Software Engineering (ASE'03)

© 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works. Original publication: Proceedings of the 18th IEEE International Conference on Automated

Automated Software Testing Using a Metaheuristic Technique Based on Tabu
Search

Eugenia Diaz, Javier Tuya, Raquel Blanco
Department of Computer Science, University of Oviedo
Campus de Viesques s/n, Gijon, Asturias,33203 SPAIN

eugenia@lsi.uniovi.es, tuya@lsi.uniovi.es, rblanco@lsi.uniovi.es

Abstract

The use of techniques for automating the generation of
software test cases is very important as it can reduce the
time and cost of this process. The latest methods for
automatic generation of tests use metaheuristic search
techniques, i.e. Genetic Algorithms and Simulated An-
nealing. There is a great deal of research into the use of
Genetic Algorithms to obtain a specific coverage in soft-
ware testing but there is none using the metaheuristic
Tabu Search technique. In this paper, we explain how we
have created an efficient testing technique that combines
Tabu Search with Korel’s chaining approach. Our tech-
nique automatically generates test data in order to obtain
branch coverage in software testing.

1. Introduction

Software testing is an expensive process, typically con-
suming at least 50% of the total costs involved in
software development [1]. With techniques for automat-
ing the generation of software testing, we will be able to
test the software more efficiently while reducing the time
taken up by this task, thus reducing the cost and increas-
ing the quality of the final product.

Among the different approaches used for the automa-
tion of this process, we may distinguish between random
techniques [9] (test data are generated randomly to cover
the input variables domains as much as possible), static
techniques [2] (the program under test is not executed)
and dynamic techniques [6] (the program under test is
executed).

The most recent dynamic techniques for automatic
generation of tests, for obtaining a specific system cover-
age, follow two approaches: one is to represent the sys-
tem by linear inequalities that are solved by a certain
technique [4] and, the another is to use metaheuristic
search techniques, in which the testing problem is treated
as a search or optimization problem whose goal is to find

the appropriate tests to obtain program coverage that is as
high as possible. One of these metaheuristics, genetic
algorithms, is the most widely used [5] [7] [8] [10]. The
simulated annealing technique has likewise been used by
[11]. Another metaheuristic technique that can be applied
to automatic test data generation is Tabu Search. There
are a great variety of real-world problems that can be
solved by Tabu Search, however, in software testing,
there are no prior studies in which Tabu Search has been
used. This is the reason why we explain, in this paper,
how we have used Tabu Search to automatically generate
test data to obtain branch coverage in software testing.

A brief description of the Tabu Search algorithm is
given in Section 2. In the third section we explain how we
applied Tabu Search to obtain tests for branch coverage.
Finally, we present the conclusions reached together with
further lines of research.

2. The Tabu Search technique

Tabu Search (TS) is a metaheuristic search technique
based on the premise that, in order to qualify as intelli-
gent, problem solving must incorporate adaptive memory
and responsive exploration [3]. Thus, the algorithm of
Tabu Search is based on that of the next k neighbors,
while maintaining a tabu list (memory) of visited
neighbors that are forbidden. A general Tabu Search
algorithm appears in Figure 1.

The Tabu Search algorithm has a number of parame-
ters that have to be chosen on the basis of the problem to
be solved: the objective function (fitness function) which
has to measure the cost of a solution, an appropriate can-
didate list strategy (to try to choose good neighbor candi-
dates that goes beyond a local optimum without exploit-
ing the examination of elements in the neighborhood)
and, it is also necessary to define short-term memory and
long-term memory and their respective strategies. Short-
term memory stores the recent moves of the search as
tabu. Long-term memory, on the other hand, stores the
frequency with which a move occurs in order to penalize
frequently visited moves that diversify the search.

begin
Initialise current solution
Calculate the cost of current solution and store it as best
cost
Store current solution as new solution
Add new solution to tabu list
do
Calculate neighbourhood candidates
Calculate the cost of candidates
Store the best candidate as new solution
Add new solution to tabu list
if (the cost of new solution<best cost) then
Store new solution as best solution
Store the cost of new solution as best cost
endif
Store new solution as current solution
while NOT Stop Criteria
end

Figure 1. Tabu Search algorithm

3. Using Tabu Search to obtain branch
coverage

We have developed an algorithm, based on Tabu
Search, to generate tests that enable us to automatically
obtain the maximum percentage of branch coverage in
any given software. Furthermore, as our objective is to
obtain branch coverage, we need to know throughout the
whole search which branches of the program have been
covered by tests and which not. To do so, we use the
program control flow graph (whose nodes represent
statements and whose edges represent the flow of control
between statements) to store relevant information about a
node, like for example whether it has been reached or not
and the best test that reached it.

Next, we explain how we have applied the TS algo-
rithm to solve the problem of obtaining branch coverage
in software testing.

3.1 Algorithm goal and solution

First of all, we need to define the goal to reach, namely
obtaining maximum branch coverage. If there are unfea-
sible branches, this value will be unknown. For this rea-
son, we established a stopping criterion for the algorithm:
when all the branches have been reached (all nodes cov-
ered) or when a maximum number of iterations of the TS
algorithm have been surpassed.

On the other hand, a current solution (test case) for us
is formed by a set of given values (v, v,, ...,v,) for the
input variables (X, y, z,....,n) of the program under test.
When the current solution is the best one reaching a node
or for reaching a child node, it is stored as the best solu-
tion of the node together with its cost. The cost of a test is

calculated using the fitness function shown in sub-section
3.5.

Initially, a random solution is generated as the current
solution. Via this test, the program under test is executed
to check along which branches it has gone and the cost
that said test has incurred in each node that it has reached.
As this is the first solution found, it will be stored in each
reached node.

When the algorithm finishes, it shows each best test
that has reached each leaf node on the control flow graph
and each best test that has reached each non-leaf node
that it was not possible to continue testing in its child
nodes (possible unfeasible branches).

3.2 Tabu lists: the memory of the algorithm

One of the main characteristics of Tabu Search is that
it has short-term memory and long-term memory, along
with their corresponding handling strategies. In our ap-
proach, short-term memory stores the tests that have been
the best for the goal node and long-term memory stores
the worst tests during all the search process.

All the tests generated (and not only the best) could
remain in memory, but that would slow down the search
if the tabu list is large and it would not suppose a major
improvement, since the test candidates that are generated
are based on the best test in each node. For this reason,
avoiding repeating the best test would be to avoid repeat-
ing many tests candidates. Also, as only the neighboring
candidates of the best tests will be explored, these tests
will be tabu for the rest of the search process, since their
neighborhood has already been explored.

Figure 2 shows a simple example of how the algorithm
works with tabu lists. The algorithm’s goal is to achieve
the global minimum x* (test data case that achieves the
node goal) defined as f(x*)<f(y) VyeD, y#x*, where D is
the set of feasible values for x and f(x) is the fitness func-
tion, which is calculated as explained in sub-section 3.5.
Suppose that the initial solution is x0 (see Figure 2). This
is the best solution known, so it is added to the short-term
memory tabu list. Next, to try to achieve x*, some
neighboring candidates of the best solution up until that
moment (X,) are generated as explained in sub-section
3.3. Of all the candidates, the test data x; selected is that
which satisfies f(x;)<f(x(). For example, it obtains x; as
the best candidate. x; is then inserted here in the short-
term memory tabu list. Next, the algorithm will use x; to
find a new x;, for example x2, which will then be inserted
in the short-term memory. This whole process will be
repeated until the algorithm achieves the goal x* or until
it arrives at a strong local minimum. A strong local mini-
mum X, is that test data that it has not been possible to
find in its explored neighborhood an x; that satisfies
ix)<fx,).

short-term memory—> [Xa| X1 —fXo] |
f(x)
A

long-term memory—>

local
: . minima _
* X, X X X
X LM1 XXX X X

Figure 2. Tabu lists creation

The tabu algorithm should preclude getting stuck in the
local minima. The long-term memory tabu list is used for
this. Those x, that have been local minima during the
search process are stored in this list. In the example, if the
algorithm reaches the minimum local x; s, before achiev-
ing the goal, x|\ is stored in the long-term memory tabu
list (Figure 2). Once a local minimum has been found, the
tabu algorithm applies backtracking, as explained in sub-
section 3.4.

The long-term memory will have few test data cases.
For this reason, it is maintained during the testing process
without too much effect on the algorithm’s performance.
On the other hand, the short-term memory could store
enough test cases and this could reduce the algorithm’s
performance. This, however, does not occur since this
memory is often deleted (when the goal node changes).
Thus, the use of memory in the testing tabu algorithm is
not critical.

3.3 Neighbor selection process

Inside the loop (see Figure 1), the first step will be to
calculate the neighboring candidates. The idea here is that
if one test case in the control flow graph has covered the
parent node but not the child node, a neighboring test can
be found that reaches the child node using the test that
covers the parent node and which is the best one found up
until then (Figure 3). This idea uses the chaining ap-
proach of [6], which consists in the concept that the parts
of a program can be treated as subgoals, where each sub-
goal is solved using function minimization search tech-
niques. In our algorithm, we have selected as the node to
cover in each iteration the following node without cover
in preorder and whose parent is already covered.

O Covered nodes
Q Non-covered nodes

Best test data
(v1,v2,...,vn)

Subgoal node
which can possibly E |
be covered by ~ ‘-----------i
neighbors of
(v1,v2,...,vn)

Figure 3. Subgoal node selection

Once we have established the subgoal node, 4*n
neighbors are generated starting from the best known test
for its parent, n being the number of input variables of the
program under test. Our technique consists in generating
two near neighbors and two neighbors further from the
test that is the base. That is to say, if the base test is (vy,
Vs, ...,Vy), we maintain the same values for all vy that
satisfy k#i and we generate four new values for v;. Thus,
we have 4 new test data neighbors:

(V1, Vay ey ViTA,...,Vn)

(V1, Vay ey VitAs. ., V)

(V1, Vo, «ey Vit sV

(V1y V2, ooy Vi =Hy..0,Vy)
where A is a low step length and p is a high step length.
In our implementation, the values for A and p are depend-
ent on the type and range of the input variables and al-
though they are fixed at the beginning of the algorithm,
they change during execution, taking into account the
evaluation of the generated tests. Thus, it would be possi-
ble to carry out bigger jumps when there are no appropri-
ate neighbors and a very fine adjustment of the search
when the neighbors come closer to the desired evaluation.

Once the tests candidates are generated, we verify
whether these are tabu tests, in which case they are re-
jected. If a candidate is not tabu, it is executed with the
program under test and if it has been the best test known
for some of the nodes that it has reached, it is stored as
the best test for the node.

3.4 Treatment for unfeasible branches

Furthermore, in order to prevent the algorithm spend-
ing all its iterations in an attempt to cover unfeasible
nodes and/or in trying to reach a child node from a bad
test in the parent, we have defined two parameters whose
values are dependent on the magnitude of the program to
be tested: a maximum number of neighbors to try to reach
a child node with the same test in the parent and a maxi-
mum number of neighbors to reach a child node from its
parent node. Thus, when one of this maximum has been
reached and it has not been possible to achieve the target
child node, backtracking is carried out to try to search for

a new better test for the parent node (which is marked as
not covered). The memory of the TS algorithm, the tabu
lists, is of great importance here, since it avoids reconsid-
ering as better tests those that have already been tested
and were rejected for not being able to reach the goal
node.

3.5 Fitness function

Before executing the TS algorithm, it is necessary to
instrument the program being tested so as to introduce, at
each node, the sentences able to assign the cost of the test
that reaches it. The use of a good cost function is funda-
mental for the algorithm to work correctly. As we see it,
for us, the best test for a node is the test that has more
possibilities of allowing permutation between branches,
i.e. the test that when executing one node has the most
boundary values reaching that node. Then, the cost func-
tion of our algorithm is calculated as shown in Table 1.

Table 1. TS fitness function

Element TS fitness function
Boolean 0
X=Y, X#Y abs(x-y)
X<y, X<y y-X
X>y, X2y X-y
XAY Min(cost(x),cost(y))
XVy if x is TRUE and y is TRUE then
Min(cost(x),cost(y))
else ZCOS l‘(Ci)
¢,FALSE
end if
—X Negation is moved inwards and
propagated over x

4. Conclusions and further work

Tabu search is a metaheuristic search technique based
on the algorithm of the next k neighbors. Although there
are a great variety of real-world problems that can be
solved by Tabu Search, this is the first work of its appli-
cation to software testing.

The structure of TS, which consists in searching inside
the neighborhood of a solution and remembering the best
solutions, makes TS a simple, intuitive technique to apply
to the generation of branch coverage tests. Furthermore,
the experimental results we have obtained with our tabu
algorithm make TS an effective technique for obtaining
very high branch coverage.

This is a new work that opens two clear investigation
lines: the study of the behavior of the algorithm when
their tabu parameters change and the application of TS to
obtain other types of software coverage (path coverage,
multiple condition coverage and loop coverage).

Acknowledgements

This work was funded by the Department of Science and
Technology (Spain) under the National Program for Re-
search, Development and Innovation, project TIC2001-
1143-C03-03

References

[1] Beizer, B., Software Testing Techniques, 2nd. Ed. Van
Nostrand Reinhold. 1990

[2] DeMillo, R. A., Offutt, A. J. Constraint-based automatic test
data generation, IEEE Transactions on Software Engineering,
17(9). 1991.

[3] Glover, F. Tabu search part i, ii. ORSA Journal on Comput-
ing, 1(3). 1989.

[4] Gupta, N., Mathur, A. P., Soffa, M. L. Generating Test Data
for Branch Coverage.15th IEEE International Conference on
Automated Software Engineering (ASE'00), Grenoble, France,
September 2000.

[5] Jones, B., Sthamer, H.and Eyers, D. Automatic structural
testing using genetic algorithms. The Software Engineering
Journal 11. 1996

[6] Korel, B. Automated software test data generation, IEEE
Transactions on Software Engineering, 16(8). 1990.

[7] Lin, J., Yeh, P. Automatic test data generation for path
testing using GAs. Information Sciences 131. 2001.

[8] Michael, C., McGraw, G., Schatz, M., Walton C. Genetic
Algorithms for Dynamic Test Data Generation. 12h IEEE Inter-
national Conference on Automated Software Engineering
(ASE'97), Tahoe NV, November 1997.

[9] Ntafos, S. On Random and Partition Testing, Intl. Symp. on
Software Testing and Analysis,. 1998

[10] Pargas, R.P., Harrold, M.J., Peck, R.R. Test data generation
using genetic algorithms. The Journal of Software Testing,
Verification and Reliability, 9. 1999

[11]. Tracey, N., Clark, J., Mander, K. Automated program flaw
finding using simulated annealing. International Symposium on
software testing and analysis. ACM/SIGSOFT. 1998

