candidate surface with a large area will have a higher

probability of being a structural element. Geometric features

found in publications contain normals, dimensions, distance

to bounding box, area, height, point density, aspect ratio,

etc. Contextual features can consist of associative or non-

associative relationships [30]. Common features employed are

coplanarity, convexity, proximity, geometric similarity, topol-

ogy, texture similarity, etc. Most works only employ some

of these rules to identify the zone specific elements of the



Fig. 2. Workflow diagram of our algorithm. From top left to bottom right the following steps are depicted: User Input (A), Preprocessing (B), Initial labelling
(C), Optimization (D), Window/Door detection (E) and Data Export (F).

data set. Our context-based labelling algorithm extrapolates

these rules to full scale buildings. Furthermore, different sets

of weights for the rules are predefined for varying zones so

that the user no longer has to train the algorithm. The input

data differs between varying approaches. Some researchers

directly segment the point cloud [13] while others prefer

to work with primitives such as surfaces. Although working

directly on the point clouds can be more accurate, it also

introduces a higher computational cost and uncertainty in the

process. In our work, we use primitives as a basis because

of the computational advantages. Some research has been

performed on the automated reconstruction of rooms based on

labelling [31], [32]. The graph based techniques in these works

provide promising labelling results, but requires a watertight

mesh. However, the creation of such a mesh in a highly

cluttered and occluded environment is challenging. Another

point of view is the use of prior knowledge. [33], [34] employ

contextual information on existing plans to extract building

elements. However, these plans often lack consistency making

them hard to interpret. Semantic labelling has also been a

major topic in outdoor scenes. Facade and window opening

detection algorithms have been successfully used on mobile

mapping data [35]. In aerial applications, building extraction

has seen major breakthroughs in the past several years [29],

[36], [37], [38], [39]. However, these algorithms only employ

exterior information. Our algorithm exploits both indoor and

outdoor data to find accurate walls, roofs and openings.

III. PROPOSED WORKFLOW

In this paper we consider flexible labelling of planar sur-

faces for the creation of BIM models for existing buildings.

Our approach consists of a weighted reasoning framework that

employs geometric and contextual rules to label the data set.

Our algorithm is implemented in Grasshopper, an open

source Rhinoceros plug-in which is a platform for visual

scripting of object based program languages. The algorithm



pipeline shown in Fig. 2 consists of six steps. First, before

the actual processing, the user chooses a set of parameters

in respect to the data. Second, preprocessing of the data is

performed for noise reduction and segmentation. Third, the

initial labelling is computed. Fourth, an optimization step is

performed to enhance the labelling. The fifth step allows the

operator to automatically find window and door surfaces. Fi-

nally, the sixth step exports the labelled surfaces to Rhinoceros,

where the data can be updated by the user.

As an input, our algorithm accepts any set of flattened

meshes. This geometry can be derived from multiple recon-

struction software. The example input meshes used in this

paper are produced by Pointfuse [12]. This software calculates

flat triangular meshes to represent the planes in the point cloud.

A. User Input

The platform we currently employ is Rhinoceros. The input

meshes are loaded into the software and visualized. Before

any calculations are performed, the user has the opportunity

to evaluate the data and choose appropriate settings in the

Grasshopper interface: First, the user defines which part of the

data should be processed. Second, the user indicates which

type of data the algorithm should be expecting (E.g. multi-

storey). Varying types of data have different preset parameters

for the contextual and geometric filters. These parameters are

previously trained by example data.

An advantage of our approach is that our algorithm allows

flexible zone and parameter set selection. While an entire

project can be loaded into the algorithm at once, it is possible

to select only a part of the data at a time and feed it to the

labelling algorithm with a specific set of parameters. This way,

the user maintains control of the labelling process. Also, the

user can easily create and train new sets of parameters for

other types of data.

B. Preprocessing

At the beginning of the preprocessing step, the data is im-

ported from Rhinoceros into the Grasshopper plug-in. There,

planar surfaces are extracted from the meshes based on the

exterior boundaries of the meshes. The advantage of the planar

surface representation is that the same geometric data can be

handled more efficiently. Following, two dimension filters are

applied: One for noise reduction and another to segment the

large from the small surfaces. By splitting the data set by size,

we allow for course to fine labelling. The noise dimension

threshold is set to 0.7m for the major axis. The segmentation

filter threshold considers surfaces to be large if both axes are

larger than 1m or the major axis exceeds 2.5m. Next, the large

surfaces are divided by their normal with an angular threshold

of 15◦into Horizontal Surfaces and Vertical Surfaces. Surfaces

with a normal between 15◦and 85◦are considered as Other

Surfaces. These surfaces are not labelled because of their

unpredictable characteristics and low occurrence (less than 1%

of data set).

C. Initial labelling

In this step, each surface in S = {s1, s2, . . . sn} is assigned

one of the following labels: The horizontal surfaces are

divided into Floors, Ceilings, Roofs, Furniture and Uniden-

tified Horizontal. The vertical surfaces are labelled Wall or

Unidentified Vertical. The labelling is performed by testing

each surface with a set of contextual and geometric filters

Fl = {fl,1, fl,1, . . . fl,n}. The features employed by the filters

are shown in table I. For instance, the Area, Proximity and

Extrusion Collision are evaluated in equations (1), (2), (3)

respectively.

fArea(s, S) := As − ĀS ≤ tArea (1)

fProx(s, S) := ‖Bs −BS‖ ≤ tProx (2)

fExtr(s, S) := #{fExtr(s) ∩ Slarge} ≤ tExtr (3)

Each filter yields a discrete value 0 or 1 for each surface

(4) based on a threshold ti. These filter specific thresholds

define whether a relation is valid or not. E.g. the euclidean

distance of 0.5m between the borders of two surfaces is set as

a threshold to define a neighbourhood relationship.

fl,i(s, S) =

{

1, fi(s, S) ≤ ti

0, fi(s, S) > ti
(4)

A weighted voting function (5) for each label is implemented

to distribute the importance of every filter. The filter weights

Wl = {wl,1, wl,2, . . . wl,n} are preset for every label and are

dependant on the type of data. The sum of these weights for

a specific label amounts to 1 (5). A minimum label value Vl

of 0.7 in the voting function is required for a surface to be

labelled. Once the value exceeds this threshold, the label with

the highest value is assigned to the surface. Surfaces with a

lower value are labelled respectively Unidentified Horizontal

or Unidentified Vertical.

TABLE I
GEOMETRIC AND CONTEXTUAL FEATURES.

Labels Geometric features Contextual features

Floor

Ceiling

Roof

Furniture

Area

Dimensions

Boundary

Normal

Wall proximity

Wall height similarity

Horizontal proximity

Extrusion collision

Room edge proximity

Wall

Area

Dimensions

Boundary

Normal

Ceiling proximity

Floor proximity

Coplanarity

Perpendicularity

Wall proximity

Room edge proximity

Window

Door

Diagonal length

Diagonal angle

Dimensions

Floor proximity

Wall inlier

Threshold 0.70 0.70



TABLE II
INDIVIDUAL LABEL PERFORMANCE OF ”SCHOOL” DATA SET.

Noise Floor Ceiling Roof Wall Window Door Unidentified Overall

Total Surfaces 1129 21 19 7 134 305 99 1464 3178

Total Elements - 7 10 4 47 28 12 - 108

Surface Precision [%] - 100 83.3 85.7 91.1 94.7 86.8 - 90.3

Element Precision [%] - 100 72.7 85.7 87.5 88.2 83.3 - 86.2

Surface Recall [%] - 85.7 90.5 100 91.8 91.2 38.4 - 82.9

Element Recall [%] - 85.7 80 100 100 96.4 41.6 - 84.0

Computation time [s] 2.8 3.5 13.9 17.6 - 37.8

∑

fl,i∈Fl

fl,i(s, S)wl,i ≥ Vl where
∑

wl,i∈Wl

wl,i = 1 (5)

In this step, our algorithm focusses on precision instead of

recall to provide a reliable basis for the optimization step.

D. Optimization

The emphasis of the optimization step is on the maximisa-

tion of recall values for the different labels. Once the larger ob-

jects have been identified in the initial labelling, the remaining

surfaces are evaluated and labelled. During this step, several

features are evaluated based on the initial labelling. First, room

information is used to find additional floors, ceilings and walls.

The rooms are computed utilizing the initial labels of the

floors and the ceilings. The ceiling surfaces are the principal

component of the room boundaries since they are often less

occluded than the floor surfaces. Spatial filtering is applied on

the remaining surfaces to label additional surfaces based on

room boundary proximity. Second, wall height similarity in

combination with wall proximity is used to label additional

walls, ceilings and floors. The result of this step is a labelled

data set of the structural elements.

E. Window/Door detection

After the optimization step, our algorithm employs the wall

information as a basis to find windows and doors. First, a

spatial filter is applied on the remaining data to isolate the

surfaces that are located inside the walls. For single-faced

walls, a local search area is defined to locate nearby surfaces.

The data extracted from both filters serve as the candidate

surfaces for the window and door detection step.

Second, conditional random sampling is applied to locate

candidate bounding boxes per wall. As minimal sample, one

vertical and one horizontal surface is iteratively selected at

random from each wall to create a bounding box. The process

is conditioned so that only boxes are created that have similar

dimensions as the initial samples. After the candidates are

created, a reasoning framework is applied using length of

diagonal, angle of diagonal, similar centroid occurrences and

surface inliers to filter the bounding boxes. Surfaces having

more than 30% overlap with a filtered bounding box are

withheld and grouped. Finally, windows are separated from

doors based on dimensions and floor information.

F. Data export

After the labelling is completed, the data is exported to their

respective layers in the Rhinoceros software. There, the user

can easily improve the data to a fully labelled data set. Once

the adjustments are completed, the data is re-imported into the

Grasshopper environment for future reconstruction.

IV. EXPERIMENTAL RESULTS

We tested our algorithm using data from several existing

structures. For research purposes, only multi-storey data sets

were selected due to their more complex and complete nature.

To provide a realistic data set, the point clouds were not

cleaned after registration. Also, the generated meshes were

not altered in any way. Two data sets are used to evaluate our

labelling algorithm: A school building and a house. Both data

sets have slightly different features but can be considered to

be the same data type. We tested our algorithm on both recall

and precision performances for each label.

a) School building: The first test case is a school building

on the technology campus in Ghent. The building has four

floors and houses a laboratory, two classrooms, a staircase and

a maintenance room. 40 scans were acquired for a total of 400

million points. The Pointfuse software was able to reconstruct

3178 surfaces with an average standard deviation of 0.001m.

The entire data set was processed at once. We compared our

results against a manually labelled data set which was used

as a benchmark. Table II and Fig. 3 (a to i) depict the results

of the process. Noticeable is the amount of noise present in

the data set (Fig. 3, g). No less than 35.5% of the data is

too small to participate in the structural element detection. On

average, 82.9% of the surface labels were found, resulting in a

84% element detection. With average precisions of 90.3% and

86.2%, the selection is very accurate. Fig. 3, h shows that the

only floors and ceilings left unlabelled are part of the staircase.

This is to be expected since the surfaces in the staircase have

deviating features compared to the floor and ceiling features in

more generic rooms. The percentage of doors found is far less

than other elements. However, looking at Fig. 3 (e and f), it is

revealed that some of the doors were labelled as windows and



Fig. 3. Overview of the results of the ”School” data set: the top four
images contain views of the data set. The bottom figures show the results
for the labelling process: The floor surfaces (a), the ceiling surfaces (b), the
roof surfaces (c), the wall surfaces (d), the windows surfaces (e), the door
surfaces (f), the noise surfaces (g), the unidentified large surfaces (h) and the
unidentified small surfaces (i).

vice versa. This error can easily be adjusted by the user since

the elements are found nonetheless. The unidentified surfaces

(Fig. 3, i) are mainly a mixture of small parts of elements and

noise.

The computational effort of our algorithm is relatively low.

A total of 37.8s was required to label the data sets and

calculate the previews of the entire building. The bottom row

in Table II shows that the window and door detection algorithm

is the slowest step. This is caused by the large number of

iterations in the random sampling to find sufficient support

for the bounding box candidates.

b) House: The second data set is a terraced house.

The building has four floors and houses several bedrooms, a

living room, a kitchen, two bathrooms, a basement and some

other small rooms. 35 scans were acquired for a total of 350

million points. The scene is highly cluttered and the structural

Fig. 4. Overview of the results of the ”House” data set: the top four
images contain views of the data set. The bottom figures show the results for
the labelling process: The floor surfaces(a), the ceiling surfaces(b), the roof
surfaces(c), the wall surfaces(d), the windows surfaces(e), the door surfaces(f),
the noise surfaces(g), the unidentified large surfaces(h) and the unidentified
small surfaces(i).

elements are partially occluded. A total of 1989 surfaces were

reconstructed with an average standard deviation of 0.001m.

Fig. 4 (a to i) and table III give an overview of the labelling

results.

Table III reveals slightly poorer results for the second data

set. Average recall values of 74.5% and 76.0% were computed

for the surfaces and the elements. The largest difference is

located in the window and door detection phase. This can be

explained by the clutter and occlusion present in the scene.

When looking at the structural component detection, both data

sets reveal similar results (respectively 92.4% and 87.8% for

data set 1 and 2 for the element detection). Also, the precision

values show similar results (86.3% for the surfaces and 80.2%

for the elements). Analysing the computational effort, a total

of 20.0s was timed for the entire process. From table II and III

can be derived that an increase of 37.4% in surfaces results in



TABLE III
INDIVIDUAL LABEL PERFORMANCE OF ”HOUSE” DATA SET.

Noise Floor Ceiling Roof Wall Window Door Unidentified Overall

Total Surfaces 999 14 17 9 98 95 84 673 1989

Total Elements - 5 8 3 50 7 12 - 85

Surface Precision [%] - 100 93.3 100 90.6 70.2 63.6 - 86.3

Element Precision [%] - 100 87.5 100 88 55.6 50.0 - 79.7

Surface Recall [%] - 85.7 88.2 100 76.5 83.6 13.1 - 74.5

Element Recall [%] - 80 77.8 100 100 81.3 16.7 - 76.0

Computation time [s] 1.6 1.7 6.4 10.3 - 20.0

an increase of 46.0% in computation time. Also it is revealed

that our solution primarily focusses on precision instead of

recall (86.3% opposed to 74.5% for both data sets). While

this reduces overall errors, it is not optimal for our flexible

adjustment approach. We prefer recall over precision since it

is easier to delete false positives than to find false negatives.

V. CONCLUSION & FUTURE WORK

In this paper we explained and demonstrated a flexible

automated labelling framework for existing buildings for the

Scan-to-BIM pipeline. In our proposed method, a reasoning

framework is employed that exploits geometric and contextual

information. A major advantage to our approach is that our

algorithm can label both cluttered environments and large data

sets very efficiently. Unlike other solutions, this allows us to

label entire buildings at once. Furthermore, the implementation

of our algorithm and the platform we use allows for flexible

data processing, visualisation of the results and improvement

of the labelling process. Our work covers the entire labelling

phase and allows the user to complete the labelling with a

minimal amount of effort.

Overall, the experimental data showed that our algorithm

is able to label the general structural elements in common

areas with high precision and recall values. However, in

more complex areas such as staircases, the features of the

surfaces differ from the features in common areas. This proves

problematic for the surface labelling. Also, elements that

consist of small parts are harder to detect because their surface

features resemble features of noise surfaces. For these types of

data our algorithm will underperform. Currently our approach

relies on user input for zone and parameter selection. Work

is being performed on the automation of this input, further

reducing the users effort.

Currently, the parameters in the algorithm are focussed on

the maximisation of precision instead of recall. However, our

approach would benefit from recall maximisation because of

the flexible adjustment platform. It is easier for the user to

remove false positives than to add false negatives. In order to

maximise recall, the contribution of each parameter should be

known. Therefore, further work is focussed on key parameter

identification and recall optimization using machine learning

techniques.
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[34] H. Son, F. Bosché, and C. Kim, “As-built data acquisition
and its use in production monitoring and automated layout of
civil infrastructure: A survey,” Advanced Engineering Informatics,
vol. 29, no. 2, pp. 172–183, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S147403461500021X

[35] R. Wang, J. Bach, and F. P. Ferrie, “Window detection from mobile
LiDAR data,” 2011 IEEE Workshop on Applications of Computer Vision,

WACV 2011, pp. 58–65, 2011.
[36] A. M. Ramiya, R. R. Nidamanuri, and R. Krishnan, “Object-

oriented semantic labelling of spectralspatial LiDAR point cloud for
urban land cover classification and buildings detection,” Geocarto

International, vol. 6049, no. July, pp. 1–19, 2015. [Online]. Available:
http://www.tandfonline.com/doi/full/10.1080/10106049.2015.1034195

[37] I. Jazayeri, A. Rajabifard, and M. Kalantari, “A geometric
and semantic evaluation of 3D data sourcing methods
for land and property information,” Land Use Policy,
vol. 36, pp. 219–230, jan 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0264837713001543

[38] J. Niemeyer, F. Rottensteiner, and U. Soergel, “Contextual
classification of lidar data and building object detection in
urban areas,” ISPRS Journal of Photogrammetry and Remote

Sensing, vol. 87, pp. 152–165, jan 2014. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0924271613002359

[39] R. Richter, M. Behrens, and J. Döllner, “Object class
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