Automated SLA Monitoring for Web Services

Akhil Sahai, Vijay Machiraju, Mehmet Sayal, Aad van Moorsel, and Fabio Casati

HP Laboratories, 1501 Page Mill Road, Palo-Alto, CA 94304
{asahai, vijaym, msayal, aad, casati} @hpl.hp.com

Abstract. SLA monitoring is difficult to automate as it would need precise and
unambiguous specification and a customizable engine that collects the right
measurement, models the data and evaluates the SLA at certain times or when
certain events happen. Also most of the SLA neglect client side measurement or
restrict SLAs to measurements based only on server side. In a cross-enterprise
scenario like web services it will be important to obtain measurements at
multiple sites and to guarantee SLAs on them. In this article we propose an
automated and distributed SLA monitoring engine.

1 Introduction

A web service can be described broadly as a service available via the web that con-
ducts transactions. E-businesses set up Web Services for clients and other Web Serv-
ices to access. They have a Uniform Resource Locator at which they can be accessed
and have a set of Interfaces that can be utilized to access them. Web services that are
capable of intelligent interaction would be able to discover and negotiate with each
other, mediate on behalf of their users and compose themselves into more complex
services. This composition could be static or dynamic. Emerging standards such as

SOAP, UDDI, and WSDL] are steps in this direction. As these web services interact
and delegate jobs to each other they would need to create and manage Service Level
Agreements amongst each other. Service Level Agreements (SLA)s are signed be-
tween two parties for satisfying clients, managing expectations, regulating resources
and controlling costs. SLA management involves the procedure of signing SLAs thus
creating binding contracts, monitoring their compliance and taking control actions to
enable compliance.

SLA monitoring is difficult to automate as it would need a precise and unambigu-
ous definition of the SLA as well as a customizable engine that understands the speci-
fication, customizes instrumentation, collects the necessary data, models it in a logical
manner and evaluates the SLA at the required times. Also most of the SLAs are about
measurement located at a particular location. In a federated cross-enterprise scenario,
as is the case in web services, measurements may often have to be collected at the cli-
ent side as opposed to the server side to guarantee Quality of Experience (for e.g.
guarantee on response time as measured on the client side when the number of con-

I SOAP: Simple Object Access Protocol (Microsoft, W3C); UDDI: Universal Discovery, De-
scription, and Integration (Consortia, includes HP); WSDL: Web Services Description Lan-
guage (IBM, Microsoft, W3C).

M. Feridun et al. (Eds.): DSOM 2002, LNCS 2506, pp. 28-41, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Automated SLA Monitoring for Web Services 29

current users are 10,000 on the server side). Also as multiple web services will inter-
operate, it may be necessary to guarantee SLA between two constructs not directly
related to each other (for e.g. a guarantee may be given on the period between Service
A receives an order message from a client and the time when a ReceivedGoods mes-
sage is sent by the client to a shipment company that Service A uses to deliver goods
physically to the client). In such cases unless the measurements are obtained from
multiple locations and aggregated, SLA monitoring cannot be done. In this paper we
propose an automated and distributed SLA monitoring engine that enables the above
functionality.

2 Web Service Infrastructure

A web service infrastructure would comprise of large number of business processes.
These business processes will usually comprise of set of activities. Each activity will
be handled by either humans (as is in work-flow management systems), automated
systems (based on legacy systems or state of the art application servers) or some times
will be outsourced to external e-businesses. In Figure 1, a simple example of a web
service infrastructure is shown. This particular business is set up by PCMaker.com
that receives orders from companies/humans interested in buying PCs. It has internal
business processes like user authentication, PC manufacturing, preparation of invoices
etc. These business processes are defined in terms of WSFL/XLANG (or BPEL4WS).
These activities are exposed through set of operations in their WSDL.

Fig. 1. A typical web service and business process infrastructure

3 Web Service SLA

Protocols like ebXML/BTP enable web service to web service interactions to be
captured through a set of well-defined processes. These processes are distinct from

30 A. Sahai et al.

the internal business processes as mentioned above. Parts of these processes could be
sub-processes defined by standards such as say RosettaNet PIPs. This enables the fact
that web services can undertake business by executing an orchestration of business
transactions amongst themselves. This involves definition of a combined process be-
tween the two partners, which in turn is bi-sected according to the roles undertaken by
the partners (namely customer, provider). Each party executes the process belonging
to their role. These processes involve a particular sequence of invocation of each
other’s operations through message exchanges between them. The operation and mes-
sage exchange interfaces are already captured in WSDL descriptions as explained.
These processes also interface with internal business processes that are defined in
process definition languages like WSFL or XLANG.

While, WSDL introduces concepts such as messages, operations, ports, and end
points — which are useful for describing the operations of any web service, WSFL in-
troduces the notion of activities and process flows. So, one way to create a flexible
SLA formalization is to build upon these concepts. In other words, one can create a
flexible SLA formalization by associating “quality metrics” to the formalizations that
are already defined in WSDL, WSFL, XLANG or BTP/ebXML. Here are some ex-
amples that show how such association can be done.

e Response time of a web service operation.

e Average response time between two set of messages

e Response time of a process flow.

e Average response time of a set of process flows of a particular type
e Security of an operation.

e Number of times an activity is executed in a flow.

e Cost of executing an operation.

e Availability of an end point.

e Recoverability of an end-point

The concept of service level agreements and guarantees is missing as yet in the world
of web services and business transactions. We introduce the concept of
SLAs/contracts amongst web services in this article. An SLA has a set of Service
Level Objectives (SLOs) as specified.

A typical SLA between a company manufacturing PCs (say PCMaker.com) and a
company buying PCs (PCBuyer.com) for a period of 6 months will be as follows:

SLO1: PCMaker’s e-procurement system will be available to PCBuyerl, Monday
to Friday from 9AM-5PM, 99.9 % of the time

SLO2: PCMaker shall deliver the ordered goods on an average within 10 days of
the receipt of a purchase order

SLO3: PCMaker shall invoice PCBuyer for any goods ordered within 6 hours

SLO4: Payment of goods by PCBuyer shall be done always within forty-five days
of the receipt of invoice from PCMaker.

Each SLO has a functional part (that refers to a system, endpoint, a process, or a
set of processes...) and a guarantee part (italicized) applied on the functional part.
The guarantee is on a system, a particular instance of a construct (process/opera-

Automated SLA Monitoring for Web Services 31

tion/message..) or on a set of such constructs. SLA monitoring involves monitoring
whether these guarantees on the functional parts are being met.

In order to automate SLLA monitoring, we propose a specification language that en-
ables definition of precise and flexible SLAs, and is described in detail in section 3.1.
Section 3.2 describes the instrumentation aspects that enable correlation of web serv-
ice and business process data. The Web Service Management Network Agent
(WSMN Agent) that automates and distributes the SLA monitoring process is de-
scribed in section 3.3. In section 4, the implementation details of the WSMN Agent
are described.

3.1 SLA Specification

The first enabler for automated SLA management is a flexible but precise formaliza-
tion of what an SLA is. The flexibility is needed since we neither completely under-
stand nor can anticipate all possible SLAs for all the different types of web service
providers. This will also help create a generic SLA management system for managing
a range of different SLAs. The precision is essential so that an SLA management
system can unambiguously interpret, monitor, enforce, and optimize SLAs.

Examples of the lack of flexibility and precision in existing SLA formalizations are
discussed in [1]. Detailed explanation of how we have addressed flexibility and preci-
sion in coming up with SLA formalization are also presented in [1]. Below is a sum-
mary of the formalization.

An SLA is specified over a set of data that is measurable. An SLA typically has a
date constraint (start date, end date, nextevaldate) and a set of Service Level Objec-
tives (SLOs). An SLO in turn has typically a day—time (Mo-We, 6:00PM-8:00 PM)
constraint and a set of clauses that make up the SLO. A clause is based on measured
data. This is referred to as a measuredltem. A measuredltem can contain one or more
items. A measuredAt element determines where the measurements are taken (pro-
vider, consumer side). A clause evaluation is triggered either when an event happens,
e.g. say a message arrives, an operation completes or at a fixed time, say at 6PM. We
call this an evalWhen component of an SLO. Once the evalWhen trigger arrives, a set
of samples of measuredItem are obtained applying a sampling function. The evalOn
component determines how this sample is computed. The sample set is a constrained
set of measured data that is constrained by the evalOn component. Examples of eva-
10n components may be a number or a time period, e.g. the 5 longest running trans-
actions, or all the samples for last 24 hours. A function (evalFunc) is thereafter ap-
plied on the sample set so obtained. An example of evalFunc would be average
response time function < 5 ms. The evalFunc must be a mathematical function that is
expressible in terms of its inputs and logic. The evalAction specifies what action to
perform after the evaluation is done. The following grammar shows a portion of this
formalization.

As an example, a clause like At 6 PM the Average response time for the 5 longest
running bookbuy transactions measured on the client side should be < 5 ms can be
broken up into a, measuredltem (Item:bookbuy transaction, measuredAt:Consumer),
evalWhen (at 6PM), evalOn function (set of 5 longest running transactions) and the
evalFunc (average response time < 5 ms). The evalAction could be notification to the
administrator. The complete set of examples of how complex SLAs can be repre-
sented in it are presented in [1].

32 A. Sahai et al.

SLA = dateconstraint SLO*

Dateconstraint =
startdate enddate nextevaldate

SLO = daytimeconstraint clausex*
Daytimeconstraint = Day* time

Clause =
MeasuredItem evalWhen evalOn evalFunc evalAction

MeasuredItem = Item¥*

Item =
measuredAt constructType constructRef

3.2 Instrumentation

In order to ensure that guaranteed SLAs can be evaluated and their compliance meas-
ured, it is necessary that raw measurement data be collected about the managed sys-
tem. This managed data is obtained through instrumentation of processes, activities
that are executed, and messages that go in and out of the e-business infrastructure.

Instrumenting the web service. It is necessary to observe the message exchanges
among web services in order to collect information about the interactions with busi-
ness partners. An acceptable solution should not impose any modifications or limita-
tions on existing web services. Since SOAP is rapidly becoming the preferred stan-
dard for web service interactions, we assume SOAP messages are used among web
services in order to submit request and response messages. We have implemented a
small proxy component tries to capture incoming and outgoing messages, and records
data about the message exchanges, then forwards the captured messages to the actual
recipients. We have considered various alternatives for easily attaching a proxy com-
ponent to existing web services in order to listen to incoming and outgoing messages:
port sniffing, server-side filters (Microsoft’s ISAPI, or Netscape’s NSAPI), API pro-
vided by web services themselves, and modification of SOAP toolkit. Since SOAP is
widely accepted for message exchange, port sniffing and server-side filters are not
suitable, because the message contents are encrypted by SOAP toolkit. Most web
services do not provide an API for controlling or querying about their activities due to
security issues or simply because the web service developers did not feel any need for
such interfaces. Consequently, we have chosen to keep track of message exchanges
among web services by modifying SOAP toolkit by overwriting it. However the
monitoring may not be restricted to SAP and additional modules can be defined say as
part of the Apache AXIS architecture to undertake message payload monitoring.

Automated SLA Monitoring for Web Services 33

In order to correlate individual message exchanges with each other, we use the no-
tion of Global Flow (GF) as described within our assumptions above. The GUID is
used for keeping track of a GF. Every time our proxy component catches a message
that is exchanged between web services, it first checks whether a GUID exists. If a
GUID does not exist in the message, the proxy inserts a GUID into SOAP header of
the message. All web services and other software components propagate the GUID in
their communications. Consequently, our proxy components that are attached to
SOAP toolkits at business partner sites can easily figure out which SOAP message is
sent in the context of which previous messages.

Instrumentation of business process. Since business processes at the back-end
automate activities of web services, it is necessary to collect data from those software
components in order to gather detailed information about internal activities of a
business, and correlate those internal activities with external message exchanges. As
we indicated among our assumptions, most business process management systems log
data about internal business process executions into a raw log file or database. For
example, HP Process Manager (HPPM) logs execution data into a raw file, which is
then uploaded into database tables by a dedicated process. A proxy component can be
configured in order to read logged data from proper database tables. This component
can also correlate the message exchanges with internal process executions using the
GUID that is passed through all web services and their back-end software
components.

3.3 SLA Monitoring

As minimal human intervention is desirable in web services it is necessary to create
monitoring engine that can take care of a variety of specifications and monitor the
necessary management data. We believe that the SLA formalizations described above
are precise enough to be able to create or customize an SLA monitoring engine on the
fly. To simplify the discussion, we will describe the details of the engine as if it man-
ages a single SLA between two services. Such an engine has then two components —
one on the service provider side and one on the service consumer side. Extending our
notion to a large number of SLAs requires that the engine keep track of the state of
multiple SLAs simultaneously, and be able to relate each measurement to one or more
affected SLAs. Extending our notion of two services to a large number of interacting
services requires the engine’s components to take the dual role of acting as both
“service providers” in some SLAs and as “service consumers” in some SLAs.

The instance data so collected has to be modeled in the high performance database
and a data warehouse so that service level agreements can be monitored on top of the
modeled data. The high performance database is updated for every transaction in-
stance data that is received. The data warehouse is updated at regular intervals of time
for keeping the data for a longer period of time.

SLM Engine. The SLM Process Controller executes the management processes for
the SLM engine. These management processes are distinct from the business proc-
esses that are executed in the web services infrastructure as discussed in section

34 A. Sahai et al.

2. These management process flows are created and managed for a variety of purpose.
These flows are defined in WSFL and are exposed to other WSMN agents through
WSDL specification of their own. These WSMN agents thus can initiate management
related conversation with each other. The WSMN agent process controller executes
the SLA monitoring process flow for undertaking SLA evaluation and reporting.

As the specification typically has startdate, enddate, daytimeconstraint, evalWhen,
evalOn and evalFunc components to it, each of these constitutes a generic component
that can be used by our SLA Management engine. In addition, we have also identified
the most common variants of these generic components, which can be readily param-
eterized by the engine for a large number of possible combinations of SLAs. Using a
new, evalWhen, evalOn, or evalFunc component in an SLA requires an administrator
to first develop such a component within the framework of our engine and then to add
it to the engine.

The model generator receives the WSDL/WSFL specifications and creates a model
of the web service in the model repository. All the measurements collected from the
web service (e.g., ongoing conversations, performance measurements, etc) are at-
tached to this model. The instrumentation in the web service is responsible for col-
lecting these measurements and passing them on to the management handler to be
stored in the model repository. If the measurements are collected on the client side (as
determined by the measuredAt components of the items in SLA clauses), then the
communicator is responsible for receiving the measurements and storing them into the
repository. SLM Engine process controller receives the SLA executes a monitoring
process flow (as explained in subsequent section) and accordingly informs the SLA
customizer which in turn customizes the alarms at the Alarm Manager (depending on
the evalWhen and dateconstraint components). The Alarm Manager comprises of the
SLO Validity Period Monitor, and triggers (time based and event based). The SLA
customizer also creates an SLO object in the SLA/contract repository and registers it
as the call back handler of the alarms. The SLO object maintains the state of the SLO
(valid, active, invalid). If a registered alarm for start-date of an SLO arrives the state
of the SLO is changed from init to valid. The SLO is invalidated when the end-date
trigger arrives. In between as the evalWhen alarms are triggered (because of a time or
an event happening) the SLO evaluator evaluates the SLO. The SLO evaluator obtains
the required management information (based on evalOn, daytime Constraint and the
evalFunc constituent of the specification) from the high performance database in
memory. The SLO evaluator determines compliance/violations. The SLA violation
engine maintains the record for violations, their timestamps, the levels of violation,
and the clauses that are violated (both in memory and in log files). The management
console can be used for looking and visual analysis of the current SLAs, SLOs, and
their violation records. The violation records will also be used for triggering SLA as-
surance processes.

Management Information Modeling. The model generator component receives the
WSDL/WSFL specifications and creates a model of the web service in the model re-
pository. The instrumentation dictionary contains information about the instrumenta-
tion and thereby the metrics that are available for various components of the web
service. It can then combine the service model with the metrics available at

Automated SLA Monitoring for Web Services 35

Management Proxy|

Events Information
daemon
Instrumentation [Aegregaor |

manager

Model

- Sl
Protocol

G t

enerator Handler

Fig. 2. The WSMN Agent

each of the web service model component. This combined model is created in the
repository. Subsequently when the actual measured data are stored by the
measurement handler, the management data is stored according to the combined
model[11].

All the measurements collected from the web service (e.g., ongoing interactions,
performance measurements, etc) are attached to this combined model. The instru-
mentation in the web service is responsible for collecting these measurements and
passing them on to the management information handler to be stored in the model re-
pository. If the measurements are collected on the client side (since the measuredAt
component says so in an SLA), then the communicator is responsible for receiving the
measurements and storing them into the repository.

In the managed object model used by the SLM engine, the basic web service and
business process constructs are viewed as derived from a base class. We term the base
class as the managed object. Every managed object has a set of attributes. An attrib-
ute is defined in the attribute definition. The attribute definition comprises of the
identifier, name, datatype, calculable, units of the attribute. The identifier uniquely
refers to an attribute definition while the name provides a label for it. The managed
object has the base attributes of id, context, status, userld. All the other constructs,
like operations, activity, processFlow, globalFlow, .. etc extend managed object. All

36 A. Sahai et al.

the constructs thus have id, attribute, context, status, userld and other attributes that
are specific to them.

The basic managed object model is extensible. At each of the constructs new at-
tributes conforming to the data types mentioned above can be defined through new
attribute definitions. This will allow for management systems that are capable of col-
lecting additional information about the constructs. Also derived attributes can be de-
fined that manipulate the base attributes.

In addition, metrics can be defined on top of the managed object model as defined
in the previous section. A management system may create a metric object for model-
ing a (set of) managed object(s). The ITU-T model is quite applicable in our case of
managed systems modeled through web service and business process abstractions [5].
The ITU-T metric object model for example provides for definition of mean monitor,
moving average mean monitor. Mean and variance monitor, mean and percentile,
mean and min max monitor.

The management data is thus collected and modeled in the databases in the SLM
engines on both sides. If all the measuredItems are local then the SLA can be evalu-
ated on the local data. However, if the measuredltems refer to attributes on web serv-
ices on either side the data so collected needs to be exchanged between the SLM en-
gines.

The data is continuously measured, modeled and stored in the database (and con-
sequently in the data warehouse at regular intervals of time) as shown in Figure 2.
The WSMN Agent Process Controller receives the SLA specification either by
snooping on the web service to web service communication or directly through the
management console. Once the SLA is received the Service Level Monitoring process
flow is executed on both the provider-side and the customer-side.

Service Level Monitoring Process Flow. The process consists of the following
steps:

(a) The process (SLM process) is initiated as soon as an SLA is received as in-
put.

(b) Decide where the measurements are to be carried out. This is marked on
every measured item in the SLA using measuredAt.

(c) Decide where the evaluation of the SLA is to be done. The SLA evaluation is
carried out at the customer side, if the SLA has items that are all measured at
the customer side. Similarly, if all the measured items are measured at the
provider side, the SLA evaluation is carried out at the provider side. At the
end of evaluation the SLM engines exchange violation report through SLA
Violation Report Exchange protocol.

(d) If however, some of the items are measured at the customer side, and some
of them are measured at the provider side, then the evaluation is carried out
at the provider side. This last case, however requires that the customer-side
measurements are transferred to the provider-side.

(e) If some of the measurements have to be transferred from customer side to
provider side, initiate measurement exchange protocol. The measurement
exchange protocol takes care of transferring measurements at the right fre-

Automated SLA Monitoring for Web Services 37

quency and right level of aggregation. This is described in detail in the next
section.

(f) If the engine is responsible for the SLA evaluation, it sends the SLA to its
SLA customizer that in turn creates the SLO, stores it in the SLA repository,
customizes the alarms in the Alarm Manager and registers the SLO object as
the call back handler for them. Once configured, the components of the SLA
monitoring engine described above automatically trigger the evaluation of
the SLA.

Measurement Exchange Protocol (MEP). When the evaluation of an SLA depends
on measurements from both the customer-side and provider-side, a measurement
protocol is needed for transferring the measurements from the former to the latter.
Such a protocol should be designed with the following objectives in mind: (a)
minimize the amount of data that is transmitted between the two sides, and (b)
transfer the data in time for the evaluation of SLA to take place when triggered.

To fulfill these two objectives, the SLA monitoring engines on both sides should
agree on (a) what measurements need to be transferred and at what level of aggrega-
tion, and (b) how frequently they should be transferred. The type and level of aggre-
gation of the measurements depends on both evalFunc and measuredAt. To specify
the level of aggregation, we use typical sampling functions such as count (t), totaled,
averaged, movingAvg(lastN), minN, maxN, threshold. In the case when the sampling
function cannot be determined from the evalFunc, we ship all the measurements from
the customer-side to the provider-side. The reporting frequency depends on eval-
When.

The measurement protocol handles both the agreement on level of aggregation and
frequency, as well as the transfer of agreed measurements from customer-side to pro-
vider-side. There are in essence 5 different types of messages that form the protocol.

O Init: sent by the consumer to the provider for clauses whose measurement
data need to be exchanged. The init message carries possible choices of sam-
pling function, interval, duration and reporting interval details that the con-
sumer supports.

O Request: The provider decides the exact measurement specification (sam-
pling function, sampling params and reporting params) that it chooses and
specifies it in its request message.

Agreement: The consumer sends this message if it agrees to the request
Start: message from provider to commence the reporting.
Report: actual measurement report messages

0Oo0o00oQ

Close: message to terminate the reporting.

Violation Engine. Once the SLOs are invoked by the Alarm Manager, the SLO
evaluator evaluates the function (evalFunc) of the SLO. The query that is created uses
daytime constraint, evalOn and evalFunc components of the SLA specification. The
results of these evaluations are compared against thresholds and the details of the
evaluation are maintained as a Violation Record in the violation engine. It is also ap-
pended to the log File. Business managers can use the violation records for

38 A. Sahai et al.

controlling the web service and business process infrastructure for contract assurance
purpose and for visual analysis.

4 Implementation

A WSMN Agent was implemented (in Java). The Agent uses Apache SOAP toolkit to
exchange messages with each other. They execute management processes on HP Pro-
cess Manager. A sample web services scenario as described earlier and shown in Fig-
ure 3 was implemented and the messages, business processes involved were instru-
mented. For the web service scenario the actual business processes were also created
on HPPM. HPPM provides a Java API to control process executions by other soft-
ware components. A proxy component uses this Java API to feed in the GUID into
HPPM process instances and retrieve it when necessary. The web services also use
Apache SOAP toolkit for exchanging messages with each other. The SOAP toolkit
was modified to collect the message correlation and instrumentation data. The meas-
ured data was stored and modeled in mySql database and Oracl9i data warehouse.

ChipVendor.com|
[ChipSupply]

AssemblyDept.com
[Assembly]

PaymentAuthority.com
[Payrrent]

BestDelivery.com
[Delivery]

Fig. 3. The web services scenario that was implemented

The example scenario as shown in Figure 3 was implemented. The implemented
scenario has two SLAs between PCMaker.com and its customers namely
PCBuyerl.com. The SLAs were namely SLAI and SLA2. Each SLA has a single
Service Level Objective. The first SLA is with PCBuyerl.com. It guarantees that
between the dates of 0.2/15/02 and 07/15/02 all the invoice processes from 9-5 and on
weekdays will be undertaken in 6 hours. The evaluation will be done every day at 6
PM.

Automated SLA Monitoring for Web Services 39

MSG TYPE SENDER RECEIVER
1 Submitl oginmsg PCBuyerl PCMaker
2 ConfirmLoginmsg PCMaker PCBuyerl
3 SubmitQuoteRequestmsg PCBuyerl PCMaker
4 RequestChipQuotemsg PCMaker ChipSupply
5 SendChipQuotemsg ChipSupply PCMaker
6 SendQuotemsg PCMaker PCBuyerl
7 SubmitPORequestmsg PCBuyerl PCMaker
8 SendChipPOmsg PCMaker ChipSupply
9 RespondChipPOmsg ChipSupply PCMaker
10 SendAssemblyPOmsg PCMaker Assembly
11 RespondAssemblyPOmsg Assembly PCMaker
12 SendPaymentPOmsg PCMaker Payment
13 RespondPaymentPOmsg Payment PCMaker
14 SendDeliveryPOmsg PCMaker Delivery
15 SendDeliveryNotificationmsg Delivery PCBuyerl
16 sendReceiptNotificationmsg PCBuyerl Delivery
<sla>
<slald>1</slald>

<partnerName>PcBuyer1.com</partnerName>

<startDate>Fri Feb 15 00:00:00 PST 2002</startDate>

<endDate>Mon Jul 15 00:00:00 PDT 2002</endDate>

<slo>

<slold>1</slold>

<dayTimeConstraint>Mon-Fri: 9-17</dayTimeConstraint>

<measuredItem>

<item>

<constructType>process</constructType>

<constructRef>PcMaker.com/Invoice</constructRef>

<measuredAt>PcMaker.com</measuredAt>

</item>

</measuredItem>

<evalWhen>6PM</evalWhen>

<evalOn>all</evalOn>

<evalFunc name ="averageResponseTime” operatior ="LT” Threshold ="6" unit
="hours”></evalFunc>

</slo>

</sla>

SLA2 has an SLO that is based on two messages from two different end-points.
This particular SLO has two items. The management proxy at PCBuyerl.com and
PCMaker.com utilize the measurement exchange protocol to agree on sending meas-
urements for sendReceiptNotificationmsg everyday just before 6 PM and keep send-
ing the reports from startDate to endDate.

40 A. Sahai et al.

<sla>

<slald>2</slald>

<startDate>Fri Feb 15 00:00:00 PST 2002</startDate>

<endDate>Mon Jul 15 00:00:00 PDT 2002</endDate>

<slo>

<slold>1</slold>

<dayTimeConstraint>Mon-Fri: 9-17</dayTimeConstraint>

<measuredltem>

<item>

<constructType>message</constructType>

<constructRef>PcMaker.com/submitPORequestmsg</constructRef>

<measuredAt>PcMaker.com</measured At>

</item>

<item>

<constructType>message</constructType>

<constructRef>PcBuyerl.com/sendReceiptNotificationmsg</constructRef>

<measuredAt>PcBuyerl.com</measured At>

</item>

</measuredltem>

<evalWhen>6PM</evalWhen>

<evalOn>all</evalOn>

<evalFunc name ="averageResponseTime” operatior ="LT” Threshold ="2" unit
="days”></evalFunc>

</slo>

</sla>

The WSMN Agent corresponding to PCMaker.com is loaded with the SLAs as
mentioned above. These SLAs are passed as input to the WSMN Agent Process con-
troller that in turn determine that these SLAs are either all locally measured as in
SLA1 or need measurements (necessitating MEP) from other sites as in SLA2. They
are then passed to the SLA customizer. The SLA customizer creates the SLO objects
and customizes the Alarm Managers. The evaluations are done as these alarms arrive.

5 Related Work

SLAs as means of defining Quality of Services have been researched earlier [6,7,8].
In [2] SLA management in a federated environment has been researched. The SLA
management engine needs a service model that determines the services offered in the
domain as well as dependencies between the service components. It also needs the
measurements available from them at each level to be specified in the model. A sys-
tems dictionary is required that specifies which plugins to use to gather which infor-
mation. This requires human intervention for service model and system dictionary
definition. As the contracts defined in contract definition language are mapped to
measurements from the systems dictionary and the process in not totally automated
the specification may lead to ambiguities.

Details of schema for specification of SLAs and a corresponding conceptual archi-
tecture are presented in [10]. Our paper also presents an SLA specification language

Automated SLA Monitoring for Web Services 41

[1] and an automated and customizable SLA monitoring engine based on the specifi-
cation language. In order to achieve its objective, it describes how to measure and
correlate messages and processes in their overall global context, as captured by the
concept of global flow id, and to model them logically so that SLA monitoring can be
facilitated. This model as presented in section 3 is distinct from the SLA specification
schema. The SLM engine also is capable of dealing with SLAs based on measure-
ments from multiple sites by using MEP which is not the case in the above mentioned

paper.

Inter-domain communication has been handled in telecommunication networks
[3][4]. However, unlike the Internet their networks are regulated and typically de-
signed to offer a single type of service.

6 Conclusion

Service Level Agreements are difficult to specify in a clear and unambiguous manner.
It is equally difficult to automate the monitoring of these SLAs. In addition, most of
the SLAs deal with provider side guarantees and neglect client side measurements. In
this article, we have proposed an automated and distributed SLA monitoring engine
that monitors an SLA specified in our language.

References

1. Sahai A, Durante A, Machiraju V. : Towards Automated SLA Management. For Web
Services. HPL-2001-310. (2001)

2. Bhoj P, Singhal S., Chutani S.: SLA Management in a federated Environment. HPL-1998-
203. (1998)

3. Lewis et al. Experiences in Integrated Multi-Domain Management. IFIP/IEEE
International Conference on Management of Multi-Media Networks and Services,
Montreal, Canada, (1997)

4. Hall J (editor). Management of Telecommunication systems and Services: Modelling and
Implementing TMN based Multi-Domain Management, Lecture Notes in Computer
Science 1116, Springer-Verlag, ISBN 3-540-61578-4, (1996)

5. Telecommunication Management Network (TMN) at ITU-T.: Formerly CCITT.
http:/www.itu.int

6. Long T. P, Jong W. B., Woon H.J. : Management of service level agreements for
multimedia Internet service using a utility model. IEEE communications Managezine Vol
39, no.5, May (2001)

7. Forbath T. Why and how of SLAs [service level agreements]. Business Communications
Review, Vol 28. No. 2, Feb (1998)

8. Tele Management Forum SLA Management Handbook, GB917, public evaluation version
1.5, June. (2001).

9. Sahai A, Ouyang J, Machiraju V, Wurster K. : Message Tracking in SOAP-Based Web
Services. In the proceedings of NOMS 2002 33-51., Italy (2002)

10. Keller A et al. : Managing Dynamic Services: A Contract Based Approach to a Conceptual
Architecture. In the proceedings of NOMS 2002. 513-528 , Italy (2002).

11. Sahai A, Machiraju V, Casati F. An Adaptive and Extensible Model for Management of
Web Services and Business Processes. Openview University Association (2002).

	1 Introduction
	2 Web Service Infrastructure
	3 Web Service SLA
	3.1 SLA Specification
	3.2 Instrumentation
	3.3 SLA Monitoring

	4 Implementation
	5 Related Work
	6 Conclusion
	References

