AUTHOR	Pan, Elizäbeth
title	Automated Serials Control Systen.
INSTITUTION	New York State Library, Albany.
PUB DATE	74
NOTE	125p.
EDRS PRICE	MP-\$0.75 RC-\$5.40 PLUS POSTAGE
DESCRIPTORS	Automatic Indexing: Cataldging; Computer Programs;
	Data Bases; *Blectronic Data Processing; Information
	.Processing: Library Acquisition; *Library Autolation
-	Library Collectionst, Library Technical Processes;
	Periodicals; Program Costs; Progran Descriptions;
	*Serials; State Libraries . .
IDENTIFIRRS	Hew York State Library

ABSTRACT. "
In 1967, the New York State Library at Albany (NYSI) developed a tape-oriented, off-line serials control systel for 10,000 active titles. The syster would perform all the serials control functions: bibliographic control, check-in of current receipts. claiming for gaps in receipts and late issues, binding notification for Gompleted sets, subscription renewal. payment control of
\because invoices, and the reporting of statistical data. After two years of operation, the GE 235 computer vas converted to a CDC 3300. The NYSL sisten requires 85 data elements and is primarily a control record with some bibliographic data. Data base creation was the most time-consuming task, as it involved gathering data from diverse files. and generating control data for claiaing and binding. The experience of NYSL has shoun the effectivenesss of a KWIC Index for multiple access to the file and practical use of Computer output on Microfila. Samples of conversion forms, system outputs, flow charts, a list of data elements, and record layouts are contained in appendixes. (author/KC)

THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University. (with years when terms expire)
?
1984 Joseph W. McGovern, A.B., J.D., L.H.D., LL.D., D.C.L.,

1981 Theodore M. Black, A.B., Litt.D., LL.D., Pd.D.
Vice Chancellor - - . - - . - . - . - - Sands Point
1978 Alexander J. Allan, Jr., LL.D., Litt.D. - ... - - - - - Troy
1987 Carl H. Pforzheimer, Jr., A.B., M.B.A., D.C.S., H.H.D. - Purchase
1975 Edward M.M. Warburg, B.S., L.H.D. - New York
1980 Joseph T. King, LL.B. Shelter Island

- 1981 Joseph C. Indelicato, M.D. Brooklyn

1976 Helen B. Power, A.B., Litt.D., L.H.D., LL.D. - Rochester
1979 Francis W. McGinley, B.S., J.D., LL.D. - . . - . . . - - Glens Falls
1986 Kenneth B. Clark, A.B., M.S., Ph.D., LL.D., L.H.D., D.Sc. - Hastings on Hudson

1983 Harold E. Newcomb, B.A. - - - Owego
1988 Willard A. Genrich, LL.B., L.H.D. - - - - - - . - - Buffalo.
1982 Emlyn I. Griffith, A.B., J.D. - - Rome
1977 Genevieve S. Klein, B.S., M.A. - - Bayside
1981 William Jovanovich, A.B., LL.D., Litt.D., L.H.D. - - - - Briarcliff Manor

President of The University and Comissioner of Education Ewald B. Nyquist

Executive Deputy Commissioner of Education
Gordon M. Ambach
Associace Commissioner for Cultural Education
John G. Broughton
Assistant Commissioner for Libraries
John A. Humphry
Director, State Library
Peter J. Paulson
Page
INTRODUCTION 1

1. BACKGRÓUND 3
1.1 Nature of the Library 3
1.2 Historical View of Computer Applications af NYSL 3 3
1.3 Why Seriale? 4
1.4 Scope and Limitations of the System 6
1.5 Objectives of the System 7
2. SYSTEM DESCRIPTION: MAN/MACHINE PROCEDURES 9
2.1 Bibliographic Control 9
2.2. Check-In 10
2.3 Claiming 11
2.4 Binding and Holdings Update 12
2.5 Invoice Control 14
2.6 Subscription Renewal 14
2.7 Management Statistics 14
2.8 Sunmary 15
3. SXSTEM DESIEN AND RATIONALE 18
3.1 Control and Sequencing of Titles 18
3.2 Initina Record Converation 18
3.3 Check-In 19
3.4 Clasming 21
8.41 Claiming for Gaps in Receipts 21
3.42 Claims for late Isaues 21
3.421 Claims for Unpredictable Titles 22
3.422 Claims for Predictable Titles 24
3.43 Claiming Cycle 25
3.5 Holdings Statement Format and Update 25
3.6 Summary 27 27
4. CREATION OF THE DATA BASE 29
4.1 Identification of Data klements 29
4.2 File Format 29
4.3 Comparability with MARC 32
4.4 Conversion Problems 32
5. developmantal and operational costs 35
6. CONCLUSIONS 39
APPENDIXES
A Conver:ion Rorms 43
B Systems Outputs 51
Master Informition List 52
KWIC Index 53
Check-In List 54
Claim Notices 55
Binding Notices 57
Binding Check List 59
Discard List 60
Inventory List 61
Invoice Information List 62
Invoice Reneval Notices 63
Statistical Report 64
\&
System ELow Charts 67
NYSL Serials Control Date Elements 81
Record Layout 90
Similar Data Elements in MARC and NYSL 96
Unique Data Elements in MARC Uaique Data Elements in NYSL
Computer Output Microfilm 202

LIST OF tables and figures

Pagé no.

Table 1 List of Outputs, Frequency, and Function 16
Table 2 Claiming Schedule for Unpreqdictable Serials 23
Table 3 Claiming Cycle for Predictable Titles 26
Table 4 Sources Consulted for Record Conversion 31
Table 5 Developmental and Operational Costs 37
Figure 1 System Development Schedule 38

PREFACE

This report describes one of the pioneer systems for using a computer to perform a wide range of serials control functions in a large library. Although primarily descriptive, the report attempts to be honest and objective in idenitifying and describing both problems and achievements.

The individuals who have contributed to the development. of this system, and to this report, are too numerous to acknowledge by name. Although anonymous, each, nevertheless, has our gratitude.

We are proud that New York State had the foresight to dedicate major resources to this project. We hope that this report, which records the experience of one library's application of automation to serials control, will provide information of use to others in the field of library automation.

John A. Humphry
Assistant Commisioner for Libraries

New York State Library
Albany, New York
April 1974

In 1967, the New York State Library at Albany (NXSL) initiated the development of a cape-oriented, off-line serials control syetem for $\mathbf{1 0 , 0 0 0}$ active titles. The goal of the aystem was to increase the utility of the Library's serials holdings by providing greater control over it and by facilitating access to it. The system was envisioned to encompass the traditional functions associated with'serials processing in libraries: bibLiographic control, check-in of current receipts, claiming for gaps in receipts and late issues, binding not 'sation for: completed sets, subscription renewal, payment control of insoices, and the reporting of statistical data. A major constraint in the design of the aystem was the use of existing computer facilities. At the initiation of the project, the evailable computer was a GE 235. After 2 years of operation, the system was converted to a GDC 3300.

The NYSL serials control system can be described in terms of ite man/ machine procedures. The bibliographic control for a new title is established in the machine file at the point of order. Subsequent to the initial conversion of the record, it is accessible for check-in, claiming, and binding. The bibliographic data is updated after cataloging. The check-in of dally receipts is performed via weekly check-in list which is computer-produced and includes all of the titles in the syatem. The receipt data are manually coded on ipput sheets which are kegpunched and used for updating the mater file. Claim notices are automatically produced for gaps in raceipta and for late issuas. An issue is late if it has not arrived at the inbrary after it is "due." Due dates for unpredictable serials are based on a predefined schedule. For those serials which exhibit a regular pattern of receipt, their due dates are calculated based on the history of raceipts. Binding notices are issued when all the expected parts of eat have been accounted for.

In addition, binding, discard, and inventory lists and statistical reports sre produced by the system to ald in the management of the collection. The system produces subscription renewal notices to avoid lapsed subscriptione. Pagneris of invoice is controlled by an invoice information 118 t .

A total of 85 data elements are required by the NXST. systom. In comparison to the MARC serials format, it can be gaid that MARC is primarily a bibliographic record with some control elements while NYSL is primerily a control record with zome bibliographic data.

The creation of, the data base represcnts a substantial portion of the cotal system developnent effort: By far; the most time-consuming tasks in conversion involve, the gathering and reconciling of data from dispersed and diverse manual files and the generation of control data required for cialme ing and binding. The availability of MARC serials recorde does not lessan substantially the complexities of these tacks.

The total development and operational costs reported have to be luterpreted in the light of the circumstances at NYSL. The change in computing facilities is the single. factor which contributed most to the cont.

Although on-line access to aerials data base was not considered feasible at: the time, recent experience in the field and the development of standards may enhance the feasiblilty of interactive file searching and update. Short of the ideal, the experience at NYSL has shown the effectiveness of a KWIC Index to provide multiple access to the file and the practical use of Computer Output on Microfilm (COM).

Lastly, the benefits of the NXSL serials control system are in termis of tha accomplishment of objectives, the axperience gained by the ataff, and the user reaction.

The purposes of this report are threefold: to provide a description of the computer based serials control system at the New York state Library (NYSL), to document the rationale behind the major design decisions under- . lying the system, and to draw sond conclusions from the experience which may provide some insights to othef libraries which are embarking, or plan to embark, on similar ventures. In addition to the staff at NYSL, the intended audience includes librarians, systems analysts, and administrators involved in automation activities in their libraries. The presentation is nontechnical, although an understanding of the problems of serials controi In libraries and the limitations of the computer are requisite for the full appreciation of the complexities of the system. Libraries requiring more detailed documentation should contact the Director, New York State Libraxy, Albany, New York 12224.

In organizing the contents of the report, care is taken so that each type of audience may select the parts which are most relevant to his interests. The report contains six major sections. The first section gives a brief description of the nature of the clientele and resources at NYSL, a historical perspective of computer applications at the State Library, and the rationale for selecting serials control as its first automation effort. Included in this section are discussions of the basic constraints under which the system was conceived, its scope, and objectives. The second section is a description of the man/machine procedures in each module of serLals processing: bibliographic control, check-in, claiming, binding and holdinge update, invoice control, subscription renewals, and management re-
ports. The system design and rationale are detailed in section 3. The fourth section deals with the effort in creating the, data base, the definiCion of data elements, and their comparability with those identified in the. MARC sectale format. The fifth section presents the total project effort 4* including the developmental, and operational costs. The last section draws some conclusions -reflecting the opinions of the system users and managers, and looks to the future.. The appendixes contain relevant exhibits of conversion forme it system outputs, flow charts, a list of data elements, and record layouts.

1. BACKGROUND

1.1 The Nature of the Library

The New York SEate Library is one of the oldest and largest of statie Libraries with a collection of over 4.5 million itoms including books, pamphlets, maps, manuscripts, microfilm, and other materials. As state library, it has a twofold rasponsibility: service to state government and atatewide services to all residents of the state. The latter function is carcied out through an interlibrary loan network cerving other libraries, and the largest volume of requests are from other libraries within the State rather than from the walk-in patron.

The collection can be characterised as "intermediate" research; that fis, it falls somewhere in the middle range between popilar and asoteric materials. It is especially strong in the social seiences, law, medicine, history, and science.

The serial collection is estimated at 70,000 titles, 44,000 of whicin are inactive. The remaining elties are classified into two categories: government-issued seriala (15,000) and nongovarnment-issued (11,000). The latter defines the scope of the data base of the computerized sartals aystem.

```
i
```


1.2 Historical View of Computer Applicetions at NYSL

.
The KYSL: seriala controd systam was the 11 braty' first major undertaking in computer applications. The impetus for its davelopment can be traced back co the Governor's Library Conference in 1965. The confarence was called apecifically "to explore progress and probleme in library dévelopment for few York State with epecial empharif on che applicition of data
proceselng technique: for reference and research."1
Within the State Education.Dopartment, a working group of librarians, ayatess analyate, and programers mas established which continued to exist throughout the development of this project. This unit consisted of ilbrarians in the Computer Applications Section of the library responsible to the head of Technical Services, and of syatems analyats and programers responsible to che director of the Division of Electronic Data Procesaing. 1.3: Why Seziale?

Thare are various approachea to the selection of the initial computer effort in a library. There are those who belleve, and righty so, that the initial effort ahould be ralatively 10 m in a sange of complexity to allow the staff the experience and confidence which can be applied to more difficult syatam. On the other hand, the salection of the area of application may be baced primarily on cousidorations of need; 1.e., the area ifi library operations which presents the not serious problems. The following factors all bear on the dacision:

Suitability of the tasic to mehine operations;
The diapersion of manal files and the amount of activity againet chese filea;

Payaff expected from automation in term of staff.
attrition, impact on total operations, and visibil-
ity to the patron:
Adequate funding:
Availability of staff expertise in both library
and machine workings;
Cumulative experience in the field;
Availability of an existing machine readable data
base and relevant standards;
Cooperation with other libraries; and
Value placed on the research benefits.
At NYSL, these factors were considered. The factor which was given the highest priority was need. As in many older research collections, the manual control of serials was rapidly deteriorating. The list of inadequacies was a long and familiar one: proliferation of files which were inadequately maintained, lack of control (particularly in claiming lapsed subscriptions), subscriptians, paid for'but not received, inadequate identification tools, etc.

Secondly, the nature of the primary service provided by NXSL was interlibrary loan, and requests for serials constituted a significant portion? of interlibrary loan. It was felt that the impact of greater efficiency and iighter control of serials processing at the 1 ibrary would reach beyond its immediate environment: A high value was also placed on the ability of an automated serials system to produce multiple copies of the 1 ibrary's holdings for wide distribution to facilitate interlibrary loan.

Thirdiy, consideration was given to the relationship of the effort at NYSL to efforts in other libraries within the state. At this time, the Association of New York Libraries for Technical Services (ANALYTS) was
planning an acquisitions system; and The New York Public Library was initiating a book catalog system. Given the high investment required by automation, the avoidance of overlapping efforts was felt to be desirable.

Although there were a few serials systems at the time, most of them were listing rather than control systems. The lack of a national serials data base in machine readable form and the lack of standards were recognized as major obstacles. However, the goal was as much for an operational system which can overcome the deficiencies of the manual system as for research into the problems of computerized serials control. Due racognition was given to the fact that venturing into unchartered waters often results in learning by trial and error and, hence, increased costs. These costs can only be justified as investments which may benefit others who follow.
1.4 Scope and Limitations of the System

Having decided on the broad area of application, the next step was to define the functions to be encompassed by the system. The general approach taken was to be as comprehensive as possible within the constraints of available hardware and staff expertise. Consequently, the system was conceived to encompass all of the traditional processes associated with ser-: ials, namely:

Bibliogiaphic control: the establishment of the -bibliographic information for a title; Check-in: the recording of daily receipts of
issues and parts;
Claiming: the automatic production of notices to claim gaps in receipts and late issues;

Bigding and holdings update: the automatic issuance of notices for completed sets and the update of the
${ }^{*}$ record to reflect the completion of sets;
Invoice control: the recording of payment for subscriptions currently received; and Subscription renewals: the automatic issuance of notices to renew subscriptions which are about to expire.

In addition, computerization afforded an opportunity to gather atatistical data for collection panagement and planning purposes which manual systems cannot match. These capabilities defined the functional scope of the system.

In terms of the data base, the nofigovernment-issued active serials in the collection, numbering 10,000 titles at that time, defined the limits. These, were selected because they constituted a discrete data base in the manual system and because the need for better control was most urgent for this category of sertals.

A constraint common to most libraries was the use of the existing computer facilities. From 1967 to 1969, the available computer was a second generation GE 235. In 1969, the facility was changed to a CDC 3300. The lack of control over computer facilities is a reality that hag to be dealt with in library automation. At NYSL, it delayed the implementation schedule, but the increased computing power: was used to advantage.

Given the state-of-the-art of serials automation" in 1967, it was decided that the aystem would be a tape-oriented system with batch processing.

1.5 Objectives of the Systam

The overall goal of the system was to increase the utility of the 11brary's serials holdings by providing greater control over it and by facilitating access to it. Four objectives were identified in the proposal:

To provide a tight control over the claims, subscription renewals, and binding of actively received serials;

To provide the readers service staff with significant current information, no mote than 1 week old, on serials holdings in the State Library;

To provide for statewide use new printed reference tools to expedite research; and

To provide a basis for the publication of a statewide union list of serials.

The purpose of this section is to present an overview of the entire system of seriais control currently implemented at NYSL. The system consists of both man and machine procedures. Although the descriptive approach is modular, the point of view taken is the flow of work through the system. Technical details and design considerations are presented in section 3 System Design and Rationale.
2.1 Bibliographid Control

A tyitle selecfed for acquisition is searched manually in standard bibliographic tools such as"New Serial Titles"to establish its bibliographic identity. The information is recorded on a process sheet which is used for preparing the ofder to the vendor and for input into the conversion form (appendix A). At this time, a permanent nine-digit number is assigned to the title. The identification number is unique to each title and is used as a sort key for alphabetizing the file by title. The conversion input sheet is edited, keypunched, and sent to the computer center to update the master file during the weekly run. The record is subjected to extensive automatic editing to check for the logical consiatency of the information; e.g., a title acquired through gift and exchange should not have an invoice. A proof sheet is produced for manual editing for errors which the system cannot detect; e.g., spelling.

If no issue is recelved after a set period of time, a claim is produced to alert the librarian to follow up on the order. Upon recaipt of the first issue, the item is checked in following the regular chack-in procediures described below. Since there may be considerable delay between
the initial creation of the machine record and the recaipt of the firat issue, the first proof sheet nis not kept, and a second copy is requested at time of recelpt of the first issue. The proof is actached to the piece and sent to cataloging. After the final bibliographic record is astablished, the minchine record is updated for any revisions in the data and for addietonal data such as the cell number.

Two mator tools for blbliographic control are produced, both in computer Output on Mierofilm (COM). The first is the Mater Information mist which.18 Intended for use by patron and EEaff (appendix B). In addition to crose references, the 1 ist includes all the eitles currently received by the systam. For ench title, the identification number, call number, location in the 1ibrary, and holdings are given. Retrospective and currant holdinge are listed by phyeical units, and dates of receipts are included for the latter. If retrospective holding is an incomplete set, the holding is described In detall either in nagative or positive terms, whichever is ' shortar. To' 111ustrate with an example: if numbers $4-6,8-12$ of voluma 8 are held, it will be 11sted as "V.8, no. $1-3,7$ Miss" in this case, since the negative form is shorter: On the other hand, if numbers 3-5, 8-9 of volume 8 atx... held, it will be 1isted as "V.8, no. 3-5, 8-9," eince the negative form would be langer.

The KWIC (Key Nord in Context) Index provides muitiple qubject accass by each aignificant word in the title and by subject and nonoubject added entries and selected croes references (appendix B). The identification number of each eitle link the NWic Index to the fuller information con-
i tained in the Master Information List.

2.2 Check-In.

Daily recelpts of serial lssues are orted in rough alphabetical order
in preparation for check-in procedures. Each issue is located in the checkIn list produced weekly (appendix B). The check-in list is ordered by main entry. For each title, the frequency and location codes and the issue and date of last receipt are given. Croas references are provided to facilitate the location of the correct entry. Upon verification that the issue on hand is the same as the entry on the lisiti, the receipt is recorded in input sheets by noting the identification number and complete identification of the isgue received. The cheek-in input aheets are keypunched for update of the master fil.

If the piece received cannot be verified in the check-in list, it is put aside for resolution and decision by a professional staff member. The problem may be due to changes in main entry which require recataloging, or it may be a need for more extensive crosi references. In any case, the record is. updated as required. If, however, the title does not fall within the scope of the system (c.g., it is a government issued serial), the piece is routed to the appropriate unit in the library.

On occasion, the identification pattern of the most recent issue differs from the existing identification pattern; e.8., from a date designetion to an issue number. The aystem will raject the update, since it will accept only one identification pattern for a titie at a time. The inconaistency is referred to a librarian for resolution. If it is determined that the pattern should be changed, the previous holdings ara "closed" (1.e., put in retrospective holdings) and a new pattern identification is started for oubsequent. recaipts.
2.3 claining
there are two general categories of claime: 1) a clain notice is produced by the ayatem when there is a gap in a numbered sorice of re-
celpts; ..g., if issuas 3 and 5 are received, iasue 4 is definad as a gap in receipt; 2) a claip notice is produced when an expected isave is "late." (The formulas for calculating "latenass" are defined in section 3.4.)

Clatm notices are produced weekly in form which is ready for malling (appendix B). However, the procedures for claiming call for the manual inspaction of all clatm notices before they are mallad. This atep is necessary to insure that the vendors are not swapped with claims in numbers that would render them inaffective. There is no provision in the update procedures to add 'free formet notes to indicete temporary or unique circupstances such as "issue 4 is out of print," or "issue 4 is not published," atc.

Second and third notices are produced automitically for predictables only, according to a set schedula, and era handied similarly. After the third notice, the issue is atomatically listed as "missing." This information is printed out in the Binding Liat to alert the librarian to aither take the necessary steps to procure a copy or to bind the set as it is. 2.4 Binding and Holdings Update

Binding notices are lesued automatically for a completed set after recelpt of the first lasue of the uext volume. If, for example, all the issues of volume 5 are accounted for (either received or "miseing"), receipt of the first issue of volume 6 triggers the production of a binding notice for volume 5. The binding notice is used as picking silp to gather all the parte from the shelf. If the set is complete, it is sant to the bindery. If it is not complete, or if another disposition is decided upon, the racord Ls updated to show the appropriate status. On a quarterly basis, an inventory list is printed out listing all the titlos which carry the "clinic" (temporary shelves) or "doen not bind" status. The invantory list serves to alert the ilbrarian to check into these titles and make binding dispo-
aition deciaion (appendix B).
Binding notices are produced automaticelly for new titles added to the fila after a year of receipts or 12 issues, whichaver comes first (appen$d x \operatorname{B)}$. The notices are marked "Eirst" to notify the librarian to estab11sh control data for subsequent production of claiming and biading noticas.

- In addition to the binding notices, a binding list is issued veekly. This serves to ensure periodic review and adjustment of the control data for claiming and binding (appendix B).

A, discard list is sent to each section in the library as notification that issues of tities superseded by bound volumes should be discarded (appendix B).

The holdings statement of a record is divided logically into'two parts: retrospective holdinge and current holdínge. Current holdings include all the items that make up. the next unit to be bound; retrospective holdings include all others. While current holdings are listed item by item, retrospective holdings are stored and printed out in sumpary or collapsed form; e.g., "v. 1-5." Current holdings are updated by the check-in procedures, Retrospective hoidinge are updated manually as a byproduct of binding procedures.

Upon return of an item from the bindery, the identification of the physical set (i.e., volume number) is added to the record. The current holdings which are replaced by the retrospective holding are automatical: 19 dropped from the machine record when a binding notiee is produced.

If an item is not bound, the retrospective holdinge are still updated to show the bibliographic set, rathar than the physical set.

2.5 Invoice Control

On a quarterly basis, a list is produced which includes invoices received by the library and their payment status (appendix B). The list is used to verify incoming invoices as to whether or not a titie is currently theing received, the payment status of the latest invoice, the period covered by the invoice, and vendor information. All invoices received during the period are keypunched to update the list.

2.6 Subecription Renewal

If a record contains a date of expiration of the subscription, a renewal notice is issuad near the end of the subscription pariod. The timing depends on the frequency of publication and whether or not a major subscription agent is involved (appendix B). The renewal notice is verified manually and serit to the vendor.

2.7 Mamgement Statistice

The computerisation of serials operations provides the opportunity to record statistics in the kind of detail and flexibility not available in manual systems. Two types of statistical reports are produced, providing data for management planning and data for aystem refinement:

1. Production statiatics are automatically generated weekly, moathly, y and annually.from the master file (appandix B). Counte of transections processed, elaims produced, etc. are printed for the week, year-to-date, and the same weak last gear for comparison purposes.
2. Master file statistics can be generated "on demand" for specific combinations of data (appendix B). For example, all statistics on the number of ceriale without any pattern of publication which also fall into the category of "does not bind" can be printed. Such information as data element langthe and frequancy of occurrence are shown to aid in system refinement.
2.8 Summary

The preceding section presented the man/machine procedures invalved in the processing of serials at NYYSL. It included procedures for bibliographic control, check-in, claiming, binding and holdinge update, subscription, renewal, involce control, and the generation of management reports. Table 1 summarizes the outputs of the syotem including a brief description of the function of each output and a reference to the appropriate exhibit in the appendix.

TABLE 1
List of outputs, frequency, and function

Lhat of outpute, frequancy, and function

$\begin{aligned} & \text { Appendix } 8 \\ & \text { exhibit } \\ & \text { number } \end{aligned}$	Name	Erequency	Function
10 11	\leftrightarrow Invoice Rencmal Notice Statistical Report	Maekìly 9 Weokly, cumulated monthly and amually	Notification to vandor that an invoice for a subecription that is about to, expire has not bell received. Reporta atatiatics for managemant uee in planing and budsatink.

3.1 Control and Sequencing of Titles

One of the first major design decisions was to sequence the master file by main entry. Since sorting by main entry was judged to be time consuming, a nine digit identification number was devised to serve as a sort key. . To avotd renumbering the file as it grew, a study was made to determine the alphabetic distribution of the entries and the available numbers were distribiuted proportionately. Although it was technically feasible for the system to assign identification numbers based on thid distribution, such a capability called for the allocation of programing resources which ware, at that time, wore ukgeritly needed elsewhere. Consequently, it was decided to assign the identification number manually. .The manual assignment of identification numbers required additional staff training, but was successfully merged with the conversion procedures.
:
3.2 Initial Record Conversion

A new title is added to the machine file after it is ordered. The trade-off involved in this decision is earlier control over a new title versus update requirements after cataloging. There are several advantages gained by establishing a record in the machine file at tha point of order. In terms of the library patron, it stgnifies that he can expect the library to hold the eitle in the near future. This is particularly significant in view of the delay between the time when a title is ordered and when it is cataloged. For the library staff, it aids in the avoidance of an unintended dupitication of order. Furthermore, the entry of the new title in the file permits the eystem to initiate claims in accordance to a set schedule. On the other hand, since the title is entered into the file before the final
bibliographic record is established in cataloging, update requirements are, -
increased. Extra care in preorder verification seariching reduces modification, but there are data elements, such as the call number, which are not eatablished until after cataloging.

3.3 Check-In

Consideration was given to four approaches for recording the daily receipts of serials:
on-line input
pre-punched cards
mark-sense forpis
printed lists.
On-line update was considered ideal, but at the time the system was designed, little experience had been gained in the field about the problems of on-line access to serials files. The only on-line serials system at the time was at Laval University where the access problem was surmounted by requiring an initial step of looking up an identification number in a printout. 2 It was decided that this approach negated the advantages of interactive file searching and was not really a solution.

Prepunched cards were considered in the light of the experience gained at the University of California at San Diego. ${ }^{3}$ The Idgic behind the prepunched card method calls for the system to produce cards for the entire file or its subset, containing information, usually the title and the isaue

2de Varennes, R. "On-1ine serials syatem at Laval University Library." J. of Library Automation. 3:2 (June 1970). 128-141.
3^{3} Bousseau, D. "The University of California at San Diego Serials System: A case history." Paper pre. sented at the University of Oregon Workshop on

- Library Mechanizatian, 1968.
identification, adequate for identifying a receipt. The receipt is noted by pulifing the appropriate card. If the issue identification on the card is not the same as the one received or,in the case of an unpredictable, is blank, manusi keypunching is required. The major obstacle ia implementing this method is the lack of space in a card for all of the information required to identify a title and issue expected.

The,mark sense technique was sepiously considered because equipment was available on site. This technique required the operator to mark the appropriate box in a precoded sheet. In an axperiment to determine the feasibility of the mark sense technique for check-in, it was found that marking input sheeits was difficult. to perform over extended periods and that efficiency dropped sharply, The complexity of marking the issue identification rendered this approach ineffective.

A printed check-in list which contained all the required information for positive identification of a title avoided the problems of space limitation in the prepunched card approach and the complexity of issue identification in the mark sense approach. Further, generous cross referencing rendered easy access to a title, and has soma of the advantages of on-line access.

The check-in list includes all the titles in the system. It includes, In addition to information for identifying the title, the expected issue when it is predictable, or the .previously recelved issue when it. is not possible to predict the expected issue. The ilst is used only for identa ification purposes. Due to the handing and timing problems, the receipt information (identification number and igsue received) are entered on input sheets which are then used for kegpunching and file update.

3.4 Claiming

The heart of a serialis control system is claiming. Claiming can logically be divided into two aspects: 1) claiming the right thing and 2) claiming at the right time. These aspects are related, but the problems involved with each must be clearly delineated.
3.41 Claiming for gaps in receipts

In general, there are two types of claims: claims for gaps in receipts and claims for late issues. A gap in receipt dan only be recognized If there is a sequence; i.e., if one can assume that the issues are identified and published sequentially. The receipt of is res 4 and 6 indicates that issue 5 should have been received. However, the receipt of the January and March issues does not necessarily indicate a gap unless it is specified that the frequency of publication is monthly ${ }^{\text {and, }}$. further, that 12 issues are expected in a year. Claiming for gaps, therefore, requires that there be a sequence of publication and that the frequency of publication is known. The sequence and frequency of publication provides the control elements for predicting what should be claimed. The recelpt of an issue out of sequence is the basis for determining that gap exists ; i.e., when to claim. Claiming for gaps in. receipts, while relatively simple, is not always clear-cut. An issue may be received out of sequence for various reasons. It is, therefore, necessary to take the precaution to manually verify aukometically produced claims.
3.42 Claims for late issues

The second type of claim is the claim for late issyes. In a manual clalming procedure, what constitutes a late issue is aubjectively determined, often based on past experience. If, a computer based system is to produce claim notices for late issues, the rules for dafining lateness
must be spelled out. Logically, whether an issue is late or not depends upon when it is expected. If an isaue has not arrived after it is "due," it is, by definition, late. In this sense, claiming is not unlike a circulation system in its issuance of overdue notices; However, in a circulation system, loan periods are set by the library and do not vary as widely as serial receipts.

3.421 Claims for unpredictable titles

There are two approaches in setting an expected arrival date for a setial. The first approach is to set a schedule based on the serial's frequency of publication. Since the claiming schedule is geared towards the frequency of publication of a serial, this approach is not as finely tuned as one which is geared towards the receipt pattern of a particular title. At NYSL, the schedule approach to claiming is used for a category of serials called "unpredictables." Unpredictables are these serials which may or may not have a stated frequency of publication or which do not exhibit a regular pattern of receipt; $1 . e$. , the period between two receipts varies widely. The claiming schedule for unpredictables is shown in table 2.

For the category of serials called "unpredictables," the expected date of arrival or "due date" is calculated as:

$$
\begin{aligned}
& \text { due date of unpredictable serial }= \\
& \text { date of last receipt } \\
& + \text { number of elapsed days allowed. } \\
& \text { from date of last receipt. }
\end{aligned}
$$

s.g., if the date of last receipt is January 2 and the number of elapsed days is 28 for a weekly publication, the date due is January 30. An unpredictable sarial is late when today's date equals or exceeds the expected date of arrival.

Claiming Schedule for Unpredictable Serials A

A new title added to the file is automatically handled as an unpredictable until it appears on the Binding List, which occurs 1 year after it is entered into the file, or after 12 receipts, whichever comes first. A title's appearance in the Binding List triggers, among other things, the manual classification of the title as predictable or unpredictable; based on 'its history of receipt. Subsequent claiming for these titles is based on the control information established at this time.
3.422 claims for predictable titles

A serial title is classified as predictable if 1) it has a stated frequency of publication, 2) it is issued in sequence, and 3) it is re-
 ceived at NYSL at regular intervals.

The logic of claiming an unpredictable serial; i.e., a serial is clained when today's date equals or exceeds the expected arrival date. However, the difference between the two lies in the fact that the due date of a predictable serial is calculated specifically for each title rather than for the classes of titles based on their frequency of publication. The due adate of a predictable serial is calculated as:

```
                                    due date of predictable serial=
                                    publication date on piece
                        + lag factor.
```

E.g., if the publication date on the piece is January 2 and the lag factor is 45 days, the due date is February 15. The lag factor is the average number of elapsed days between the two receipts. It is calculated as:
$1 a g$ factor $=$ dates of receipt - pubilication date on piece number of recéfpts

$$
\begin{aligned}
& \text { Example: } \frac{\text { date of recetpt }}{\text { January } 10,1972} \text { at NYSL } \\
& \text { Apr11 } 5,1972 \\
& \text { July } 12,1972 \\
&: \text { October } 1,1972
\end{aligned}
$$January 1, 1972April 1, 1972July 1, 1972

$$
\text { October 1, } 1972
$$$\frac{1 a g}{9}$

The calculations to establish clatining control are initially made when a title first appears in the Binding List. The control data are recalculated by the computer, reviewed, and adjusted by the staff when necessary at each subsequent appearance of the title on the list.

3.43 Claiming Cycle

The date of the issuance of the first claim is automatically adjusted by a fixed number of days, depending upon whether it is a domestic or foreign serial and its frequency of publication. Second and third claims are issued automatically for predictables only according to a set schedule. (See table 3) After the third claim, the issue is listed as "missing" in the Binding List. The "missing" status of an issue serves to remove it from consideration in determining binding readiness. This means that a binding notice is produced for the volume, even if one or more of its issues may be missing.

3.5 Holdings Statement Fomat and Update

Several considerations enter into the determination of the manner in which holdings statements are formatted and updated: storage requirements, display requirements, ease of update, and the characteristics of holdings data. A casual inspection of serials quickly reveals the numerous ways in which issues are identified; $0 . g .$, volume-issue number, month-year, seasonyear, etc. Not only does the variaty of issue identification contribute to the complexity of fomatting holdings, but more importantly, in most cases, each issue is identified in two parts, each part following its own sequence; e.g., the volume number may be 8 and the issue number is 4. The unique identification of the piece consiats of both volume and issue numbers. Furthermore, it is the characteristic of serial holdinge that the issue numbering cycle determines the volume number. For example, if a

TABLE 3
Claiming Cycle for Predictable Titles

volume consists of 12 issues, the issue numbering reverts to 1 after the 12th issue, and the volume numbering is incremented by 1.

Another characteristif of serials holdings is the fact that the current holdings are more volatile chan the older holdings since check-in, claiming, and binding procedures are performed on the current holdings. Based on the yolatility of data, two types of holdings can be differentiated: retrospective holdings briefly defined as completed sets and current holdings or incomplete sets.

The first decision regarding holdings statement format was to summarize retrospective holdings, (e.g.,V. 1-5,) and to détail currant holdings. The sacond decision made was to express gaps in holdings in either negative and positive foprms, depending upon which way was more compact. For example, if volume 8 has number 3 missing, the holdings statement would be formatted ss "vol. 8, no. 3 Miss." This decision was made to save storage and display space without hardship on the user of the system produce.

The third decision related to holdings statements was to manually transform current holdings into retrospective holdings upon the completion of a set. This procedure, generaliy called holdings update in most libraxies, cannot always be equated with the binding of a set since not all sets are bound, either because of policy or because of missing issues. Some sets cannot be completed, even after efforts to replace missing issuès. Purthermore, some sets are incomplete as issued; i.e., the publisher did not issue a number.

3.6 Summary

The preceding section discussed the rationale underlying the major design decisions in the bibliographic control- check-in, claining and hoidings update of serials. System flow charts are presented in appendix C.
;

The ultimate goal of systems design is to arrive at the optimum utilization of machine and human resources. The realities of the limitations of these resources make it necessary at times to settle for less than the ideal. The design decisions made at NXSL may not be appropriate for another system with a different enviroment. The discussion of the rationale behind these decisions provides a framework upon which others can build.

4. CREATION OP THE DATA BASE

4.1 Identification of Data Elements

The logic of identifying the necessary input required working backwards; i.e., by identifying the information in desired outputs and by identifying the data required for processing. In general, three types of data were required: bibliographic, holdings, and control. The bibliographic data were gathered from the public files and coincided with the cataloging record, except for the elimitation of some descriptive notes. Current holdings were obtained from the check-in records, and retrospective holdings were based on the shelflist records. In cases of conflict in the records, the shelves were checked. Control data for claiming and binding ware based mostly on the check-in and binding records. In addition, data which were not systematically recorded in the manual files were provided. At times, the conversion of a single record required the consultation of as many as eight sources. (See Table 4.)

4.2 File Format

There are two master files (see appendix E for file layouts):

1) fixed masteif file
2) variable mater file.

Both are tape files with fixed-length recordm
The fixed master file has 3,840 characters per record and one record per block. There is one, and only one, record for each serial. The record consists mainly of bibliographic and control information.

The variable master file has 156 characters per record and 16 records per block. There may be many records for each serial or none. There are four record types, each repeatable various number of timas:

1) Current holdings may be repeated up to 205 times;
2) Retrospective holdings have no ilmite in the number of times a field is repeated;
3) Invoice records may be rapeated up to 9 timas; and
4) Crose references have no limite in the number of times repeated.

TABLE 4

Sources Consulted for Record Conversion

genveral data fields

1. Bibliographic Information includes main entry, titie, publisher, place of publication, Dewey decimal number, LC caird number, call number, cross references, and bibliographic motes.
2. Holdinge Data includes publication start date, retrospective holdings, and curreat holdings.
3. Control Data inciudes identification work title number, publication status code, type of acquisitions location code, language indicator, frequency, lag factor, agent code, and publisher/aupplier.
4.3. Comparability with MARC

The MARC serials format was published in 1969 when the conversion effort at NYSL was well under way. There was no attempt to change the data elements in the syatem to conform to MARC. There was, however, a study done to compare the two sets of data elements. 4 Appendix F 6 has a sumpary of the comparison between the MARC and NYSL data elements. It should be emphasized that the comparison refers to the correspondence of data elements riather than their equivalence.

The major difference between the two is the fact that MARC is primarily a bibliographic record which includes some control data while NYSL is primarily a control record which includes bibliographic data. It follows, therefore, that marc tends to be more detailed and inclusive in bibliographic data while NYSL requires greater depth in control data and a larger number of data elements not in MARC. Appendix F show the date elements unique to eagh system.

4.4 Conversion Problems

Upon the completion of the systems design in 1967, conversion of 400 records was initiated to provide the test daza for the pliot system. As was expected, the pilot run quickly brought out the "bugs." Changes were made which required the addition of date elemente to the existing records. As the staff gatned exparien: :, conversion procedures were atreamlined. However, before full production could be reached, the new computer facility

[^0]was installed which required mafor programing. Parallel manual and auto\therefore mated processing was discontinued in 196° with approximately half the data base in machine readable form. The conversion was completed in 1971. Figure 1 on page 44 shows the production schedule of record conversion and the history of the entire system development effort.

The conversion of 10,000 serial records required a total of 41.5 man years of effort. While it can be said that the circumstances surrounding the conversion effort at NYSL were unique, it should be pointed out the creation of the data base for a serials control system represents a significant portion of the total costs of system development. Section 5 , which follows, details the costs. (For a discussion of the effect of the availability of MARC serials records on lata base building, see conciusions in section 6:)

One of the mosit ime-consuming tasks in the creation of the data base was the gathering of the required data from numerous manual files, some of \because which contained inconsistent information, making it necessary to verify the data by visual inspection of the holdings. T e extent of this problem is related to the amount of dispersion of the data in the library's files. It was pointed out earlier that, co convert a single record, as many as eight sources might have to be consulted.

By. far, the most complex operation in conversion was the process, of making explicit the control information which was implicit in the manual records or must be generated. The reader is referred to section 3.4 which describes the details of determining the lag time for predicting the arrivals of issues as an example of the complexity of the task.

Another source of complexity was the interrelatedness of the data elements; e.g., a paid subscription should have an in:oice number. The com-
puter edit pir redures checked for the logical consistency of data elements so well that beriore the staff had gained sufficient experience, the rejection of input records became a source of frustration for the staff. The point to be made here is that 'adequgte measures to ensure "clean" data contribute to the enormity of the task.

Because of the amount of time which elapsed between the initiation of the conversion and its completion, both manual and machine files were updated. Parallel systems were costly and required the hiring of additional staff. Under the best of circumstances, even assuming that persomel familiar with serials processing/could be found, a great deal of training was required to familiarize them with the library's procedures. The inte-: gration of new and old staff members and the coordination of the effort was not a small task.

The cost figures reported in table 5 in terms of man-monthe and compouter time should not be taken as epical of serials automation costs. They should be taken in light of the circumstances at NYSL. At that time, 1967-68, the NYSL took on the task, both as a research project and as an approach to solving a serious operating problem in the library. The ambitious nature of the project (e.g., sometimes the research and practical interest were incompatable), combined with the computer technology and staff available at the time, put a severe strain on the development schedule and easily outran the sapacty of the computer facility. The reprograming and extension of the origfinal computer system on the upgraded computer facility certainly increased developmental costs and delayed implementation schedule, but in retrospect, it also permitted the system to survive. The full-blown system was powerfurl enough to meet the library needs and actually cost less to operate thanthe previous partial system.

The conversion to the CDC computer was responsible for some redundancy of effort, but certainly no more than 25 percent. There was much trial and error in the system development and the reprosraming for the new computer came at an opportune time to take advantage of many desirable system modifications.

In concrete terms, the full system on the new CDC 3300 runs approxmutely 5.5 hours a week. This is contrasted with the old GE 235 system which, when only 70 percent complete, took more than 24 hours per week to process only. 75 percent of the data base.

Figure 1 summarizes the entire developmental effort that went into analysis; design, and programing of the NYSL serials control system.

TADLE 5

Developmental and Operational Costa

I. Developmental Costa

	Computer Time (in hours)					
	1966	1967	1968	1969	1970	Total
$\begin{aligned} & \text { GE } 235 \\ & \text { CDC } 3300 \end{aligned}$		50	285	936	600	1,271 600
Total		50	285	936	600	1,871

Analyais and Design Programing Keypunching

Total

1966	1967	1968	1969	1970	Total
5	17	15	14	8	59
	26	26	28	16	102
	3	18	24	24	69
5	46	59	66	48	230

```
} Clericel
```

Total
Library Personnel (in man-monthe)

1966	1967	1968	1969	1970	Total
6	12	24	24	24	90
	120	132	120	36	408
6	132	156	144	60	498

II. Operational Coste (EDP) -. - 1971 on
$\begin{array}{ll}\text { Computer Tive } & 5.5 \text { hours/week } \\ 286 \text { hoursigeer }\end{array}$
Syatem Maintenance
6 man-monthe/year

6. CONCLUSIONS

The exparience of creating a data base for a serials control aystem at BXSL pointe to a number of considerations: first, that the conversion of records to mehine readable form is a subantial portion of the total ayucam developmant affort; second, that the most time conauning and costiy aspecte of converaion are the procese of gathering and reconeiling the needed Input from the diverse and dispersed manal files and the process of generating control information for claining and binding. In comparien to holdinge and control data, bibliographic data present few problem. These aapecte of conversion are either ignored or are not given sufficient attention in cost reporting in the iiterature.

One of the ajor developments related to seriala autometion in libraries ia the diatribution of mehinc readable records from the max Development Office of the library of Congresa. It should be ouphasised, however, that the MARC serials record is primarily a bibliographic record. To use the MARC records for a basis for building a cerials control data base would require the matching of the MARC records with the library's recorda and, more importantly, would noc leasen the work involved in gathering and reconciling holding: data or in generating control data. 5

Another sigaificant development in the field is the assignmant of the International Standard Serials Nuber (ISSW) which uniquely identifies a serial title. The ISSM can iacilitate sorials procesaling in libraries if it is widely accepted and used. Ifwould facilitate commaication with serials

[^1]vendors in subscription and invoice control, aid the library user in identifying a title if the memer is incorporated in bibliographies and indexes, and facilitate access to Library files, particularly for check-in, if the number appears on the piece. Potentially, the ISSN can becume the most important tool in serials handling and has great impact on sexials automation.

- Serials control is primarily a file update function. the experiences at NYSL and elsewhere show the shortcomings of batch update of files. One of the major obstacles to developing an on-line serials control system is the complexity of accessing a serials file. Serial titles differ from monographic files deficient for serials. Some of the characteristics of serial titles which have to be considered are the number of common words in titles such as journal, bulleting etc. and the significance of the order of words in the title. The problem of access is not an insurmountable one as evidenced in the serials control system at the UCLA Biomedical Library. ${ }^{6}$ The appearance of the ISSN on serial issues would enhance the feasibility of on-line serials control in libraries.

If this report has served to tmpress on, the reader the complexities of developing a serials control system, it has only succeeded in part, for the other part, consists of the benefits derived from the experience. Some of these benefits are quite tangible; others are not.

In the first place, the objectives set forth for the system have been and are being accomplished. The automated system has provided tighter controls over serials processing, particulariy in claiming, payment, gind subcription renewals. It has provided the in-house users with current. inform-

6
Fayollat, James. In "On Line Serials Control in a Large Biomedical Library," Journal of American Society for Information Science. 24:2 (March-April 1973), 80-86
ation on seriale and the remote usens with reference tools to expedite interlibrary loans.

A11 of the system outputs are being utilized in various phases of serials control. Some of these outputs are deill not being utilized to the fulleat, such as the inventory list, but the potential is there, and the staff is being trained to t'ake advantage of those controls. . In terms of system outputs, two are singled out for speciat mention beceuse of their Impact on the users. These are the Mister Informaton List and the XNIC Indax. Short of on-line access to the file, the KMIC Index has providad an effective compromise. It permite access by, any key fiord in the title, as well as subject, nonsubject added entries, and seleceed cross referances. Both of these products axe in microfilm produced by the computer (COM). Even with the cost of the readere ($\$ 6,000$ purchase price for 12 sets), the cost of providing copias of these products in COM is much less than printed copies.

The other syatem output of special note is the management report. The report sierves a twofold purpose: it aids management ix planing and budgeting, and it aids system designers in monitoring the gystim. It would aleo be useful for other libriaries who are deeigning aimhlar syeme.

In splte of the problems encountered, the aerials jyatem has been in oparation without interruption since April 1968. gerhapa ciearer sign of its successful incorporation into the daliy operations is the retiremant of the manal files, particularly the check-in file. ..

A less tangible, but neverthelass 'aignificant, accompliahant is staff training. Staff attitude at the beginning of the effort can, at best, be described as akeptical. There are fitili improvemente that can be made, but the experiance with the serials control syetem has proven that man and ma-
chine can work together for man's benefit. The gain in expertise and especially the gain in positive attitude towards computerization is an investment towards the future.

Fran 00.0 .11

 !
-

MRTAES CORT OE:

1. L.C. CADD
2. W.E.S.L. CADD
3. mint cmated x catb
$\cdots \quad \because \quad 4$

9

\section*{| | | |
| :--- | :--- | :--- |
| 0 | 1 | 1 |
 $30 \quad 35$}

FIES		
0	3	1

AGLin cods

$212 n$	0	
0	3	2

21P cope
\square

CR xixes

UTE $\square 1$ ロ. प111111]

-47-

Conversion Forms - Continued

5.
volime numbering cycle
*
O-NO VOLUME NUMBERLNG CYCLE
i-continuous
2-REPEATS AFTER VOLUMES

O - UNKNOWN/ IGNORE
1 - NONE EUBLISHED
2- IN AN ISSUE
3 - RECEIVED SEPARATELY W/O REQUEST
4- RECEIVED ON RDQUEST
5 - RJRCHASED SEPARATELY
6 - RECEIVED IN LAST ISSUE
7 - RECEIVED IN FLRST ISSUE

CLATM CODE

1. DOMESTIC
2. EOREIGN.

EUND TYPE (see table)
ORDER DATE
ASTM CODE

- 48 -

Convoration Forms - Contimud

APPENDIX B

SYSTEMS OUTPUTS

Master Information List

KWIC Index
Check-In List
Claim Notice
Binding Notice
Binding Check List
Discard List
Inventory List
Invoice Information List
Invoice Renewal Notice
Statistical Report
c.
F

KWIC INDEX

$\begin{array}{ll}\text { SION. } & \text { SELECTED AND } \\ \text { SION. } & \text { SELECTED AND }\end{array}$ SION. SELECTED AND SERVICE. SUPPLEMETIES REPORTS.
UTILISE
 TRENT LAW STATUTES. D LAWS OF NEW\%YORK.
D LAWS OF NEWHYORK.

 DIAN CRIMINAL CASES RTER. MAINE EDITION
LIBRARY ACCESSIONS

8.

AMESICAK BAMKRUPTEY LAM JOURHAL. n*0 -.038
023-358-931
0
ω
0 PAEXAGE PLA
ISSLE ISSUE SP JATE i
$!$
$!$
$!$
$!$ $\stackrel{\text { ¢ }}{\boldsymbol{\circ}}$
89 -0× 3974

$$
028-432-321
$$

SR

```
    THE NEW YORK STATE LIBRARY
                PERIODICAL SECTION
        ALBANY, NEW YORK 12224
    OATE 01/18/72
REFER"TO IO 217601319
    CLAIM NO. . 1 SA
WE HAVE NOT RECEIVED OUR ISSUE OF THE FOLLONING.PUBLICATION.
CIVIL SERVICE OPINION
VOL.-
    49 NO.- 577 DATE - 100171''
    STECHERT-HAFNER, INC.
                                    If Action Has Already
                                    Boen Taken, Please
    31 E. 1OTH ST.
                                Ignare This Claim.
        NEW YORK N.Y. 10003
The University of the State of New York - The State Education Department
\(\bullet\)
the new york state library PERIODICAL SECTION DATE \(12 / 04 / 73\) ALBANY, NEW YORK 12224
WE HAVE NOT RECEIVED OUR ISSUE OF THE FOLLONING PUBLICATION. ANIMALS.
VOL.-: 106 NO.- 10 DATE - 100173
If Action Has Already
MASS SOC PREV CRUELTY TO ANIMALS Been Taken, Pleaso
130 LONGWOOD AVENUE BOSTON,MASS 02115
The University of the State of New York . The State Education Department
39209
```

THE NEW YORK STATE LIBRARY
DATE 01/18/72
PERIODICAL SECTION
ALBANY, NEW YORK 12224
REFER TO ID 245249756 CLAIM NO. 3 SB
we have not received our issue of the following publication. council of state governments. state headlines.

VOL. -

UNTREDICTABLE CRATM MOTICS OLD ACQUISITIOA

THE NEW YORK STATE LIBRARY	DATE	$01 / 18772$
PERIODICAL SECTION	REFER TO IO 252833326	
ALBANY, NEW YORK 12234		MD

please advise why we have not. received an issue since the one indicateo. CYTOGENETICS.

```
LATEST RECEIPT - VOL. 10 NO. 2 PUB.DATE 02/01/71
LATEST INVOICE - NO.T150-767 AMT.$ 37.75 WITHOUT PATTERN
LATEST INVOICE - NO.T150-767 AMT.$ 37.75 WITHOUT PATTERN
LATEST INVOICE - NO.T150-767 AMT.$ 37.75 WITHOUT PATTERN
    FROM- 01/71 0010 TO- 12/71
SWETS ANO ZEITLINGER Been Taken, Please
KEISERAGRACHT 4.71
Been Taken, Please
Ignore This Claim.
AMSTERDAM, NETH.
The University of the State of Naw York - The State Education Deparment
```


UNPREDICTABLS CLATM HOTICE GEN ACQUISITION

THE NEW YORK STATE LIBRARY	SATE $01 / 18172$
PERIODICAL SECTION	
ALBANY, NEW YORK 12224	REFER TO IO 335331152
40	

THE FOLLOWING PUBLICATION WAS DRDERED ON - 12/29/65.
PLEASE ADVISE WHY AN ISSUE HAS.NOT BEEN RECEIVED.
GHANA MEDICAL JOURNAL.

STECHERT-HAFNER, INC:
If Action Has Already
Been Taken, Please
31 E. IJTH ST.
Ignore This Claim.
NEW YORK N.Y. 10003

The University of the State of New York - The State Education Department
ψ
*

UNBOUND
$--\cdots$
$-\cdots$
$-n$
Δ

$$
\begin{aligned}
& \text { page :10. } 10 \\
& \text { page } \\
& \text { E } \\
& \text { UnROUNE ISSUFS EISCART GIST } \\
& \sim \\
& \begin{array}{l}
\text { Discard List } \\
\text { Lan }
\end{array}
\end{aligned}
$$

BEST COPY AMALLABLE

table of symbols
\square COMPUTER PROGRAMM

KEY PUNCH OR MOHAWK DATA SCIENCE EQUIPMENT.

CONNECTOR

DISK FILE

PUNCiHED CARD

PRINTED REPORT

New York State Library Serials System

New York State Library Serials System
OUTPUT PROCESSING

-

A SORT TO INTERFILE CROSS REFERENCE ENTRIES FOR EACH TITLE INTO THEIR ALPHABETICAL SEQUENCE.

New York State Library Serials System.

New York State Library Scrials System

New York Staje Library Serials System

SPECIAL PROGRAMS TO PROCESS TITLE AND CROSS REFERLNCE CHANGES

TO LPOAS AND LPOSO OR LPO9O

FROM LPO40 OR LP080

TO LP045 \& LP050

New York State Library Śeriols System

I.D.\# AUTHORITY-CROSS REFERENCE LIST

New York Stute Library Serials. System
KEYWORD-IN-CONTEXT LIST
4

KEYWORD-IN-CONTEXTLIST CONT'D.

New York State Library Serials System

STATISTICAL ANALYSIS OF MASTER FILE

APPENDIX D
NYSL Serials Control Data Elements
HYSL Seriale Control
syusala

$$
\bullet
$$

Appendix D:

- 83 -

pamíyuoj--8juenapa

$\stackrel{\pi}{i}$

Appendix D: NySL Seriálo Control Data Elementz--Continued

Data Element Name	Tas No.	Length	Definition	
Volume Numbering Cycle Counter	- 041	2	Indicatea the number of volumes on hand in current holdings.	
Week Counter	*	3	A counter to control clatm procesaing.	
Work Title	011	125	The main entry/full titie of the gerial or a 125 character abbreviation of it. Used as the title of the serial on all output listings except the annual Master List.	

APPENLIX E
Record Layout:
Fixed Master File
Variable Master File
Variable Master File$!$

*Por definition, see appendix D.

Starting Location	Tag No.	Data Element Name	
. ${ }^{\text {. }}$	041	Issue Numbering Cycie :	
	041	Issue Numbering Cycle Counter	,
	041	Number of Issues Per Volume	
	042	Number of Issues Per Volums Countar	
	041	Predictable Supplement Code	
	041	Binding Code	
	041	Number of Volumes to be Bound	
	041	Title Page Code	
	041	Inder Code	
	041	Claim Code	
	041	Original Subscription Order Date	
	041	ASTM Code	
	301-305	Main Encry	
	351-355	Full Title	
	401	Place of Publication	
	451	Publisher	
	501-510	Bibllographic Notes	
	601-609	Subject Added Entries	
	621-629	Nonsubject Added Entries	
	641	L. C. Class Number	
	661	L. C. Card Number	
	xx*	Proof Indicator	
	xx	Issue Type Code	
	$\mathbf{x x}$	New Acquisition Code	
	KX	Invoice. Renewal Indicator	

Record Layout: Fixed Master File--Continued

Record Layout: Variabie Master File

Starting Location	Tag No.	Data Element Name
1. Current Holdings		
	051	Serial Identification Number
	051	Record type Indicator
	051	Issue Information
	051	Issue Status Code
	051	Issue Receipt Date
	xx	Hit Indicator
	xx	Clatm Indicator
	$\mathbf{x x}$	Series Change Indicator
	xx	Cyele Counter
	xx	Master Information List Indicator
2. Retrospective Holdings		
	061	Serial Identification Number
	061	Record Type Indicator
	061	Entry Year
	061	Sequence Number
	061	Function Code
	061	Issue Information
	061	Issue Data
	xx	Entry Date
	xx	Master Information List Indicator

APPENDIX T

sinithar data elrgents in marc ardo nisl UNIQUE DATA BLEMENTS IN MARC unique data elmeents in nysl.

Siailar Data Blements in MARC and NYSi

MARC DATA ELEMENT NAME	Tag No.	NXSL Tag No.*
L.C. card no.	010	661
Coden	030	041
Languages	041	021
L.C. call number	050	641
DDC number	082	001
Main entzy-personal name	100	301-305
Main entry-corporace name	110	301-305
Main entry-corporate nameconference or meeting	111	301-305
Title as it appears on piece	200	351-355
Uniform title	240	351-355
Full title	24.5	351-355
Vary forms of title	246	091
Former titles or title variations	247	091
Imprint	260	i. 401,451
Subscription address	265	031, 032
Frequency	310	021
Dates and volume designations	362	001
General note	500	501-510
Indexing and abstracting coverage	510	501-510
Note for explanation of dates, vol., etc.	515	501-510

Similar Data Elements in MARC and NYSL continued

MARC DATA ELEMENT NAME	Tag No.	NYSL Tas No.*
Supplement note	525	501-510
Additional physical forms available	530	501-510
Cumulative indexes	555	501-510
Subject headingpersonal name	600	601-609
Subject headingcorporate name	610	601-609
Subject headingconference name	611	601-609
Subject headinguniform title heading	630	601-609
Subject headingtopical heading	650	601-609
Subject headinggeographical name	651	601-609
Personal names-others associated with work	700	621-629
Corporate names-others associated with work	710	621-629
Corporate names-conferences others associated with work	711	621-629
Holdings	850	051,061

Unique Data Elements in MARC

Unique Data Elements in NYSL

Unique Data Elements in NYSL continued

* For definition of NXSL tags, see appendix, D.

APPENDIX G

COMPUEER OUTPUT MICROFILM evaluation

$\&$

New York State Library
 Computer Applications Section
 Computer Output Microfilm Evaluation

July 20, 1971

Summary

The Computer Output Microfilm experiment was undertaken to allow the Library to explore an alternate method of producing multiple copies of computer printout.

As a result of this experiment the library had concluded that:
(1) Microfilm display met all the library's information requirements as: successfully as conyentional computer printout.
(2) There was good user acceptance, and most users found microfilm superior in convenience and speed of retrieval.
(3) There wereno serious technical problems in the production or use of microfilm.
(4) Use of $C O M$ resulted in a significant cost reduction ($\$ 5973$ in a 6 month period) over conventional computer printout.
(5) COM has demonstrated potential as a fomat for distributing information bout State Library serials holdings to other libraries.
(6) Utilization of microfilm reaulted in the projected reduction in the computer operations achedule and other related off-line operations.

Recommendation

Utilization of conventional computer printout for the weekly information list and the retrospective holdings list should be discontinued, and this informtion should be distributed in the future on Computer Output Microfilm.

EVALUATION

Introduction
The purpose of this report is to make available the results of an evaluation $+$ of the Compiter Output Microfilm experiment at the end of 4 months of a proposed 6-month operation.

Sufficient information has been gathered at this point for an evaluation which will enable the library to make recomendetions as to the success of the use of colf before the contract expires. If favoreble, it will be possible to continue operations without a break in service. ":

Problens

(1) One of the stated objectives of the automated serials system is to make current information about State Library serials holdings available at a number of points in the library, resulting in savings in staff time and in improved reader service. It was also an objective of the systen to produce this information in a form which could be distributed to the customers of the library elsewhere in the State. This information would update and replace serials holdinge lists published by the State Library in 1953 and 1967.

The library presently requires 10 copies of existing reports and approximately 1000 will be needed for statewide distribution: It is this demand that nacessitates the examination of alternate methode of producing maltiple copies.
(2) The library computer output requiramegts now exceed the 1 million page mark per year. Tt:is volume of output, coupled with the library' need for multiple copies (10) of existing reports places the Division of Electronic Data Processing in the position of being a producer of paper output at very high cost, which results in inefficiency of EDP operations. At the present time, the computer can only print five legible copies at one time, and the aditional five copies require a separate print run. This causas several inefficiencies in operations, one of which is the use of high speed computer for low speed output which in turn'produces an extremely high cost per copy out:put.

Solutions

There are eix generally used methods of producing multiple copies of computer generated reporta:
(1) High speed xeroxing of computer printout
(2) Repeated runs on computer printers using manifold forms (this is the existing mathod now baing used)
(3) Offset duplication from a master generated by computer printer
(4) Microfilming computer printout
(5) COM recording device to enlarger to offset duplication for paper copies
(6) $C O M$ recording device to microfilm

The methode are listed in order of descending cost from the high of $\$ 3.50$ per 10 copies of 100 pages eacn for the xeroxing method down to $\$.25$ per 10 copies of 100 pages each for the COM to microfilm. (See attached chart.)

The difference in coat between the existing mechod now used and the com micro. film is substantial, and, when taken into consideration with other factors such as availability of eervice, the length of time it takee to provide the service and
conver ance of use indicates that COM could possibly be the solution to the library's multicopy problem.

Implementation

The following obfectives of the study were established and reflect the intantions of the library and the Division of EDP:
(Library)
(1) Evaluation of a less expensive method (microfilm) for producing quantities of eye-raadable output.
(2) Gaining increased knowledge of problems of using library indexes and catalogs on microfilm including an evaluation of the effectiveness of use by patrons and staff.
(3) Identification of any need for improved techniques in microfilm indexing.
(4) Establishment of acceptable standards of quality for com reproduction and development of specifications for microfilm readers that are best for $C O M$ use in libraries.
(5) Evaluation of COM as a method for statewide dissemination of bibliographic information.
(EDP)
(1) Progress toward elimination of third shift operations. (Currently the Division of EDP is making a major effort in this direction.)
(2) A more efficient computer operation, reducing the use of the computer solely as a printer.
(3) Knowledge to be gained by programers in preparing tapes for com.
(4) Experience with the potentials of $C O M$ for future consideration of COM devices in-house.

In order to realize immediate benefits from the experiment, it was decided to
eliminate the extra print run that produced five copies of the information list and the retrospective holdings list. These were to be produced on microfilm and microfilm readers installed in those locations that would no longer receive computer printout. The areas decided upon were selected sn that they represented a cross section of the entire library operation and had a hagh level of use of serials information. The locations were the General Reference iibrary, Interlibrary Loan, Legislative Reference Library, Petiodical/Section, and Cataloging.

Specifications (attached) describing the service to be performed and the number of microfilm readers required were sent to six COM service bureaus. The bids were reviewed and a contract awarded to FINSERV Computing Corporation.

The contract called for the production of five copies of the serials infomation list for a period of 26 weeks, and five copies of the Retrospective Holdings list to be produced three times during the 26 week perfol. Also, five microfilm readers were to be provided.

The operating schedule called for pickyp by FINSERV on wednesday moriing at 9 a.m. and delivery by FINSERV on Thursday morning at 9 a.m. This has been maintained for 4 months with no problems whatsoaver

It was the responsibility of the Division of EDR to provide a magnetic tape that contained the serials information, and one that contained the retrospective holdings list. A problem of compatibility batween the Education Department's CDC 3300 and FINSERV's IBM 360 Model 50 was encountered resulting in the inability of the IBM 360 to read the magnetic tapes. This was resolved and no further problems concerning the technical aspect: of the experiment developed.

One week prior to installation of the readers and microfilm, a general session for library staff was held to demonstrate the readere. The readers were inatalled the same time the first microfilm copies of the serials information list were distributed, and brief instructions on the operacion of the reader were given to key personnel.

The status of the experiment has not been altered since it began 4 months ago, and na changes are anticipated befure conclusion 2 months from now.

Abstract

Results After 4 months of operation, the experiment has allowed the library and EDP to realize their goals with the exception of distributing the microfilm on a statewide basis. However, reels of microfilm containing the serials retrospective holdings list are available for distribution to interested libraries. The Division of Library Development has been alerted to this.

Observacions

（1）Cost Comparison for the Serials Information List

5 Copies for 6 Months Computer Printcut Microfilm

Computer Print Time
26 runs x 1⿳亠丷厂犬 hours per run
＝． 39 hours＠$\$ 165$ per hour $\mathbf{~ = ~} \$ 6390$－0－

Paper

1300 pages x． 26 runs
－33，800 pages $\div 500$ pages per box
－ 68 boxes＠$\$ 20$ per box＝＂ 1360 －0－

Decollating Time

1 man－hour per week $\times 26$ weeks
－ 26 man－hours $x \$ 3.39$ per hour $=\quad 88 \quad$－0－

Service Bureau

Average pagee yer run $=1465 \times 26$ xuns
－ 38090 pages 〔． 04153 for 6 coples $=\$ 1582$ TOTAL

－0－	1582	
$\$ 7838$		$\$ 1582$
	$\$ 5756$.

（2）Cost／Comparizon for the Retrospective Holdings List

5 Copies for 2 Runs Computer Printout Microfilm

Computer Print Time
2 runs $x 1$ hour per run
－ 2 hours＠$\$ 165$ per hour $\$ 330$－0．

Paper

1100 pagea $x 2$ runs
－ 2200 pages $\div 500$ pages per box
＝ 5 boxes＠$\$ 20$ per box＝ 100 －0－

(3) Cost Per iopy for the Information List

Computer Printout

Computer peint time	248
Peper:	60
Decollating	2
Cost for 5 copies	$\$ 310$
Cost per copy	$\$ 62$

Microfilm

```
1465 pages @ $.04153 per page =
```

 \$61 for 6 copies \(=\)
 \(\$ 10\) per copy \(+\$ 2\) for reader
 Cost per copy =$\$ 12$Savings $\quad \$ 50$ per copy
(4) Cost Per Copy for the Retrospect!ve Holdings List

Computer Printout
Computer print time 165
Paper 40
Decollatiog 2
Cost for 5 coples $=\quad \$ 207$
Cost per copy $\quad \$ 41$

Microfilm

1050 pages @ $\$.04153$ per page $=$
$\$ 43$ for 6 copies $=$
\$ 7 per copy + \$2 for reader *
Cost per copy m 9
Sevings $\quad \$ 32$ per copy

(2) User Response

Response from the users, in the selected sections has been firremely favorable. Interviews with operators and with section heads indicated chat the microfilm reader was preferred over the computer printed list. The following coments pertaining to the comparison of the printout vs the microfilm and reader are typical of those received:
(1) Microfilm speeded activities considerably, cut time - almost half.
(2) Microfilm more convenient because cartridgas can be handled easier than the heavier printouts.
(3) Microfilm is much cleanar to use than printouts - no carbon mass.
(4) Microfilm is physically easier to use than printouts - loss fatigue from long batch searches.
(5) Eliminates changing the binder each woek.

A similar study by Yale University indicates that our responses parallel those reported in their findinge.
(3) Indexing

To facilitate searching, ample method of indeximg was eavised. The computer tape generated for microfilming containg a series of 10 blank pages for every 100 pages of information. Whan advancing the microfilm in the viewor, the blank pages appear as break in the pattern on the screen. A computer-generated index, which accompanies each microfilm cartridge, shows the numbered sections and the title that bagins each section. This allows the operator to locate the section he is in and the number of the section that contains his title. The operator would then count the breake in pattern until he axrives. at the section containing his title. The operator would then acan at slower apeads. The index allowe the operator to advance rapidiy to a generalized area, and eliminates a stop-and-go search.

Observattona

\Rightarrow During the 4 monthe pariod, little or no use wes made of the fadex. The majority of the users felt that the stop-and-go method coupled with e knovledge of approximataly how long they would have to advance to a section was much faster then che index procedure.

The Yale atudy previousiy mationed also concluded that epeed of retrieval of nicrofilm was couparable if not fater than the computer printed ilat. They further indicated that bar-coding wat a euccesaful mothos of indexing.
(4) Readers

The evaluation of the Mamorex readars was based on the criteria provided in Library Technology reports entitled "The Selection of a Microfilm Reader," November 1968.

Size of format - 16Ma Acceptable
Compatibility between reduction ratio employed in making the film and the maguification of the reader (24: 1 reduction - 24: 1 nagnification)

Acceptable

```
S1ze of reader screen - 11" x 14" Aceeptable
Clarity on acieen - sharp edge to edge Acceptebla
Image rotation - fixed Aceeptable
```

Generally speaking, the readere have performed well. Adjustments were required initialif, but they have been infrequent and down-time inelgaificant. None of the readers has required major ropalrs. The ease of operation and their relatively low cost maka them extramaly ettractive for library operatione. The motorised are more popular because of the opeed in advancing the film. The cartridgea can be renoved without rewinding the film, a vary desizable fegture, particularly if used with code ins indexing. Inserting the cartridge turns it on and ejecting the cartridge turng it off. A limitation on the rotation restricts the reader to cina mode.* Readers with rotation can accomodata both cine and comic modes.* Thie doee not appear to be critical factor at the present time.

[^2]
Observations

The microfilm readers used during this oxporiment were two Memorex 1642 manual crank, and three Memorex 1643 motorized. Bath modals featured snaploading, no threading, no rewinding nacessary for removing cassettes, and adjustable screen ilIumination. Listed below are some of the characteristics of the readera:

Scraen -	$11 "$ high x $14^{\prime \prime}$ wide, nautral efnt, reveraible glosay or matte finish
Magnification -	Fixed at 24X
Lamp -	Quartz halogen -- for' conatant illumination during life of bulb. Pan for lamp and optical system coding.
Image -	Pull size ($11^{\prime \prime} \times 14^{\prime \prime}$) image on acreen when viewing, 90 fixed image rotation.
F11m -	Uses 16m film in 100 -foot roll or Memorex cassette form.
Film Drive -	1542-manual; 1643-motorized
Physical Dimensions -	'18" $\times 16{ }^{\prime \prime} \times 16^{\prime \prime}$

COM Recorders
The Memorex 1603 recorder utilizes fiber optics for converting digital signals to alphanumerics. Though cheaper and simpler than other methods such as olectronic beám recording, it does not produce the sharpest image.

Microfilm Quality

The overall quality of the microfilm has been acceptable. At the beginning, It was felt that, the charactera were not as well defined at they could have been. Particularly, the right side of each frame was of poorer quality than the center or the left side. Improvements were made by adjusting the COM recording device and utilization of better quality microfilm.

At no time was the qusility so poor that the films were not acceptable.

Advantagea (library)

(1) Printing at computer tape speeds
(2) Retrieval coding placed on records as created to provide indexing
(3) Smailer records storage *
(4) Reduced cost of supplies and materials
(3) Microfilm does not require decollating; bursting, or binding

Disadvantages

(1). Requires high cost COM device making in-house use not feasible at the present time (overcome by out-of-house' COM).
(2) Requires viewers to display information.
(3) Use of printout affords random access capability while microfilm cartridges require sequential scanning of film.
(4) Microfilm is "24 hours older" than the printouts. Production of microfilm requires.processing after printout could have been produced.

Conclusions

(1) The COM expariment has provided conclusive evidence that microfilm can be used as a realistic and less expensive method of disseminating Information in the library.
(2) Multiple copies on micrafilm can be produced for considerably less money than other methods.
(3) There is no significant objection by the user uging the microfilm and reader instead of computer printouts.
(4) Biar graph indexing might speed up the present search operation.
(5) Simplicity in reader operation is a desirabla feature for microfilm readers.
(o) Distribution by mai! is more practicable for microfilm than for the computer printout.

[^0]: ${ }^{4}$ Detailed study available upon request.

[^1]: 5
 See a ppendix F which lista the data elemenc: in sysi which are not provided in Maxc. '

[^2]: *Cina modis same as movie film: ona frame below the other Comic mode thame as comic etrip: frames are side by oide

