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In this paper, we present a method to determine 
viewpoints for a robotic vision system for which object 
features of interest will simultaneously be visible, inside 
the field-of-view, in-focus and magnified as required. As 
part of our previous work, we had analytically character- 
ized the domain of admissible camera locations, orien- 
tations and optical settings for which each of the above 
feature detectability requirements is satisfied separately. In 
this paper, we present a technique that poses the problem 
in an optimization setting in order to determine view- 
points that satisfy all requirements simultaneously and 
with a margin. The formulation and results of the opti- 
mization are shown, as well as, experimental results in 
which a robot vision system is positioned and its lens is 
set according to this method. Camera views are taken 
from the computed viewpoints in order to verify that all 
feature detectability requirements are indeed satisfied. 

1 PROBLEM 

In a general sense, sensor planning can be defined 
to embody a number of areas of robotics that have been 
studied extensively in the past. For instance, the general 
problem of task planning and its component areas of 
motion planning, grasp planning and assembly planning 
can be seen as different facets of the sensor planning 
problem. Even when limiting the problem to planning of 
vision sensors alone, two distinct areas can be observed 
based on the vision task that is to be achieved. One area 
is concerned with developing sensing strategies for the 
tasks of object recognition, reconstruction or localization. 
That is, it is concerned with choosing sensing operations 
and sensing positions, or determining object features, that 
will prove most useful when trying to identify or recon- 
struct an  object or determine its pose. Along orthogonal 

lines, there has been work in which the sensor planning 
problem is posed in a decision theoretic framework. That 
is, statistical decision theory is used to determine optimal 
sensing locations for performing a task, with sensors being 
modeled as noisy information sources [ l ,  41. The other 
area considers the vision task of object feature detection. 
That is, it determines sensing parameters for which partic- 
ular features on a known object satisfy particular con- 
straints in the image (e.g. the feature is visible, in-focus 
and magnified as required) [2, 31, [ 7 ,  81, [18], 
[lo, 11, 13, 14, 16, 171. In this paper, we present work 
in this latter area. 

2 OVERVIEW OF OUR APPROACH 

We are developing a model-based and task-driven vision 
system MVP, (Machine Vision Planner), that automat- 
ically plans vision sensor parameters so that task require- 
ments, common to most industrial machine vision 
applications, are satisfied. Methods are being developed 
that take as input the object geometry information, as well 
as models of the camera and lens, and determine camera 
poses and optical settings for which features of interest of 
polyhedral objects are: 

in-focus, 

visible (occlusion-free positions of the sensor), 

contained entirely in the sensor field-of-view, 

resolvable by the sensor to a given specification 

These task requirements all determine feature detectability 
and therefore are fairly generic for most vision tasks. 

The planning techniques that are being developed 
are used in a robotic vision system, in which a camera 
and light source are mounted on two robot manipulators. 
These robot manipulators can position and orient the 
camera and light source, while the camera optics can be 
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controlled, either by manually exchanging fixed focal 
length lenses or by controlling the zoom, focus and aper- 
ture settings of a programmable zoom lens [16]. In addi- 
tion, the robotic vision system has access to a geometry 
database of objects to be observed. 

The sensor parameters that are planned are 
geometric and optical in nature. The geometric parame- 
ters are the three positional degrees of freedom of the 
sensor- F o - ( x , y ,  2)-, and the two orientational degrees of 
freedom, pan and tilt angles, described by a unit vector 
along the viewing direction (rotation around the optical 
axis is ignored). On the other hand, there are three 
optical parameters, namely, the back nodal point1 to 
image plane distance d,  the focal length f and the aperture 
of the lens a. Thus, planning is done in eight-dimensional 
imaging space L91 acd a point in this space is a general- 
ized viewpoint V(r 0, v ,  d, f, a). 

Using concepts from geometry, illumination and 
optics, each task requirement is modeled by an equivalent 
analytical relationship, which in turn is satisfied in a 
domain of admissible values in the space of parameters to 
be planned. For each constraint, the admissible domain 
for sensor placement and setting is a region in eight- 
dimensional imaging space bounded by the hypersurfaces 
that are characterized by these analytical relationships. 

These component admissible domains obtained for 
each task requirement need to be combined in order to 
find parameter values that satisfy all constraints simul- 
taneously. If the entire admissible domain of parameter 
values is sought, then, in principle, the combination of 
these component solutions involves intersecting eight- 
dimensional regions in order to determine solutions that 
are admissible to all constraints. However such inter- 
sections are still research problems in and of themselves 
and therefore more practical techniques need to be devel- 
oped. 

For this reason, the problem has been posed in an 
optimization setting, in which a globally admissible eight- 
dimensional viewpoint is sought that is “centrul” to the 
admissible domain, that is, far from the bounding 
hypersurfaces described by the constraint equations. Such 
a generalized viewpoint is desirable, since it is robust in 
the event of inaccuracy (e.g.  due to sensor noise) of either 
sensor placement or setting. The analytical relationships 
for each task constraint provide the constraints for the 
optimization, while the objective function is chosen so as 
to characterize the “distance” between a viewpoint and 
these bounding hypersurfaces. 

Once a “central” generalized viewpoint is deter- 
mined from the optimization, it needs to be realized in the 
actual sensor setup. In order to achieve these planned 
sensor parameter values, a mapping needs to be estab- 
lished between the planned parameters (e.g. camera pose 
and optical settings) and the parameters that can be con- 
trolled (e.g. end effector pose, zoom and focus settings). 
This mapping between the two parameter spaces is pro- 
vided by the calibration models. These models embody 
knowledge of the geometric relationships of the manipu- 
lator, the sensor and illuminator, as well as the optical 
relationships of the lenses. 

3 THE VIEWPOINT LOCI 

In this section, we briefly describe the determination 
of the loci of admissible generalized viewpoints for each 
constraint separately. Details and derivations of the fol- 
lowing can be found in [13]. 

3.1 FEATURE VISIBILITY CONSTRAINT 

The domain of admissible sensor locations is first 
limited to regions in three-dimensional space from where 
the features to be observed are visible. We have devel- 
oped a technique that generates regions in three- 
dimensional space from where features of interest on an 
object can be viewed in their entirety without being 
obstructed by the object itself (i.e. self-occlusion). The 
features to be observed can be of any polyhedral type: a 
point, line-segment or face (including concave faces). The 
details of this technique are described in [12]. 

The visibility planning algorithm first considers a 
sufficient subset of the faces of the observed polyhedron 
as polygons in three-dimensional space, possibly concave, 
that are potentially occluding the feature to be observed. 
The algorithm then determines the three-dimensional 
occluded regions between these occluding polygons and 
the target feature. These individual occluded regions of 
the faces of the polyhedron are then unioned to generate 
the occluded region of the polyhedron as a whole. The 
complement of the occluded region is the visibility region, 
from where the entire target can be viewed (see Figure 1). 

3.2 FEATURE RESOLUTION CONSTRAINT 

Pixel resolution is used to indicate the approximate 
size of the smallest scene feature which can be seen by the 
vision system. In many machine vision tasks it is required 
that a particular unit feature size on an object appear as a 
minimum number of picture elements on a sensor. This 
feature resolution constraint can be satisfied by properly 

1 Nodal points are points on the optical axis whose properties are such that any ray passing through the front 
nodal point emerges from the back nodal point in the direction parallel to that of the original ray. For the case 
of a thin lens the nodal points coincide at the perspective center. 



selecting the image sensor (e.g. pixel size), as well as by 
carefully planning its placement and settings. The objec- 
tive of sensor planning for the feature resolution con- 
straint is to determine the sensor parameters that achieve 
this resolution. The type of features that are considered 
for the resolution constraint are line-segments, thus 
including feature edges or linear features of interest (e.g. 
width between two edges). We have developed a method 
to plan the camera pose and the optical settings of a lens, 
so that chosen features can be resolved to meet a given 
specification, for instance, feature AiBi has an image of 
length that is at least equal to w. This locus of resolution 
satisfying generalized viewpoints is described in vector 
form by the following formula: 

g, are the position vectors of the front nodal point 
of the lens and the feature vertices with respect to 
the object world coordinate system OW, 

is the effective focal length, (i.e. the distance firom 
the back nodal point of the lens to the image 
plane), 

is the unit vector along the optical axis in 
viewing direction, 

is the unit vector along the feature edge, 

is the intrinsic focal length of the lens, that is, 
focal length of the lens for an object at  infinity, 

is the length of the minimum feature to 
resolved, and, 

the 

the 

be 

is the required length of A’$,, the image of A&. 

3.3 THE DEPTH-OF-FIELD CONSTRAINT 

When planning camera placement and lens settings 
so that all features of interest on an object are in-focus 
simultaneously, this corresponds to determining the locus 
of generalized viewpoints for which the feature points that 
are farthest and nearest with respect to each viewing 
direction lie within the range described by the depth-of- 
field. It can be shown that the region that satisfies the 
depth-of-field constraint is given in vector form by the fol- 
lowing formulas: 

is the far limit of the depth-of-field given by [SI 
Daf D1 = 

af - c(D -4 ’ 

is the near limit of the depth-of-field given by [SI 

1 is the focus distance given by D = U / f -  1/4 ’ 
is the position vector of the farthest feature vertex 
from the front nodal point of the lens along the 
viewing direction, 

is the position vector of the closest feature vertex 
from the front nodal point of the lens along the 
viewing direction, 

and all other variables are as defined in previous sections. 

3.4 THE FIELD-OF-VIEW CONSTRAINT 

In section 3.1 it was implicitly assumed that there were no 
field-of-view limitations, that is, the sensor had a 180 
degree field-of-view angle and therefore orientation of the 
sensor was immaterial, provided that the features to be 
observed were in the half-space associated with the front 
of the camera. For a CCD camera, the field-of-view is 
generally limited by the minimum dimension I,,, corre- 
sponding to the active sensor area in the image plane- 
that is, the sensor plane is the field-stop2 of the system. 
Any observed feature must project onto this limited image 
plane, otherwise it will either be totally outside the field- 
of-view or truncated. It  can be shown that the relation- 
ship describing the field-of-view satisfying locus of 
generalized viewpoints is given in vector form by the fol- 
lowing formula: 

where 

a is the field-of-view angle and is given by 
a = 2 tan-1(Z,,,/2d), 

Imin is the minimum dimension of the sensor plane, 

2 the field-stop is the stop in the optical system that limits the field-of-view. 
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2 

YC, is the position vector of the center of the sphere 
circumscribing the object features, 

Rf is the radius of the sphere circumscribing all the 
object features, 

is the position vector given by 1~ = 7~ - Rev, 
2 

YK 

Ro = R/I( sin a / 2 ) ,  

and all other variables are as defined in previous sections. 

4 CONSTRAINT MERGING 

Constraint merging is formulated as a constrained 
optimization problem. The constraints of the optimiza- 
tion problem include the feature detectability require- 
ments, g,, i = 1,2a,2b,3, that were presented in previous 
sections. An additional optimization constraint, gs,  
expresses the unit vector condition for the viewing vector 
v that apfears in relationships gl, g2a. g2b and g3. That is, 
gs: This constraint gs is an equality, 
whereas gl, g2ar g a  and g3 are all inequalities. It should be 
noted that there is a gl equation for each edge feature that 
is to be resolved, while for the depth-of-field and field-of- 
view relationships, there is a single gZa. g2b and g3 for all 
features. 

- 
llv112 - 1 = 0. 

While the constraints address the admissibility of 
the computed solution, the optimization function on the 
other hand is constructed so as to characterize the 
“quality” of the computed solution. The measure used to 
assess the goodness of a solution with respect to the resol- 
ution, field-of-view and depth-of-field constraints, is the 
value of the constraint relationships gl, i = 1,2a,2b,3 them- 
selves. This is appropriate since a large positive value of 
g, indicates that the constraint is satisfied comfortably, a 
small positive value indicates marginal satisfaction, while 
inadmissible solutions give rise to negative values. Simi- 
larly for the visibility constraint, a measure of this type 
needs to be also formulated. For this purpose, the 
minimum distance, d,, from the viewpoint to the 
polyhedron describing the visibility region seems suitable. 
More specifically, the distance measure is chosen to be: 
g4 = +d,. - where + d, or - d, depending on whether the 
point is inside or outside the visibility volume respectively. 
The optimization function is taken to be a weighted sum 
of the above component criteria, each of which character- 
izes the quality of the solution with respect to each associ- 
ated requirement separately. Thus the optimization 
function can be written as: 

f = algl -t a2&?2a f a2bg2b $- a3b83 f ‘&4 

subject to giLO, i = 1,2a,2b,3,4 and gs = 0, where ai are 
the weights. These weights are currently chosen so that 
the contribution of each constraint to the objective func- 
tion is of the same order of magnitude, and in this way 
avoid having a subset of the constraints dictate the opti- 

mization. In future work we shall investigate other weight 
settings as well. Given the above formulation, the opti- 
mization starts with an initial point in the domain of pos- 
sible generalized viewpoints and then generates a 
generalized viewpoint that is globally admissible and 
locally optimal as described by the optimization function. 
In other words, all constraints are satisfied with the largest 
margin in a neighborhood of the initial point. 

5 EXPERIMENTS 

As part of the MVP system, we have implemented 
the machine vision planning algorithms that were dis- 
cussed in the previous section. In the experiments, we 
demonstrate the effectiveness of this approach using a 
robot vision system that plans its pose and the lens set- 
tings of its camera according to these techniques. 

A CAD model of the object that is used in the 
camera placement experiments is shown in in Figure 3. 
The features to be observed are the two edges of the 
enclosed cube shown in Figure 3 .  

The domain of admissible camera locations is ini- 
tially limited to the region in three-dimensional space 
from where the edge features to be observed are visible. 
The visibility region for each edge is computed separately 
by the method discussed in section 3.1 and then these two 
regions are intersected in order to determine the region in 
space from where both edges are simultaneously visible. 
The two edge visibility regions when intersected result in 
the region shown in Figure 1, that is the space from 
where both edges are simultaneously visible. 

Figure 3. CAD model of the object. 

Viewpoints chosen from this visibility region must 
also satisfy the other constraints in order to be globally 
admissible. For this experiment the resolution specifica- 
tion is taken to be 1 frame buffer pixel spacing per l = O . 1  
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Figure 1. The visibility region for both edges. 

inches.. Since the diagonal direction in the sensor plane 
corresponds to the worst case, that is, it yields the 
minimum resolution [3], we compute the sensor plane 
spacing in the diagonal direction corresponding to 1 
frame buffer pixel spacing: w = J(23 x .70642)2 + 13.52 
= 21.12 microns where the spacing between sensor ele- 
ments in the horizontal and vertical directions are respec- 
tively 23 and 13.5 microns and the ratio of the sensor 
element spacing in the horizontal direction to the picture 
element spacing after sampling by the image acquisition 

Figure 2. The camera view of the features from the 
computed viewpoint. 

hardware was found to be 0.70642 from calibration [6]. 
This horizontal scale factor relates the sensor element 
spacing to the pixel spacing in the frame buffer. For the 
field-of-view constraint, the minimum sensor plane dimen- 
sion is I,,, = min (479 x 13.5, 383 x 21) = 479 x 13.5 
-6.5mm where 480 and 384 are the number of sensor 
elements in the vertical and horizontal directions respec- 
tively for the Javelin CCD camera at  hand. The diameter 
of the circle of confusion for the depth-of-field constraint 
is taken to be the minimum of the horizontal and vertical 
sensor element spacings, that is c = 13.5 microns. 

With this information the optimization constraints 
and objective function are constructed as given by g,, 
i = 1,2a,2b,3,4,5 and f. In this experiment, values of the 
lens aperture a and the intrinsic focal length f were chosen 
a priori cf= 12.5" and a =f/16) and thus, values - for 
the remaining imaging space parameters x , y ,  z, v and d 
were computed. The contribution of the visibility con- 
straint to the objective function as given by g4 (see section 
4) has not yet been implemented. However, the point-in- 
polyhedron classification is incorporated and consequently 
satisfaction of the visibility requirement can be deter- 
mined. Using this classification, the final point as deter- 
mined by the optimization is classified with respect to the 
visibility volume. If this point lies inside or on the visi- 
bility volume, then it is a globally admissible generalized 
viewpoint that is locally optimal with respect to the resol- 
ution, depth-of-field and field-of-view constraints, and 
thus, it is the viewpoint of choice. However, if the view- 
point lies outside the visibility volume, then the interme- 
diate points that are generated by the optimization are 
checked for global admissibility, that is, satisfaction of all 
the constraints including visibility. From amongst these, 
the one with the largest value of the objective function is 
chosen. However, if no such globally admissible interme- 
diate points exist, then the optimization is performed 
again with a different initial viewpoint. The values of the 
weights a, in the optimization function were taken to be: 
a1 = lo3, azo = a2b = and a3 = I t 1 ,  when distances 
are expressed in millimeters. The optimization is per- 
formed using the IMSL non-linear constrained optimiza- 
tion routine NCONF. 

Both the initial and the computed camera view- 
points are listed in Table 1 and are shown in Figure 1 as 
points V, and Vf respectively along with their associated 
viewing vectors. It can be seen from Figure 1 that the 
initial guess viewpoint for the optimization is chosen to lie 
on an  edge of the visibility volume with a viewing vector 
in the direction from the viewpoint to the center of the 
sphere that circumscribes the features to be observed (see 
section 3.4). The viewpoint determined by the optimiza- 
tion, Vf ,  is classified with respect to the visibility volume 
and is determined to lie inside the visibility region as can 
be seen in Figure 1. Thus, this viewpoint is both globally 
admissible and locally optimal. 
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X Y 2 v(1) v(2) 
K 165.1 -279.4 368.3 -0.336 0.569 

mm mm mm 

Vf 107.58 -231.43 258.68 -0.389 0.694 
mm mm mm 

Having determined from optimization the position 
vector of the front nodal point of the lens, the optical axis 
orientation and the image plane to back nodal point dis- 
tance, the camera can be placed and focused accordingly. 
Details regarding the camera placement computations can 
be found in [lo]. On the other hand, the image plane to 
back nodal point distance, d,  that has been computed by 
the optimization needs to be realized in the camera-lens 
setup. From calibration of the lens [lS], the image plane 
to back nodal point distances d can be determined for the 
f = 12.5 mm lens at its various focus settings. The value 
of this distance for the computed viewpoint is 
d = 13.07mm, as seen in Table 1, and is found to lie 
outside the the limits of the focusing capability of the lens, 
as determined by calibration. As a result a lens extension 
is used in order to give the necessary lens to image dis- 
tance d. The manipulator is placed at  viewpoint Vf and 
oriented according to the computed viewing vector. 

v(3) f d a 

-0.750 12.5 1.2f f/16 
mm 

-0.608 12.5 13.07 f/16 
mm mm 

The scene of the object taken from the computed 
viewpoint Vf is shown in Figure 2. Satisfaction of the vis- 
ibility and field-of-view constraints can be readily verified. 
The former however is satisfied only marginally since the 
horizontal edge is very close to being occluded by the 
overhang. This emphasizes the importance of including 
the contribution to the objective function from the visi- 
bility constraint as discussed in section 4 and thus avoid 
viewpoints close to the visibility volume boundary. Fur- 
thermore, the resolution requirement is verified by meas- 
uring the feature magnification in the image. ‘The 1 inch 
horizontal and vertical edges are imaged as 45 and 39 
frame buffer pixels, thus comfortably satisfying the 1 
frame buffer pixel per 0.1 inch requirement. Finally, the 
depth-of-field requirement can also be qualitatively veri- 
fied in the image. A quantitative measure of focus will 
also be employed in future work for a more accurate 
evaluation of the quality of focus. 

6 CONCLUSION 

We presented a method to determine optimal 
sensor placement and optical settings of a camera, so that 
given visibility, field-of-view, depth-of-field and resolution 
requirements are simultaneously satisfied with margin for 
chosen object features. This is achieved by merging the 
analytical loci of admissible camera poses and settings 
that we had determined for each requirement in previous 
work. The problem is posed in an optimization setting 

and a viewpoint is sought that is both globally admissible 
and central to the feasibility domain. This approach pro- 
vides advantages over the currently employed techniques 
in which sensor configurations are generated and then 
tested for satisfaction of the task requirements. The 
results are valid for a general three-dimensional viewing 
configuration and were demonstrated using a robot vision 
system. 

This research can be extended to include illumi- 
nation parameters (e .g .  illuminator pose) and investigate 
how they can be planned in a given task so that features 
of interest are again robustly detectable in the resulting 
image. 

The results discussed in this paper are useful for 
automating the vision system design process, as well as for 
programming the vision system itself. In addition, such 
planning techniques can also automate robot imaging 
systems that reconfigure themselves in an intelligent 
manner in order to optimize imaging quality. 
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