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Automated sorting of neuronal 
trees in fluorescent images 
of neuronal networks using 
NeuroTreeTracer
Cihan Kayasandik1, Pooran Negi1, Fernanda Laezza2, Manos Papadakis1 & Demetrio Labate  1

Fluorescence confocal microscopy has become increasingly more important in neuroscience due to 
its applications in image-based screening and profiling of neurons. Multispectral confocal imaging is 
useful to simultaneously probe for distribution of multiple analytes over networks of neurons. However, 
current automated image analysis algorithms are not designed to extract single-neuron arbors in 
images where neurons are not separated, hampering the ability map fluorescence signals at the single 
cell level. To overcome this limitation, we introduce NeuroTreeTracer – a novel image processing 
framework aimed at automatically extracting and sorting single-neuron traces in fluorescent images 
of multicellular neuronal networks. This method applies directional multiscale filters for automated 
segmentation of neurons and soma detection, and includes a novel tracing routine that sorts neuronal 
trees in the image by resolving network connectivity even when neurites appear to intersect. By 
extracting each neuronal tree, NeuroTreetracer enables to automatically quantify the spatial 
distribution of analytes of interest in the subcellular compartments of individual neurons. This software 
is released open-source and freely available with the goal to facilitate applications in neuron screening 
and profiling.

Neuronal reconstruction is critical in a variety of neurobiological studies. During the last two decades, a large 
number of algorithms and so�ware toolkits were developed aiming at providing digital reconstruction of neurons 
from images acquired using bright �eld or �uorescent microscopy1. Without attempting to provide a complete list 
of relevant publications, we recall that existing automated or semi-automated methods include several academic 
routines2–7 and other freeware (e.g., Neuromantic8, Neuronstudio9,10) or commercial so�ware packages (e.g., 
Imaris11, Neurolucida12, PerkinElmer Cellular Imaging13) o�ering multiple capabilities. Many current methods 
still require signi�cant manual intervention1,14 and their performance is typically very sensitive on the types of 
data. Yet a huge e�ort is under way in the scienti�c community to create fully automated algorithms for prob-
lems of neuronal reconstruction. �e impact of these methods in neuroscience is expected to be very signi�cant. 
Digital reconstruction algorithms have the potential to extract multiple morphometric parameters, facilitating 
the statistical analysis and formulation of computational models designed to predict structural changes induced 
by genetic or chemical perturbations.

Tracing is an especially critical task in neuronal reconstruction as it provides the backbone for building a 
geometrical representation of neurons. A major e�ort in improving neuronal tracing and reconstruction emerged 
during the last decade in response to the DIADEM Challenge15,16 and, more recently, as part of the ambitious 
BigNeuron project17. As a result of these e�orts, several powerful algorithms were proposed delivering robust and 
accurate neuronal tracing2–7. Nevertheless, these methods are either aimed at processing single-neuron images or 
designed to trace any structure in an image without sorting neurites into arbors corresponding to individual neurons 
and without resolving neuronal connectivity. Available high-content screening so�ware such as the HCA-Vision18, 
for instance, can e�ciently trace an image of a multicellular network and extract several morphometric charac-
teristics. However, this method is not designed to correctly identify single-neuron traces unless the neurons are 
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well separated, nor to identify the path connecting a soma to a speci�c neurite location. �e inability to automat-
ically sort traces into individual neuronal arbors is a signi�cant limitation in image-based applications of neuron 
screening and pro�ling where it is required to measure local expression levels of molecular constituents of axons 
and dendrites relative to their respective cells.

Extracting individual neuronal traces from an image of a multicellular network is a challenging task, in gen-
eral, even when the entire image has been traced, due to the need to separate vessels that appear to cross or run 
very close to each other, and the need to resolve the connectivity of a networks that can be topologically complex 
(what path leads from a neurite location to its soma?). To address this limitation and facilitate the automated col-
lection of local �uorescent expression measures from individual neurons in a network, in this paper we introduce 
a novel neurite tracing and sorting algorithm, called NeuroTreeTracer, designed to identify and trace individual 
neuronal trees in 2-dimensional �uorescent images of networks containing multiple (non-separated) neurons. 
Our method is tailored to the needs of confocal images of neuronal cultures – a technique that provides a well 
controlled setting to study critical properties of neurons in near physiological conditions and that is commonly 
used in applications of neuron screening and pro�ling.

Automatically resolving the topological structure in a confocal image of a neuronal culture can be particularly 
challenging. Such data typically consist of stacks containing 10–20 images so that only 10–20 pixels are available 
along the z-direction as compared with the x and y directions where length can be 512 pixels or more. As a con-
sequence, the ‘data cube’ is very thin along one of its axes. Furthermore, due to the acquisition process, the image 
contrast degrades rapidly as optical slices are further away from the light source. As a result, neurites belonging 
to di�erent neurons may appear to intersect and cannot be separated during the analysis of volumetric data due 
to lack of su�cient space for vertical growth, limiting the resolution in the z coordinate. �erefore the method 
we present is designed to process the data in 2D – as frequently done in the analysis of this type of data. To suc-
cessfully separate distinct neuronal arbors, NeuroTreeTracer combines an automated method for soma detection 
and extraction that relies on multiscale directional �lters, and a novel centerline tracing routine that identi�es the 
neurites associated with each individual neuron using a front-propagation approach initiated from each soma 
location. In addition to identifying the neuritic branches belonging to each neuron in a multicellular image, for each 
neuron NeuroTreeTracer labels its sub-compartments, i.e., soma, dendrites and axon, and determines the paths 
connecting soma to neurites, hence enabling the computation of geometrical characteristics and the quanti�cation of 
local expression levels of analytes of interest with respect to their location along the neurites.

As indicated above, NeuroTreeTracer is motivated by applications of neuron screening and pro�ling where 
�uorescence-based multispectral imaging is used to probe for the localization and distribution of molecules at 
the single-cell resolution level over cellular networks. To illustrate and validate the capabilities of our approach, 
we have applied NeuroTreeTracer to several confocal images of neuronal cultures, by successfully extracting 
and labelling individual neuronal trees in images containing up to 30 non-separated cells. As part of this work, 
we have also applied our algorithm to analyze the spatial distribution of ion channel complexes in a biologically 
meaningful context, namely, to quantify the redistribution of the native voltage gated Na+ channel complex at the 
AIS in response to alteration of the GSK3 pathway. NeuroTreeTracer is implemented in Matlab19 and is released 
open source and freely available to the scienti�c community.

Methods
As indicated above, tracing algorithms available in the literature may be very e�ective in �nding centerline traces 
in complex multicellular images. However they are not designed to identify and separate sub-traces associated 
with individual cells in a multicellular network. In this paper, we address the problem of extracting the labelled 
traces of each neuron in a multicellular image including their connectivity properties (what path connects a neu-
rite location to its soma?). To emphasize the conceptual di�erence and clarify our terminology, we recall that in 
the mathematical language a graph is a network model consisting of a set of nodes joined by edges. By contrast, a 
tree is a special type of graph, where there is only one path between two nodes and a hierarchical structure20. We 
model a neuron as a directed rooted tree, that is, a hierarchical network model consisting of a special node called 
root (corresponding to the soma) and, for any other node, a single directed path to the root (corresponding to a 
neurite emanating from the soma). Hence our goal is to extract directed rooted trees in an image rather than to 
compute a generic graph. Each tree provides a local reference system for each individual neuron in a �uorescent 
image and will be useful to compute the spatial pro�le of molecular constituents of the neuron along its neurites.

As observed in the Introduction, the analysis of confocal image stacks in native 3D resolution is very challeng-
ing in images of cultured neurons due to the relatively small number of optical slices and to the poor image con-
trast of those optical slices farther away from the illumination source. As a consequence, image stacks are usually 
converted into 2D images by projecting the stack (comprising typically about 15–30 optical sections) along the 
axis perpendicular to the image plane (the z axis). �e most common projections are the average intensity projec-
tion (AIP) that outputs a 2D image where intensity in each pixel is the average intensity in all voxels with the same 
(x, y) coordinates. Likewise the maximum intensity projection (MIP) is the 2D image wherein each pixel value is 
the maximum intensity of all voxels with the same (x, y) coordinate.

Our algorithm, NeuroTreeTracer, is designed to process 2D MIP images and consists of the following steps.

 1. Preprocessing. Remove noise and improve image quality.
 2. Segmentation. Separate neurons from background.
 3. Soma detection and extraction. Find somas, identify soma regions and split somas that are clustered 

together.
 4. Tree extraction. Extract the directed rooted tree associated with each individual neuron in the network.
 5. Computation of associative measures. Compute local �uorescent intensity of individual neurons at the soma 

and along each neurite with respect to the arclength distance from the soma.
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�e key step and main novelty of NeuroTreeTracer is the computation of the tree structure of each neuron in 
an image. We describe below how we develop and implement each processing step, with emphasis placed in the 
last two steps containing the main original contributions of this paper.

Proposed method. Data preprocessing. Images acquired through confocal microscopy are a�ected by 
several sources of degradation and need to be restored in order to facilitate the next processing steps, namely, 
segmentation and tracing. Such degradation includes the blurring due to the convolution of the original signal 
intensities with the point spread function of the imaging system and the noise introduced by the stochastic nature 
of the photon-counting process at the detector, which can be modeled as a Poisson-distributed random process. 
To restore the data, we adapt a denoising algorithm based on shearlets and adaptive thresholding, developed by 
some of the authors21–23. Unlike more traditional denoising methods, this approach is especially e�ective at pre-
serving cell boundaries, since shearlet �lters have highly anisotropic responses that are speci�cally designed to 
represent e�ciently images with edges21 (www.math.uh.edu/~dlabate/so�ware.html).

Segmentation. For this task, we adapt an algorithm recently developed by some of the authors that is based on 
Support Vector Machines (SVMs) and whose novel characteristic is the generation of features by a mix of multi-
scale isotropic Laplacian24 and shearlet directional �lters21. As for many algorithms of this type, the proper classi-
�cation stage of the algorithm is preceded by classi�er training. �is is the most computationally-intensive part of 
the algorithm, but it needs to be run only once as long as the segmentation algorithm is applied to images of the 
same type (e.g., same cell type and microscope setting). �is routine, including the training stage, is fully auto-
mated and its performance is very competitive, as it was already demonstrated on multiple challenging 2D and 
3D datasets in5,25,26. We refer the reader to the aforementioned references for more details about this approach.

Soma detection. �e automated detection of soma location in �uorescent images is a challenging problem due 
to the lack of soma selective markers. In neuronal cultures, somas are usually visible in the channel marked by 
the MAP2 (microtubules associated protein 2) antibody staining, which is di�usely distributed in the entire som-
atodendritic compartment. As a consequence, further processing is needed to separate somas from dendrites. 
Conventional image analysis methods for soma detection frequently rely on binary masks generated from con-
trast enhancement and image intensity thresholding27,28. However this approach is not very e�ective when applied 
to �uorescent images since high intensity values are commonly found also outside somas. �erefore, in this paper, 
we apply a more sophisticated approach based on Directional Ratio, a multiscale geometric descriptor recently 
introduced by some of the authors in a prior work to overcome the limitations of conventional algorithms26,29,30. 
�is method employs a collection of directional �lters to compute, for each point in the image, a numerical 
score measuring the level of local anisotropy at a given scale. As shown in26,30, the application of this method is 
extremely e�ective to detect soma locations and, used in combination with the level set method or the fast march-
ing approach, allows one to accurately and e�ciently separate somas from neurites.

Tree extraction. �e aim of this processing step is to compute a labelled rooted tree corresponding to each 
neuron in an image of a neuronal network. �is requires to handle neurites that appear to cross or overlap and to 
determine the path connecting each neurite location to its respective soma.

Automatic tracing of neurons in �uorescent images is a challenging problem due to the topological complexity 
of the data and the irregularities of �uorescent signal intensity that may cause thin neurites to appear broken and 
neighbouring ones to merge. Several methods were proposed in the literature to address this task and the perfor-
mance of existing methods may vary signi�cantly depending on the quality of the image and the complexity of 
the structures to be recovered. For this reason, neuronal tracing is still an area of active investigation31. Among 
the existing methods, a number of algorithms compute traces through a process of skeletonization that may be 
applied to a smoothed version of the original image32; other methods have used various structural components to 
build-up the reconstruction by incrementally adding more and more such components into the morphological 
modeling of a neuron6,7,33,34; yet another class of methods rely on more sophisticated ideas to segment the image, 
next compute seed points and �nally join the seeds to generate traces5,35. We refer to the excellent survey papers 
on neuronal tracing available in the literature1,14,31 for a more detailed critical discussion of existing methods.

A survey of the literature shows that existing tracing methods are typically designed to trace the entire net-
work in the image so that – unless the image contains a single neuron or well-separated ones– they do not resolve 
the tree structures corresponding to individual neurons in the image in the sense discussed at the beginning of 
this section. Sorting out the neurites of each neuron from the graph of a neuronal network containing multiple 
(possibly non-separated) neurons would require splitting the graph by identifying all trees corresponding to 
individual neurons. �is is a complex and challenging task that is not easy to perform automatically, in general, 
and we are not aware of any existing algorithm performing such task successfully. HCA-Vision18, for instance, 
computes a trace of a multicellular network including single-neuron traces if neurons are separated in the image. 
However, if neurons are not separated, neurites are assigned to a speci�c cell based essentially on proximity and 
without addressing connectivity properties. As a result, this method is unsuccessful in resolving the tree structure 
of individual neurons in general images. A further examination of this method in comparison to our approach is 
found in the Discussion.

Due to the di�culty of identifying and extracting the trees corresponding to individual neurons in a neuronal 
network by post-processing a fully traced network, we propose here a new tracing and sorting strategy. Our 
method will not attempt to trace every neurite in an image but only those neurites that are part of a neuronal 
tree, with the goal to recover every neuronal tree in the image. Starting from the soma locations we detected in 
the previous processing step, we will search for the trees associated to each neuron in the image by computing 
front-propagated traces originating from each soma. To carry out this task e�ectively, one major challenge is to 

http://www.math.uh.edu/~dlabate/software.html
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resolve crossing and/or partially overlapping neurites. We describe below our step-by-step procedure for the 
extraction of neuronal trees from an image of a multicellular neuronal network. We assume that the binary seg-
mented image and the soma masks are given as input. �e routine consists of three steps: (i) initialization; (ii) 
seeding; (iii) tracing.
Step (i):Initialization. We apply successive dilation operators with rates r = 1.1,1.2,1.3 on each soma mask 
(Fig. 1b). Let us denote by S0 the soma mask and by Si, i = 1,2,3, the three dilated masks, ordered by increasing 
size. Next, take the symmetric di�erences S1∆S0 and S3∆S2 and their intersections with the segmented structures. 
For each neurite, this operation will identify two short neuritic segments in the proximity of the soma (Fig. 1c). 
Next we �nd the centroids of these regions and connect those located on the same neurite to its nearest soma 
mask Si. �us we �nd the starting location of each neurite and its initial orientation, which is given by the orien-
tation of the line connecting the centroids located on the same neurite (Fig. 1d).
Step (ii):Seeding. We determine seeding points along the centerlines of the neurites by using an adaptation of a 
method in5,25.

For ∈x 2, we de�ne = − = Df x x y f y( ) min { : ( ) 0}y , where f is a binary segmented image. �e local 
maxima of Df inside the structure are the points that are furthest away from the boundary of the neuron, since f(y) 
= 0 if y belongs to the image background. To enhance the magnitude of those local maxima and improve the 
robustness of the successive processing steps with respect to numerical rounding errors, the function Df is next 
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. A�er this step, we use a thresholding �lter to select candidate seeding 

points along the centerline. Clearly, the lower the threshold, the more the seed points we derive. However, if the 
threshold value is too small, one may �nd more than one seed along the centerline resulting in irregular or inac-
curate traces. On the other hand, if the threshold value is too large, then seeds may be very sparse and the distance 
between consecutive seeds might be so large that the tracing routine connecting potential seed points may termi-
nate earlier than expected. We remark that the selection of the ‘best’ threshold value is dependent on the thickness 
and tortuosity of the neurite, so it is very di�cult to determine this value automatically. �erefore, a�er seeds are 
generated using a reasonable threshold value (we set the value 0.16 in our experiments), we proceed as follows. 
For each generated seed s, we compute a ball centered at s with radius Df(s) and eliminate all other seeds found 
within this ball. If this process generates gaps along the centerline (when balls associated with di�erent seed 
points do not intersect), then we generate additional seeds by computing again the distance function, Df, locally 
within that gap region, and then proceed as above. As demonstrated in5,25, this method is very reliable and com-
petitive with respect to existing routines. We refer to those references for a more detailed discussion of this seed-
ing strategy.
Step (iii):Tracing. Starting from the initial location of a neurite found in Step (i), the algorithm searches for the 
closest seed location within a small search window whose goal is to favour the selection of points in the direction 
of the local orientation of the neurite. It then connects the two seed points. �is process is repeated a�er each new 
seed is connected to the trace and it stops when no more seeds are located within each regarding window.

�e search window plays a key role in this task, because it determines that the tracing continues on the same 
branch. When branches intersect in a maximum-intensity-projected image, the risk of switching to another 
branch becomes signi�cant. �e process for choosing where to continue is illustrated in panels (a and b) of Fig. 2. 
�e main idea is that when neurites change orientation they do this in a smooth way. So abrupt changes of ori-
entation of the tracing process are likely to lead a turn into a di�erent branch. Hence, �rst the algorithm searches 
for the next seed within a long rectangular region whose long side is aligned with the expected orientation of 
neurite (Fig. 2a). For the initial location of each neurite, such orientation is estimated according to Step (i); for 
successive locations, the expected orientation of the neurite is estimated by measuring the direction of the two 
preceding seeds in the trace. If no seeds are found within this rectangle, then a pair of rectangular windows are 
generated with orientations forming a small angle with respect to the expected orientation of the neurite (Fig. 2b). 

Figure 1. Tree initialization. (a) Idealized model of a binary segmented soma with 3 emanating neurites. 
(b) Soma boundary is dilated three times with increasing dilation factor and (c) the symmetric di�erence of 
the successive masks is intersected with the image producing the black regions shown in the panel. (d) By 
computing the centroids of the 6 black regions from panel (c) and then connecting the centroids located on the 
same branch with the soma, we �nd the starting location of each neurite and its initial orientation, as indicated 
by the black arrow.
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�e length of those new rectangles is slightly smaller than the previous rectangular region. �is process continues 
(Fig. 2c) until either a seed is found or the orientation of the new rectangles exceeds a given angle (2π/5 in our 
experiments). �is searching process is repeated multiple times generating every time a new approximate circular 
sector region of larger radius. �at is, every time the searching process is repeated, longer rectangles are used to 
generate the new window region (Fig. 2d). If this process does not �nd a new seed a�er a number of attempts, we 
terminate the search and assume that the neurite is completely traced. �is tracing routine is illustrated in Fig. 2.

In our numerical experiments we set the length of the initial rectangle to be 10 pixels. �e searching process is 
repeated up to 10 times, every time increasing the length by 2 pixels.

Computation of �uorescent intensity pro�les. �e trace extracted in Step (iii) provides a spatial reference system 
to compute the local �uorescent intensity signal along each neurite. As the background intensity of a �uorescent 
image is typically non-zero, this background value needs to be subtracted in order to get a reliable measure of 
the �uorescent signal along a neurite. Furthermore, this value varies spatially and taking account of this spatial 
variability is critical to estimate �uorescent intensity values accurately. �erefore, to estimate the local value of 
background signal at a location near a neurite, we average the background signal computed on a pair of small 
windows (3 × 3 pixels) centered on a segment perpendicular to the neurite trace and displaced slightly away from 
the neurite (2 pixels away in our experiments). Since we have access to the segmented image, we can also ensure 
that such windows do not overlap existing structures (i.e., other neurites). Finally, the estimated background 
value is subtracted from the original �uorescent intensity value computed at the neurite location and the di�er-
ence is the ‘true’ �uorescent intensity value estimated at the particular location.

Cell preparation and imaging. �e image datasets used in the present work are primary hippocampal neu-
ronal cultures that were prepared in Dr. Laezza’s Laboratory at the Department of Pharmacology & Toxicology of 
the University of Texas Medical Branch. �ese images are part of a previously published set of data36.

Banker’s style hippocampal neuron cultures were prepared from embryonic day 18 (E18) rat embryos as 
described in previous work36. Following trituration through a Pasteur pipette, neurons were plated at low density 
(105 × 105 cells/dish) on poly-L-lysine-coated coverslips in 60 mm culture dishes in MEM supplemented with 
10% horse serum. A�er 24 h, coverslips (containing neurons) were inverted and placed over a glial feeder layer 
in serum-free MEM with 0.1% ovalbumin and 1 mM pyruvate (N2.1 media; Invitrogen, Carlsbad, CA) separated 
by approx. 1 mm wax dot spacers. To prevent the overgrowth of the glia, cultures were treated with cytosine ara-
binoside at day 3 in vitro (DIV).

Hippocampal neurons (DIV14) were �xed in fresh 4% paraformaldehyde and 4% sucrose in phosphate-bu�ered 
saline (PBS) for 15 min. Following permeabilization with 0.25% Triton X-100 and blocking with 10% BSA for 
30 min at 37 °C, neurons were incubated overnight at room temperature with the following primary antibodies: 
mouse anti-FGF14 (monoclonal 1:100; Sigma Aldrich, St Louis, MO), rabbit anti-PanNav (1:100; Sigma, St Louis, 
MO) and chicken anti-MAP2 (polyclonal 1:25000; Covance, Princeton, NJ) diluted in PBS containing 3% BSA. 
Neurons were then washed three times in PBS and incubated for 45 min at 37 °C with appropriate secondary anti-
bodies as described for brain tissue staining. Coverslips were then washed six times with PBS and mounted on glass 
slides with Prolong Gold anti-fade reagent.

Confocal images were acquired with a Zeiss LSM-510 Meta confocal microscope with a 63X oil immersion 
objective (1.4 NA). Multi-track acquisition was done with excitation lines at 488 nm for Alexa 488, 543 nm for 
Alexa 568 and 633 nm for Alexa 647. Respective emission �lters were band-pass 505–530 nm, band-pass 560–
615 nm and low-pass 650 nm. Z-stacks were collected at z-steps of 1 µm with a frame size of 512 × 512, pixel 
time of 2.51 µs, pixel size 0.28 × 0.28 µm and a 4-frame Kallman averaging. Acquisition parameters, including 
photomultiplier gain and o�set, were kept constant throughout each set of experiments.

Data availability. NeuroTreeTracer was implemented using MATLAB 7.12.0 (R2011a). The source 
code of the routines for neuron segmentation and soma detection was previously developed by some of 

Figure 2. Tree tracing. (a) �e search for the next node in the trace is initially restricted within a long rectangle 
whose main axis is oriented according to the local orientation of the neurite (black arrow). (b) If no seed is 
found, two additional rectangles are generated with orientations forming a small angle with respect to the local 
orientation of the neurite. �is process ensures that the trace follows the given neurite and not the intersecting 
one. (c,d) If no seed is found within the approximately circular sector region, the search is repeated over a larger 
region obtained by increasing the length of the rectangular windows.
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the authors30 and is publicly available at the Github link: https://github.com/cihanbilge/SomaExtraction. 
The Matlab source code of the remaining routines are publicly available at https://github.com/cihanbilge/
AutomatedTreeStructureExtraction. �e imaging data used to validate the code are included with the so�ware 
package.

Results
In this section, we illustrate the application of NeuroTreeTracer for the extraction of labelled tree structures and 
the computation of local �uorescent intensity measures on a multiplicity of confocal images of neuronal cultures. 
Imaging data were generated by Dr. Laezza from the Department of Pharmacology & Toxicology at the University 
of Texas Medical Branch.

Validation: neuronal tracing. �e images we considered for the �rst set of numerical experiments are 
confocal images of neuronal cultures containing between 2 and 8 neurons. Representative illustrations of the 
proposed neuronal tracing algorithm are shown in Figs 3 and 4. In particular, Fig. 3 displays several steps of the 
tracing routine showing that our algorithm correctly resolves crossing neurites and is able to assign each neurite 
to its corresponding cell. Figure 4 has a higher number of cells and a more complex topology. Also in this case, 
NeuroTreeTracer is able to resolve intersecting neurites. However, some neurites are not completely traced and 
the labeling of some neurites is ambiguous even for a manual annotator. In fact, in the situation of crossing neu-
rites from several cells, our criterion for the assignment of each neurite to a speci�c neuron may be inconclusive 
as di�erent branches may be associated with a similar change of orientation at the intersection point. Another 
potential source of ambiguity comes from incorrect or missed seed points. �e performance of our tree extraction 
routine is clearly dependent on the performance on the seeding routine. �is routine may fail to generate seeds in 
the correct locations near intersecting branches as they appear merged together and they may generate a blob-like 
region in the segmented image. As a result, the tracing routine may stop before a neurite is completely traced. We 
found that this situation is rare in the images we considered but it is a potential cause of errors in images contain-
ing a denser population of neurons.

Despite these shortcomings, the overall performance of NeuroTreeTracer is very satisfactory in the typical 
images of neuronal cultures we considered for this study. To assess the performance of the algorithm with respect 
to the ability to correctly trace a neurite and attribute it to the correct cell, we tested 12 images, each containing 
between 2 and 8 neurons, for a total of 49 neurons. As a performance metric we used the accuracy that is de�ned 
as the ratio of the correctly traced and labelled neurites over the total number of neurites in a cell. �e correct traced 
and labelled neurites were determined based on the visual evaluation of domain experts.

Figure 3. Neuron tracing. (a) Confocal image of cultured neurons (MIP view) labelled with an anti-Nav α 
subunit-speci�c antibody, PanNav, visualized with an Alexa 568 conjugated secondary antibody (red) and an 
anti-MAP2 antibody, visualized with an Alexa 647-conjugated secondary antibody (blue). (b) Corresponding 
segmented image with detected somas. (c–e) Starting from each soma location, the algorithm computes the 
centerline traces of each neurite. It correctly traces neurites even in the presence of crossing branches (panel (e)). 
(f) �e tree structure of the network is completely solved by computing separate trees for each neuron, shown in 
di�erent colors.

https://github.com/cihanbilge/SomaExtraction
https://github.com/cihanbilge/AutomatedTreeStructureExtraction
https://github.com/cihanbilge/AutomatedTreeStructureExtraction
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Performance. Results summarized in Table 1 show the performance of NeuroTreeTracer on our entire set of test 
image using the standard performance metrics of precision, recall and dice coe�cients37. �e Sensitivity (or True 
Positive Rate or recall) measures the proportion of correctly identi�ed neurites with respect to the total number of 
neurites (that are manually identi�ed by a domain-expert without knowledge of the algorithm results). Denoting 
by T P (= true positive) the number of correctly detected and identi�ed neurites and by F N (=false negative) the 
number of missed neurites, we de�ne:

=
+

.
TP

TP FN
Sensitivity

(1)

�e Precision measures the proportion of correctly identi�ed neurites over all detected neurites. �at is, 
denoting by F P (= false positive) the number of neurites detected but wrongly identi�ed,

=
+

.
TP

TP FP
Precision

(2)

Finally, the Dice coe�cient is useful to compare the similarity between two measures and is given by

=
+ +

.
TP

TP FN FP
Dice coefficient

2

2 (3)

�e dice coe�cient can be considered as a measure of the overall e�ectiveness of the neurite extraction 
algorithm.

�e table shows that NeuroTreeTracer performs very well with respect to all metrics (the closest to 1 the 
better).

Validation: neuronal tracing on larger images. A natural question is about the applicability of 
NeuroTreeTracer to images containing a larger number of neurons. To show how our method performs in this 
situation, we applied NeuroTreeTracer to a tiled and stitched �uorescent image of a neuronal culture contain-
ing about 40 neurons. As the processing time depends on the number of neurons contained in the image (the 
current algorithm generates each neuronal tree sequentially), to speed up the computation we can partition the 
segmented image into partially overlapping rectangles and process each sub-image separately and in parallel. 
As each rectangular window can be processes separately and the results successively combined, this provides a 
viable and computationally e�cient strategy to process large images. To determine such rectangular sub-images, 
we proceed by listing the somas (already segmented and labelled), collecting them in subsets based on proximity 
and then partitioning the image into rectangles, each one containing only a subset of the somas. In doing this, we 
ensure that each soma in a given subset is fully contained in the rectangle. If a soma from another subset overlaps 
the boundary of the rectangle, it would be ignored. �e application of this idea is illustrated in Fig. 5, showing that 
the large image is segmented and the somas are detected; next the extraction of neuronal trees is applied within a 
rectangular window inside the image.

Figure 4. Neuron tracing. (a) Confocal image of cultured neurons (MIP view) labelled with MAP2 (blue) 
marker. (b) Corresponding segmented image with detected somas and (c) individual neuronal trees, 
automatically extracted and labelled. �e algorithm successfully resolves most crossing points.

Number of neurites Sensitivity Precision Dice coe�cient Crossing

NeuroTreeTracer 191 0.90 1.00 0.94 74%

HCA-Vision 191 0.85 0.49 0.62 20%

Table 1. Performance analysis using our algorithm NeuroTreeTracer and HCA-Vision on a set of 12 confocal 
images containing a total of 49 neurons and 191 neurites.
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Application: neuron profiling. One main motivation for the development of NeuroTreeTracer comes from 
applications in image-based neuron pro�ling, where it is critical to quantify morphological changes of neurons 
and alterations in the expression levels of their molecular constituents at the single-cell level.

To illustrate the potential of our approach in such studies, we have applied NeuroTreeTracer to the analysis 
of a set of confocal images of neuronal cultures where primary mouse hippocampal neurons had been exposed 
to an inhibitor of the glycogen synthase kinase 3 (GSK3) pathway. As observed by one of the authors, inhibition 
of GSK3 correlates with alterations in the distributions of critical molecular constituents of the axonal initial 
segment (AIS), including subcellular redistribution of the native voltage gated Na+ (Nav) channel complex36. 
NeuroTreeTracer o�ers an ideal platform to precisely quantify such alterations in an image, as it generates a 
spatial reference system of each individual neuron that can be used to measure the intensity values of �uorescent 
signal along each neurite with respect to the arclength distance from the soma. �ese measures generate classify-
ing features associated to individual neurons exposed to speci�c perturbations.

Using this method, we have analyzed 10 confocal images of neuronal cultures associated to two experimental 
groups – one group involving neurons exposed to CHIR99021, an inhibitor of GSK3, and the other group for 
the control case (DMSO treated). As indicated in the Methods section, these images are part of a previously 
published set of data36. In total, we have extracted individual neuronal trees of over 30 neurons and computed 
the �uorescent intensity pro�les along their neurites. Figure 6 illustrates the outputs of our algorithm on two rep-
resentative confocal images: one image contains control neurons exposed to DMSO (panels (a–b)) and another 
image contains neurons exposed to CHIR99021 (panels (c–d)). �e plots of �uorescent signal in panels (a) and 
(d) indicate a reduced expression level of the Nav channel complex at the AIS in the CHIR99021 neurons with 
respect to DMSO.

Complete results of our analysis are reported in Fig. 7. Of over 30 neurons initially traced, 23 neurons were selected 
for further analysis (12 DMSO, 11 CHIR99021) as we excluded those neurons for which no axon was visible (since 
located outside the image). To quantify the heterogeneity between perturbed and control neurons at the AIS, we consid-
ered several quantities: the area AAIS of �uorescent signal intensity at the AIS (70 pixels in length, 1 pixel = 0.28 µm), the 
variance VAIS of the signal over the same interval and the AIS bell-shaped amplitude H obtained by approximating the 

�uorescent intensity pro�le at the AIS with a Gaussian function = −
µ

σ

−( )g x H( ) exp
x( )

2

2

2
 (approximation is meant in 

the standard least squares sense). We found that with respect to all such quantities the di�erence between CHIR99021 
and DMSO neurons is statistically signi�cant, with the DMSO neurons showing larger values of AAIS, VAIS and H. �e 
signi�cance was measured using a two-sample t-test with signi�cance level α = 0.05 and the computed two-tail p-values 
are 0.00444, 0.00015 and 0.00005 for AAIS, VAIS and H respectively. Note that our newly introduced quantity H has the 
smallest p-value and it (linearly) separates the two classes of neurons (Fig. 7b); this is not true for the other measures 
(Fig. 7a). To quantify polarity in the data, we computed the ratio RAD of the area AAIS of �uorescent signal intensity at the 
AIS vs. the dendrite area Aden. �e dendrite area Aden is obtained by averaging the �uorescent signal intensity along two 
dendrites whose thickness is comparable to the AIS, over the same length of 70 pixels. We found that the di�erence of 
the value RAD between CHIR99021 and DMSO neurons is statistically signi�cant (two-tail p-value = 0.00007), with the 
CHIR99021 neurons showing a value close to 1 and the DMSO neurons showing a value close to 3 (Fig. 7c). All results 
are consistent with the manual analysis carried out in previously published work36.

Computation time, hardware and software. We implemented our routines using MATLAB 7.12.0 
(R2011a). The numerical tests were performed using a MacBook with Intel Core i5 2.4 GHz processor and 
16 GB RAM. On a 2D image of size 512 × 512 pixels, the average computing time for the shearlet-based 
denoising was approximately 7 seconds; the average computing time for the 2D segmentation routine was 
approximately 8 seconds; the average computing time of the soma segmentation routine was approximately 
5 seconds; the average computing time of the tracing routine for a cell containing 3 branches was approxi-
mately 130 seconds. Note that our soma segmentation routine includes subroutines implemented in C++ 

Figure 5. Tree extraction on a large tiled and stitched image. (a) Tiled and stitched confocal �uorescent image 
(MIP view) of a neuronal culture. Image size = 1894 × 1894 pixels (1 pixel = 0.28 × 0.28 µm). (b) Segmentation 
and soma detection. (c) Extraction of neuronal trees on a representative subregion (blue box). �e algorithm is 
ignoring those cells whose soma is overlapping the box boundary.
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to improve computational efficiency, as discussed in30. The tracing routine was not optimized for computa-
tional efficiency and its computing time could be reduced by implementing some subroutines in C++ and 
precomputing some filters.

Figure 6. Inhibition of GSK3 leads to redistribution of AIS proteins. Representative confocal and corresponding 
traced images of hippocampal neurons in control (DMSO) condition (A,B) or following inhibition of GSK3 
induced by CHIR99021 (C,D). Neurons are labelled with PanNav (red) and MAP2 (blue) markers. Fluorescence 
intensity values corresponding to the red channel along the AIS and dendrites (D1 and D2) in control (top right) 
and CHIR99021 (bottom right) are computed using traces in panels (b,d). Note the loss of the bell-shaped cluster 
distribution of Nav channels treated with the GSK3 inhibitor compared with the control group.

Figure 7. Pattern of subcellular distribution of the Nav channel complex. For all scatterplots, green 
dot = CHIR99021-inhibited neuron, red dot = DMSO neuron. (a) Relationship between the area of the 
�uorescent intensity signal measured at the AIS and the standard deviation of the signal measured over the 
same interval 0–70 pixels. (b) Relationship between the AIS bell-shaped amplitude at the AIS using a Gaussian 
approximation (as described in text) and standard deviation of approximating function. (c) Relationship 
between the area of the �uorescent intensity signal measured at the AIS and the area of the �uorescent intensity 
signal measured along the dendrites over the same interval 0–70 pixels (1 pixel = 0.28 µm). For all plots, the 
dashed blue line is drawn to show separation or approximate separation between the two classes.
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Discussion
�is paper introduces a novel image processing pipeline called NeuroTreeTracer that is designed to extract indi-
vidual neuronal trees from images of multicellular networks where neurons are not necessarily separated. Existing 
neuronal tracing algorithm in the literature are typically designed to process images containing a single neuron or 
to trace an entire image without sorting traces into arborizations corresponding to individual neurons. Breaking 
up the trace of a multicellular network into single-neuron tree is a very challenging task in general as it would 
require to solve a complex sorting problem. NeuroTreeTracer addresses this task by re-designing the tracing pro-
cess. A�er detecting each soma in an image containing multiple neurons, the algorithm discovers each neuronal 
tree by computing a directed path for each neurite starting from its soma and resolving the connectivity proper-
ties of neurites that appear to cross or overlap.

For comparison of our approach with existing tracing algorithms that also handle image with multiple neu-
rons, we tested the algorithm HCA-Vision18. It is a popular so�ware for high-content analysis that is available as 
freeware and that is very similar to routines included in the Cellular Imaging and Analysis commercial so�ware 
of PerkinElmer. It is designed to automatically trace images of cultured neurons and compute morphometric 
parameters of their neurites but it is not designed to extract individual neuronal traces unless neurons are sep-
arated. As the authors write, “only isolated neurons having no contact with other neurons” can be analyzed and 
if neurons are not isolated “the decision to attribute a neurite touching two cells to either of them is arbitrary.” 
In addition, the method does not output a path connecting each neurite to the corresponding soma. As shown 
in Fig. 8, HCA-Vision is unsuccessful in tracing intersecting neurites in a rather simple image where instead 
our method was very successful (cf. Fig. 2). For a more general assessment, we compared the performance of 
NeuroTreeTracer and HCA-Vision using our entire set of test images with respect to the ability to attribute a 
neurite to the corresponding neuron and to solve intersecting neurites. Results reported in Table 1 show that 
HCA-Vision has signi�cantly lower precision and dice coe�cients than NeuroTreeTracer on the images we con-
sidered due to its limitations in assigning neurites to the correct neuron. We also include in the table the percent-
age of crossing neurites that are solved correctly, which is only 20% for HCA-Vision (as we wrote, the method is 
not designed to handle such locations) as compared to 74% for our method.

In summary, the results reported in this paper show that NeuroTreeTracer is highly reliable in resolving indi-
vidual neuronal trees in confocal images containing multiple neurons even when they are not separated. Our 
algorithm is aimed primarily at large �eld-of view multispectral confocal images of neuronal cultures and is 
motivated by applications in neuron screening and pro�ling where it is important to measure the location and 
spatial distribution of molecules at the single-cell resolution level. For such applications, it is required to extract 
individually labelled neuronal trees and the paths connecting each neurite to the corresponding soma.

To illustrate the potential of NeuroTreeTracer for these applications, we have examined to a set of confocal 
images of neuronal cultures comprising two experimental groups, namely neurons exposed to an inhibitor of 
the GSK3 pathway and control. Using our NeuroTreetraces, we found each neuronal tree in the images and used 
this local reference system to measure the local �uorescent intensity pro�les along the neurites with respect to 
the arclength distance from the corresponding soma. �ese measures – used as features for each cell – reveal 
that GSK3 inhibited neurons are associated with subcellular redistribution of the native Nav channel complex, 
con�rming previously published results. With respect to the manual analysis carried out in previous studies, 
NeuroTreeTracer automatically generates fast-to-compute and reliable �uorescent intensity measures where local 
background noise is automatically removed. �e �exibility of our computational platform also provides the ability 
to de�ne novel measures of subcellular distributions of analytes of interest such as the AIS bell-shaped amplitude 
we introduced above. �is quantity is be a novel measure of heterogeneity of the AIS that appears to be more 
robust than other more conventional measures.

Even though NeuroTreeTracer was designed to process confocal images of neuronal cultures, the ideas pro-
posed and applied here are applicable to other types of imaging data. In particular, our segmentation routine has 
been tested on other microscopy images and image stacks5,25. Similarly the design of our soma detection, seeding 
and tracing routines are expected to work equally well on other types of microscopy images. As discussed above, 
the main limitation of the proposed tracing routine is that, as the density of cells increases and they become more 

Figure 8. Neuron tracing using HCA-Vision. (a) Confocal image of cultured neurons (MIP view) labelled 
with MAP2 (blue) marker. (b) Detected somas and (c) traced image where cells and corresponding neurites are 
shown in same color. Note that the algorithm is unable to resolve intersecting neurites.
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clustered, it might be increasingly more di�cult to solve intersecting neurites and attribute them reliably to a 
single cell. A possible way to mitigate this problem would be to allow a domain-expert user to manually address 
con�icts by possibly taking advantage of additional information, e.g., physiology, prior-knowledge, etc.

Finally, the ideas presented in this work are expected to apply to three-dimensional data. �e preprocessing, 
segmentation and soma detection steps of the algorithm have already been developed and applied to volumetric 
data5,22,26. Our method for tree extraction routine in 2D can be adapted to the 3D setting. Indeed, the tree extrac-
tion would be easier for volumetric data, as neurites from di�erent cells are not expect to crossover.
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