
 Open access  Journal Article  DOI:10.1109/JBHI.2018.2886064

Automated Sleep Apnea Detection in Raw Respiratory Signals Using Long Short-Term
Memory Neural Networks — Source link 

Tom Van Steenkiste, Willemijn Groenendaal, Dirk Deschrijver, Tom Dhaene

Institutions: Ghent University, IMEC

Published on: 01 Nov 2019 - IEEE Journal of Biomedical and Health Informatics (IEEE J Biomed Health Inform)

Topics: Polysomnography and Sleep apnea

Related papers:

 PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.

 Long short-term memory

 Clinical Practice for Diagnostic Causes for Obstructive Sleep Apnea Using Artificial Intelligent Neural Networks

 Detection of Obstructive Sleep Apnea Using Deep Neural Network

 ECG classification for Sleep Apnea detection

Share this paper:    

View more about this paper here: https://typeset.io/papers/automated-sleep-apnea-detection-in-raw-respiratory-signals-
4u9likzcf0

https://typeset.io/
https://www.doi.org/10.1109/JBHI.2018.2886064
https://typeset.io/papers/automated-sleep-apnea-detection-in-raw-respiratory-signals-4u9likzcf0
https://typeset.io/authors/tom-van-steenkiste-1j05ulgwbe
https://typeset.io/authors/willemijn-groenendaal-2rd607kaap
https://typeset.io/authors/dirk-deschrijver-26wsqk2b08
https://typeset.io/authors/tom-dhaene-3z0d5b0jts
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/institutions/imec-32yfr39v
https://typeset.io/journals/ieee-journal-of-biomedical-and-health-informatics-3aozx4z6
https://typeset.io/topics/polysomnography-yyw21t0d
https://typeset.io/topics/sleep-apnea-qgatwd3j
https://typeset.io/papers/physiobank-physiotoolkit-and-physionet-components-of-a-new-1hl5vfh7fn
https://typeset.io/papers/long-short-term-memory-1rd0gpayfc
https://typeset.io/papers/clinical-practice-for-diagnostic-causes-for-obstructive-4i7r4cwe9e
https://typeset.io/papers/detection-of-obstructive-sleep-apnea-using-deep-neural-rn7rstc54r
https://typeset.io/papers/ecg-classification-for-sleep-apnea-detection-2v657t9ijr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/automated-sleep-apnea-detection-in-raw-respiratory-signals-4u9likzcf0
https://twitter.com/intent/tweet?text=Automated%20Sleep%20Apnea%20Detection%20in%20Raw%20Respiratory%20Signals%20Using%20Long%20Short-Term%20Memory%20Neural%20Networks&url=https://typeset.io/papers/automated-sleep-apnea-detection-in-raw-respiratory-signals-4u9likzcf0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/automated-sleep-apnea-detection-in-raw-respiratory-signals-4u9likzcf0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/automated-sleep-apnea-detection-in-raw-respiratory-signals-4u9likzcf0
https://typeset.io/papers/automated-sleep-apnea-detection-in-raw-respiratory-signals-4u9likzcf0


JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 1

Automated Sleep Apnea Detection in Raw

Respiratory Signals using Long Short-Term

Memory Neural Networks

Tom Van Steenkiste1, Willemijn Groenendaal2, Dirk Deschrijver1, and Tom Dhaene1

Abstract—Sleep apnea is one of the most common sleep
disorders and the consequences of undiagnosed sleep apnea can
be very severe, ranging from increased blood pressure to heart
failure. However, many people are often unaware of their condi-
tion. The gold standard for diagnosing sleep apnea is an overnight
polysomnography in a dedicated sleep laboratory. Yet, these tests
are expensive and beds are limited as trained staff needs to
analyze the entire recording. An automated detection method
would allow a faster diagnosis and more patients to be analyzed.
Most algorithms for automated sleep apnea detection use a set of
human-engineered features, potentially missing important sleep
apnea markers. In this work, we present an algorithm based on
state-of-the-art deep learning models for automatically extracting
features and detecting sleep apnea events in respiratory signals.
The algorithm is evaluated on the Sleep-Heart-Health-Study-
1 dataset and provides per-epoch sensitivity and specificity
scores comparable to the state-of-the-art. Furthermore, when
these predictions are mapped to the apnea-hypopnea-index, a
considerable improvement in per-patient scoring is achieved over
conventional methods. This work presents a powerful aid for
trained staff to quickly diagnose sleep apnea.

Index Terms—Sleep Apnea, LSTM, Deep Learning, SHHS-1

I. INTRODUCTION

S
LEEP apnea is one of the most common sleep disorders

and is characterized by the occurrence of breathing pauses,

also known as apneaic episodes, during the night which lead

to frequent awakenings [1]. It is typically classified as either

Obstructive Sleep Apnea (OSA) when the airway is blocked

by the throat muscles, Central Sleep Apnea (CSA), when the

signals to control the breathing are disturbed, or hypopnea,

when the breathing becomes shallow. Hypopnea can further

be categorized as either obstructive or central. Although some

studies report that an estimated 49.7% of male and 23.4% of

female adults suffer from sleep-disordered breathing [2], many

cases remain undiagnosed as patients are rarely aware of their

condition. These patients are at risk of hypertension, cardiac

arrhythmia, heart attacks and strokes [3], [4]. Some studies

also show that sleep apnea patients have an increased chance

of being involved in motor vehicle collisions [5].

To diagnose sleep apnea, an overnight polysomnography

(PSG) recording is performed in a specialized sleep labo-

ratory [6]. During this PSG, multiple physiological signals,

pertaining to respiration, oxygen saturation, cardiovascular
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2Willemijn Groenendaal is with Holst Centre / imec the Netherlands,
Eindhoven, The Netherlands

functioning and sleep status are recorded. Afterwards, a trained

sleep technician analyzes the data of the entire night and

evaluates each part of the signal using a standard reference

such as the American Academy of Sleep Medicine (AASM)

guidelines [6] for the presence of sleep apnea. Each event in

the signal is then annotated as either OSA, CSA or hypop-

nea. Often, only events that are clinically relevant (e.g. long

apneas) are scored and shorter disturbances are unannotated.

The annotations are summarized in an Apnea-Hypopnea-Index

(AHI) which represents the number of apnea and hypopnea

events per hour and which is used to categorize patients into

a normal, mild, moderate or severe class.

As the amount of beds for PSG recording and the amount of

trained sleep technicians for analysis are very limited, waiting

times can get excessively long. These waiting times range in

between 2 and 10 months in the UK, and in between 7 and

60 months in the USA [7]. Furthermore, high intra- and inter-

scorer variability has been reported [8], [9], [10].

To increase the amount of people that can be analyzed,

and to reduce these high intra- and inter-scorer variabilities,

automated methods to assist the sleep technicians have been

investigated. These methods range from rule-based algorithms

to automated machine learning techniques and are gener-

ally based on human-engineered features. Determining which

features to use and how many are needed to obtain the

best predictive power, is a difficult task. Due to the human

misinterpretations, potentially interesting sleep apnea markers

in the biometric signals can be missed. Furthermore, noisy

data can negatively impact the generalization properties of the

models to new patients in practical settings.

In this work, a novel sleep apnea detection method is pro-

posed, based on deep learning with long short-term memory

neural networks using raw physiological respiratory signals to

automatically learn and extract relevant features, and detect

potential sleep apnea events. The performance is compared

to traditional human-engineered feature methods using data

from the the Sleep-Heart-Health-Study-1 (SHHS-1) reference

database [11], and the numerical results confirm that the

proposed method outperforms the traditional methods when

generalizing to noisy data from other patients measured in a

real clinical setting.

Section II discusses related work in the field of machine

learning for the automated detection of sleep apnea. Section III

introduces the methodology of the new algorithm. Section IV

explains the experimental setup and Section V demonstrates

the results. Finally, in Section VI, conclusions are made.
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II. RELATED WORK

A. Physiological Signals

For accurate diagnosis of sleep apnea, trained staff use a

variety of physiological signals. Over the years, many different

sleep apnea detection methods have been proposed, based on

a subset of these signals. Due to the intrinsic link between the

respiratory system and sleep apnea, respiration and oximetry

signals are commonly used [12]. Respiratory information can

be extracted from nasal thermal sensors, pressure sensors near

the mouth, conductive bands around the chest or other types

of sensors. Oximetry measurements (typically SpO2) are also

a valuable tool for diagnosing sleep apnea [13], [14], although

by itself not sufficient [15].

The occurrence of sleep apnea is also reflected in other

physiological signals, such as the electrocardiogram (ECG),

which is typically heavily processed in order to extract relevant

sleep apnea markers. An example of such pre-processing is

performing heart rate variability analysis on ECG signals [16].

Another commonly used strategy is the extraction of respira-

tory information from ECG signals in a process known as

ECG Derived Respiration (EDR) [17]. This is possible due to

the respiratory motion being modulated on top of the ECG

signal. However, other illnesses than sleep apnea can also

significantly impact these signals. As these PSG measurements

are uncomfortable for the patient, a lot of work has been

done towards the development of portable monitors with less

obtrusive sensors. An example of this is ballistocardiography

for the detection of sleep apnea [18], [19].

B. Sleep Apnea Detection

When analyzing sleep, all types of sleep apnea have to be

detected. Additionally, to get a complete assessment of sleep

quality, other events such as teeth grinding and snoring also

have to be detected. This is demonstrated by the large interest

in the recent CinC challenge [20]. However, the focus of this

work is on the detection of sleep apnea and as such, only the

detection of sleep apnea events will be analyzed in this study.

Various algorithms have been developed for automatically

detecting sleep apnea events in one or more of the physiolog-

ical signals originating from an overnight PSG. A common

approach is to use interpretable rule-based algorithms that

provide a clear explanation as to why some epochs of the

signal are flagged as containing a sleep apnea event or not [21].

In medicine, such white-box approaches are very valuable.

However, other approaches with a higher learning ca-

pacity, based on machine learning, can automatically de-

tect more complex patterns and make more accurate pre-

dictions. Commonly used methods include Support Vector

Machines (SVM) [22], Logistic Regression (LR) [23], K-

Nearest-Neighbors (KNN) [22], [23], Linear Discriminant

Analysis [24], [23], Gaussian Processes (GP) [25] and Arti-

ficial Neural Networks (ANN) [26]. These methods typically

start with computing a set of human-engineered features over

a certain epoch of the data. For each epoch, a prediction is

made whether or not it might contain an apnea event. These

methods do not capture the temporal correlation components

that are present in physiological signals. Specialized mod-

els, such as the SVM-based discriminative Hidden Markov

Model (HMM) [27] utilize this time information to improve

the accuracy of the estimates. Recent developments in deep

learning have led to another temporal sleep apnea detection

model. Long Short-Term Memory (LSTM) neural networks, a

type of Recurrent Neural Network (RNN), were proposed as a

good method capable of detecting long-term as well as short-

term correlations in time-series of human-engineered features

for sleep apnea [28], [29], [30] as well as for other medical

use-cases [31], [32]. Although such models have incorporated

valuable information by integrating the time-based component,

other valuable aspects of the data are still lost, due the need

for human-engineered features that summarize the data into

distinct values. Additionally, some of these models are trained

and analyzed on a human-selected set of clean epochs. In

practice, this leads to generalization issues when analyzing

data of new patients in real noisy settings.

III. PROPOSED ALGORITHM

In this work, a novel method is proposed using the LSTM

model. Instead of extracting human-engineered features, the

models are trained using a noise-filtered version of the actual

respiratory signal itself. The main goal of the algorithm is to

provide as much information as possible to the deep learning

network, such that it can automatically extract relevant respi-

ratory markers for the detection of apnea events without the

need for human feature engineering. The complete workflow

of the training algorithm is shown in Fig. 1. The setup of

this workflow is that of a typical machine learning process.

The process starts with collecting respiratory data which is

then pre-processed and split into separate epochs. Each of

the epochs is annotated based on the annotation of trained

sleep technicians. Then, the epochs are used in a balanced

bootstrapping scheme to create separate datasets. Finally, each

of the datasets is used to train a separate LSTM model. During

prediction, an aggregation step is added. Each of these steps

will be discussed in detail in the following subsections.

A. Data Collection

The first step in the algorithm is the collection of respiratory

data. This can be extracted from various sources such as respi-

ratory bands or the ECG. To train the models, the respiration

data is combined with annotations. To create a robust model,

the data must include a sufficient amount of patients with large

enough variety in e.g. age, gender and physiology for which

data of an entire night has been recorded.

B. Pre-processing and Epoch Creation

Raw physiological signals contain a wide range of noise

due to subject movement, electrical interference, measurement

noise and other disturbances. In any sleep apnea detection

method, noise canceling methods are essential and frequently

used.

To extract relevant respiratory information, and to reduce

noise, the physiological respiratory signals are passed through
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Fig. 1: Modeling sleep apnea: respiratory signals are pre-processed and combined with their label. Next, a balanced bootstrapping

procedure combines epochs into datasets for training multiple LSTM networks.

a fourth-order low-pass zero-phase-shift Butterworth filter with

a cut-off frequency of 0.7Hz [33]. This cutoff frequency

is chosen to retain the major respiration components while

removing as much noise as possible [34]. Next, motion ar-

tifacts of the patient and baseline wander are removed by

subtracting a moving average filtered signal with a width of 4

seconds from the original signal. Finally, the sampling rate

of the physiological signal is reduced to 5Hz in order to

speed up the analysis while still keeping the most relevant

respiratory information. The mild filtering ensures that as

much information as possible is kept in the signal such that it

can be considered raw. Note that noisy sections of the signal

are not removed from the dataset to accurately reflect real

clinical settings.

The filtered signals are segmented into 30 second epochs

with a stride of 1 second between them. Hence, the epochs

are overlapping and each second of the data is represented

in multiple epochs. Overlapping the epochs is not a typical

strategy in sleep apnea research, but it offers some advantages.

It allows the model to make predictions on a per-second

basis, increasing the granularity of the detection. In addition,

it significantly increases the amount of data that can be used

for training the neural network.

C. Data Annotation

Finally, each of the epochs is labeled with annotations

provided by a trained sleep technician that analyzed the data

signals according to specific guidelines, such as the AASM [6]

or the SHHS [11] guidelines. If at the end of an epoch,

the sleep technician indicated an apneaic episode, the entire

epoch was flagged as a positive apnea episode. This process

is illustrated in Fig. 2.

Since the goal of this study is to detect all apneas and to

provide a metric of the severity of apnea for each patient,

and hence to provide a metric of the AHI, we combine all

annotations into a single binary annotation (apnea or non-

apnea).

D. Balanced Bootstrapping

Although sleep apnea is a common disorder, apnea-positive

epochs are a relatively rare occurance for each patient. The

majority of epochs is apnea-negative and only a small minority

is apnea-positive. When such an imbalanced dataset is used to

train machine learning models, most of these models will be

heavily biased towards the majority class which may provide

skewed results.

There are several possibilities to cope with an imbalanced

dataset. The most straightforward solution is to downsample

the dataset [35], [36]. With downsampling, apnea-negative

epochs are removed from the dataset until there are as many

apnea-positive epochs as there are apnea-negative epochs. In

practice, when dealing with a large data imbalance, this means

a majority of the data is removed from the dataset and a lot

of valuable information is lost.

Another commonly used method is oversampling the

dataset [35], [36]. Apnea-positive epochs are duplicated in

the dataset until there are as many apnea-positive epochs as

apnea-negative epochs. Although all information is retained,

this duplication increases the risk of overfitting to a subset of

apnea-positive examples, heavily impairing the generalization

power to new data.

To overcome these disadvantages of both methods, an

innovative procedure called balanced bootstrapping has been

proposed [37]. In this work, balanced bootstrapping is applied

but instead of picking random samples, the entire minority

class is used each time, as illustrated in Fig. 3. The large

imbalanced dataset is split up into several smaller balanced

datasets. First, the majority class in the unbalanced dataset is

split into subsets with size equal to the minority class. Then,

the epochs of the minority class are appended to the different

sets of the majority class leading to multiple balanced datasets.

Each dataset contains all epochs from the minority class and

a disjoint set of epochs from the majority class. Each of these

individual datasets can now be used to construct a separate

model.

E. Long Short-Term Memory Neural Networks

Each dataset resulting from the balanced bootstrapping

procedure is modeled using a powerful model known as a

Long Short-Term Memory (LSTM) [38] neural network. It is

used to capture temporal information and accurately model

the data. LSTM networks are a type of RNN based on LSTM

cells.

The network architecture for a single instance of the LSTM

is shown in Fig. 4. This architecture is similar to other

architectures used for sequence modeling [39], [31]. It consists

of an LSTM layer with n1 cells followed by a dropout

layer with dropout probability p1. Dropout layers are used

to improve the generalization of the network towards unseen

data [40]. Finally, a dense layer with n2 cells is appended

followed by a dropout layer with dropout probability p2 and

the output prediction cell with a sigmoid activation function.
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Annotation

Respiration

...
Fig. 2: The binary label of an individual epoch is determined based on the annotation of trained staff at the end of that epoch.

The darker shaded portion indicates a sleep apnea event.

(a) (b) (c)

Fig. 3: The balanced bootstrapping procedure is used to

transform an unbalanced dataset (Fig. 3a) into multiple bal-

anced datasets. The majority class is divided into sub-datasets

with size equal to the minority class (Fig. 3b). Subsequently,

the minority class is copied to each of the sub-datasets to

create balanced sub-datasets (Fig. 3c). The minority class is

represented by the shaded bars while the majority class is

represented by the clear bars.

This activation function results in an output that can be

interpreted as the probability that the input epoch contains

apnea. This architecture is replicated for each LSTM model

in Fig. 1.

LSTM
layer 

n1

dropout
layer 

p1

dense
layer 

n2

dropout
layer 

p2

output
layer 

1

epoch 
data

single
prediction

Fig. 4: Architecture of a single instance of the proposed sleep

apnea detection model using LSTM cells.

A flowchart of the cell used in this work is shown in Fig. 5

and the corresponding equations are shown in (1).

it = σ(xtWxi
+ ht−1Whi

+ ct−1Wci + bi)

ft = σ(xtWxf
+ ht−1Whf

+ ct−1Wcf + bf )

ct = ftct−1 + it tanh(xtWxc
+ ht−1Whc

+ bc)

ot = σ(x+ tWxo
+ ht−1Who

+ ctWco + bo)

ht = ot tanh(ct)

(1)

In these equations, σ is the logistic sigmoid function,

xt represents the input sequence x at time t consisting of

Fig. 5: Flowchart of the LSTM cells used in this work.

respiratory data measured at 5Hz and ht represents the hidden

state at time t. The input gate, forget gate and output gate

are represented by i, f, o respectively. The cell and cell input

activation vectors are represented by o, c. The weight matrices

are represented by W and the bias terms by b.

To tune the hyperparameters n1, n2, p1 and p2 of the

network, Bayesian optimization (BO) is used which is a pow-

erful strategy to optimize hyperparameters of medical machine

learning models [41], [33], [42]. It converges the network

architecture to an optimal design for accurate prediction of

unseen data. In this work, the Efficient Global Optimization

algorithm is used with the Expected Improvement acquisition

function [43]. More details about BO of hyperparameters are

given in [41].

For each of the datasets generated by the balanced boot-

strapping procedure, a network as shown in Fig. 4 is trained

using minibatches of 32 epochs, consisting of 16 positive and

16 negative epochs. The weights W and b of the network

are optimized using the adadelta optimizer [44] and the loss

function is the binary crossentropy as defined by:

loss =

N∑

i=1

−(yi log(pi) + (1− yi) log(1− pi))

where N represents the number of samples to compute the

metric on, yi indicates the true binary label of sample i and

pi represents the predicted probability for sample i.
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F. Aggregated Prediction

To test the presence of a sleep apnea event in a new epoch

of data, it is pre-processed as in Section III-B and passed

through each of the trained LSTM models in Fig. 1. Each

LSTM model outputs the probability of an apnea event because

of the sigmoid activation function. The resulting probability

estimates of each separate LSTM model are then aggregated

into a single probability prediction per epoch by averaging.

An epoch can be labeled as either apnea or non-apnea by

determining if the estimated averaged probability p ≥ 0.5.

This classifier can be further fine-tuned for specific use-cases

by defining a threshold p ≥ τ and optimizing the value of τ .

To get a measure of the severity of apnea of a patient, the

Apnea Hypopnea Index (AHI) is computed as the number of

apnea events longer than 10 seconds divided by the total sleep

time following the official AASM guidelines [6]. A prediction

of the probability of sleep apnea for each second of the signal

is made using the aggregated probability of sleep apnea from

the LSTM models. These generated annotations are then used

to compute the AHI. Using this score, patients are classified

with normal breathing, mild, moderate or severe sleep apnea:

• Normal breathing: AHI ≤ 5
• Mild sleep apnea: 5 ≤ AHI ≤ 15
• Moderate sleep apnea: 15 ≤ AHI ≤ 30
• Severe sleep apnea: AHI ≥ 30

IV. EXPERIMENTAL SETUP AND METHOD

A. Dataset

To validate the proposed method, the SHHS-1 dataset [11]

is used, which contains data of 5804 adults of age 40 and

older. The comprehensive size of this dataset makes it possible

to test in a reliable way whether the algorithms are able

to generalize to many different patients. Out of these 5804

patients, 2100 patients were sequentially selected. The only

selection requirement was having at least six hours of useful

data. This set is then split up five times in disjoint training

sets of 100 patients and test sets of 2000 patients. A training

set of 100 patients provides enough variation in the patients

while keeping the computational burden for the model low.

The dataset consists of 1008 female and 1092 male patients

with mean age 62.5 ± 12.6 (standard deviation) years, mean

weight 74.0± 19.3 kg and mean BMI 27.2± 5.3 kg/m2. The

mean recording length is 10.1± 1.6 hours with a mean sleep

time of 6.2 ± 1.0 hours. There are 35 patients with normal

breathing (mean AHI = 3.8 ± 1.1), 450 patients with mild

sleep apnea (mean AHI = 10.7 ± 2.7), 815 patients with

moderate sleep apnea (mean AHI = 22.1 ± 4.3) and 800

patients with severe apnea (mean AHI = 44.1± 12.2).

The SHHS-1 dataset contains a variety of physiological

signals measured for each patient including respiratory, car-

diovascular and oxygen saturation signals. In this work, the

focus is on sleep apnea detection in respiratory signals. A

recent study on the comparison of different respiratory signals

showed that direct measurements from respiratory belts around

the abdomen and thorax resulted in the best predictive perfor-

mance [33]. Hence, the proposed algorithm is tested using

these two respiratory signals. To also test the performance

of the algorithm on indirect measurements, the EDR signal is

includes as well. Each of these signals are tested in a separately

trained model:

• Abdores: Abdominal respiratory belt below the lower

edge of the left ribcage.

• Thorres: Thoracic respiration belt below left armpit.

• EDR: ECG derived respiration signal by filtering the ECG

signal with a cut-off frequency of 0.4Hz and high-pass

filtering this signal with a cut-off frequency of 0.2Hz [45].

The annotations of sleep apnea in the SHHS-1 dataset are

based on the SHHS method [11].

B. Benchmark Methods

To compare the performance of the proposed method versus

the state-of-the-art, three model types are included in the

experimental setup:

• Standard machine learning: An Artificial Neural Network

(ANN) model [26], Logistic Regression (LR) model [23]

and Random Forest (RF) model [46] are evaluated and

compared as these are frequently used in sleep apnea or

other medical use-cases.

• Temporal machine learning: An LSTM network, similar

to the one introduced in Fig. 4, but now the inputs

are human-engineered features instead of raw respiratory

signals. It is denoted as F-LSTM.

• New method: The proposed new method of Fig. 1,

denoted as LSTM, which uses raw respiratory signals that

have only been noise filtered.

The hyperparameters of all models are tuned using BO. The

implementation of the BO algorithm is based on the GPyOpt

Python library [47]. To train and test the models with the

respiratory signals, the same pre-processing steps as Fig. 1 are

performed and typical discriminative features for sleep apnea,

sleep studies and biomedical health in general, are extracted,

both in the time-domain as well as the frequency-domain [24],

[27], [33]. An overview of features is provided in Table I

TABLE I: Overview of human-engineered features used in

benchmark methods.

Origin Feature

Time-domain mean, standard deviation, skewness, area under ab-
solute value

Respiratory peaks mean of heights, standard deviation of heights, skew-
ness of heights, number of peaks, mean inter-peak
distance, standard deviation of peak-distance, skew-
ness of inter-peak distance, sum of peak heights

Frequency-domain peak frequency, mean frequency, central frequency,
band power

For the standard machine learning models (ANN, LR and

RF), the set of 100 training patients is used in a 5-fold

cross-validation during optimization of the models to prevent

overfitting. For the temporal machine learning models (F-

LSTM and LSTM), the set of 100 training patients is split up

per-patient in a training, test and validation set for training and

optimizing the model, as is typically done in deep learning to

avoid large computational demands. These methods of training

and optimization adhere to the recommendations and common

practices for each model type.
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As this study aims to analyze the predictive power of

several algorithms for the automated detection of sleep apnea

in clinical settings, no epochs are removed from the training

set, nor from the test set.

C. Evaluation Criteria

Sleep apnea detection algorithms are evaluated using a vari-

ety of metrics. Typically, the per-epoch classification accuracy

is calculated using metrics such as the sensitivity, also known

as recall, and specificity. These are based on the number of

True Positives (TP), False Positives (FP), True Negatives (TN)

and False Negatives (FN). Another commonly used metric is

the classification accuracy.

sensitivity = TP/(TP + FN)

specificity = TN/(TN + FP)

accuracy = (TP + TN)/(FP + TN + TP + FN)

Preferably, all these metrics have a high score. However,

they can easily be influenced by changing the decision

threshold τ in Section III-F. Therefore, a more complete

assessment is achieved by computing the Receiver Operator

Characteristics (ROC) and the associated area under the curve

(AUROC) [23] as these metrics summarize the results for

all thresholds τ . The ROC curve is created by determining

the unique pairs of sensitivity and specificity for all possible

thresholds τ and plotting this in a graph of sensitivity versus

1− specificity [48]. In order to compute this, the models need

to output a probability p of an event. All models used in this

experimental setup are configured to output this probability.

The area under the curve can be computed by integrating

across all thresholds.

Many works in literature report very high sensitivity and

specificity scores. However, when dealing with datasets that

have an imbalance in the number of positive vs negative

samples, such metrics can provide misleading insights [36],

[35]. As this imbalance is certainly the case in sleep apnea,

it is advisable to further take into account the precision and

negative-predictive-value (NPV) metrics.

precision = TP/(TP + FP)

NPV = TN/(TN + FN)

Given that the precision is also susceptible to an arbitrary

decision threshold, the possible combinations of precision and

sensitivity can be summarized in the precision-recall curve and

the area under this curve (AUPRC). The PR-curve is computed

using a similar method as the ROC curve but instead of pairs

of sensitivity and specificity, it uses pairs of precision and

recall.

Next to being able to accurately predict the per-epoch anno-

tation label, it is also important to be able to predict the per-

patient AHI. Hence, the classification accuracy per AHI class

is also computed. This reflects the accuracy of categorizing

a patient in any of the 4 AHI classes. To compute these

scores, the decision threshold τ , discussed in Section III-F,

TABLE II: Optimal hyperparameters for LSTM model result-

ing from the Bayesian optimization procedure.

signal n1 n2 p1 p2

abdores 100 50 0.5 0.5

thorres 100 50 0.5 0.5

EDR 50 20 0.14 0.27

is optimized. The threshold τ determines when a specific

probability of apnea is sufficient to flag the epoch as containing

an apnea event. The AHI classification of the 100 training

patients is computed for various decision thresholds τ between

0 and 1. The threshold τ leading to the best classification

accuracy for the training patients is used to compute the AHI

for the test patients. This is repeated across the five iterations

of the experiment.

V. RESULTS AND DISCUSSION

In the following discussion, the parameters for the proposed

LSTM model are presented and discussed. Next, the per-epoch

metrics are discussed and compared to literature. The per-

subject metrics are also discussed and the advantages of the

balanced bootstrapping procedure are analyzed. Finally, the

overall performance of the model is evaluated.

A. Parameters of the model

The optimal hyperparameters of the LSTM model for each

of the respiration signals, generated by the BO procedure, are

shown in Table II. In addition to the parameters that were

optimized, other parameters were considered fixed, namely:

the sampling frequency fs of the input data, the epoch length

lepoch and the stride sepoch between consecutive epochs. The

AUPRC on the validation dataset is computed for a range

of the parameters. The effect of varying these parameters is

shown in Fig. 6.

Changing the sampling frequency fs has little to no effect

on the performance of the model as demonstrated by Fig. 6a.

This is because all signals have been low-pass filtered with a

cutoff frequency of 0.7Hz during the pre-processing step, as

discussed in Section III-B.

On the other hand, changing the length of the epochs does

have a considerable impact on the performance of the model

as demonstrated by Fig. 6b. For the abdores and thorres

signals, an improvement can be seen up to a length of 30
seconds. After that, the performance gain is minimal although

the computational requirements drastically increase. This is

mainly due to the LSTM model being used. Although the

longer epochs contain more valuable data, the results show that

the LSTM model can no longer successfully exploit this extra

information. In addition, increasing the epoch length leads to

a longer training process.

Lastly, when increasing the stride between epochs, there is a

slight drop in performance as demonstrated by Fig. 6c. When

the stride is small more data is available to train the model

on. When choosing a larger stride, the amount of epochs in

the training data drops.
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TABLE III: Evaluation metrics for the different sleep apnea detection models for each respiration signal, aggregated across all

epochs of the 2000 unseen test patients and averaged across the five experiment iterations resulting in the mean and standard

deviation estimates. All metrics are expressed in percentages. In general, the proposed LSTM model offers the best results.

(a) Non-temporal models

Abdores Thorres EDR

% ANN LR RF ANN LR RF ANN LR RF

sensitivity 66.0± 2.7 31.4± 8.7 17.5± 1.1 70.0± 3.4 76.6± 3.3 17.2± 1.8 40.2± 24.8 96.6± 4.0 7.7± 1.4

specificity 55.9± 2.4 79.5± 6.7 95.6± 0.8 56.4± 4.2 40.9± 4.9 96.3± 0.7 63.9± 23.3 5.4± 6.1 99.2± 0.4

precision 23.8± 0.6 24.5± 1.5 45.6± 0.0 25.1± 1.0 21.2± 0.7 49.2± 2.8 18.9± 0.9 17.6± 0.4 67.7± 8.2

NPV 88.7± 0.5 84.8± 0.6 84.8± 0.2 90.0± 0.5 89.2± 0.2 84.8± 0.3 83.9± 0.9 88.4± 0.6 83.7± 0.2

accuracy 57.7± 1.6 71.2± 4.1 82.1± 0.6 58.7± 3.0 47.0± 3.5 82.6± 0.4 59.8± 14.2 21.2± 4.4 83.4± 0.3

AUPRC 20.8± 0.1 19.0± 0.5 23.3± 0.6 22.2± 0.4 20.1± 0.3 22.7± 0.6 18.0± 0.5 17.5± 0.5 20.8± 0.6

AUROC 58.7± 0.6 53.0± 1.0 54.8± 0.4 62.1± 0.7 57.7± 0.5 55.4± 0.6 51.6± 1.3 50.8± 0.8 52.4± 0.4

(b) Temporal models

abdores thorres EDR

% fLSTM LSTM fLSTM LSTM fLSTM LSTM

sensitivity 57.9± 8.6 62.3± 2.9 62.9± 3.5 67.8± 2.5 48.8± 10.2 52.1± 0.0

specificity 73.9± 10.0 80.3± 2.3 77.2± 4.5 76.5± 2.3 60.8± 12.5 61.8± 1.4

precision 33.0± 5.8 39.9± 1.9 36.8± 3.1 37.7± 1.6 21.1± 2.2 22.1± 0.2

NPV 89.5± 0.9 91.1± 0.4 90.9± 0.4 91.9± 0.4 85.0± 0.6 86.1± 0.2

accuracy 71.1± 6.8 77.2± 1.4 74.7± 3.1 75.0± 1.4 58.7± 8.6 60.1± 0.9

AUPRC 36.4± 2.4 45.3± 1.2 43.9± 0.2 48.0± 1.0 22.1± 0.9 22.7± 0.2

AUROC 71.5± 1.7 77.5± 0.5 76.9± 0.8 79.7± 0.4 57.6± 1.7 58.8± 0.2
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Fig. 6: Influence of the model parameter settings on the AUPRC of the validation dataset.

B. Per-epoch score evaluation

Table III provides an overview of all per-epoch evaluation

metrics for each model and each respiration signal separately.

The values represent the mean and standard deviation across

the five experiment iterations. The per-epoch results show that

in general, the LSTM model outperforms the state-of-the-art

models, especially when evaluating the AUPRC. This metric

demonstrates a considerable reduction in false positives for

the proposed model in comparison to the benchmark methods.

However, the amount of false positives is still quite high across

all tested methods and this can be attributed to several causes:

• Typically, only episodes longer than 10 seconds are

annotated. However, the models make decisions on a per-

second basis and hence also detect shorter respiratory

disturbances. Luckily, these short false positives can

easily be filtered out by a post-processing step.

• As mentioned in Section IV-B, no manual cleaning has

been performed on the data to accurately reflect a real-life

measurement of a patient. Only noise-canceling methods

have been applied, but these cannot fully remove all

measurement noise. The models can interpret this noise

as irregular breathing and flag the epoch as an apnea

episode. The proposed LSTM model is more robust

against noise as it evaluates the full data of the epoch

to make a decision instead of only using a set of summa-

rized features. Manual epoch removal can significantly

improve these results as shown in other works, but is not

representative of the use-case this work aims to evaluate.

• All models aim to detect sleep apnea events based on

respiratory signals. However, trained sleep technicians

also take into account other signals such as the oximetry

data. The proposed method is a way of quick screening

to assist trained staff.

• The human annotations of the position of the sleep apnea

events are not exact to the second. However, the model

evaluation requires the position to be as accurate as the

annotations. Often, the models start detecting several

seconds too early or too late. When computing the AHI,

used in analysis of results per patient, this does not

influence the results in any way.

These results can be compared with scores reported in

literature. Table IV provides an overview of several other

studies found in literature for automated prediction of sleep

apnea using respiratory signals or the ECG signal. The stan-
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dard machine learning models included in the comparison

are the Support Vector Machine (SVM) model [49], the LR

model [50] and the RF model [51]. The temporal machine

learning models include the LSTM model [29], [30] and

the SVM-based Hidden Markov Model (HMM) [27]. The

comparison also includes a rule-based model [52] and a deep-

learning Convolutional Neural Network (CNN) model [53].

For an excellent overview of other models in sleep apnea

detection, we refer to two recent review papers [12], [54].

The comparison shows how the other studies typically

achieve high scores for apnea classification using the ECG

signal when the model is based on human-engineered features.

This is in contrast to scores for the EDR method used in this

work. A major limitation of the ECG signal however, is the

influence of other illnesses on the sleep apnea analyses. The

EDR signal is less susceptible to this but is still influenced

by noise. When comparing the studies that use respiration

signals, the results are comparable to our proposed LSTM

method. Note however, that it is difficult to fully compare

these results as they are computed on different datasets and

with different experimental setups. Furthermore, without the

AUPRC metric, it is difficult to analyze the performance of the

algorithm with regards to false positive predictions. As there

is a large data imbalance, algorithms with more false positives

than true positives can still achieve good scores using the other

metrics. With this AUPRC metric, a more complete assessment

of the performance can be made.

C. Per-patient score evaluation

When physicians analyze a patient to estimate the severity

of sleep apnea, the individual per-epoch scores are not used.

Instead, they base their decisions on the aggregated AHI

metric. Fig. 7 shows the confusion matrices for the AHI

classification for each benchmark method computed using the

abdominal respiratory signal. The confusion matrices represent

the mean (and standard deviation) across the five experiment

iterations. The figure demonstrates that the predictions of the

LSTM model are more concentrated around the actual target

class than for the other models. Importantly, no severe apnea

cases where classified as normal breathing with the LSTM

model. The predictions for the other models are more biased.

The results of the confusion matrices can further be summa-

rized in a classification accuracy graph as shown in Fig. 8 for

all respiration signals and all models. The graph shows that

in general, all models perform much better with the moderate

and severe apnea cases than the normal or mild cases when

using respiratory data. This can be traced back to different

dynamics in respiration for patients with normal breathing

when compared to patients with severe apnea. Studies have

shown that patients with severe obstructive apnea have a

higher activity in the sympathetic nervous system [55], [56].

When the activity in the sympathetic nervous system increases,

the respiration rate also increases. As the amount of normal

(1.65 %) or mild (22.70 %) apnea patients is much more

limited in the database than the amount of moderate (47.70 %)

or severe (34.95 %) patients, the normal respiration patterns

are underrepresented in the dataset and the model is unable

to sufficiently learn these dynamics in comparison to the

dynamics of severe apnea patients.

When analyzing the AHI classification accuracy, the per-

formance of the other benchmark models is improved when

compared to only analyzing the per-epoch metrics. This is be-

cause the per-epoch metrics require predictions to be accurate

for the exact location/duration of the event.

Fig. 8c shows the classification accuracy for the EDR signal.

These results show that the accuracy of the model with derived

respiration is less then when using direct respiration.

D. Effect of balanced bootstrapping

The confusion matrices can also be used to assess the

variation of predictions across the different bootstraps from

Section III-D. Fig. 9 demonstrates the mean and standard de-

viation of AHI classification in confusion matrices, computed

using the three different respiration signals with the LSTM

model across the different balanced bootstrapping predictions

in one of the five experiment iterations. The figures demon-

strate an increased variation in predictive performance across

the bootstrapped models for the EDR signal when compared

to the models with respiratory signals, indicating an increased

advantage of the balanced bootstrapping procedure when the

signal is less clean.

E. Overall performance

When comparing the metrics and analyses, the LSTM

model, trained on respiratory signals without any human

feature engineering outperforms the current state-of-the-art

methods for sleep apnea detection in respiratory signals. When

comparing the specialized metrics for imbalanced data, the

LSTM model shows a significant increase over the state-of-

the-art models. Because the LSTM model learns and predicts

from raw data with only minimal noise filtering, it is able to

provide more stable predictions in practical settings than the

other models, resulting in less false positives.

The SHHS-1 dataset was used in this experiment for its

large size, enabling us to test in a reliable way if the developed

methods are able to generalize to new, unseen patients with

a variety of characteristics. However, since the development

of this dataset, there has been a considerable improvement in

apnea annotation criteria for the reduction of inter-rater and

intra-rater variability as demonstrated by recent studies [10].

As annotations using these new criteria are more consistent,

the predictions of models trained using these new criteria

will also be more consistent, which will result in higher

performance metrics.

The proposed model offers a powerful method for quickly

analyzing the recording based on respiratory information

alone. It represents a first important step towards a fully

automated sleep apnea detection method. Furthermore, it also

provides a method of quickly indicating interesting epochs for

trained staff, allowing them to focus on the interesting sections

during the night, and allowing more patients to be evaluated.
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TABLE IV: Comparison metrics from several other sleep apnea studies using either ECG or respiratory data. Event types are

classified as Apnea (A), Obstructive apnea (O), Hypopnea (H) or No apnea (N). No studies report the valuable AUPRC metric.

All values are represented as percentages.

study model signal event dataset granularity sensitivity specificity precision npv accuracy AUPRC AUROC

[29] LSTM ECG AH/N 35+45 epoch 99.9 100.0 - - 99.9 - -
[30] LSTM ECG O/N 35 recording - - - - 97.8 - -
[27] SVM-HMM ECG O/N 70 subject 82.6 88.4 - 86.2 - 94.0
[49] SVM resp. AH/N 4 epoch 93.2 88.9 90.0 - 89.9 - -
[50] LR resp. AH/N 148 subject 88.0 70.8 - - 82.4 - 90.3
[51] RF resp. A/N 8 epoch - - - - 92.8 - -
[53] CNN resp. O/N 100.0 epoch 74.7 - 74.5 - 74.7 - -
[52] rule-based resp. A/N 100.0 epoch 83.6 72.3 - - - - -
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Fig. 7: Confusion matrices for the prediction of AHI class, using the abdores respiratory signal with the different machine

learning models. The values represent the mean and standard deviation across the five experiment iterations. The results of the

LSTM model classifications are most concentrated around their actual target classes.
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Fig. 8: Classification accuracy for each AHI class and each respiratory signal averaged across the five experiment iterations.

The LSTM model offers the best overall performance. There is a considerable drop in performance for the EDR signal.
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Fig. 9: Confusion matrices indicating the mean and standard deviation of AHI classification across the different balanced

boostrap predictions. There is a larger variation for the EDR signal than for the respiratory signals.

VI. CONCLUSION AND FUTURE WORK

As sleep apnea is one of the most common sleep disorders

and the consequences can be very severe, more patients need

to be analyzed and automatic detection methods are needed.

Many such methods have been proposed over the years. These

typically use human-engineered features. In this work, a novel

method of training LSTM networks on the respiratory signal

itself, i.e. without the need for manual feature engineering, is

proposed. The method is able to detect OSA, CSA as well

as hypopnea. Preprocessing the signals to extract respiratory

information combined with efficient usage of the data via

the balanced bootstrapping scheme enables the training of

LSTM networks on long sequences of respiratory signals,

which results in a more robust and more accurate model when

analyzing new patients.

The analysis is performed using typical sleep apnea metrics

as well as specialized metrics for imbalanced data. The results

of evaluating this model on five sets of 2000 unseen patients

show a considerable improvement when compared to the

current state-of-the-art. There is a significant increase in per-

epoch performance as well as in accuracy for AHI-based

classification. This study also demonstrates the importance of

using specialized metrics for imbalanced data when assessing

the performance of machine learning models for the detection

of sleep apnea. These results provide valuable insights for the

further development of automated sleep apnea screening tools.

When analyzing sleep quality, other events such as teeth

grinding and snoring are also equally important. In future

work, our model will be extended to also include these other

types of event to provide a complete and accurate sleep

analysis method.
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