
Automated Space/Time Scaling of Streaming Task Graphs

on Field-Programmable Gate Arrays

by

Hossein Omidian Savarbaghi

B.Sc. in Computer Engineering, Isfahan University of Technology, 2007

M.Sc. in Computer Engineering, Science and Research Branch of IAU, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

October 2018

c© Hossein Omidian Savarbaghi, 2018

The following individuals certify that they have read, and recommend to the Fac-

ulty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled:

Automated Space/Time Scaling of Streaming Task Graphs on

Field-Programmable Gate Arrays

submitted by Hossein Omidian Savarbaghi in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy

in Electrical and Computer Engineering

Examining Committee:

Guy Lemieux, Electrical and Computer Engineering

Supervisor

Prof. Mieszko Lis, Electrical and Computer Engineering

Supervisory Committee Member

Prof. Andre Ivanov, Electrical and Computer Engineering

University Examiner

Prof. Alan Hu, Computer Science

University Examiner

Prof. Russell Tessier, Electrical and Computer Engineering

External Examiner

ii

Abstract

Parallel computing platforms provide good performance for streaming applications

within a limited power budget. However, these platforms can be difficult to pro-

gram. Moreover, when the size of the computing platform target changes, users

must manually reallocate resources and parallelism. This thesis provides a frame-

work to retarget applications described by a Streaming Task Graph (STG) for im-

plementation on different platforms, where the framework can automatically scale

the solution size to fit available resource or performance targets.

First, we explore automated space/time scaling for STGs targeting a pipelined

coarse-grained architecture. We produce a tool that analyzes the degrees of paral-

lelism in a general stream application and finds possible bottlenecks. We introduce

possible optimization strategies for STGs, and two algorithmic approaches: a clas-

sical approach based upon Integer Linear Programming (ILP), and a novel heuristic

approach which introduces a new optimization and produces better results (using

30% less area) with a shorter run-time.

Second, we explore automated space/time scaling for STGs targeting a fine-

grained architecture (Field-Programmable Gate Array (FPGA)). We propose a

framework on top of a commercial High-Level Synthesis (HLS) tool which adds

the ability to automatically meet a defined area budget or target throughput. Within

the framework, we use similar ILP and heuristic approaches. The heuristic auto-

matically achieves over 95% of the target area budget on average while improving

throughput over the ILP. It can also meet the same throughput targets as the ILP

while saving 19% area.

Third, we investigate automated space/time scaling of STGs in a hybrid archi-

tecture consisting of a Soft Vector Processor (SVP) and select custom instructions.

iii

To achieve higher performance, we investigate using dynamic Partial Reconfigu-

ration (PR) by time-sharing the FPGA resources. The performance results achieve

speedups far beyond what a plain SVP can accomplish: an 8-lane SVP achieves a

speedup of 5.3 on the Canny-blur application, whereas the PR version is another

3.5 times faster, with a net speedup of 18.5 over the ARM Cortex A9 processor. By

increasing the dynamic PR rate beyond what is available today, we also show that a

further 5.7 times speedup can be achieved (105.9x speedup versus the Cortex A9).

iv

Lay Summary

Software applications are often computationally intensive. To maximize the use

of resources on a range of hardware platforms with a differing amount of parallel

resources and minimize the runtime of software applications as much as possible,

engineers need to manually modify and optimize each application for each platform

with different resource restrictions or desired performance targets. This process is

time consuming and can be prone to error. We propose an approach to automat-

ically explore different ways of implementing an application for a performance

target or a resource restriction defined by users.

v

Preface

The following publications have been adapted for inclusion in the dissertation:

• Automated Space/Time Scaling of Streaming Task Graph [66]

Published in the 2016 International Workshop on Overlay Architectures for

FPGA (OLAF 2016). Authored by Hossein Omidian and Guy Lemieux.

Appears in chapter 3.

For this paper, I performed all of the deign methodology and implementa-

tion of compiler and simulator. I also did the benchmarking, simulating and

evaluation. I also formulated the ILP optimization and proposed and im-

plemented the heuristic optimization approach presented in this paper. Guy

Lemieux served in an advisory fashion.

• Exploring Automated Space/Time Tradeoffs for OpenVX Compute Graphs

[67].

Published in the 2017 International Conference on Field-Programmable Tech-

nology (FPT 2017). Authored by Hossein Omidian and Guy Lemieux. Ap-

pears in chapter 4.

I performed all the design methodology, implementation and benchmarking

as well as all the simulation and evaluation for this paper. Guy Lemieux

served in an advisory fashion.

• JANUS: A Compilation System for Balancing Parallelism and Perfor-

mance in OpenVX [65].

Presented in the 2018 International Conference on Machine Vision and In-

formation Technology (CMVIT 2018) and published in Journal of Physics:

vi

Conference Series. Authored by Hossein Omidian and Guy Lemieux. Ap-

pears in chapter 3 and chapter 4.

I performed all the implementation and benchmarking for this paper. Guy

Lemieux served in an advisory fashion.

• An Accelerated OpenVX Overlay for Pure Software Programmers

Published as a shot paper (poster) in the 2018 International Conference on

Field-Programmable Technology (FPT 2018). Authored by Hossein Omid-

ian, Nick Ivanov and Guy Lemieux. Appears in chapter 5.

I performed all the design methodology, implementation and benchmarking

as well as all the simulation and evaluation for this paper. Nick Ivanov helped

implementing runtime results for SVP and ARM. Guy Lemieux served in an

advisory fashion.

vii

Table of Contents

Abstract . iii

Lay Summary . v

Preface . vi

Table of Contents . viii

List of Tables . xi

List of Figures . xii

Glossary . xv

Acknowledgments . xviii

1 Introduction . 1

1.1 Motivation . 1

1.2 Approach . 4

1.2.1 Experimental Architecture Models 5

1.2.2 Experimental Methodology 6

1.3 Contributions . 8

1.4 Dissertation Organization . 9

2 Background . 10

2.1 Finding Parallelism in a General Program 10

viii

2.2 Programming Models . 13

2.3 Reconfigurable Computing Platforms 15

2.3.1 FPGA . 15

2.3.2 Massively Parallel Processor Array 17

2.4 OpenVX . 22

2.5 Partial Reconfiguration . 23

3 MPPA Space/Time Scaling . 27

3.1 Introduction . 27

3.2 Finding Different Implementations 30

3.2.1 Intra-Node Optimizer . 31

3.2.2 Inter-Node Optimizer . 32

3.2.3 Example: N-Body Problem 32

3.3 Trade-off Finding Formulation and Solutions 36

3.3.1 Integer Linear Programming Algorithm 37

3.3.2 Heuristic Algorithm . 38

3.4 Experimental Results . 46

3.4.1 StreamIt . 46

3.4.2 JPEG . 47

3.5 Summary . 48

4 FPGA Space/Time Scaling . 49

4.1 Introduction . 49

4.2 Approach . 51

4.3 Tool Flow for OpenVX-based HLS 52

4.3.1 OpenVX Programming Model 53

4.3.2 Finding Different Implementations 54

4.3.3 CV Accelerator on FPGA 56

4.3.4 Heavily Parameterized C++-based OpenVX Kernels . . . 59

4.3.5 Intra-node Optimizer . 60

4.3.6 Inter-node Optimizer . 61

4.3.7 Trade-off Finding Formulation and Solutions 64

4.4 Experimental Results . 65

ix

4.5 Summary . 71

5 FPGA Overlay Space/Time Scaling with Custom Instructions 73

5.1 Introduction . 74

5.2 System Overview . 78

5.3 Mapping OpenVX Applications to FPGA Overlay 80

5.3.1 Finding Different Implementations 80

5.3.2 Execution Time Analysis 81

5.3.3 Solving the Space/Time Tradeoff 86

5.4 Experimental Results . 87

5.5 Summary . 97

6 Conclusions . 98

Bibliography . 101

x

List of Tables

Table 3.1 Different operations with their initiation intervals 33

Table 3.2 Number of different implementations found by the tool for StreamIt

benchmarks . 46

Table 3.3 Implementation library for JPEG encoder 47

Table 3.4 Heuristic vs ILP for many-core system 47

Table 5.1 vxMagnitude kernel throughput running on different platforms 74

Table 5.2 Some of common patterns used for pre-synthesized node fusion 86

Table 5.3 List of CV kernels . 89

Table 5.4 List of CV kernels implemented as VCIs in Figure 5.8 91

Table 5.5 List of CV kernels implemented as VCIs on SVP-V4 in Figure 5.9 93

xi

List of Figures

Figure 2.1 Example FPGA architecure 18

Figure 2.2 Ambric bric organization [12] 20

Figure 2.3 Structural object programming model [12] 22

Figure 2.4 OpenVX source code for Canny 23

Figure 2.5 OpenVX graph for Canny 23

Figure 2.6 Area saving by reconfiguring only the currently required accel-

erator module to the FPGA. Configurations are fetched from

the module repository at runtime. 24

Figure 2.7 System acceleration due to partial reconfiguration. By spend-

ing temporarily more area for each function, the overall latency

is reduced[47]. 25

Figure 3.1 Tool flow . 30

Figure 3.2 Pipelined force calculation 33

Figure 3.3 A node with inverse-throughput=4 34

Figure 3.4 Expanding node using replication to improve throughput . . . 34

Figure 3.5 Expanded force calculation 35

Figure 3.6 Inverse-throughput/area relation for different implementations

of force calculation . 36

Figure 3.7 Minimum and expected inverse-throughput 38

Figure 3.8 Throughput analysis example 39

Figure 3.9 Throughput propagation and balancing 40

Figure 3.10 Node combining in Bottleneck Optimizer 42

Figure 3.11 Node combining in Bottleneck Optimizer 47

xii

Figure 4.1 Tool flow . 53

Figure 4.2 OpenVX source code . 54

Figure 4.3 Sobel graph . 54

Figure 4.4 Two different approaches for satisfying Θ = 5 56

Figure 4.5 System view implemented on Xilinx FPGA 57

Figure 4.6 Internal view of a general node in CV hardware accelerator . . 57

Figure 4.7 Pixel2Pixel kernel example, WT = 4,WF = 2 59

Figure 4.8 Window2Pixel kernel example, WT = 4,WF = 2 59

Figure 4.9 Window2Pixel kernel . 60

Figure 4.10 Area, throughput and tile-width correlation for Gaussian3x3

kernel . 61

Figure 4.11 Pixel2Pixel replication . 62

Figure 4.12 Window2Pixel replication 63

Figure 4.13 Node combining . 63

Figure 4.14 LUT usage percentage for Sobel implementations on different

FPGA sizes . 67

Figure 4.15 Throughput achieved for Sobel on different FPGA sizes . . . 67

Figure 4.16 Percentage of LUT usage for different Xilinx FPGAs 68

Figure 4.17 vxMagnitude Area/Throughput results for different throughput

targets . 68

Figure 4.18 Area cost results for different throughput targets 69

Figure 4.19 Heuristic vs ILP runtime speedup for Harris corner detection . 69

Figure 4.20 Area cost results for Harris using Heuristic and ILP approaches 70

Figure 4.21 Heuristic vs ILP throughput results for Harris corner detection 70

Figure 4.22 Area/throughput results for implementing Sobel on Xilinx Zed-

Board . 71

Figure 5.1 Running an application on the hybrid system 76

Figure 5.2 System overview . 79

Figure 5.3 Node clustering and bypassing the scratchpad 83

Figure 5.4 VCI chaining versus node fusion 85

Figure 5.5 ARM Cortex-A9 (667MHz) vs SVP-V4 and SVP-V8 (100MHz) 88

Figure 5.6 Graph representation of Sobel application with 6 nodes 88

xiii

Figure 5.7 Graph representation of Canny−Blur application with 10 nodes 90

Figure 5.8 Throughput vs area for V4 and V8 with/without VCI (Canny−

Blur Figure 5.7) . 90

Figure 5.9 Sobel speedup by adding static VCIs (standalone and bypass-

ing) to SVP-V4 compared to ARM 91

Figure 5.10 V4 Dynamic PR and Static PR speedup vs ARM for Sobel

Application (4500 LUT budget, image size 1920×1080) . . . 94

Figure 5.11 V4 Dynamic PR and Static PR speedup vs ARM for Canny-

blur Application (4500 LUT budget, image size 1920×1080) 95

Figure 5.12 V8 Dynamic PR and Static PR speedup vs ARM for Canny-

blur Application (14000 LUT budget, image size 1920×1080) 95

Figure 5.13 V4 Dynamic PR speedup vs ARM for Canny-Blur for different

image sizes (4500 LUT budget) 96

Figure 5.14 V8 Dynamic PR speedup vs ARM for Canny-Blur for different

image sizes (4500 LUT budget) 96

xiv

Glossary

ALU Arithmetic Logic Unit

ASIC Application-Specific Integrated Circuit

BRAM Block RAM

CAD Computer Aided Design

CLB Configurable Logic Block

CPU Central Processing Unit

CV Computer Vision

DAG Directed Acyclic Graph

DIG Different Implementation Generator

DMA Direct Memory Access

DSP Digital Signal Processing

FIFO First In, First Out

FPGA Field-Programmable Gate Array

GLPK GNU Linear Programming Kit

HDL Hardware Description Language

HLL High-Level Language

xv

HLS High-Level Synthesis

HPC High Performance Computing

IC Integrated Circuit

ICAP Internal Configuration Access Port

ILP Integer Linear Programming

JPEG Joint Photographic Experts Group

KPN Kahn Processing Network

LUT Look-Up Table

MIMD Multiple Instruction, Multiple Data

MPPA Massively Parallel Processor Array

MUX Multiplexer

MXP Matrix Processor

NOC Network on Chip

PE Processing Element

PR Partial Reconfiguration

PRR Partial Reconfiguration Region

RAM Random Access Memory

RTL Register Transfer Level

SDA Stream Data Adjuster

SDFG Synchronous Data Flow Graphs

SDK Software Development Kit

SIMD Single Instruction, Multiple Data

xvi

SRAM Static RAM

STG Streaming Task Graph

SVP Soft Vector Processor

VCI Vector Custom Instruction

VLIW Very Long Instruction Word

xvii

Acknowledgments

Baba, thanks for all the support. You taught me how to think differently. Maman,

thanks for your unconditional love and helping me through the tough times. Thanks

grandpa for inspiring me even after you left us, you always wanted me to improve

myself.

Guy, thank you for everything you’ve done for me. You literally changed my

life. I cannot thank you enough. Thanks Kia Bazargan for all the support during

my Masters. You are the reason I started my PhD, you are my hero. Thank you

Jayme Carvey for everything. You helped me getting my speech confidence back.

Aaron, Thanks for helping me starting my research.

Thanks SOC faculties and members. It was a pleasure working with everyone

in the SOC lab.

Thanks to NSERC for funding.

xviii

Chapter 1

Introduction

1.1 Motivation

Applications that are structured around the notion of a “stream” are increasingly

important and widespread. One study shows that streaming applications are al-

ready consuming most of the cycles on consumer machines, and their use is con-

tinuing to grow [71]. Many of these are media and vision applications, and most

of them are computationally intensive. There is no doubt that increasingly more

complex streaming applications will continue to be introduced, so the demand for

higher performance will continue.

Increasing the clock frequency was the simple and traditional way to achieve

high performance computing, however, since clock frequency scaling has essen-

tially stopped due to power constraints, an issue known as Dennard scaling [25],

computer designers and architects have focused on delivering increased levels of

parallelism to improve both performance and performance-per-Watt [68]. Sev-

eral different approaches have been introduced to address this issue. At one end

is coarse-grained parallelism, often implemented through multi-core processors,

usually through a high-level language. At the other end is fine-grained paral-

lelism, often implemented through Field-Programmable Gate Array (FPGA) and

Application-Specific Integrated Circuit (ASIC) devices by designing hardware-level

solutions.

Unfortunately, both coarse-grained and fine-grained parallelism can be chal-

1

lenging to program. In software, it can be challenging to expose sufficient paral-

lelism in common languages like C, and difficult to describe some types of com-

putation in CUDA or OpenCL, for example. In hardware, Register Transfer Level

(RTL) languages such as VHDL and Verilog achieve very good results, but it is not

accessible to users without hardware design knowledge. RTL is also very tedious

to program, as it requires describing everything on a cycle-by-cycle basis. This

makes the above-mentioned approaches either inaccessible to general users or time

consuming and hard to implement for more expert users.

In FPGAs, design is made easier through High-Level Synthesis (HLS) tools.

These are tools that convert a High-Level Language (HLL) (e.g., Java or C) into

RTL (e.g., an Hardware Description Language (HDL) such as Verilog or VHDL).

However, they impose their own challenging constraints in writing the HLL and in

what can be parallelized [23, 62]. Several industrial and academic HLS tools have

been developed to provide an environment for users to describe their application

in a HLL such as C/C++ to avoid the difficulty of HDL programming. However,

current HLS tools require the user to explicitly manage resources at every stage in

their algorithm in order to meet a specified area target or throughput target. This

is done by manual control of things such as loop unrolling or pipelining by control

pragmas to the code to change how it is synthesized. Moreover, in order to fit a

design to different FPGA sizes or achieve a different throughput, users need to alter

the design manually, which involves changing the pragmas at best, but in other

cases may require more significant rewriting of the source code. Instead, users

would benefit from an HLS tool that can automatically investigate different degrees

of parallelism, explore space/time tradeoffs and find a suitable implementation for

either a throughput target or an area budget.

As another example, coarse-grained streaming architectures such as Ambric’s

Massively Parallel Processor Array (MPPA) device [13] also require programm-

ming in a HLL. In Ambric’s case, Java is used to describe each thread and to ex-

plicitly allocate instances, where each thread has streaming input and output ports,

and the Astruct custom language is used to connect these ports together [12]. The

compiler creates a graph of communicating object-threads which must be placed

and routed, much like an FPGA. This can be a great platform for low-power, high-

performance computing [40]. However, the Astruct language design does not al-

2

low for the creation of dynamic connections; these must be known explicitly at

compile-time. Although using object-oriented Java helps make this platform acces-

sible to general users, to achieve high performance, users still need to manually do

the resource management by partitioning the application into small atomic objects.

This requires the user to learn the Ambric architecture and parallelism methods.

Moreover, users need to go through the same process again if they want to increase

performance, shrink the size, or target another MPPA with a different architecture

and resources.

The approaches described above are specialized for getting high performance

from specific hardware targets. In both cases, however, when the number of avail-

able resources changes, or the target changes, users need to change the source

code of the implementation to satisfy the new constraints. For example, let us go

through four different scenarios which need changing these targets. One scenario

can be implementing an application on a different platform with different comput-

ing resources (from a small embedded device to a big data center). In this case, the

user needs to fill up different chips (different area budgets) while maximizing the

throughput. A second scenario is when the user has purchased a pre-made design,

wants to change/customize one block within the whole design, and there is a lim-

ited amount of leftover area available. This needs an area budget. A third scenario

can be with a big team of hardware and software developers, where the hardware

developers assign a budget (throughput or area) to the software developers to im-

plement their algorithm (e.g., part of a floorplanning process for a whole team). A

fourth scenario is when a user wishes to put multiple applications onto a chip, and

is trying to pack as many applications (or application instances) as possible; this

needs setting throughput targets or area budgets for each instance, but the overall

goal is to achieve maximum throughput for the entire chip. A final use-case is that

a user may wish to develop several different products or solutions at different price

(and performance) points; there is a need for a tools that allow them to more easily

scale it to fit different chips or budgets.

This process of retargetting and scaling an application in all the scenarios men-

tioned above can be time consuming and expensive, and in many cases program-

mers need extensive skill as well as knowledge of the target platform. There is a

need to have general, scalable and flexible approach which allows users to describe

3

streaming applications in a retargetable way.

Streaming applications can be described by a Streaming Task Graph (STG)

which are collections of tasks with dependencies between their inputs and outputs.

This means they can leverage pipelined architectures. This work focuses on STGs

with Directed Acyclic Graph (DAG) topologies. These type of graphs can easily

be manipulated to adopt different methods such as pipelining, node replicating and

node combining in order to find different degrees of parallelism. This makes an

STG suitable model for exploring space/time implementation tradeoffs on pipelined

architectures. The scope of automatically exploring space/time tradeoffs for STGs

has motivated a considerable amount of research to improve the usability of parallel

resources in different pipelined architectures.

The goal of this dissertation is to broaden the overall usability of parallel re-

sources by providing an environment which allows users to automatically explore

space/time tradeoffs and find suitable implementations regarding a throughput tar-

get or an area budget on a wide range of different pipelined architectures. This

can be added to a HLL or to the HLS process to make them more flexible, scalable

and more area efficient. Moreover this makes a broad range of pipelined archi-

tectures with different granularity and resources accessible to people with limited

specialized knowledge. They can easily define an application as a STG in an HLL

instead of dealing with using low level RTL or parallel programming languages

such as OpenCL. At the same time, we wish to ensure that, by using this approach,

the HLS approach is able to automatically find a broad range of different solutions

which can each compete with manually optimized implementations. Moreover, the

HLS tools need to automatically explore the different solutions and find a suitable

implementation based on different defined restrictions or desired targets.

1.2 Approach

As mentioned above, the main goal of this dissertation is to broaden the overall us-

ability of parallel resources in different pipelined architectures by making scaling

an implementation easier for general users. This can be done by providing an envi-

ronment which allows users to define applications as STGs, explore the space/time

design space, and find a suitable solution for a defined restriction or a desired tar-

4

get. In other words, we wish to address the automated space/time scaling problem

for STGs on different pipelined architectures. We start with addressing this prob-

lem targeting a coarse-grained architecture (an MPPA), then target a fine-grained

architecture (an FPGA), and finally use the experience learned to target a hybrid ar-

chitecture with both coarse and fine components. Below, we discuss our approach

in greater detail.

1.2.1 Experimental Architecture Models

Our experiments into automated space/time scaling for STGs examine three differ-

ent parallel architecture models.

First, we examine pipelined coarse-grained parallelism modelled after the Am-

bric MPPA. Like Ambric, we develop a Java-based compiler tool chain targeting

the MPPA. The compiler attempts to find the maximum degrees of parallelism in

the stream application, then performs throughput analysis, throughput propagation

and looks for possible bottlenecks. We study different STG manipulations to find

different implementations in the space/time tradeoff space. We show that a clas-

sical Integer Linear Programming (ILP) optimization strategy, based upon prior

work, finds a locally optimal design point subject to the given area or throughput

target. In addition, we introduce a heuristic approach that runs faster and achieves

better results than the ILP approach because it has fewer restrictions. We discuss

our solutions to this coarse-grained model in detail in chapter 3.

Second, we examine pipelined fine-grained parallelism available on a Xilinx

FPGA. We investigate automating the ability to make space/time tradeoffs in the

commercial HLS tool, Xilinx Vivado HLS [43, 96], targeting the FPGA fabric. Since

we do not have access to the Xilinx Vivado HLS source code, we propose a frame-

work on top of it which evaluates many ways pragmas can be used to parallelize

a STG. To represent STGs, we restrict ourselves to the OpenVX standard which

enables the creation of Computer Vision (CV) applications as compute graphs. Our

OpenVX HLS system uses heavily parameterized CV kernels as well as multiple

optimization approaches to automatically expand and explore the space/time de-

sign space. Ultimately, our system finds a suitable fine-grained implementation for

a given area or throughput target. We compare both the classical ILP and novel

5

heuristic optimization approaches, and compare these to manually written imple-

mentations. We discuss this model in detail in chapter 4.

Third, we examine a hybrid approach that uses both coarse-grained and fine-

grained parallelism. For coarse-grained parallelism, we target a Soft Vector Pro-

cessor (SVP) architecture implemented in the Xilinx FPGA fabric that streams data

through a wide Single Instruction, Multiple Data (SIMD) datapath. For fine-grained

parallelism, we target custom instructions implemented in the Xilinx FPGA fabric

built using the HLS tool developed earlier. Each Vector Custom Instruction (VCI)

offers horizontal parallelism up to the same SIMD width as the SVP, as well as

vertical parallelism created with pipelining. Furthermore, additional coarse-grain

pipeline parallelism can be created by cascading the output of one VCI to another,

producing a chain of VCI operations. The entire VCI chain must respect the two-

input, one-output restriction of a single VCI, and must be of the same SIMD width.

To assemble such a system, we rely upon a feature of FPGAs known as Partial

Reconfiguration (PR), where a Partial Reconfiguration Region (PRR) can be recon-

figured dynamically at run time. The VCI chain is connected to the SVP using

a multiplexer network added to the PRR logic. Using this system, we examine

the ability to implement OpenVX compute graphs with space/time tradeoffs on an

FPGA device with limited resources. This means our approach decides which part

of the graph runs on the SVP and which part runs as a VCI or VCI chain. Similar

to previous approaches, we use a heuristic approach to leverage runtime optimiza-

tion techniques which cannot be done as easily in the classical ILP approach. We

discuss this model in detail in chapter 5.

1.2.2 Experimental Methodology

For each of the three experimental architectural models, we use a slightly different

methodology for building our tools and collecting results.

In the first model, we develop a Java-based compiler platform similar to the

Ambric system. This compiler performs optimization and code generation for our

target device which is similar to the Ambric MPPA. However, we did not follow pre-

cise instruction encodings, and we did not attempt to run the code on a real Ambric

device. Instead, we developed a cycle-accurate simulator which measures execu-

6

tion time. Benchmarks are written in Java and run on this simulator. Although real

Ambric devices are no longer available, similar coarse-grained overlays are being

developed on FPGAs such as the GRVI Phalanx [34] as well as an Ambric clone. 1

In the second model, we use the actual Xilinx tools and devices to produce

a real bitstream. In particular, the Vivado HLS tool is used to synthesize C for

the FPGA. Benchmarks are written in C using the OpenVX API. We develop a

front-end tool which synthesizes an FPGA implementation of an entire OpenVX

compute graph. This tool is given an overall area or throughput target; it analyzes

the full graph, optionally transforms it, and determines the best space/time tradeoff

to meet the target. Each node is an OpenVX compute kernel which is written in C

and fully annotated with pragmas for maximum parallelism with Vivado HLS. Our

tool determines which pragmas are needed for each kernel instance in the graph

to meet the overall target. The final output is a C program which is compiled

by the Vivado tools into an FPGA bitstream, where the area usage, clock speed,

and throughput metrics can be verified. These graphs use AXI-stream inputs and

outputs, allowing them to be easily connected to a full system.

In the third model, we continue to use Xilinx tools and devices together with

the VectorBlox Matrix Processor (MXP) SVP, but we produce final results using a

performance equation. For each OpenVX compute kernel, we use three implemen-

tations: scalar ARM Cortex-A9 code produced using regular C with gcc, vectorized

code for the ARM and VectorBlox MXP, and a VCI. The scalar code is only used to

produce a performance baseline. The VCI implementations are produced by com-

piling the OpenVX kernels (from the previous model) for varying SIMD widths,

up to the width of the SVP, and compiled into the smallest area required. To save

time in this work, we did not implement the multiplexer network required to con-

nect VCI chains into the MXP, nor did we implement the PR control logic. Instead,

we model the time required to perform PR based upon performance specifications

given by Xilinx for their Internal Configuration Access Port (ICAP) on-chip config-

uration controller. We are particularly interested making the ICAP controller faster,

so we model this speed as a variable, and use performance equations to model the

speed of the overall system. With this feasibility study, we have confidence that a

1Michael Butts, private communication.

7

working system could be implemented to verify the estimated gains.

1.3 Contributions

The contributions of this dissertation are summarized in the following paragraphs.

• Chapter 3 is a demonstration of the benefits of automated space/time scaling

for STGs mapped onto MPPA overlays rather than manually implementing,

scaling and optimizing. We introduce an HLS tool that automatically allows

exploring area/throughput tradeoffs for STGs. We improve upon the classical

ILP approach by introducing a heuristic approach.

Our approach differs from existing approaches because:

1. It automatically investigates partitioning and finding different imple-

mentations.

2. It combines module selection and replication methods with node com-

bining and splitting in order to automatically find a better area/through-

put tradeoff.

3. It presents a novel heuristic approach which is more flexible and can

find design points not feasible to find with a classical ILP approach.

• Chapter 4 is a demonstration of our solution for automating the ability to

make space/time tradeoffs in a commercial HLS tool. This leads to a C-

to-RTL tool which can automatically explore the space/time problem space

for implementing OpenVX applications defined as STGs on FPGAs. Based

on our knowledge, this cannot be done with existing C-to-RTL tools. The

experiment shows the proposed approach is able to achieve the same perfor-

mance as manually written implementations and also it finds several more

solutions for a variety of different throughput targets which leads to a 30%

area reduction. The tool is able to achieve over 95% of the target area bud-

get on average while improving the throughput. The Inter-node Optimizer

step of our heuristic is able to hit the same throughput targets while reducing

the area cost by 19% on average compared to the ILP approach. In terms

of efficient use of parallel resources on the chip, the experiment shows the

8

tool manages to satisfy different throughput targets while using parallel re-

sources efficiently. For example, it achieves up to 5.5 GigaPixel/sec for the

Sobel application on a small Xilinx 7Z020 device.

• Chapter 5 is a demonstration of run-time acceleration using dynamic par-

tial reconfiguration. More specifically, a SVP software system with coarse-

grained parallelism is further accelerated using rapid reconfiguration of VCI

chains. The experiment shows speedups far beyond what a plain SVP can

accomplish. For example, an 8-lane SVP achieves a net speedup of 18 versus

the scalar ARM processor for running the Canny− blur application. This

was achieved by using automated space/time scaling, node clustering and

dynamic PR. However, if FPGA vendors can provide a much faster PR rate, a

net speedup of 106 is possible.

Our approach differs from existing approaches because:

1. It is the first work to explore PR and time-sharing of VCI for speeding

up SVP.

2. It further improves performance by adding scratchpad bypass with VCI

chaining.

3. It uses pre-synthesized node fusion of common VCI chains to save area.

1.4 Dissertation Organization

Chapter 2 presents the background of this dissertation, including the general ap-

proach to find different degrees of parallelism in an application and programming

models to describe the application. Moreover, it presents the background of dif-

ferent reconfigurable computing platforms we used in this dissertation. Chapter 3

details our implementation of automated space/time scaling of STG on a coarse-

grained architecture (MPPA). Chapter 4 details our approach of exploring auto-

mated space/time tradeoffs for CV application described as an OpenVX compute

graph on a fine-grained architecture (FPGA). Chapter 5 details our implementation

of a compilation system which uses run-time reconfiguration to accelerate applica-

tions on a hybrid SVP/FPGA architecture.

9

Chapter 2

Background

This chapter provides the necessary background information for this dissertation.

First, it presents an overview of finding parallelism in a general program to show

different transformations that find different degrees of parallelism in a general pro-

gram. Next, it describes different programming models and their pros and cons. To

give the necessary background to understand different reconfigurable computing

platforms used in this dissertation, FPGA, MPPA and SVP are introduced. This

leads to discussing OpenVX applications on reconfigurable computing platforms.

Finally, it discusses the advantages and limitations of partial reconfiguration.

2.1 Finding Parallelism in a General Program

Regardless of what programming model we will use for describing a computational

problem, the first step to get better throughput and use parallel resources efficiently

is analyzing the program and finding the potential parallelism in it. Getting high

performance on a platform with parallel resources requires not only finding paral-

lelism in the program but also minimizing the synchronization overhead because

the synchronization process may stall the system; a processing element may have

to wait for another processing element to reach the corresponding synchroniza-

tion point and make data ready. High synchronization frequency generally comes

with high levels of data communication between processing elements, which might

reduce the performance of the system. As a result, a program with fine-grain syn-

10

chronization can run on a multi-core system even slower than one processor [56].

It is therefore important to find parallelism that requires minimal synchronization.

In other words the final goal is identifying the coarsest granularity of parallelism

in a program by finding the largest set of independent computations that can be run

by different processing elements in a synchronization-free manner. As mentioned

above, it is important to find parallelism before implementing a design. A paral-

lelism finder algorithm analyzes and transforms the program to find all the degrees

of parallelism in it.

There have been several studies on program transformation to achieve paral-

lelism and data locality for a program. These transformations are generally limited

to loops that use affine functions for representing bounds and array accesses [6].

Below we describe an algorithm that finds the maximum degree of parallelism

in a general program with nested loops and affine index expressions for array ac-

cesses proposed by Lim et al. [56]. Index expressions are affine if it involves

multiplying the loop index variables by constants and adding constants. All the in-

structions in a program are identified by the loop index values of their surrounding

loops, and affine expressions are used to map these loop index values to a partition

number. Partition numbers are used for two different purposes, space partition-

ing and time partitioning. Operations belonging to the same space partition are

mapped to the same processing element. On the other hand operations belonging

to time partition i should execute before those in partition i+ 1. We try to find a

combination of affine space and time partition mappings that maximizes the de-

gree of parallelism with successively greater degree of synchronization. Several

transformations are described in [5, 7, 8, 14, 44, 74, 92]. We can achieve all of the

loop-level parallelism with a combination of these transformations such as:

• Fusion

• Fission

• Re-indexing

• Scaling

• Reversal

11

• Permutation

• Skewing

First we should explain the different forms of parallelism and present our prob-

lem statement. A program has k degrees (number of dimensions) of parallelism

if O(nk) units of computations can be executed in parallel, where n is the number

of iterations in a loop. Also we say that different degrees of parallelism in a loop

nest exist at the same nesting level if and only if they require the same amount

of synchronization. The algorithm described in this section locates all the degrees

of parallelism in a program. In other words it finds the maximum degree of par-

allelism at each level of granularity, starting from coarsest to finest. It also finds

opportunities for pipelining. This algorithm assumes there is an infinite number of

virtual processors, which means for each independent thread of computation there

is a processor. To generate code for a specific number of processing elements in

a target architecture we can simply combine multiple of these parallel threads and

assign them to the same processing element.

We can describe the overall problem of finding the maximum degree of par-

allelism into subproblems such as: how to maximize the degree of parallelism

that requires 0, O(1), and O(n) amount of synchronization, where n is the number

of iterations in a loop. By solving each of these problems in turn, the algorithm

finds successively more degrees of parallelism at a higher cost of synchronization.

The above-mentioned algorithm repeats these steps to find parallelism requiring

O(n2),O(n3), ... synchronization until it finds sufficient parallelism to occupy all

of the available hardware. Below we describe these subproblems with more detail.

The subproblem of maximizing synchronization-free parallelism studies the

problem of parallelizing an application without allowing any communication or

synchronization between processors at all. In other words it is formulated as parti-

tioning the dynamic operations, into the largest number of independent partitions.

More specifically, it finds an affine partition mapping for each instruction that max-

imizes the degree of parallelism. By using a set of space-partition constraints in the

affine partition mapping process, we ensure that the processing elements executing

operations in different partitions need no synchronization with each other.

The next subproblem is to find parallelism with O(1) synchronization which

12

means the number of synchronizations must be independent of the number of it-

erations in a loop. This algorithm divides instructions into a sequence of stages

(strongly connected components) and locates synchronization-free parallelism within

each stage, then it inserts barrier synchronization before and after each parallelized

stage.

Finally, to find parallelism with O(n) synchronization, the algorithm tries to

find an affine time partition mapping for each instruction. By using a set of time-

partition constraints in the affine mapping process, we ensure that data dependences

can be satisfied by executing the partitions sequentially. The goal is to find affine

mapping that yields the maximum parallelism among operations within each of the

time partitions.

The time partitions and space partitions are similar in many ways and are

amenable to the same kind of techniques. The affine form of the Farkas lemma

[29] has been used to transform the constraints into linear inequalities. The prob-

lem of finding a partition mapping that gives the maximum degree of loop-level

and pipelined parallelism while satisfying the space-partition or time-partition con-

straints reduces to finding the null space of a system of equations. This affine

partition mapping can be found easily with a set of simple algorithms.

2.2 Programming Models

In this section we go through some programming models and their pros and cons.

For more information see the Tessier et al. survey paper [80]. In the early days

of reconfigurable computing, there was no overlap between programming general

purpose computers and FPGAs or other reconfigurable computing platforms. While

procedural languages such as C were generally used to target microprocessors,

most FPGAs application designers were still drawing schematics or using HDLs

such as Verilog or VHDL. In order to make the reconfigurable computing plat-

forms more accessible for general users without any hardware knowledge, several

different programming models have been introduced.

A key goal in the early days was making the programming environment for re-

configurable computing platforms as similar as possible to microprocessor-based

systems to make it attractive to general users. Since C was primary language of

13

the day, many C-based programming models were introduced. An initial C-to-

hardware compiler [89] could do source to source transformation for a simple chain

of operations (e.g. add, shift) into HDL code. Wo et al. [91] extended this idea

by adding a simple state machine to execute multiple sequential hardware opera-

tions (considering data dependencies). To express parallelism better, features were

added to the language. Early compilers often relied on users to manually express

parallelism and synchronization using “pragma” statements [32]. Modern systems

are closer to extracting parallelism from C source code [87] and consider the in-

terface between the synthesized hardware and memory [99]. Application code can

also be profiled using software execution [15] to determine target code for hard-

ware acceleration. An important aspect of C-to-FPGA compilers is the estimation

of functional unit area and performance [21], an issue made easier by the recent

inclusion of hard macro blocks in FPGAs. Moreover, specialized systems have also

been introduced to target synthesis with floating-point data types [85]. The amount

of research and number of commercial procedural language-to-hardware tools (in-

cluding Xilinx’s Vivado, Calypto Catapult C, and Cadence’s C-to-silicon) in recent

years, show the demand of targeting users without hardware knowledge.

The similarity between objects in object-oriented programming models and

instantiated hardware modules has led to a number of attempts to represent recon-

figurable computing as communicating objects. Predictable communication flow

and limited communication dependencies are key aspects of these models. This

is similar to pipelined implementations. Streaming applications typically have

coarse-grain compute objects that communicate with adjacent blocks via buffers

or synchronized communication channels. Moreover, results are often sent along

predetermined communication paths at predictable rates. This model is suitable

for defining a series of signal processing blocks that require minimal control flow

or global synchronization. PamBlox focused on the ability to define hierarchies of

C++ objects [63] and the use of embedded block memories. These blocks could

then be organized into streams. The Streams-C model [31] introduced a series of

communicating sequential processes that used small local memories. Streams-C

tools were later commercialized into the Impulse-C compiler. Perhaps the most

comprehensive stream-based, object-oriented environment to date was the com-

mercial Ambric model [12]. In this model, a Processing Element (PE) can exe-

14

cute one or more user-defined objects that communicate with objects running on

other PEs via self-synchronizing, dataflow channels. The commercial Bluespec

SystemVerilog [64] hardware synthesis system is also based on the manipulation

of objects.

The ability to abstract away details of implementing reconfigurable platforms

from the users makes stream-based environments attractive to general users. Sev-

eral projects have considered the possibility of combining stream-oriented com-

putation with run-time reconfiguration. JHDL [10] allows defining objects whose

functionality can be dynamically changed. Development tools allow for evaluation

of system performance using both simulation and in-circuit execution. The SCORE

project [16] explores swapping stream-based objects on-demand at run-time. Ob-

jects can be swapped if the number of objects in an application is too large to fit

in the hardware. As a result, the same application could be mapped to hardware

platforms of many different sizes.

Data flow models are often used for specifying the behaviour of signal pro-

cessing and streaming applications as a set of tasks, actors or processes with data

and control dependencies. The differences between various dataflow models can

be characterized by their expressive power and the availability of techniques for

analyzing correctness and performance properties like absence of deadlock and

throughput. The Kahn Processing Network (KPN) [30], for example, can capture

many of the dynamic aspects of these systems, but evaluating their correctness

and performance is in general undecidable. On the other hand, Synchronous Data

Flow (SDF) [53] models do allow analysis of many correctness and performance

properties but they lack support for expressing any form of dynamism.

2.3 Reconfigurable Computing Platforms

2.3.1 FPGA

FPGAs are Integrated Circuits (IC) that are used to implement digital logic func-

tions. In contrast to an ASIC, an FPGA is field-programmable. This means that

logic functions must be programmed after the device has been manufactured. On

the other hand, an ASIC implements digital logic functions by placing and con-

15

necting transistors (layout), which cannot be changed once the chip is fabricated.

An FPGA implements digital logic functions with Configurable Logic Block (CLB)

modules (typically containing Look-Up Table (LUT)s and flip-flops (FF)) and con-

figurable interconnect between them. Most modern FPGAs can be programmed by

loading data into Static RAM (SRAM) cells, which can be reconfigured practically

an unlimited number of times [51]. Since normal Integrated Circuit (IC) tech-

nology has been used to fabricate SRAM cells, CLBs and routing components on

FPGAs, it’s reasonable to describe an FPGA as a type of ASIC than emulates other

ASICs. Traditionally FPGAs are used for applications such as ASIC prototyping,

telecommunications equipment (where low volumes and changing standards make

ASICs less attractive), and as interfaces between other ICs (“glue-logic”). In re-

cent years, modern FPGAs have been introduced which provide more performance

by adding different hard-core components such as memory blocks and multipli-

ers. This makes them more desirable to run computationally-intensive applications

such as computer vision.

Architecture and Design Flow

A common model of an FPGA is a two-dimensional grid of blocks which are con-

nected by a mesh routing network. The blocks may consist of CLBs or different

hard blocks. The hard blocks are frequently used functions that are too expen-

sive to implement as soft logic using CLBs. The most common hard blocks im-

plemented by FPGA vendors are memories (Block RAM (BRAM) modules) and

multipliers or other expensive arithmetic and logical functions (Digital Signal Pro-

cessing (DSP) blocks). FPGA blocks communicate through a configurable routing

network, usually using horizontal and routing wires meeting though reconfigurable

switch blocks. Additionally, the wires within a routing channel to which a block

input or output connect is configurable. The input/output blocks with pins that

connect the FPGA to the outside world are also configurable, supporting multiple

voltage levels and signalling styles.

FPGA architecture is relatively generic so user logic can be implemented in any

set of CLBs. This means there are many possible ways to implement a general

digital circuit on an FPGA. This process is not straightforward: the size of modern

16

FPGAs are large, so mapping a large design to a large FPGA is an optimal way is

computationally intensive. To appreciate the problem size, consider that the largest

Xilinx Virtex UltraScale+ FPGA has 3.8 million programmable logic cells, 94 Mb

BRAM and 12,288 DSP slices.

The Computer Aided Design (CAD) flow for translating a design to an FPGA

configuration bitstream varies for different vendors. For more information refer to a

survey paper by Chen et al [17]. The differences are not important for the purposes

of this dissertation, but it is necessary to understand a CAD flow to understand the

reasons the traditional FPGA design cycle is long compared to the design cycle for

software. RTL synthesis is the process of translating the input circuit as specified

by the user to a netlist of Boolean functions and macros such as hard blocks. The

Boolean functions get technology-mapped to FPGA programmable logic blocks.

Placement then selects locations for each of these units, and routing determines

how to configure the communication network to connect logic block inputs and

outputs. Finally, assembly creates the bitstream that is used to program the FPGA.

Note the term synthesis is often used to refer to the entire process; it includes the

time taken by all of the steps. For large FPGAs, synthesis can take hours or even

days. This fact makes automatically exploring the space/time tradeoffs and using a

library of pre-synthesized bitstream implementations desirable for users.

2.3.2 Massively Parallel Processor Array

A Massively Parallel Processor Array (MPPA) is a type of embedded platform

which has an array of hundreds or thousands of processing elements (processors)

and memories (Random Access Memory (RAM)). Processors in the system pass

work to one another through a reconfigurable interconnect of channels (e.g. First

In, First Out (FIFO) buffers). A general MPPA is Multiple Instruction, Multiple

Data (MIMD) architecture, often with local distributed memory. Communication

between processors is realized in the configurable interconnect. Each processor

can often run independently at its own speed. Several different architectures for

MPPAs have been introduced by both industry and academia. Companies such

as Aspex (Ericsson), Ambric, PicoChip, Intel, IntellaSys, GreenArrays, ASOCS,

Tilera, Kalray, Coherent Logix, Tabula, and Adapteva have introduced their MPPAs

17

…

…

…

…

…

…

…………………

I/
O

 B
lo

c
k

…

Logic

Column

DSP

Column

Memory

Column
Configurable

Routing

Figure 2.1: Example FPGA architecure

in recent years. Academia has introduced some architectures as well such as

AsAP [100]. Below we discuss some popular MPPAs.

PicoChip (acquired by Intel) developed a multi-core digital signal processor,

the picoArray [27]. This integrates 250-300 individual DSP cores onto a single die

(depending on the specific product) and as such it can be described as an MPPA.

Each of these cores is a 16-bit processor with Harvard architecture, local memory

and 3-way Very Long Instruction Word (VLIW). The picoArray is programmed

using a mixture of VHDL [2], ANSI/ISO C and assembly language. The VHDL

is used to describe the structure of the overall system, including the relationship

between processes, and the signals which connect them together. Each individual

process is programmed in conventional C (albeit with additional communication

functions), or in assembly language.

18

The Epiphany architecture consists of a low power, multi-core, scalable, par-

allel, distributed shared memory embedded system created by Adapteva [1]. The

Epiphany IV Network on Chip (NOC) co-processor contains 64 cores (referred to

as eCores) organized in a 2D mesh with future versions expected to house up to

4096 eCores. The Epiphany chip can be programmed using C, and has a Software

Development Kit (SDK) but users need to manually find and express parallelism.

The Kalray MPPA was introduced as a single-chip many-core processor that

integrates 256 user cores and 32 system cores in 28nm CMOS technology [24].

These cores are distributed across 16 compute clusters of 16+1 cores, and 4 quad-

core I/O subsystems. Each compute cluster and I/O subsystem owns a private

address space, while communication and synchronization between them uses a

NOC. This processor targets embedded applications whose programming models

fall within the following classes: KPN, as motivated by media processing; single

program multiple data (SPMD), traditionally used for numerical kernels; and time-

triggered control systems.

University of California, Davis, introduced Asynchronous Array of Simple

Processors (AsAP) [100] which contains an array of simple RISC processors with a

nine-stage pipeline with small instruction and data memories. Processors commu-

nicate only with adjacent processors to permit full-rate communication with low

energy. Each processor can receive data from any two neighbors and send data to

any combination of its four neighbors. The first generation was introduced with

36 processors. The second generation has 167 processors [86] for DSP, communi-

cation, and multimedia workloads. It contains 164 programmable processors with

dynamic supply voltage and dynamic clock frequency circuits, three algorithm-

specific processors, and three 16 KB shared memories, all clocked by independent

oscillators and connected by configurable long-distance-capable links.

Ambric

Ambric Inc. was a high performance computing company founded in 2003 in Ore-

gon state, United State of America. Their Am2045 MPPA chips have 336 32-bit

RISC-DSP fixed-point processors and run up to 300 MHz. They were designed for

high-performance embedded systems such as medical imaging, video, and signal-

19

Figure 2.2: Ambric bric organization [12]

processing. The Am2045 is internally organized into a 5×9 array of bric modules.

Figure 2.2 shows one bric and its neighbouring brics. Each bric contains two

kinds of 32-bit Central Processing Unit (CPU)s. SRD processors contain 3 Arith-

metic Logic Unit (ALU)s and provide math-intensive instructions to support DSP

operations. Each SRD processor contains a dedicated 256-word RAM for instruc-

tions and data. This memory can be augmented though direct connections to bric

memory objects. SR processors are lighter weight with only 1 ALU. They con-

tain a dedicated 128-word memory for programs and data but do not have direct

connections to memory objects. Each of the two memory objects (RU) in a bric is

organized as 4 independent RAM banks.

20

Ambric introduced the Am2045 and its software tools in 2007, but fell victim

to the 2008 worldwide financial crises [90].

Microprocessor Report gave a 2006 MPR Analysts’ Choice Award for inno-

vation for the Ambric architecture “for the design concept and architecture of its

massively parallel processor, the AM2045”. Although Ambric Inc. is defunct, in

2013 the Ambric architecture received the Top 20 award from the IEEE Interna-

tional Symposium on Field-Programmable Custom Computing Machines, recog-

nizing it as one of the 20 most significant publications in the 20-year history of the

conference.

Software written for Ambric devices is based on the Structural Object Program-

ming Model [12]. Each processor is programmed in conventional Java (a strict

subset) and/or assembly code (Figure 2.3). A programmed processor or memory is

called a primitive object. Objects run independently at their own speeds. They are

strictly encapsulated, execute with no side effects on one other, and have no implic-

itly shared memory. Objects intercommunicate through channels (FIFO-buffers)

in hardware. Channels carry both data and control tokens. Channel hardware syn-

chronizes its elements at each end, not at compile time but dynamically as needed

at run time. Inter-processor communication and synchronization are combined in

these channels. The transfer of a word on a channel is also a synchronization

event. Processors, memories, and channel hardware handle their own synchroniza-

tion transparently, dynamically, and locally, so it doesn’t have to be done by the

developer or the tools. Channels provide a common hardware-level interface for

all objects. This makes it simple for nodes to be assembled into higher-level com-

posite nodes. Because nodes are encapsulated and interact only through channels,

composite nodes work the same way as primitive node objects. The developers

express object-level parallelism using a block diagram. First the hierarchical struc-

ture of primitive and composite objects is defined, connected by channels. Then

ordinary sequential software is written to implement the primitive objects. We have

used an architecture and programming similar to Ambric in chapter 3.

21

Figure 2.3: Structural object programming model [12]

2.4 OpenVX

OpenVX is a cross-platform, C-based API standard for Computer Vision applica-

tions. OpenVX is a good programming model for embedded systems because it

enables performance and power-optimized CV processing to be written in a way

that is independent of the target architecture. At the lowest level are OpenVX

kernel functions; these are implemented as a library by developers with detailed

knowledge of the target accelerator. In OpenVX, CV applications are implemented

as a set of these vision kernel functions which communicate through streaming

channels. An OpenVX application assembles these kernels, or nodes, into a graph,

where edges convey an image passed between kernels. For example, Figure 2.4

shows the OpenVX code for Canny edge detection and Figure 2.5 shows the cor-

responding graph.

The OpenVX run-time system can break a large image into smaller image

tiles, allowing each small tile to pass through the entire graph to completion be-

fore writing back to external memory. This provides excellent memory locality

and improves both performance and power keeping the tile and its transformations

on-chip for as long as possible. Most kernel functions can work with tiles because

they need only local information. The few kernel functions that need global in-

formation cannot be executed until the full image output of the preceding kernel

functions is computed; this can be achieved by cutting the graph at this point and

22

/ / Canny example

vx node nodes [] = {
vxColorConvertNode (graph , rgb , gray) ,

vxGaussian3x3Node (graph , gray , gauss) ,

vxSobel3x3Node (graph , gauss , gradx , grady) ,

vxMagnitudeNode (graph , gradx , grady ,mag) ,

vxPhaseNode (graph , gradx , grady , phase) ,

vxNonMaxima (graph ,mag, phase ,nm) ,

vxThreshold (grpah ,nm, output)

} ;

Figure 2.4: OpenVX

source code for

Canny

Color	

Convert

Gaussian	

3x3
gray

Sobel

3x3

gauss

gradx

grady

Magnitude

Phase

rgb

mag

phase

Hyst ThreshnmNon-Maxima output

Figure 2.5: OpenVX graph

for Canny

only operating on full images at these cut points.

OpenVX applications can be defined as streaming applications: each stage re-

ceives stream of image pixels, rows or frames, processes them, and sends the results

as stream of data to the next stage. This means we can describe a computation as

compute graphs or Synchronous Data Flow Graphs (SDFG) [53]. Previous studies

have shown that custom hardware implementations on FPGAs as well as MPPAs

have the potential to dramatically increase the performance/Watt for computation-

ally intensive SDFGs [4, 40].

2.5 Partial Reconfiguration

The functionality of an FPGA is created by loading its configuration with a set of

bits called a bitstream. In most applications, the entire FPGA is configured at once

with a single bitstream. The Partial Reconfiguration (PR) feature available in most

SRAM-based FPGAs allow only a portion of the FPGA to be reconfigured, with

the rest of the bits staying intact. PR allows changing behaviour of partitions in the

FPGA architecture while the remaining logic is still running.

There are two main uses for PR: to save parallel resources and power [42, 69],

or to increase performance. There have been several studies on the use of PR.

For example [19, 50] demonstrate using partial FPGA reconfiguration for image

processing, [20, 83] propose self-adaptive control systems, and [28, 72] investigate

the use of PR for High Performance Computing (HPC).

23

Radio Crypto

Protocol	

Processing	

FM FSK QRM RC5 AES 3DES

HTTP VoIP SSH FTP

Configuratio
n Memory

ADC

DAC

Figure 2.6: Area saving by reconfiguring only the currently required acceler-

ator module to the FPGA. Configurations are fetched from the module

repository at runtime.

Below we will go through two examples to illustrate the benefits of PR [47].

First, Figure 2.6 shows an adaptive communications device where each of three

stages (the front-end radio, the cryptographic accelerator, and the protocol process-

ing engine) can be loaded with three or four different ‘algorithms’. The algorithms

within each stage are never needed at the same time, i.e., they are mutually ex-

clusive. In a traditional hardware system, all of these algorithms would be imple-

mented at the same time and use considerable area. In a PR system, only enough

area for the largest algorithm in each stage needs to be reserved, leading to consid-

erable savings.

There are more potential benefits than only power and area savings. If we

can implement a system with a smaller FPGA, we might be able to use a smaller

package, which is especially important for mobile applications. In the case of

more complex systems that demand multiple FPGAs, PR may reduce the total FPGA

count, thereby simplifying PCB and system design. Due to higher integration, we

may be able to perform more data processing on-chip, thereby reducing energy for

chip-to-chip communications and/or memory writes.

Second, partial reconfiguration can help increase system performance. For ex-

ample, in Figure 2.7, the PR system on the right can perform more work to achieve

24

Figure 2.7: System acceleration due to partial reconfiguration. By spend-

ing temporarily more area for each function, the overall latency is

reduced[47].

lower latency and higher throughput than the one on the left (without PR). If we

assume that modules A, B and C are executed one after another, the system on

the left requires 3 time steps to operate on a single block of data. In contrast, the

system on the right can dedicate all resources to step A before using PR to move to

step B.

A practical example for this is a hardware accelerated secure SSL connection.

In this protocol, we first exchange a session key using asymmetric key exchange.

After this, the session key is used by a symmetric cipher for the actual data transfer.

Consequently, both steps are executed strictly sequentially and we can dedicate

more resources for each step and reduce latency by using PR.

Partial run-time reconfiguration has been an active research field for more

than two decades. Much research has been done on increasing the reconfigu-

ration speed and reducing the reconfiguration time. Many different approaches

and ideas have been proposed. Hauck introduced the concept of configuration

prefetching to swap modules in the background to hide latency and improve the

reconfiguration time [36]. Dittmann et al. used reconfiguration port scheduling

as well as configuration preemption to improve the efficiency of the reconfigu-

ration interface and to decrease the reconfiguration time [26]. Lange et al. in-

troduced a hyper-reconfigurable architecture to reduce the amount of configuration

25

data needed to perform reconfiguration, which results in lower reconfiguration time

and faster reconfiguration speed [52]. Different studies have investigated bitstream

(de)compression to reduce the required bandwidth of configuration storage and to

reduce the reconfiguration time [39, 48, 54]. Moreover, several different types of

reconfiguration controllers, with or without Direct Memory Access (DMA) capabil-

ities, have been investigated to improve the reconfiguration speed and reduce the

reconfiguration time [18, 58, 61].

Although FPGA PR rates are relatively low, it is possible to obtain increased

performance. For example, Xilinx FPGAs provides 400MByte/sec configuration

speed with its on-chip ICAP controller ICAP. Hansen et al. showed it possible to

achieve 2.2GByte/sec with existing Xilinx FPGAs [35] by overclocking the ICAP

controller. In addition, other studies have suggested different architectures to im-

prove PR time. For example, Trimberger et al. proposed a time-multiplexed FPGA

architecture with a 33GByte/sec reconfiguration rate [84]. While faster reconfigu-

ration times are possible, FPGA vendors have not yet seen sufficient need or demand

to provide this feature.

26

Chapter 3

MPPA Space/Time Scaling

In this chapter, we automate space/time scaling for STGs by developing a Java-

based compilation tool chain targeting a pipelined coarse-grained architecture that

is very similar to the Ambric MPPA chip architecture. Similar to the Ambric tools,

our compiler accepts input written in a subset of Java. Unlike the Ambric tools, our

compiler analyzes the parallelism internal to each node and evaluates the through-

put and area of several possible implementations. After finding different imple-

mentations for each node, it then analyzes the full graph for bottlenecks or excess

compute capacity, and selects an implementation for each node while either mini-

mizing area (for a fixed throughput target), or maximizing throughput (for a fixed

area target). To find a better area/throughput tradeoff, we use node combining and

splitting in the graph. We present two optimization approaches, a formal ILP for-

mulation based on prior work and a novel heuristic solution. Results show that

the heuristic is more flexible and can find design points that are computationally

infeasible to find using the ILP, thereby achieving superior results with a faster

runtime.

3.1 Introduction

In this chapter, we will investigate whether an array of ALUs or very lightweight

processors, described best as a massively parallel processor array or MPPA, can

achieve sufficient levels of performance, and make design entry sufficiently easy,

27

to make them an interesting alternative to more traditional design methods for

running STGs. Moreover, we propose a novel approach to automatically explore

space/time tradeoffs that can produce different optimized implementations for dif-

ferent throughput targets or different area budgets.

To explore the MPPA as an alternative target, we need a programming model

and a tool flow that can compile algorithms into the target and use parallel resources

efficiently. To make an MPPA a truly high performance platform, the programming

model should support some of the strengths of FPGAs, especially pipelined paral-

lelism. This led us to start with the explicit streaming model and architecture that

was defined by Ambric [12, 13].

In the Ambric model, a Java object is created for each thread. Threads are

nodes in a graphs defined as instances of objects that communicate together through

explicitly defined blocking FIFO communication channels. The node can be a prim-

itive node ranging from a single operation to multiple loop nests and complex con-

ditions, or a composite node containing more than one primitive node. The objects

and channels are placed and routed onto an array of 336 processors with a mesh

NoC. Each object contains local state and a processing thread. Processing an object

can be variable latency, but computation between objects is synchronized through

the blocking FIFOs. Objects may be replicated, thus facilitating some re-use of a

program, but all instances are explicitly allocated and defined by the programmer

at compile-time. This is very similar to a KPN [30], except that in a KPN the FIFOs

are assumed to be infinitely deep. The resulting process network exhibits determin-

istic behaviour that does not depend on the various computation or communication

delays.

One of the drawbacks of the Ambric framework is the need for explicit allo-

cation of all objects and channels. The number of objects, and the computational

delays within each object, define the amount of parallelism and the throughput

of the application. Thus, scaling a program to a larger or smaller processor ar-

ray requires manually re-programming all objects and channels. For the Ambric

commercial solution consisting of a single device, this is an acceptable trade-off.

However, for a research platform, we must investigate a variety of array sizes, as

well as simpler or more complex processors, which requires automatically trans-

forming a streaming application to use more or less space, thereby increasing or

28

decreasing throughput.

In our model there is no long global interconnect. Instead, each PE can only

send/receive data to/from its immediate neighbours. In order to send/receive data

from/to more PEs, intermediate PEs are needed to disseminate the values. To eval-

uate functionality of our model and measure execution time, we developed a cycle-

accurate simulator. Note, the simulator doesn’t support 2D placement which needs

to be addressed in the future work. Although the simulator doesn’t support 2D

placement, we manually placed sample benchmarks to make sure the model is not

dependent on long placement delays.

In this chapter, we describe our compilation tool that can perform automated

space/time tradeoffs. The user describes an initial program in Ambric-style Java,

and then defines either a throughput target, or an area budget. The compiler ana-

lyzes the processing rate of each object (or thread), and propagates these through-

puts across the entire computational graph (defined by the communication chan-

nels). It also analyzes each thread to determine the degree of internal parallelism.

Using this information, it transforms the compute graph to meet the area or through-

put target. There are a variety of transformations such as replicating objects (re-

quiring a split/join on the data), subdividing objects into a deeper pipeline (in-

creasing throughput), and merging objects together (decreasing area). At all times,

a whole-program approach is taken to optimization, so portions of a program that

are not performance-critical will be merged to use less area, and more area will

be allocated to performance-critical regions. This alleviates some effort from the

programmer, and creates a scalable/re-targetable implementation.

Our tool uses two internal optimization approaches. The first is based upon

ILP and is based on prior work on task graph optimizations by Cong et al. [22].

The second, based upon a heuristic approach, is our own novel contribution. Al-

though the ILP approach works well, it can be difficult or impossible to represent

some types of optimizations as ILP constraints. In particular, our heuristic ap-

proach is able to perform object coalescing, which is difficult to model within the

ILP formulation; doing so adds a large number of additional constraint variables

which quickly make the ILP computationally infeasible. This additional optimiza-

tion gives the heuristic considerable area savings over the ILP approach.

Figure 3.1 illustrates the flow for the proposed tool. It compiles a program

29

Figure 3.1: Tool flow

described in Ambric-style Java (compute) and aStruct (communication), and cre-

ates a STG complete with composite nodes communicating with each other through

channels (edges of the graph). It uses Intra-Node Optimizer and Inter-Node Opti-

mizer in order to find different implementations for each composite node. It uses

Trade-off Finder to find a good trade off between throughput and area.

3.2 Finding Different Implementations

Consider an application with N composite nodes f1, f2, ..., fN in its STG. For each

composite node fm, our tool tries to find different implementations P1
m,P

2
m, ...,P

Sm
m

where each implementation Ps
m can perform the functionality of fm with area cost

A(Ps
m) and initiation interval II(Ps

m). For node fm and its implementation Ps
m, the

minimal input “inverse-throughput” ϑin(P
s
m) and output inverse-throughput ϑout(P

s
m)

are calculated as

ϑin(P
s
m) =

II(Ps
m)

In(fm)
,ϑout(P

s
m) =

II(Ps
m)

Out(fm)
(3.1)

30

where In(fm) and Out(fm) equal the number of data tokens that fm consumes on

the input data channel and produces on the output data channel during each firing,

respectively. Note that inverse-throughput shows the number of cycles used to

consume/produce per datum in its input/output channel. Intra-Node Optimizer and

Inter-Node Optimizer modules have been implemented in our tool to automatically

find these abovementioned implementations for each composite node.

3.2.1 Intra-Node Optimizer

Affine loop transformation strategies in [6–8, 56, 74] are used in Intra-Node Op-

timizer to find the maximum degree of parallelism for each composite node. Af-

ter finding the maximum degree of parallelism, Intra-Node Optimizer tries to find

the best throughput (minimizing the inverse-throughput) for each node for differ-

ent area costs. Since each operation needs a different number of clock cycles to

provide its output (different inverse-throughput), Intra-Node Optimizer expands,

combines, splits and, pipelines nodes regarding the inverse-throughput of opera-

tions inside the composite node in order to find an implementation with highest

throughput for each composite node for different area costs. Below, the different

optimization techniques used in Intra-Node Optimizer are listed.

• Loop Fusion

• Loop Fission

• Loop Re-indexing

• Loop Scaling

• Loop Reversal

• Loop Permutation

• Loop Skewing

• Node Replication

• Node Combining

31

• Node Splitting

• Pipelining

3.2.2 Inter-Node Optimizer

After finding the implementation with the highest throughput for each compos-

ite node for each different defined area cost, Inter-Node Optimizer is a clustering

operation that finds different implementations. The clustering operation was im-

plemented based on a previous study by Amit Singh et al. [77]. Each cluster

will be mapped to one Processing Element. Inter-Node Optimizer sends opera-

tions back and forth between clusters to find optimum area cost for each overall

inverse-throughput target. The example below illustrates how our tool works.

Here, we go through an example to demonstrate how Intra-Node and Inter-

Node Optimizers work.

3.2.3 Example: N-Body Problem

The N-body Problem simulates a 3D universe, where each celestial object is a body,

or particle, with a fixed mass. Over time, the velocity and position of each particle

is updated according to interactions with other particles and the environment. In

particular, each particle exerts a net force (i.e., gravity) on every other particle. The

computational complexity of the basic all-pairs approach we use is O(n2). The run-

time is dominated by the gravity force calculation, shown below:

»

Fi, j = G
MiM j

r2
= 0.0625

MiM j

|
#»

Pi −
#»

Pj|3
(

#»

Pi −
#»

Pj) (3.2)

Where
»

Fi, j is the force particle i imposes on particle j, Pi is the position of

particle i, and Mi is the size or “mass” of particle i. When mapping the force

calculation, because of the dependencies between instructions in this code, our tool

first pipelines it. A simplified 2D pipeline STG (with inverse-throughput) for the

gravity force calculation is shown in Figure 3.2 and its corresponding Java source

code is shown in Listing 3.1.

Consider mapping each operation to a simple PE. Since everything is pipelined,

we get the highest throughput per datum when each operation consumes/produces

32

!

!

x

x

x

+ sqrt(/ x x x

x

x

+

+

1"

1"

2"

2"

2"

1" 4" 8" 2" 2" 2"

2"

2"

1"

1"

xi

xj

yi

yj

mi

mj

Figure 3.2: Pipelined force calculation

Listing 3.1: Force calculation Java code

void f o r c e c a l c ()

{
for (i n t i = 0 ; i < NUMBER OF PARTICLES ; i ++) {

gmm = ref gmm ∗ m[i] ;

dx = r e f p x − px [i] ;

dy = r e f p y − px [i] ;

dx2 = dx ∗ dx ;

dy2 = dy ∗ dy ;

r2 = dx2 + dy2 ;

r = s q r t (r2) ;

r r = 1 / r ;

gmm rr = r r ∗ gmm;

gmm rr2 = r r ∗ gmm rr ;

gmm rr3 = r r ∗ gmm rr2 ;

d fx = dx ∗ gmm rr3 ;

d fy = dy ∗ gmm rr3 ;

r e s u l t x = r e s u l t x [i] + d fx ;

r e s u l t y = r e s u l t y [i] + d fy ;

r e s u l t x [i] = r e s u l t x ;

r e s u l t y [i] = r e s u l t y ;

}
}

Table 3.1: Different operations with their initiation intervals

Operation Initiation Interval

ADD / SUB 1

MUL 2

SQRT 4

DIV 8

33

𝑓"
𝑖𝑛 𝑂𝑢𝑡

4

Figure 3.3: A node with inverse-throughput=4

𝑓"
𝑖𝑛_1 o𝑢𝑡_1

4

𝑓"
𝑖𝑛_2 o𝑢𝑡_2

4

𝑓"
𝑖𝑛_3 o𝑢𝑡_3

4

𝑓"
𝑖𝑛_4 o𝑢𝑡_4

4

𝑖𝑛 𝑂𝑢𝑡

Figure 3.4: Expanding node using replication to improve throughput

one datum in one clock cycle (inverse-throughput=1). As shown in Table 3.1, each

operator has a different initiation interval. Since each operation (primitive node)

consumes/produces one data from/to its input/output in each firing, the inverse-

throughput is equal to the initiation interval. For example, division needs eight

cycles to provide its output (inverse-throughput equals to 8), which make it the

slowest node in the STG. Because of dependencies between nodes, faster operations

have to stall for division. This means the best overall inverse-throughput we can get

with this mapping is 8. To get the highest throughput, Intra-Node Optimizer uses

an “expanding” approach to parallelize those nodes with high inverse-throughput

(slow nodes).

One approach to expanding is replicating. Figure 3.3 shows a node (fn) with

inverse-throughput equal to 4. This means it takes 4 clock cycles for the node to

generate an output. To improve the throughput, it’s possible to replicate node fn,

four times, pass the inputs in a round-robin order to each of them, and then gather

the outputs coming from each replicated node in the same order. Figure 3.4 shows

the expanded node for this situation. The expanded node improves throughput by a

factor of 4 and is capable of receiving or sending one datum per clock cycle. Simi-

34

!

!

x

x

x

+

sqrt(

/

x x x

x

x

+

+
sqrt(

sqrt(

sqrt(
x

x

/

/

/

/

/

/

/

x x x

x

x

x

Figure 3.5: Expanded force calculation

larly, we can use this expanding method over all slow nodes in the force calculation

STG. Figure 3.5 shows an improved expanded STG for force calculation after using

Intra-Node optimizer, where the overall inverse-throughput equals to 1.

After finding the highest possible throughput, Inter-Node Optimizer tries to

cluster and combine nodes again to find several implementations with different

throughput and area. It means that Inter-Node Optimizer sacrifices the throughput

to save area. It continues this procedure until it assigns the entire composite node

to one PE (Area cost = 1). Figure 3.6 shows inverse-throughput and area relation

for different implementations of the gravity force calculation function. Here, the

inverse-throughput varies from 1 to 33. Moreover, to achieve the best through-

put (inverse-throughput = 1), we can either replicate the slowest implementation

(inverse-throughput=33) into 33 copies or use the fastest implementation directly

(instruction level parallelism or data level parallelism).

We used the gravity force calculation example as a simple example to demon-

strate how the tool deals with a general STG. Of course depending on the different

STG topologies and data dependencies, the tool might not be able to use all the

parallelism methods.

After finding several different implementations for an STG, the tool needs to

find a suitable implementation for a given user restriction. There are different

modes: a defined throughput target, or a defined area budget. To do so, the tool

35

33,	1
0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

In
v
e
rs
e
	T
h
ro
u
g
h
p
u
t

Area

Figure 3.6: Inverse-throughput/area relation for different implementations of

force calculation

needs to automatically explore space/time tradeoffs and find a suitable tradeoff for

either of the modes. Below, we define the problem for these two modes and use

two different approaches to solve the optimization problem.

3.3 Trade-off Finding Formulation and Solutions

To solve the trade-off finding problem we used an ILP approach as well as a heuris-

tic approach. For each of those approaches, there are two different modes or ob-

jectives which a user can choose:

• Given an available area target Atgt and different implementations for each

node f j, which implementation Pi
j should be selected and how many replicas

ni
j are needed in order to minimize application inverse-throughput ϑA subject

to the constraint the application area cost AA is not bigger than Atgt .

• Given an inverse-throughput target ϑtgt , and different implementations for

each node f j, which implementation Pi
j should be selected and how many

36

replicas ni
j are needed in order to minimize area cost AA subject to the con-

straint the application inverse-throughput ϑA is not bigger than ϑtgt .

3.3.1 Integer Linear Programming Algorithm

The first Trade-off Finding algorithm simply defines the problem as an Integer

Linear Programming (ILP) problem based on prior work by Cong et al. [22]. The

goal is to find binary integers x j,1, x j,2, . . . , x j,Sm
indicating the implementations to

be selected, and integer nri
j indicating the number of replicas needed. Equation 3.3

shows the formulation of finding a suitable implementation for a given area budget.

Minimize ϑA subject to:

∀ j ∈ {1, ...,N} :
N

∑
j=1

Sm

∑
i=1

nri
jA(P

i
j)x j,i < Atgt and

Sm

∑
i=1

x j,i = 1.
(3.3)

Equation 3.4 shows the formulation of finding a suitable implementation for a

given throughput target.

Minimize AA subject to:

∀ j ∈ {1, ...,N} :
Sm

∑
i=1

1

nri
j

ϑ(Pi
j)x j,i < ϑtgt and

Sm

∑
i=1

x j,i = 1.
(3.4)

An ILP solver such as GNU Linear Programming Kit (GLPK) [60] could go

through all the possibilities of x j,i and nri
j and find the optimum solution for this

problem, subject to the constraints. Although ILP solvers can solve these problems,

the approach does have two shortcomings:

• Lack of flexibility: it is difficult and sometimes impossible to represent some

types of optimizations as ILP constraints. In particular, combining or split-

ting nodes requires adding all combinations of merges and splits to the ILP

problem formulation, which introduces a very large number of additional

constraint variables. This quckly becomes computationally infeasible to

solve.

• Time inefficient: In our experiments, ILP (without the node combining or

splitting optimization) is usually slower than our heuristic algorithm.

37

A" B"

v
mo$

v
ei
$

Figure 3.7: Minimum and expected inverse-throughput

3.3.2 Heuristic Algorithm

Before describing our heuristic approach, we must first define Throughput Analy-

sis, Throughput Propagation and Bottleneck Optimizer.

Throughput Analysis

Each node achieves the maximum output throughput if and only if all its input

data are ready when the node expects them. To make the throughput analysis more

straightforward we use inverse-throughput instead of throughput. To achieve mini-

mum output inverse-throughput ϑmo, the input data have to be ready with expected

inverse-throughput ϑei. We define inverse-throughput slack ϑs for each channel as:

ϑs = ϑmo−ϑei (3.5)

Figure 3.7 shows a simple example in which two nodes A and B are con-

nected together. Node A is a potential bottleneck if it doesn’t provide data fast

enough to satisfy node B’s expectation (ϑmo > ϑei ⇐⇒ ϑs > 0). Node B is a

possible bottleneck if node A provides data faster than what node B consumes

(ϑmo < ϑei ⇐⇒ ϑs < 0).

Throughput analysis helps us to find possible bottleneck nodes in a system as

well as unnecessary high-throughput nodes. Figure 3.8 shows an example with

seven nodes with different ϑmo and ϑei. We calculated slack ϑs for each channel.

As we can see, ϑs for input channels going to f3 are smaller than ϑs for other

input channels. Also, ϑs for output channel from f3 is bigger than ϑs for other

output channels. This shows f3 is a potential critical bottleneck. To find potential

bottlenecks in an STG, we define the weight Wm for each node fm as:

Wm =
∑

Nout

j=1 ϑs j−∑
Nin

i=1 ϑsi

Nout +Nin

(3.6)

where ϑsi is the input throughput slacks for incoming channels and ϑs j is the output

38

f1#

f2#

f3#

f6#f4#

f5#

f7#

1#

1#

3#

2#

4# 72# 90# 2#

2#
4#

4#

2#

2#

48#

2# 48#

3#

2#

2#

1#

-2#

2#

72#

-68# 88#

-68#

1#

-46#

46#

2#

A=45#

A=24# A=30#

A=6#

A=24# A=3#

A=30#

Figure 3.8: Throughput analysis example

throughput slacks for outgoing channels of fm. Nin denotes the number of inputs,

and Nout denotes the number of outputs for node fm. A higher weight means that

the node is not able to provide/consume expected outgoing/incoming data to/for its

neighbors in most of its channels and the throughput differences between this node

and its neighbor are critical which makes that node a potential bottleneck. A set of

weights is calculated for all nodes in the graph and will be used in the heuristic to

find critical bottlenecks in the graph. This weight set will be updated every time a

bottleneck is improved by Bottleneck Optimizer.

Throughput Propagation

Although it seems trade-off finder should select an implementation for each node

in order to increase its throughput, increasing throughput of a node will not nec-

essarily increase the overall throughput. For example, as shown in Figure 3.9, op-

timizing the block B doesn’t increase the overall throughput of the STG (in either

case) because the STG always has to wait for block A which takes 9 clock cycles

to generates its output. In this case, either we need to improve the throughput of

node A, or we can sacrifice the throughput of block B and make it slower to release

some area. This example shows that we cannot consider improving a node inde-

39

A

Generator

B

II
A
 = 9

Collector II
B
 = 4

A Generator B

II
A
 = 9

Collector

II
B
 = 4

II
O
 = 9

II
O
 = 9

Figure 3.9: Throughput propagation and balancing

pendently without looking at the whole STG, examining each node’s predecessors

and successors. In other words, we need to have a balanced throughput throughout

the STG.

To balance the throughput for each node and the entire STG, we have to prop-

agate the target inverse-throughput to all nodes in the application. For propa-

gating the input inverse-throughput to the output inverse-throughput for a sin-

gle node, we used a similar strategy to Jason Cong’s previous work [22]. For

a node fm, the number of input and output channels are denoted as numIn(fm)

and numOut(fm), the number of data tokens that fm consumes/produces on the in-

put/output channel is denoted as In j(fm)/Outk(fm), and the inverse-throughput on

the input/output channel is denoted as ϑ
j

in(fm)/ϑ k
out(fm), where 1≤ j≤ numIn(fm)

and 1 ≤ k ≤ numOut(fm). Given the input inverse-throughput target ϑ
j

in(fm), the

output inverse-throughput target ϑ k
out(fm) is calculated as Equation 3.7.

ϑ k
out(fm) =

min
j
{ϑ j

in(fm)In j(fm)}

Outk(fm)
(3.7)

Equation 3.7 allows propagating throughput from input nodes in the STG, through

other nodes all the way to output nodes. It helps the tool to find the overall applica-

tion throughput as well as possible bottlenecks which helps the tool to balance the

40

throughput of all nodes in the STG in the heuristic approach. This helps the tool to

eventually generate a balanced implementation for a throughput target or an area

budget.

Bottleneck Optimizer

Bottleneck Optimizer is very similar to the ILP approach in that it makes replicas

of the bottleneck to increase throughput. However, the ILP replicates the bottle-

neck without any attention to its neighbouring nodes so it can miss opportunities to

have lower area overhead. To overcome this deficiency, we propose a method that

relies on the fact that each node can send/receive data to/from up to FanIn/FanOut

number of nodes without any area overhead cost. If more than FanIn/FanOut num-

ber of replicas are required, some overhead cost is inevitable. For example, in our

Ambric replica, a FanOut beyond 4 requires extra area. In this situation, to con-

nect these replicas to more successor/predecessor nodes, new fork/join nodes are

needed to send/receive data to each replica. Let us go through a simple example to

show the overall idea in our Bottleneck Optimizer approach. Figure 3.10.a shows

an example in which two nodes, S with inverse-throughput ϑs, and D with inverse-

throughput ϑD, are connected together. Node S is sending data to D over a channel.

Assume the node D is a bottleneck, and we want to match its throughput to node

S’s throughput. To match the throughput, we need nr replicas of node D, which is

calculated as

nr =

⌈

ϑD

ϑS

⌉

(3.8)

In order to connect node S to nr replicas of node D, we have to use several

nodes in between to gather data and then send it to each replica in round-robin

order. Assume each node has FanIn/FanOut equal to n f , which means each node

can send data to a maximum of n f nodes. We define H, which shows how many

layers of nodes need to send data from one node to nr nodes.

H =

⌈

log
n f

(nr)

⌉

(3.9)

Assuming nr = n f H (Figure 3.10.b), the area overhead AO for connecting node

41

S" D

D

D

D

S"
."

."

."."."."

."

."

."

."

."

."

nf#0#

nf#1#

nf#2#

nf#H(1#

nf#H#

vS" vS"

vS" vS" vD"

vS.nf#
H#

=vD"

vS.nf#

vS.nf#
2#

a)"

b)"

n
r#
=
#n
f#
H
#

nf#H(2#

vS.nf#
H(1#

=vD/nf"

S’" D

C

C

C

."

."

."."."."

."

."

."

."

."

."

nf#0#

nf#1#

nf#2#

nf#H(2#

nf#H(1#

vS"

vS" vD/nf" tD"

vS.nf#
H(1#

=vD/nf"

vS.nf#

vS.nf#
2#

D

S’"

D

."

."

."

vD"

C"

n
r#
=
#n
f#
H
(1
#

c)"

Figure 3.10: Node combining in Bottleneck Optimizer

S to nr replicas of node D is calculated as

AO =
H−1

∑
i=0

n f i (3.10)

In our approach, we try to combine nodes together in order to save area over-

head. As shown in Figure 3.10.b, in each layer h there are n f h−1 nodes with input

inverse-throughput ϑ h
in and output inverse-throughput ϑ h

out , which are calculated as

ϑ h
in = ϑS n f h−1 =

ϑD

n f H+1−h
(3.11)

ϑ h
out = ϑ h

in n f (3.12)

So if we can find an implementation S′ of node S with inverse-throughput equal

to ϑ h
in, we can combine node S′ with n f copies of node D without any area overhead

(Figure 3.10.c) and name it node C with input inverse-throughput ϑC.

42

ϑC =
tD

n f
(3.13)

To match the inverse-throughput of node C to ϑC we have to make nr′ replicas

of it with area overhead A′O

nr′ =
nr

n f
(3.14)

A′O =
H−2

∑
i=0

n f i (3.15)

Assuming that inverse-throughput/area relation between node S and node S′ is

linear, we can save n f H−1 nodes. For example in case n f = 4, more than 75%

overhead area will be saved. As shown in this example it is possible to decrease

area overhead by combining nodes, an approach that is computationally infeasible

to model in the ILP formulation.

Now that the key modules of our heuristic approach have been defined, we will

next explain how our heuristic approach works.

Heuristic Approach Description

As mentioned before, the trade-off finding process has two modes. The user defines

either an area target or a throughput target. Algorithm 1 shows pseudocode of the

heuristic approach for a defined area target (Atgt).

The Trade-off Finder heuristic starts by selecting an implementation with the

highest throughput (lowest inverse-throughput) achieved per area unit for each

node. It analyzes the full application and calculates the expected input inverse-

throughput and minimum output inverse-throughput for each channel using Through-

put Propagation. Then, it calculates slacks for all channels and weights for all

nodes. Trade-off Finder finds the most critical bottlenecks as the nodes with the

largest weights. Next, Trade-off Finder calculates the application area and avail-

able area for this implementation. Considering the defined area target, Trade-off

Finder budgets the most critical bottleneck and propagates the throughput to other

nodes. It continues budgeting other nodes considering propagated throughput. Af-

43

Algorithm 1 Heuristic algorithm

1: Application←Compiler(source f iles)
2: A← GlobalPartitioner(Application) ⊲ A = { f1, f2, . . . , fN}
3: ⊲ Either using aStruct or MinCut for generating STG

4: for Each composite node fm do

5: MDPm← ParallelismFinder(fm) ⊲ Maximum degree of parallelism

6: Pm← IntraNodeOptimizer(fm,MDPm) ⊲ Different implementations

7: P̃m← InterNodeOptmizer(fm)
8: end for

9: AH ← SelectImplementationsWithHighestT hroughput(P̃)

10: ⊲ AH = {PH
1 ,PH

2 , . . . ,PH
N } where PH

m = {Ps
m | argmin(ϑ s

m

As
m
)}

11: while TRUE do

12: for Each composite node fm do

13: if fm and its successors and predecessors are visited then

14: (Wm)← T hroughputAnalysis() ⊲ Equation 3.5 and Equation 3.6

15: end if

16: end for

17: Set of critical bottlenecks B← T hroughputPropagation() ⊲ Equation 3.7

18: while !(αlAtgt < A < αuAtgt) & applicationIsBalanced do ⊲ Budgeting

19: Budget the most critical bottleneck in the set

20: Propagate the throughput

21: Calculate estimated application area cost

22: end while

23: while (all Bottlenecks are visited) do

24: BottleneckOptimizer()
25: B← T hroughputPropagation()
26: end while

27: AA← AreaCost()
28: if δ < AA

Atgt
< β then

29: break

30: end if

31: end while

44

ter budgeting all nodes, it calculates an approximate area cost for the application

considering the new throughput for each node. Trade-off Finder accepts an area

cost bigger than the target area on the chip within a margin. In other words, it

overshoots and hopes to release area later in the process from fast nodes. If the

approximate area cost is above the margin, Trade-off Finder decreases the target

throughput budget and does the same procedure again.

After finding a budgeting which satisfies the targeted area, Trade-off Finder

starts from the most critical bottleneck on the critical path (i.e., the path with the

slowest throughput) and uses Bottleneck Optimizer to make replicas of that bottle-

neck to get better throughput. Trade-off Finder starts from the optimized bottleneck

and goes toward the output until it reaches a node which is located on another crit-

ical path. After reaching this node, Trade-off Finder goes backward to visit the

other bottleneck and uses Bottleneck Optimizer to match its throughput to satisfy

the throughput expectations of other nodes. Note, the main idea is to prevent op-

timizing a bottleneck without addressing the expected inverse throughput for its

predecessors. The process continues until it balances all the other nodes. Trade-off

Finder sees the other nodes in breadth first search order and makes sure that each

node doesn’t affect nodes in other critical paths.

The Trade-off Finder use the same approach described above for a defined

throughput target. The difference is in the budgeting process. The Trade-off Finder

calculates an estimate application area cost based on the throughput target and bud-

gets all the nodes based on that. Next, it goes through the Bottleneck Optimizer

stage as before and makes sure all the bottlenecks are optimized in order to satisfy

the throughput target. After finding an implementation which satisfies the through-

put target, it budgets all the nodes again with a smaller area budget (considering

the throughput per area unit achieved) and runs the process again. Next, it reduces

or increases the overall area budget based on the success or failure of the last at-

tempt to find alternative solutions. It continues this process until it finds the local

optimum for the area cost function.

45

Table 3.2: Number of different implementations found by the tool for

StreamIt benchmarks

Benchmark Number of different implementations

FFT 34

FIR 42

Radar Application 73

Filter Bank 52

FM Software Application 39

Vocoder 92

gsm 82

3.4 Experimental Results

Our experiments are carried out in two steps. We first test our tool using StreamIt

benchmarks [81]. Then, we examine implementation of a Joint Photographic Ex-

perts Group (JPEG) encoder produced using our tool.

3.4.1 StreamIt

In order to test our tool, 7 out of 9 benchmarks in the StreamIt benchmark set [33]

are implemented as STGs using our Java-based programming model. For these test

benchmarks, each benchmark is a single STG node. An architectural simulator has

been implemented to validate the results generated by our tool. Our tool was able

to find a number of different implementations for each benchmark with different

area cost and throughput. Table 3.2 shows the number of different implementations

found by our tool for the benchmarks. The functionality of all implementations has

been verified with the simulator as well. Due to limited time, we didn’t implement

two of the benchmarks in the StreamIt benchmark set; the seven benchmarks used

here were enough to evaluate the tool’s ability to automatically find different imple-

mentations. Since the StreamIt benchmarks are small, we only use them here for

verifying the front-end and finding different implementations. In the next section,

we will use JPEG as our benchmark in order to examine different implementations

provided by our Trade-off Finder.

46

Table 3.3: Implementation library for JPEG encoder

module Color Conversion DCT Quantization Encoding

Version v1 v2 v3 v4 v1 v2 v3 v42 v5 v1 v2 v3 v4 v5 v1

InverseT hroughput 1 2 4 8 1 2 4 6 32 1 2 4 8 128 512

Area1 512 256 128 64 800 400 224 160 50 512 256 128 64 4 22
1 Area units are the number of simple operations.
2 The tool couldn’t find an implementation with inverse throughput of 8, but it found a faster implementation instead.

Table 3.4: Heuristic vs ILP for many-core system

Method Inverse Throughput Color Conversion DCT Quantization Encoding Fork/join Overhead Total Area

impl rep1 impl rep impl rep impl rep

ILP 1 v1 1 v1 1 v1 1 v1 512 10880 23968

Heuristic v1 1 v5 32 v5 128 v1 512 640 13888

ILP 2 v2 1 v2 1 v2 1 v1 256 5376 11920

Heuristic v2 1 v5 16 v5 64 v1 256 256 7456

ILP 4 v3 1 v3 1 v3 1 v1 128 2688 5984

Heuristic v3 1 v5 8 v5 32 v1 128 128 3600

ILP 8 v4 1 v4 1 v4 1 v1 64 1280 2976

Heuristic v4 1 v5 4 v5 16 v1 64 0 1736
1 rep indicates how many replicas are used; overhead and area refer to the total number of simple operations.

3.4.2 JPEG

Figure 3.11 shows the block diagram of the JPEG compression algorithm [88]. The

JPEG compression algorithm contains four major producer/consumer relationships

shown as 4 blocks in the figure. The benchmark is written in this fashion, as four

connected objects, with multiple loops and conditionals within each object. De-

spite this coarse level of implementation, our tool can break it down to a fully

unrolled graph with one operation per node if necessary.

Color

Conversion
DCT Quantization Encoding

Figure 3.11: Node combining in Bottleneck Optimizer

The tool uses Intra-Node Optimizer and Inter-Node Optimizer modules on the

STG, finding different implementations for each of them. In particular, our tool

found 11 different implementations for “Color Conversion” and “Quantization”

modules, 17 different implementations for “DCT”, and only one implementation

for “Encoding”. Table 3.3 shows a selection of these implementations.

Both ILP and Heuristic approaches have been used by our tool in order to find

47

a trade off between area and throughput for different inverse throughput targets.

Table 3.4 gives the results generated by these two approaches for given inverse

throughput targets. We list the selected implementation and number of replicas for

each module. The heuristic approach finds better area/throughput trade-off com-

pared to the ILP approach. For example, for an inverse throughput target of 2, the

heuristic approach used 37% less area compared to ILP. The ILP solver we use is

GLPK [60] and the area cost unit is the number of primitive nodes, i.e. a simple op-

eration such as add or subtract. A primitive node can be implemented with a very

simple PE. This approach can also be used to map code to large processor arrays

such as GRVI Phalanx [34]. Note, the complexity of PEs can be reduced while

moving towards high throughput implementations. For example, in an implemen-

tation which all the loops are unrolled and parallelized, a primitive node can be a

simple ALU (or a simple operator). This motivated us to explore space/time scaling

for fine-grained architectures described in chapter 4.

3.5 Summary

This chapter investigates two ways of automatically finding area/throughput trade-

off of streaming applications being mapped onto MPPA overlays. We introduce

a new tool that compiles a streaming application written in Java, partitions it into

composite nodes, finds all degrees of parallelism for each, finds different imple-

mentations for each node, and finally selects a good trade off between area and

throughput. For optimization, we used both a classical ILP formulation as well

as a novel heuristic. The heuristic combines module selection and replication

methods with node combining and splitting in order to more quickly find a bet-

ter area/throughput trade-off than what can be readily modelled in the ILP formu-

lation; the ILP formulation can quickly become computationally infeasible. This

approach has been verified with small designs in StreamIt and one larger design, a

JPEG encoder. This approach can also be used to map code to large processor ar-

rays. We stopped evaluating this approach after JPEG since our results showed the

approach is reliable and it also can be more beneficial targeting fine-grained archi-

tectures. This leads us to investigate a better approach with OpenVX and FPGAs,

described in chapter 4.

48

Chapter 4

FPGA Space/Time Scaling

In the previous chapter, we discussed how to automatically trade-off space vs time

to implement an STG by targeting a given area budget or a given throughput budget.

That architecture consisted of coarse-grained PEs.

In this chapter we consider a new approach that directly targets fine-grained

parallelism available in FPGAs. We build a practical tool for automatically explor-

ing space/time tradeoffs that is used together with a commercial HLS tool, Xilinx

Vivado HLS [43, 96], for implementing Computer Vision (CV) applications.

4.1 Introduction

With the rise of FPGA-based CV applications, there is increasing need for a pro-

gramming method that achieves the target throughput or area budget. HLS tools

provide the opportunity to simplify design entry and debug. Unfortunately, a mod-

ern tool like Vivado HLS cannot automatically produce a range of implementations

across the space/time spectrum from a single source file. However, back in 1994,

in an attempt to address automatic space/time scaling, Synopsys Behavioral Com-

piler was introduced [46] with the promise that user can start with a high-level

description containing few implementation details and the tool would handle re-

source allocation and scheduling automatically. Synopsys was not able to fully

deliver and the project was shut down after 10 years. The idea of having a tool

which automatically explores space/time tradeoffs motivated us to add this capa-

49

bility to the Vivado HLS tool.

In this chapter, we provide a framework for doing this with compute graphs

specified in OpenVX, a C-based programming environment for computer vision.

To do this, we build our own OpenVX system on top of Xilinx Vivado HLS [96],

and add an algorithmic layer which allows the user to specify an area budget (while

maximizing throughput) or a throughput target (while minimizing area).

Our OpenVX system consists of a series of compute kernels, prewritten in

C++ for Vivado HLS and heavily parameterized. However, the key contribution in

this chapter is an algorithm to automatically select from among these prewritten

kernels. This is based upon the Intra-node and Inter-node Optimizers presented in

chapter 3. With OpenVX, the implementations can also break an image down into

multiple tiles, where the tile size is selected to maximize on-chip data reuse, thus

improving delay and power. The runtime system must determine an appropriate

tile size.

We evaluate the system on typical OpenVX benchmarks under a variety of

fixed area constraints, and find that our system is able to automatically achieve

between 92% and 100% of the target area utilization. We also evaluate the sys-

tem with same benchmarks under variety of fixed throughput targets, and find our

system saves up to 30% in area cost compared to manually parallelized implemen-

tations. Our heuristic approach is able to hit the same throughput targets and save

19% area on average compared to existing ILP approaches. In terms of efficient

use of parallel resources on chip, the tool manages to satisfy different throughput

targets, getting up to 5.5 GigaPixel/sec for the Sobel edge detection application on

a small FPGA with only 53,200 LUTs and 220 DSP slices.

The most similar existing approach to ours is Xilinx’s reVISION [95] which

provides a set of hardware-accelerated OpenCV kernels. While existing methods

can easily achieve a single design point, they are unable to automatically generate

a set of solutions from the same source; a prominent capability embedded in our

tool.

50

4.2 Approach

Existing methods of programming FPGAs with HLS require the user to explicitly

manage resources at every stage in their algorithm in order to meet a specified area

target or throughput target by manual loop unrolling or adding different “pragmas”

to the code. Below, we describe a novel approach to explore the space/time trade-

offs for OpenVX [45] compute graphs in order to find optimum solutions, meeting

different area budgets or throughput targets.

We analyzed OpenVX kernels (nodes) to increase parallelism based on pipeline

opportunities and different loop transformation strategies [55, 73]. After analyzing

each kernel, we rewrote them in C++ while heavily parameterizing for HLS. Users

can describe a CV computation as an OpenVX compute graph (STG) and then de-

fine either a throughput target, or an area budget. Our OpenVX system analyzes

the compute graph and generates different implementations for each node with dif-

ferent area, IO and throughput characteristics by creating different HLS projects

and passing them to Xilinx Vivado HLS. In order to get precise throughput/area

information for different FPGA targets, and avoid implementations with deadlock,

our tool automatically generates Vivado projects including a System-Verilog test-

bench for each implementation. In addition, our tool uses node replication and

node combining to cover more possible solutions by either increasing the image

tile size, or improving throughput for existing implementations.

Moreover, our tool uses the two internal optimization approaches discussed in

chapter 3. The first, based upon ILP, is similar to previous work on task graph

optimizations by Cong et al [22]. The second is a heuristic approach that we tuned

and improved for implementing CV applications targeting FPGAs. Similar to chap-

ter 3, we observed that although the ILP approach works well, maintaining the ILP

optimization model within the tool precludes the use of certain optimizations. In-

stead, the heuristic approach is able to perform object coalescing which can be

computationally infeasible in the ILP formulation. This leads to area saving and

less runtime compared to the ILP approach.

There have been several recent studies on implementing image processing and

OpenVX applications on FPGAs and exploring the area/throughput trade-off such

as [78], [37] and [38]. These prior approaches either use a specific programming

51

model, which requires the user to learn a new programming language, or they

implement a soft multi-core platform on the FPGA and then run the application

on it. An OpenVX acceleration framework introduced by Taheri et al [79] can

generate different hardware implementations by manually specifying the amount

of pixel parallelism (different tile-size). Our approach is more general: to satisfy

a given area target or throughput constraint, not only does it automatically explore

different levels of pixel parallelism, but it can also automatically generate a variety

of different implementations with different throughput or area cost at each level in

order to meet the given constraint.

Next, we describe our proposed OpenVX based HLS system in detail.

4.3 Tool Flow for OpenVX-based HLS

Figure 4.1 illustrates the detailed flow of the proposed tool. It receives an OpenVX

compute graph as an STG and analyzes it to obtain a matched kernel for each node.

Each kernel is a heavily parameterized C++ function with Xilinx AXI-Stream [94]

in/out arguments. Taking into account the user area budget or throughput target,

our tool creates different Vivado HLS projects in order to generate different im-

plementations for each kernel. To minimize the search space, our tool prunes the

dominated points in the design space using an algorithm by Zhong et.al. [101].

Previous studies [57] have shown that the report generated by the HLS tool is

not accurate and should therefore not be used for exploring the problem space. To

obtain a precise throughput and area cost, our tool also generates Vivado projects

using the HDL output generated from the HLS tool. Using Vivado design suite, the

tool is able to find the throughput/area correlation for each kernel. This data will

be eventually used later in the trade-off finding process. In addition, our tool uses

a step called Intra-node Optimizer to generate more implementations to increase

the trade-off solution space by filling gaps in the throughput/area solution space.

Finally, the tool uses Trade-off Finder to find a good compromise between area and

throughput. Below, we discuss all of these steps in detail.

52

Kernel	Analyzer

Intra-Node	

Optimizer

1

3

2

4

DB	of	Implementations	

for	each	node

Trade-off	

Finder

SOC

3

2

1

4

Compute	Graph

C++-based	CV	Kernels

C++

C++

C++

C++

Different	
Implementations	

Generator

Trade-off

1

2

3 4

Design	Evaluator	
+	Throughput	
Calculator

Area/Throughput	

correlation	for	each	node
DB	of	Implementations	

for	each	node

1

1

2

2

3

3

4

4

𝝁𝒑

FPGA	Fabric

Figure 4.1: Tool flow

4.3.1 OpenVX Programming Model

OpenVX is a cross-platform, C-based API standard for Computer Vision. Most CV

applications can be described as a set of vision kernels (nodes) which communi-

cate through input/output data dependencies. OpenVX describes this set of vision

kernels in a graph-oriented execution model based on DAGs. Figure 4.2 shows an

OpenVX code example for the Sobel application and Figure 4.3 shows the corre-

53

/ / vxSobel3x3 example

vx node nodes [] = {
vxColorConvertNode (graph , rgb , gray) ,

vxGaussian3x3Node (graph , gray , gauss) ,

vxSobel3x3Node (graph , gauss , gradx , grady) ,

vxMagnitudeNode (graph , gradx , grady ,mag) ,

vxPhaseNode (graph , gradx , grady , phase)

} ;

Figure 4.2: OpenVX

source code

Color	

Convert

Gaussian	

3x3
gray

Sobel

3x3

gauss

gradx

grady

Magnitude

Phase

rgb

mag

phase

Figure 4.3: Sobel graph

sponding STG for it.

Since OpenVX compute graphs are DAGs, it makes them suitable candidates to

be implemented as pipelined hardware accelerators on FPGAs. Below we discuss

how our tool generates a variety of different implementations for those hardware

accelerators. Then we describe our approach to find different implementations for

each CV kernel.

4.3.2 Finding Different Implementations

Consider an application described as an STG with N nodes f1, f2, ..., fN . For each

node fm our tool tries to find different implementations P1
m,P

2
m, ...,P

Sm
m where each

implementation Ps
m can perform functionality of fm with area cost A(Ps

m), number

of pixels it can consume/produce NP(Ps
m), and initial interval II(Ps

m). For imple-

mentation Ps
m, the area cost on FPGAs is calculated as:

A(Ps
m) = wlut ·LUT (Ps

m)+wdsp ·DSP(Ps
m)+wbram ·BRAM(Ps

m) (4.1)

where LUT (Ps
m), DSP(Ps

m) and BRAM(Ps
m) are the LUT, DSP and BRAM count for

implementation Ps
m. Note LUT weight (wlut), DSP weight (wdsp) and BRAM weight

(wbram) are different for various FPGA architectures and are chosen to reflect the

relative size of each resource in silicon. We have set these weights to slightly

different values for Xilinx, Altera and VPR architectures.

For node fm and its implementation Ps
m, input “inverse throughput” ϑin(P

s
m) and

54

output inverse throughput ϑout(P
s
m) for each input/output are calculated as:

ϑin(P
s
m) =

II(Ps
m)

In(fm)
,ϑout(P

s
m) =

II(Ps
m)

Out(fm)
(4.2)

where In(fm) and Out(fm) are the number of data tokens that fm consumes on

the input data channel and produces on the output data channel during each firing,

respectively. Note that inverse throughput shows the number of cycles to con-

sume/produce per datum in its input/output channel. For most CV kernels, their

input/output channels have matched inverse throughput, ϑIO(P
s
m). Kernel through-

put is number of pixels consumed/produced in each clock cycle:

Θ(Ps
m) =

NP(Ps
m)

ϑIO(Ps
m)

(4.3)

The Different Implementation Generator (DIG) module in our tool automati-

cally finds the above mentioned implementations of each node using the heavily

parameterized C++ based kernels. The DIG needs to be able to automatically find

a wide range of different implementations to cover the solution space as much as

possible.

To have a better understanding of the complexity of this problem and the variety

of possible solutions, let’s look at the simple example of a 3-node graph shown

in Figure 4.4a. Figure 4.4.b and Figure 4.4.c show two different approaches to

satisfy a target throughput of 5; one reads 20 pixels and picks implementations

with II = 4 for each node, the other reads 5 pixels and picks implementations with

II = 1. Further, Figure 4.4.c shows another approach for node f2 in which instead

of picking an implementation with NP = 5, it picks two implementations with

NP= 3 and NP= 2 and splits the data between them. Figure 4.4.b and Figure 4.4.c

are just two examples of various instances of II, NP and splitting/joining nodes

which can be utilized to find the solution. In addition, the strategy of reading

image data from the main memory can vary for different implementations when

NP and II change. The strategy impacts DMA configuration and data alignment

network design, which leads us to a different overhead cost for each.

The above-mentioned example shows that for every area budget or throughput

target, there are a variety of different acceptable solutions. This makes the trade-off

55

f2 f3f1

P1 P2 P3

II=4 II=4 II=4

NP=20NP=20NP=20

P’1

P’2

P’3

II=1

II=1

II=1NP=3NP=3

NP=5

P”2

II=1

NP=20

NP=2
NP=2

NP=5

a)

b)

c)

Figure 4.4: Two different approaches for satisfying Θ = 5

finding problem a rich design space. It also shows the importance of generating a

variety of different implementations with different NP, II and area costs to cover

the solution space as much as possible.

4.3.3 CV Accelerator on FPGA

Before describing the tool flow in more detail, it is beneficial to go through the

overall system description first. As mentioned earlier, the main goal of this study

is to automatically find a good area/throughput trade-off for CV applications by

generating different implementations which is done through changing the image

tile width and/or using different function implementations inside the kernel.

Figure 4.5 gives a high-level system view of a CV accelerator implemented on

Xilinx FPGAs. The host processor (i.e., ARM based processor [88]) is responsible

for configuring DMA (e.g., Xilinx AXI DMA IP core [98]) to read/write image data

as vertical strips from the main memory. On the other end, DMA sends/receives

image data to/from the accelerator using the AXI-Stream protocol. Since the DMA

data-width should be a power of two and the CV accelerator may read data at a

different width in pixels, there needs to be a Data Alignment Network implemented

56

Image width

Im
ag

e
h

ei
g

h
t

Tile width

AXI
Interconnect

AXI DMA

I$

D$

Alignment
Network

CV
Accelerator

AXI-Stream

AXI-Stream

Main Memory

Figure 4.5: System view implemented on Xilinx FPGA

fm

𝑊"×𝑊$ 𝑊$×𝑊"

𝜗&'

𝜗&'

𝜗&'

𝑊$

𝑊"

𝜗&'
𝜗()

𝜗()

𝜗()

𝜗()

𝜗()

𝑊"

𝑊$

𝜗()

.

.

.

.

.

.

.

.

.

.

.

.

SDA SDA

Figure 4.6: Internal view of a general node in CV hardware accelerator

as mixed-width FIFOs in between to align the data sent back and forth between DMA

and accelerator.

Figure 4.6 provides an internal view of a general node in a CV hardware ac-

celerator. Representing the image tile width with WT , a general node m with im-

plementation Ps
m consumes WT pixels (NPin(P

s
m) = WT) as stream-in and generates

WT pixels as stream-out with inverse-throughput equal to ϑIO. Since the hardware

function inside the node might consume/produce a different number of pixels, two

Stream Data Adjuster (SDA)s are added to either end. Assuming the hardware

function can consume/produce WF pixels in its input/output channels, the input

SDA should get WT pixels from the input and pass WF pixels to the function with

inverse-throughput equal to WF

WT
ϑIO. On the other end, the output SDA gets WF pix-

els with inverse throughput ϑ fm
and provides WT pixels with inverse-throughput

equal to WT

WF
ϑ fm

. As Figure 4.6 shows, four layers of FIFO are added in between in

order to match different throughputs in various stages. To prevent data loss, FIFO

57

depths should be carefully selected.

Stream Data Adjuster in more detail

SDA can deal with two different types of kernels; Pixel2Pixel kernels and Window2Pixel

kernels.

Pixel2Pixel kernels such as vxConvertColor produces one pixel for each pixel

received:

P̃i, j = f (Pi, j) (4.4)

Figure 4.7 shows how the SDA functions as an adjuster for a simple Pixel2Pixel ker-

nel which receives/produces 4 pixels every 2 clock cycles and its hardware function

consumes/produces 2 pixels in every clock cycle. In order to match the stream rate

between IO and the function, SDA simply uses upstream to downstream transfor-

mation by splitting data in its input and sending it to the function. On the other end

it joins data coming from the function and sends it to the output. In this example
WT

ϑIO
is equal to WF

ϑ fm
, so it only needs to capture WT pixels in its 2×2 FIFO every two

clock cycles.

Window2Pixel kernels such as vxSobel3x3 consumes a window of pixels for

every produced output pixel as follows:

P̃i, j = f (

Pi−δ , j−δ . . . Pi−δ , j . . . Pi−δ , j+δ

...
. . .

...
. . .

...

Pi, j−δ . . . Pi, j . . . Pi, j+δ

...
. . .

...
. . .

...

x j+δ , j−δ . . . Pi+δ , j . . . Pi+δ , j+δ

),δ = w−1
2

(4.5)

A kernel with an image tile width of WT and filter window size of w×w con-

sumes WT +w− 1 pixels and produces WT pixels in every firing. For each firing,

it slides down an image by one row, thus producing a vertical stripe of output, WT

pixels wide.

Figure 4.8 shows how SDA handles the stream adjustment for a Window2Pixel

kernel with WT equal to 4, WF equal to 2 and filter window size equal to 3× 3.

This kernel receives 6 pixels and produces 4 pixels every 2 clock cycles. The hard-

58

B1 A1

B2 A2

B3 A3

B4 A4

B3 B1 A3 A1

B4 B2 A4 A2

S

D

A

2

1 1

fm

B’1 A’1

B’2 A’2

B’3 A’3

B’4 A’4

B’3 B’1 A’3 A’1

B’4 B’2 A’4 A’2

S

D

A

2

1 1

Figure 4.7: Pixel2Pixel kernel example, WT = 4,WF = 2

S

D

A

2

1

1

fm

B’1

B’2

B’3

B’4

B’3 B’1

B’4 B’2

S

D

A

2

1 1

C0 B0 A0

C1 B1 A1

C2 B2 A2

C3 B3 A3

C4 B4 A4

C5 B5 A5

C2 C0 B2 B0 A2 A0

C3 C1 B3 B1 A3 A1

C4 C2 B4 B2 A4 A2

C5 C3 B5 B3 A5 A3

Figure 4.8: Window2Pixel kernel example, WT = 4,WF = 2

ware function produces 2 pixels every clock cycle which means it needs to get 4

pixels every clock cycle. In this case, SDA splits the input stream data maintain-

ing some data overlap. This data overlap has two consequences: overhead of 2

duplicated pixels for every 6 pixels consumed by the kernel in each firing, and the

need for a line-buffer with minimum depth of 5. Figure 4.9 illustrates a general

Window2Pixel kernel with an image tile width of WT and a filter window size of

3×3 with WF equals to WT

N
. Since the function needs to receive WT

N
+2 pixels in its

firing, the overhead is 2N. Also, to produce the first output, the function needs to

have a line buffer with a minimum depth of 2N +1.

4.3.4 Heavily Parameterized C++-based OpenVX Kernels

A set of heavily parameterized C++ based OpenVX kernels with AXI-Stream in-

put/output have been implemented to generate different implementations for each

kernel. Each kernel is parameterized at two levels, the IO level and the core level.

The number of pixels that a kernel consumes/produces in its IO as well as the num-

ber of pixels needed to provide/gather to/from its core are parameterized in the IO

level. For each kernel, the main core function has been manually analyzed to find

all degrees of parallelism and then heavily parameterized. This can be done by

59

Figure 4.9: Window2Pixel kernel

labeling all loops and generating a set of suitable pragmas saved as a JSON file

for each kernel. Considering this parameterization, the tool can generate differ-

ent implementations with different number of inputs (NP(Ps
m)), area cost (A(Ps

m))

and initiation intervals (II(Ps
m)). Figure 4.10 shows the area, initiation interval and

tile-width (number of pixels input) correlation of different implementations for the

Gaussian3x3 kernel. Each dot represents an implementation.

4.3.5 Intra-node Optimizer

In addition, an Intra-node Optimizer step in the tool generates a wider range of im-

plementations. Intra-node Optimizer replicates and combines existing implemen-

tations in order to fill gaps in the solution space. Node replication can be used to

either increase the throughput or widen the tile-width. Figure 4.11.a demonstrates

a general Pixel2Pixel kernel with inverse throughput ϑIO and tile-width WT . In

order to improve the throughput (reduce the ϑIO), the tool replicates the node and

sends data to each replica with a round-robin order. Figure 4.11.b shows how the

tool improves the throughput N-times by making N replicas of the original kernel.

Figure 4.11.c shows how the tool increases the tile-width by replicating the ker-

nel. Because of data dependencies in Window2Pixel kernels, replication can only

be used for increasing tile-width. Our tool replicates Window2Pixel kernels con-

sidering the window size and handles the data passing. Figure 4.12 demonstrates

60

Figure 4.10: Area, throughput and tile-width correlation for Gaussian3x3

kernel

how the tool passes data to each replica when windows must overlap, e.g. in 2D

convolutions.

4.3.6 Inter-node Optimizer

Moreover, we also have added the capability of Inter-node Optimizer which com-

bines existing implementations and then replicates the combined node on the fly.

Figure 4.13 shows a simple node combining example. Assume node fn’s through-

put is N times bigger than node fm’s throughput. Two different approaches are

shown in Figure 4.13 to match the throughputs: the first approach is replicating

node fm, N times and using a 1→ N data splitter so that node fn can send data

to those replicas in a round-robin order (Figure 4.13.a). In the second approach

61

a) 𝑓"𝜗$% 𝜗$%

𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

𝜗$%

𝑁

𝑊'
𝜗$%

𝑁

𝑊'

𝑓"
𝜗$% 𝜗$%

𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%

𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%

𝑊' 𝑊'

𝜗$%

𝑁𝑊'

𝜗$%

𝑁𝑊'

b)

c)

.

.

.

.

.

.

Figure 4.11: Pixel2Pixel replication

shown in Figure 4.13.b, another implementation for node fn with a throughput

equal to twice node fm’s throughput is found (f ′n). Then the nodes f ′n and fm are

combined and the combined node is replicated N
2

times. Note that second approach

needs a 1→ N
2

data splitter and is much smaller than the 1→ N data splitter in the

first approach.

All the above mentioned techniques are used in Intra-node and Inter-node Op-

timizer steps to find a wide range of implementations (either in the pre-synthesis

step or during tradeoff finding process) for each kernel which widens the solution

space for the area/throughput scaling problem. Below we discuss our trade-off

formulation and solutions.

62

a)

𝑓"
𝜗$% 𝜗$%𝑊'

𝑊'

𝑊
'
+
2
𝛿

𝑓"
𝜗$% 𝜗$%

𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%

𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%

𝑊' 𝑊'

.

.

.

.

.

.

.

.

.

.

.

.

b)

𝑁
𝑊
'
+
2
𝛿

𝛿

𝛿

𝛿

𝛿
𝛿

𝛿

𝛿

𝛿

𝛿

𝛿

𝜗$%

𝜗$%

𝛿 𝜗$%

𝑁
𝑊
'

Figure 4.12: Window2Pixel replication

𝑓"
𝜗$%𝑊'

𝑓"
𝜗$%𝑊'

𝑓"
𝜗$%𝑊'

𝜗$%
𝑁

𝑊'

b)

.

.

.

𝑓)

𝑓"
2𝜗$%𝑊'

𝑓"

2𝜗$%𝑊'

𝜗$%
𝑁

𝑊'
.

.

.

𝑓′)

𝑓"

𝑓"

𝑓′)

a)

𝑁

𝑁

2

𝑊'
𝜗$%
𝑁

Figure 4.13: Node combining

63

4.3.7 Trade-off Finding Formulation and Solutions

To solve the described trade-off finding problem we used an ILP approach as well

as a heuristic approach. For each of these approaches, there are two different modes

or objectives:

• Given an area target Atgt and different implementations for each node f j,

which implementation Pi
j should be selected and how many replicas nri

j are

needed in order to maximize application throughput ΘA subject to the con-

straint the application area cost AA is not bigger than Atgt .

• Given a throughput target Θtgt , and different implementations for each node

f j, which implementation Pi
j should be selected and how many replicas nri

j

are needed in order to minimize area cost AA subject to the constraint the

application throughput ΘA is bigger than Θtgt .

Integer Linear Programming Algorithm

This problem can be defined as an ILP model similar to the previous chapter’s for-

mulation and solved with GLPK; it goes through all the possibilities in the solution

space and finds the optimum solution, subject to the constraints.

Similar to the previous chapter, we can define an ILP problem formulation for

both modes. The goal is to find binary integers x j,1,x j,2, ...,x j,Sm
indicative of the

implementations to be selected, and integer nri
j indicative of the number of replicas

needed. Equation 4.6 shows the formulation of the finding an implementation with

maximum throughput for an area budget.

Maximizing ΘA subject to:

∀ j ∈ {1, ...,N} :
N

∑
j=1

Sm

∑
i=1

nri
jA(P

i
j)xi, j < Atgt and

N

∑
i=1

xi, j = 1
(4.6)

Equation 4.7 shows the formulation of finding an implementation with mini-

mum area cost for a given throughput target. The formulation of the second prob-

lem is:

64

Minimizing AA subject to:

∀ j ∈ {1, ...,N} :
Sm

∑
i=1

NP(Pi
j)ϑ(Pi

j)

nri
j

> Θtgt and
N

∑
i=1

xi, j = 1
(4.7)

Heuristic Algorithm

To overcome the shortcomings of ILP approach mentioned in subsection 3.3.1, we

also used a heuristic approach similar to the approach we discussed in subsec-

tion 3.3.2. We use throughput analysis and throughput propagation as well as node

replication and node combining to find space/time tradeoffs for CV applications on

FPGAs for a defined throughput target or a defined area budget.

4.4 Experimental Results

Our experiments are carried out in two steps. First, we evaluate our strategies of

finding a good area/throughput tradeoff by targeting different FPGA architectures

with an area target. Then we evaluate our tool by setting different throughput

targets.

In our evaluation, we utilize the following benchmarks implemented as OpenVX

compute graphs:

• Sobel, a Sobel-filter based edge detection with 5 nodes.

• Canny, a Canny edge detector with 6 nodes.

• Harris, a Harris corner detector with 6 nodes.

All the kernels inside each of the aforementioned benchmarks are analyzed

and rewritten as parameterized C++ based kernels with stream-in/stream-out argu-

ments. Using our tool, a library of different implementations for each kernel is

generated. To examine whether our tool can cover a wide range of FPGA sizes, we

evaluated it with VPR [11], a part of the academic Verilog-To-Routing project [59].

Using VPR, different size FPGAs were generated based on Altera Stratix IV [41],

with logic cluster size N = 10, look-up table size K = 6, and channel segment

65

length L = 4. Then we passed each FPGA’s size as an area budget to our tool. Fig-

ure 4.14 shows the percentage of LUTs used for implementing Sobel on different

device sizes. As shown, our tool was able to automatically find suitable imple-

mentations for different architecture targets and fill over 95% of the chip area on

average.

Figure 4.15 shows how efficiency scales with FPGA size in terms of LUTs re-

quired per unit of throughput. For smaller FPGAs, there is some overhead, so up

to 50% more LUTs are required to achieve the same throughput. This overhead

quickly reduces as FPGA size is scaled.

We also evaluated our tool with different Xilinx FPGAs. Figure 4.16 shows

the percentage of LUTs used for implementing Sobel and Harris benchmarks on

different Xilinx 7 series devices [97]. As shown, our tool was able to automatically

find suitable implementations for different architecture targets and fill over 97% of

the chip area on average.

Finding an optimum implementation for different throughput targets was the

second goal. To evaluate that, we tested our tool by setting different throughput

targets for different benchmarks and compared our tool to a fully manual HLS ap-

proach. Since we implemented heavily parameterized kernels for our OpenVX ap-

proach first, we learned which parallelization strategies worked better. Using that

knowledge, we generated a manual HLS version. Due to limited time (as all design-

ers will experience), we had to choose just a handful of implementation strategies

which gave similar optimal area and throughput as our tool. However, to achieve

designs with throughputs in between the optimal points, these implementations

were scaled in the most logical way possible, but as they were scaled, they became

less efficient; naturally they used more area as we moved further away from the

optimal design points. Figure 4.17 shows how our tool covers a large design space

and hits all targets more efficiently for the vxMagnitude kernel. We compared our

tool results for different CV kernels with our manual HLS and observed that our

approach found an implementation for each throughput target that saves up to 30%

area.

Figure 4.18 shows area per throughput, normalized by the median value for

each benchmark, for a range of throughput targets. As shown, for throughput tar-

gets larger than roughly 5 Pixel/clk, our tool finds good area/throughput tradeoffs

66

88

90

92

94

96

98

100

102

U
se
d
	L
U
T
(P
e
rc
e
n
ta
g
e
)

FPGA	Size

Figure 4.14: LUT usage percentage for Sobel implementations on different

FPGA sizes

0

500

1000

1500

2000

2500

3000

2
0
x
2
0

2
3
x
2
3

2
6
x
2
6

2
9
x
2
9

3
2
x
3
2

3
5
x
3
5

3
8
x
3
8

4
1
x
4
1

4
4
x
4
4

4
7
x
4
7

5
0
x
5
0

5
3
x
5
3

5
6
x
5
6

5
9
x
5
9

6
2
x
6
2

6
5
x
6
5

6
8
x
6
8

7
1
x
7
1

7
4
x
7
4

7
7
x
7
7

8
0
x
8
0

8
3
x
8
3

8
6
x
8
6

8
9
x
8
9

LU
T/
T
h
ro
u
g
h
p
u
t

FPGA	Size

Figure 4.15: Throughput achieved for Sobel on different FPGA sizes

for each throughput target. For throughput targets less than 5, line buffer and SDA

overhead became a big portion of the area cost and increased the area per through-

put ratio.

To solve the trade-off finding problem, we used both ILP (similar to prior work

by Cong et al. [22]) and the heuristic approaches. We also evaluated both ap-

67

88

90

92

94

96

98

100

102

U
se
d
	L
U
T
(%

)

Xilinx	7	Series

Sobel Harris

Figure 4.16: Percentage of LUT usage for different Xilinx FPGAs

1000	

1100	

1200	

1300	

1400	

1500	

1600	

1700	

1800	

1900	

2000	

5	 10	 15	 20	 25	 30	 35	 40	

A
re
a
/T
h
ro
u
g
h
p
u
t	

Throughput	 Target	

Our	 Approach	

Manually	 designed	

Figure 4.17: vxMagnitude Area/Throughput results for different throughput

targets

proaches with different Xilinx 7-series FPGAs. Both heuristic and ILP approaches

could fill over 95% of the chip area on average. The heuristic approach, how-

ever, improves the runtime up to 3.6x compared to the ILP approach. Figure 4.19

shows the runtime results for both heuristic and ILP approaches for implementing

Harris application on different Xilinx FPGAs. Although the results are no shown,

the heuristic was also able to fill closer to the area target on average.

68

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

0 10 20 30 40

S
ca
le
d
	A
re
a
/T
h
ro
u
g
h
p
u
t	
b
y
	M

e
d
ia
n

Throughput	Targets(Pixel/Clk)

Canny

Magnitude_test

Sobel

Guassian_filter

Harris

Figure 4.18: Area cost results for different throughput targets

Figure 4.19: Heuristic vs ILP runtime speedup for Harris corner detection

To better demonstrate the ability of the heuristic to save area, we first used the

ILP approach to meet the area target for Harris. Then, we used the ILP’s achieved

throughput on each FPGA size as a throughput-target for the heuristic approach.

Figure 4.20 shows the area cost comparison between the heuristic and the ILP. The

heuristic approach saves 19% area on average while decreasing the throughput by

69

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
c
a
le
d
	U
s
e
d
	A
re
a
	b
y
	C
h
ip
	S
iz
e

Xilinx	7	Series

ILP Heuristic

Figure 4.20: Area cost results for Harris using Heuristic and ILP approaches

-2.5

-2

-1.5

-1

-0.5

0

P
e
rc
e
n
ta
g
e
	o
f	
T
h
ro
u
g
h
p
u
t	
d
e
cr
e
a
si
n
g
	

H
e
u
ri
st
ic
	v
s.
	IL
P

Xilinx	7	Series

Figure 4.21: Heuristic vs ILP throughput results for Harris corner detection

less than 2%. Unfortunately, however, it also failed to fit for three of the FPGA

sizes. The corresponding (small) drop in throughput is shown in Figure 4.21.

Next, to evaluate the real performance of the tool, we used the ZedBoard de-

70

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5 6

A
ra
e
	c
o
st
(L
U
T
)

Throughput	(Giga-Pixel/sec)

Figure 4.22: Area/throughput results for implementing Sobel on Xilinx Zed-

Board

velopment platform [3] and set up different throughput targets for implementing

Sobel. Figure 4.22 shows the results. As shown, our tool is able to hit all the

throughput targets while increasing the area cost linearly. The tool is able to

achieve up to 5.5GigaPixel/sec throughput for Sobel running at 105MHz. Since

the Sobel benchmark requires about 70 operations per pixel, this is equivalent to

roughly 350 GOPS.

4.5 Summary

In this chapter, we studied the problem of automatically finding an area/throughput

trade-off of CV applications by mapping OpenVX compute graphs onto FPGAs. We

proposed a framework on top of the Xilinx Vivado HLS tool which receives C++

based CV kernels and uses different approaches in order to find many different im-

plementations for each kernel. It compiles an OpenVX compute graph, analyzes

it and finds a good trade-off between area and throughput. Our approach is dif-

ferentiated from the existing HLS approaches as 1) it automatically investigates

finding different implementations, and 2) it combines module selection and repli-

71

cation methods as well as changing tile-size width, node combining, and splitting

in order to automatically find a better area/throughput tradeoff. This approach was

verified with different OpenVX benchmarks targeting several different FPGA sizes.

Our tool is able to automatically achieve over 95% of the target area budget on av-

erage while maximizing the throughput. Our tool also can automatically satisfy a

variety of throughput targets while minimizing the area cost. The proposed system

saves up to 30% of the area cost compared to manually written and heavily par-

allelized implementations. Using Inter-node Optimizer step, our heuristic tradeoff

finder is able to hit the same throughput targets as the ILP algorithm while saving

19% area on average.

72

Chapter 5

FPGA Overlay Space/Time

Scaling with Custom Instructions

So far, this dissertation has investigated space/time scaling to implement STG ap-

plications on MPPA and FPGA architectures. In this chapter, we investigate an

FPGA-based overlay architecture for accelerating OpenVX applications without

creating any application-specific logic. The overlay consists of a Soft Vector Pro-

cessor (SVP) for general acceleration, and the ability to implement Vector Custom

Instruction (VCI) on the fly using a Partial Reconfiguration Region (PRR). The PRR

is a reserved area of the chip that is initially blank and made available at run-time

to allow instances of VCIs to be defined as they are needed. A pipeline of compute

kernels can sometimes be realized by chaining multiple VCI together using a cus-

tom multiplexer network within the PRR. Using PR, this method obtains speedups

far beyond what a plain SVP can accomplish. For example, on the Canny-blur

application, an 8-lane SVP is 18 times faster than the plain ARM Cortex-A9. How-

ever, using ultra-fast PR, which is technically feasible but not yet supported on

modern FPGAs, a speed of 106 times faster is possible. This allows OpenVX pro-

grammers, who have no FPGA design knowledge, to achieve hardware-like speeds

within their vision application.

73

Table 5.1: vxMagnitude kernel throughput running on different platforms

Running Platform Throughput (MegaPixel/Sec) Speedup vs ARM

ARM Cortex-A9 (667MHz) 10.31 1.0

VectorBlox SVP-V4 (100MHz / 12,989 LUTs) 65.54 6.3

VectorBlox SVP-V8 (100MHz / 22,517 LUTs) 128.92 12.5

Custom hardware (100MHz / 3,000 LUTs) 1176.04 114

5.1 Introduction

Previously in chapter 4, we augmented Vivado HLS tools to implement CV ap-

plications described using OpenVX with maximum throughput for a given area

target, or with minimum area for a given throughput target. These solutions are

custom-generated for the OpenVX application, and require running the full Xilinx

place-and-route tool flow to generate the solution. While they are highly optimized

in terms of performance and area, the overall design flow still requires the expertise

of hardware designers who are familiar with FPGAs.

In this chapter, we wish to consider accelerating OpenVX applications on

FPGAs by software developers with no hardware experience, while still exploit-

ing the ability to make space/time tradeoffs. The simplest implementation method

would simply use a host processor – either a fast hard ARM processor present on

many modern FPGAs, or a slower soft processor built using FPGA logic. To pro-

vide scalable performance for area, an SVP implemented in the FPGA logic achieves

greater performance per unit area than multi-core soft processors [76].

Unfortunately, the total performance per unit area of an SVP still falls short of

what can be achieved with the dedicated hardware generated in chapter 4. For ex-

ample, consider Table 5.1 which shows throughput achieved with the vxMagnitude

OpenVX kernel on different platforms. The vectorized software implementation

running on a SVP with four vector lanes (V4) uses about 13,000 LUTs and achieves

6.3 times higher throughput compared to a basic software implementation running

on the Cortex-A9. Note the SVP achieves this high throughput while running at a

frequency that is approximately one-sixth that of the ARM processor, making it an

efficient platform. Increasing the number of vector lanes to 8 nearly doubles the

speedup to 12.5 and uses 23,000 LUTs. However, a custom hardware implementa-

tion of the vxMagnitude kernel that is area-constrained to just 3,000 LUTs achieves

114 times higher throughput than Cortex-A9.

74

While it may appear that custom hardware is the way to go, there are three

main constraints. First, and most importantly, it requires the expertise of an FPGA

hardware engineer. Second, the total area available is limited, so a system like

the one proposed in chapter 4 is required to achieve a proper space/time tradeoff.

Third, unlike the SVP, it is completely inflexible and cannot be ‘reprogrammed’ to

do other tasks.

Instead, we can take advantage of the SVP’s ability to add specialized vector

custom instructions or VCI to provide greatly increased performance for a small

increase in area. Unlike custom instructions in a traditional processor, where per-

formance gains are limited by the amount of data available, a VCI has access to a

significant amount of high-bandwidth data. It naturally accepts two wide, stream-

ing data sources and produces one wide, streaming data result in a pipelined fash-

ion. Thus, a VCI is a natural candidate for an OpenVX compute kernel, which also

streams data and can operate in a pipelined fashion. One major restriction of the

VCI, however, is a limit of only two input operands and one output operand.

Thus, to accelerate OpenVX compute graphs for software developers, we can

produce an FPGA overlay consisting of a processor resource, such as a host ARM

processor and SVP for some acceleration, and a pool of VCI modules. However,

choosing the right VCI modules is a difficult problem. Not all OpenVX compute

kernels will be used by an application, so it would be wasteful to dedicate area

to implement all of them at once. Instead, to fit a limited budget, we can reserve

some FPGA area as a partially reconfigurable region and dynamically load the par-

tial bitstream for each VCI as needed. Using an SVP with multiple VCI modules

and partial reconfiguration, we can create an FPGA overlay for software program-

mmers using a limited area budget, yet still greatly accelerate OpenVX compute

graphs.

Figure 5.1 shows four different scenarios (a, b, c and d) of running a simple

application consisting of three nodes (A, B and C) on the proposed system. One

way, shown in Figure 5.1.a, is to run all the nodes sequentially as software. Imple-

menting one node as a VCI module, shown in Figure 5.1.b, increases throughput.

A second VCI module might improve things further, but the two modules will com-

pete for area if they must be instantiated at the same time. Instead, if we can

reconfigure the reserved FPGA region from supporting node A to node C while the

75

Figure 5.1: Running an application on the hybrid system

SVP runs node B, we can realize a greater speedup. Note that, after each node

is run, the results are written back into the SVP scratchpad, and must be read out

again by the next node. This wastes time. To speed things up, it may be possi-

ble to directly stream results from A to B by connecting two VCI modules in a

pipelined fashion, as shown in Figure 5.1.d. This is called VCI chaining. Since

we do not know beforehand which two modules must be connected, we can build

a multiplexer network to forward the data, effectively bypassing the scratchpad in

between.

As mentioned before, chip area is limited, so not all compute nodes can be

implemented at the same time. However, with timesharing these resources through

dynamic partial reconfiguration, we can better dedicate area to nodes that are

needed to improve throughput.

There are various ways for running an application on such a system. The key

question here is which nodes should be selected to run as software, and which ones

76

as hardware. Since the VCI needs to achieve fixed levels of throughput, the tool

used in chapter 4 is needed to produce an implementation with minimum area. Fur-

thermore, when different VCI modules are chained, implementations with matched

throughputs are required to avoid the complications of internal buffering.

This chapter presents a method for the run-time acceleration of an OpenVX

application on an SVP system that uses a PRR which can host VCIs. To do this,

we pre-generate a library of different VCI implementations that fit the PRR using

the tool from chapter 4. Next, using the knowledge of PR speed and how long it

will take to instantiate a VCI, we determine which OpenVX nodes should be run

as software and which should use a VCI. For a very slow PR speed, we cannot

dynamically reconfigure and must select a static set of nodes for acceleration by

VCIs that fit the PRR area. Each VCI instance takes a different load time depending

upon the bitstream size needed to program that region. If the underlying FPGA can

support a faster PR speed, it may become possible to dynamically switch the VCI

loaded on the fly. Conceptually, for an infinitely fast PR speed, we can change the

VCI for each node in the graph and produce the highest speeds. When VCI chaining

is possible, matched throughput implementations must be selected and loaded into

the PRRs, and the multiplexer network must be configured accordingly.

Thus, the speed of the PR, the bitstream size of the VCI, the size of the PRR

supported, the size of the image, the tile size used, and the OpenVX graph (eg,

which nodes, how they are arranged, and whether VCI chaining is possible) will all

affect performance.

Since we cannot easily modify the speed of the PR (it is fixed by the FPGA

vendor), we build a framework that takes these variables into account and estimates

overall performance.

There have been several recent studies on implementing image processing and

OpenVX applications on reconfigurable platforms [37, 38, 70, 78]. The contribu-

tions listed below distinguish our work from previous approaches:

1. Adding automated space/time tradeoffs to the process of generating VCI for

SVP in order to use parallel resources more efficiently.

2. Adding PR to VCI implementation to time-share the parallel resources.

77

3. Adding scratchpad bypass capability to improve performance with VCI chain-

ing.

4. Using pre-synthesized node fusion as well as a heuristic approach to save

area compare to classic ILP approaches.

5.2 System Overview

The FPGA-based overlay consists of an ARM Cortex-A9 host processor, the Vec-

torBlox MXP SVP [75], and an empty PRR reserved for vector custom instructions.

To use a VCI, the associated bitstream must first be loaded into the reconfigurable

region. Static PR loads bitstreams for VCIs until the PRR is full. Dynamic PR allows

the bitstream to change quickly on the fly, enabling the use of more VCIs than the

PRR can hold at once. Figure 5.2 provides a view of the overall system.

The MXP has its own scratchpad and supports up to 16 different VCI opcodes.

The scratchpad provides two streaming source operands on PortA and PortB, and

accepts results on PortC. Each VCI can be implemented within the reconfigurable

region and connect to these ports. The Multiplexer (MUX) network is implemented

as part of each VCI and connects it with the SVP; the VCIs can forward their results

directly to each other through the MUX network in a way that bypasses writing the

result to the scratchpad.

The VCIs for OpenVX are generated using the synthesis system described ear-

lier in chapter 4, thus ensuring maximum throughput is achieved within the area

constraints provided. The OpenVX compute graph is analyzed and each compute

kernel is run as either regular software or a custom instruction in an accelerated

hardware pipeline.

According to Xilinx, the tool support for partial reconfiguration is based upon

large, non-overlapping regions with predefined boundaries. However, this is a cur-

rent limitation of the tools, and not the underlying device architecture. For ex-

ample, tools such as GoAhead [9] enables fine-grained boundaries, fine-grained

vertical relocation of the bitstream, and the ability to lock down interconnect wires

feeding these reconfigurable regions from non-reconfigurable regions. These tools

78

Figure 5.2: System overview

can be also extended to modern devices under Vivado. 1 In our system, we assume

tools like GoAhead will be available for modern devices, but until then this work

is limited to being a conceptual study.

1Dirk Koch, private communication.

79

5.3 Mapping OpenVX Applications to FPGA Overlay

The process of mapping an OpenVX application involves two steps. The first step

is similar to chapter 4 and done in advance by FPGA experts: the OpenVX kernels,

written in C++ for Vivado HLS, are mapped for defined levels of throughput. The

throughput levels are defined to match the width of the SVP VCI, which can be

anywhere from 1 to N lanes, where N is a power of 2 that matches the largest

SVP to be used. This produces a minimal-area VCI for each width. Each VCI

implementation is noted with its throughput, area requirement, and bitstream size.

Each OpenVX kernel also has a pure software implementation on the SVP or host

processor, where the throughput, in terms of pixels per second it can process, is

recorded at each image tile size.

The second step is executed at application time by the OpenVX run-time sys-

tem. Given an OpenVX compute graph and a target image size, it uses an execution

time model to determine the best tile size, which nodes should be implemented as a

VCI, and the VCI implemention to use. It also determines whether to use bypassing

and node fusion.

All of these steps are described below.

5.3.1 Finding Different Implementations

Consider an application described as an STG G with N nodes f1, f2, ..., fN .

G = (V,E) (5.1)

V = { f1, f2, ..., fN} (5.2)

For each node fm we can find NSV P different SVP implementations S1
m,S

2
m, ...,S

NSV P
m

as well as NVCI different VCI hardware implementations P1
m,P

2
m, ...,P

NVCI
m . Each

SVP implementation Ss
m can perform functionality of fm on an image tile, in t(Ss

m)

time. Each VCI implementation Ps
m can perform functionality of fm with area

cost A(Ps
m), number of pixels it can consume/produce NP(Ps

m) each firing (i.e.,

tile width), and initiation interval II(Ps
m).

Considering available resources, such as the size of the PRR, scratchpad ca-

pacity, and PR reconfiguration speed, the OpenVX run-time system decides which

80

node should be implemented as SVP software and which one should be imple-

mented as VCI hardware. After enumerating different implementations for each

OpenVX node, to minimize the search space, the OpenVX run-time system prunes

any dominated implementation points. Moreover, it uses “execution time analysis”

to consider other factors, namely DMA time and PR time, to find out the overall

execution time for each implementation.

5.3.2 Execution Time Analysis

In order to execute a general OpenVX compute graph, the run-time system needs

to fetch each image tile from main memory to the scratchpad and execute the whole

compute graph one node at a time (either as SVP or VCI implementations). In every

stage of traversing the graph, the intermediate data is saved in the scratchpad. For

large graphs, a significant amount of intermediate data may need to be buffered.

This means the tile size must be calculated based on the available scratchpad size

and amount of buffering required. After finishing executing all the nodes in the

graph on a tile, results are written back to main memory before fetching the next

tile. The execution time for these components is discussed below.

SVP Software Implementation

The execution time of executing a compute graph G with N nodes f1, f2, ..., fN and

subset of selected SVP implementations S1,S2, ...,SN on image tile Tj is tTj
. This

is calculated as:

tTj
= tDMAM2S

+[
N

∑
i=1

t(Si)]+ tDMAS2M
(5.3)

The overall execution time for NT tiles in the image is calculated as:

tA =
NT

∑
j=1

tTj
(5.4)

81

Accelerated VCI Implementation

Consider node fm in the compute graph G. Instead of using SVP implementation

Sm with execution time t(Sm), it is possible to use a VCI hardware implementation

Pm with execution time t(Pm) and PR reconfiguration time tPR to improve the ex-

ecution time. Assuming we need to reconfigure this node NPR times during the

processing of the entire image, the execution time can be improved if:

NT t(Sm)> NPR · tPR +NT · t(Pm) (5.5)

In chapter 4 we showed that for most CV kernels implemented as pipelined

hardware accelerators, we can define kernel throughput Θ(Pm) as number of pixels

consumed/produced in each clock cycle. The same formulation can be used here

to calculate VCI execution time t(Pm):

t(Pm) = SetupTime(Pm)+
TileSize

Θ(Pm) ·Fmax

(5.6)

where the Fmax is the speed of the SVP (here, 100MHz). In addition:

tPR =
PRsize

PRrate

. (5.7)

Node Chaining

Each VCI normally implements one OpenVX kernel, and only one VCI is executing

at a time. However, if the graph topology allows, it’s possible to find a cluster of

nodes where a series of VCIs can chain together, sending the output of one directly

to the input of the next, without writing intermediate results to the scratchpad.

This scratchpad bypassing allows us to take advantage of pipeline parallelism by

overlapping VCI execution.

Although chaining improves performance, it requires all VCI implementations

to be active at the same time. That is, there must be sufficient area in the PRR to hold

the entire VCI chain. In addition, the overall VCI chain still needs to follow VCI

topology restrictions: overall, there can be a maximum 2 input operands (PortA

and PortB) and one destination operand (PortC).

82

B

A

C

B

A

C

A

C

B

A B C

A B

C

A A

CB

a)

b)

c)

Figure 5.3: Node clustering and bypassing the scratchpad

For example, Figure 5.3.a shows a graph with three nodes and its execution

timeline. Standalone VCI implementations are used for each node in the graph.

This means each VCI implementation needs to write its results to the scratchpad

for its successors. It also means each node must wait for its predecessors to finish

their jobs before it can begin. Since the execution of nodes A, B and C do not

overlap, the system only needs to keep one VCI configured at a time within the

PRRs.

In contrast, nodes B and C can be chained as shown in Figure 5.3.b. The chain

bypasses the scratchpad for writing, so the result of node B bypasses the scratchpad

and is sent directly by the MUX network to the VCI implementing node C. For this

to work, the VCI for node A must be executed first, and the MUX network must be

configured to stream data through the VCIs for both B and C which must be active

simultaneously.

In a different example, shown in Figure 5.3.c, nodes B and C are both using

the result of node A. This concept of fan-out was not present in the previous two

examples. To avoid writing the result of A to the scratchpad, two VCI chains must

be formed: A and B, as well as A and C. This example shows that clustering needs

to consider all uses of the intermediate data between nodes.

Now that we have explained VCI chaining, we will describe the execution time

83

analysis for standalone VCIs as well as VCI chains.

Pruning Slow Standalone VCIs

To enhance performance and reduce the search space, standalone VCI implemen-

tations that are slower than SVP implementations are pruned. Hence, we will only

keep VCIs that satisfy the following equation:

t(Sm)>
PRsize.NPR

PRrate.NT

+
TileSize

Θ(Pm).Fmax

+SetupTime(Pm). (5.8)

Bypassing the Scratchpad

Similarly, we will prune VCI chains that are slower than the SVP implementations.

Assuming we can implement a sequence of NC nodes as a VCI chain, we will only

keep VCI chains which that satisfy the following equation:

NC

∑
j=1

t(S j
M)>

NC

∑
j=1

PR
j
size.N

j
PR

PR
j
rate.NT

+max[
1

Θ(P j
m)

].
TileSize

Fmax

+
NC

∑
j=1

SetupTime(P j
m).

(5.9)

We prune the problem space by eliminating all implementations that cannot

satisfy Equation 5.5, Equation 5.8 and Equation 5.9.

Pre-synthesized Node Fusion

Instead of VCI chaining, it is possible to fuse nodes together. This accomplishes a

similar result, but the VCI must be pre-synthesized, so the pair of nodes to be fused

must be known in advance. Hence, this can be done as long as there is sufficient

time to precompute a library of all pairs of OpenVX nodes.

The difference between VCI chaining and node fusion is shown in Figure 5.4.

With chaining, the MUX network is used to steer the output of A to the input of B.

With node fusion, the connection is made directly and the entire fused function is

synthesized into a single VCI. This can yield higher performance within an area

budget; for example, with node chaining, each VCI might be limited to 2 pixels per

84

Figure 5.4: VCI chaining versus node fusion

85

Table 5.2: Some of common patterns used for pre-synthesized node fusion

Pattern

ConvertColor, Gaussian

Gaussian, Sobel X

Gaussian, Sobel Y

ConvertColor, Gaussian, Sobel X

ConvertColor, Gaussian, Sobel Y

Sobel X, Sobel Y, Magnitude

Sobel X, Sobel Y, Phase

Gaussian, Sobel X, Sobel Y, Magnitude

Gaussian, Sobel X, Sobel Y, Phase

ConvertColor, Gaussian, Sobel X, Sobel Y, Magnitude

ConvertColor, Gaussian, Sobel X, Sobel Y, Phase

Magnitude, Phase, Non-Maxima

Sobel X, Sobel Y, Magnitude, Phase, Non-Maxima

firing, whereas node fusion might be able to support 4 pixels per firing within a

similar budget.

It may not be feasible to pre-synthesize all pairs of OpenVX nodes. Fusing

more than two nodes is even more computationally difficult. However, a subset

might be feasible if the graph topology is known in advance. In particular, there are

several common sub-graph patterns in OpenVX applications which can be antici-

pated. For example, the Color Convert kernel followed by Guassian Filter kernel

is a common 2-node sequence. Table 5.2 lists a few common patterns with up to

5 nodes that might be useful. In this case, these patterns must still conform to the

overall two-input, one-output operand structure, but with node fusion it is possible

to encapsulate more complex internal structures.

5.3.3 Solving the Space/Time Tradeoff

After pruning the problem space, the next step is exploring space/time tradeoffs to

find suitable implementations for each OpenVX node and solving the scheduling

problem by finding which ones need to be implemented as SVP and which ones

need to be implemented as VCI or VCI chains.

Previous studies have shown the scheduling problem can be defined as an ILP

86

problem and be solved by ILP solvers [49, 82]. In chapter 4, we also demonstrated

an ILP approach for automatically exploring space/time tradeoffs. Combining these

two ILP formulation approaches, we can easily produce an ILP model and use a

solver such as GLPK [60].

Although ILP solvers can solve these problems, they lack flexibility. In par-

ticular, the ILP problem cannot model all possible constraints, and it can quickly

become computationally infeasible to solve. In other words, as we have shown

elsewhere, combining or splitting nodes are not feasible while using ILP. In addi-

tion, as shown in chapter 4, ILP solvers can be slower than heurstics.

To overcome those mentioned shortcomings, we developed a heuristic approach

which allows us to use node fusion. The heuristic approach is similar to the ap-

proach we used in chapter 4 in the sense that it uses the “node combining” ability

(explained subsection 3.3.2) to allow for node fusion. Going through different pos-

sible nodes to fuse, the heuristic uses exhaustive search similar to ILP to find which

nodes need to be implemented as SVP and which ones need to be implemented as

VCI.

5.4 Experimental Results

In this section, we will investigate the speedup provided by the SVP and various

VCI configurations. The performance of three different hardware configurations are

measured: the baseline, consisting of OpenVX kernels written in C and running on

the ARM Cortex-A9 processor at 667MHz; the SVP running at 100MHz without

any VCI, consisting of OpenVX kernels written in C using the VectorBlox MXP

API and running on a combination of the Cortex-A9 and MXP; and the SVP with

different VCI options at 100MHz.

The OpenVX kernels implemented for this study are shown in Table 5.3. For

the HLS versions, a library of different PR bitstream implementations for each VCI

instance were generated to facilitate the trade-off finding process. These VCIs were

generated using the HLS tool described in chapter 4.

The baseline SVP and ARM code was implemented by Nick Ivanov of Vec-

torBlox. Mr. Ivanov generated two versions of the SVP hardware, and using that

hardware he gathered runtime data for the OpenVX kernels. The two SVP versions

87

Figure 5.5: ARM Cortex-A9 (667MHz) vs SVP-V4 and SVP-V8 (100MHz)

A

Color Convert

B

Gaussian 3x3

C

Sobel_X_3x3

E

Magnitude

D

Sobel_Y_3x3

F

Phase

Figure 5.6: Graph representation of Sobel application with 6 nodes

generated were a 4-lane configuration, where four 32-bit ALUs are assembled and

called SVP-V4, and an 8-lane configuration, called SVP-V8.

The throughput results for four specific kernels (ColorConvert, Gaussian, So-

bel and Magnitude) running on 3 different platforms (ARM Cortex-A9, SVP-V4

and SVP-V8) are shown in Figure 5.5. On average across those kernels, the SVP

achieves a 4.6 times speedup on SVP-V4 over the Cortex-A9, and an 8 times

speedup using SVP-V8.

Unfortunately, only a few general algorithms have been released as public

benchmarks for OpenVX. This means there is no standard OpenVX benchmark

suite available. To show the capabilities of our approach, we implemented follow-

ing simple benchmarks as OpenVX compute graphs:

88

Table 5.3: List of CV kernels

CV kernel ARM SVP HLS

Color Conversion X X X

Channel Extract X X X

Gaussian filter X X X

Sobel filter X X X

Phase X X X

Magnitude X X X

Non-maxima Suppression X X X

Thresholding X X X

Median Filter X X X

Box Filter X X X

Channel Combine X X X

Absolute Difference ✗ X X

Accumulate ✗ X X

Accumulate Squared ✗ X X

Accumulate Weighted ✗ X X

Arithmetic Addition ✗ X X

Arithmetic Subtraction ✗ X X

Bitwise AND ✗ X X

Bitwise OR ✗ X X

Bitwise XOR ✗ X X

Bitwise NOT ✗ X X

Convert Bit Depth ✗ X X

Dilate Image ✗ X X

Erode Image ✗ X X

LBP ✗ X X

Pixelwise Multiplication ✗ X X

Magnitude-cordic ✗ ✗ X

Sqrt-cordic ✗ ✗ X

Arctan-cordic ✗ ✗ X

89

A

Color Convert

B

Gaussian 3x3

C

Sobel_X_3x3

E

Magnitude

D

Sobel_Y_3x3

F

Phase

G

Non-Maxima

H

Hyst Thresh

I

Gaussian 3x3

J

Magnitude

Figure 5.7: Graph representation of Canny−Blur application with 10 nodes

V4-1

V4-2

V4-3

V4-4

V4-5

V8-1

V8-2

V8-3

V8-4

V8-5

0

5

10

15

20

25

12000 17000 22000 27000 32000

M
P
ix
e
l/
S
e
c

LUT	utilization

V4 V4	with	VCI V8 V8	with	VCI ARM

Figure 5.8: Throughput vs area for V4 and V8 with/without VCI (Canny−
Blur Figure 5.7)

• Sobel application with 6 nodes, shown in Figure 5.6.

• Canny-blur application with 10 nodes, shown in Figure 5.7.

All the kernels in both applications can be run using image tiles except the hys-

teresis thresholding kernel (node H) in Canny−blur. The hysteresis thresholding

kernel needs the global image perspective, so it must DMA all tile results prior to

that node before running the subsequent nodes. Thus, to run Canny− blur, we

need to run the first part on whole image, save to memory, read the results back

and then run the second part on the whole image generated by first part.

90

Table 5.4: List of CV kernels implemented as VCIs in Figure 5.8

Implementation Kernels implemented as VCIs

V4-1 (AB)

V4-2 (AB), D

V4-3 (ABC), (ABD)

V4-4 (ABC), (ABD), H, I

V4-5 (ABC), (ABD), H, (IJ)

V8-1 (AB)

V8-2 (AB), C

V8-3 (ABC), (ABD)

V8-4 (ABC), (ABD), H, I

V8-5 (ABC), (ABD), H, (IJ)

Figure 5.9: Sobel speedup by adding static VCIs (standalone and bypassing)

to SVP-V4 compared to ARM

Benefits of Static VCIs

Although SVPs are able to achieve better throughput than ARM, the use of VCIs of-

fers significant improvement. Figure 5.8 shows the results of running the Canny−

blur benchmark on SVP-V4 and SVP-V8, both without and with VCIs. The Y-axis

shows the throughput achieved in Mega-Pixels per second, while the X-axis shows

the LUT utilization, i.e. the amount of FPGA area used by each implementation.

91

We set different PRR sizes for implementing VCIs connecting to V4 or V8.

Considering the area budget, our tool explored the solution space and decided

which nodes need to be implemented as VCIs and which ones as SVPs in order

to maximize the throughput. When PRR size increases, throughput increases. Five

VCI solutions were generated for each of V4 and V8; these are shown in Table 5.4.

In this table, the letter indicates which node(s) from the graph in Figure 5.7 are

accelerated with a VCI; a grouping with parentheses indicates a VCI chain that

bypasses the scratchpad.

Note that in this figure, all of the VCIs are implemented in a fully static manner.

That is, NPR = 0 in Equation 5.5, so the VCI is only configured once at application

load time. Below, we will demonstrate the benefits and limitations of using dy-

namic PR, thereby changing which VCI is implemented as an image tile is passed

from node to node in the graph.

Impact of Bypassing

The previous subsection included bypassing to achieve better results. In this sub-

section, we remove bypassing to show the gains it provides. Results in Figure 5.9

show speedup before and after bypassing on an SVP-V4 when a fixed area budget

is given to VCIs. For a small area budget, bypassing does not yield significant im-

provements. However, as the area budget grows, the benefit of bypassing increases;

in the version with the largest area budget, the speedup with bypassing is over 2

times faster. A breakdown of the VCIs used in this figure is shown in Table 5.5.

Impact of Dynamic Partial Reconfiguration

Instead of statically assigned VCIs within the PRR, it is also possible to dynamically

reconfigure each VCI while evaluating a graph. To simplify discussion, suppose

NPR = NT in Equation 5.5. This might be the case when the first use of a VCI

incurs latency, but future uses within a graph can hide the latency (e.g., through

prefetching). In this case, the time to reconfigure and run on the VCI must also be

faster than the software-only SVP implementation. That is,

t(Sm)> tPR + t(Pm). (5.10)

92

Table 5.5: List of CV kernels implemented as VCIs on SVP-V4 in Figure 5.9

Implementation Kernels implemented as VCIs

SA1 A, B

BP1 AB

SA2 A, B, C

BP2 (AB), C

SA3 A, B, D

BP3 (AB), D

SA4 A, B, C, D

BP4 (ABC), (ABD)

SA5 A, B, C, D, E, F

BP5 (ABCDE) , (ABCDF)

When we allocate a new VCI to the PRR, we need to select a precise location.

First, we do a simple first-fit search strategy in the free space. If that fails, we swap

out the VCI that has been idle for the longest time. We find that most VCIs with

the same bandwidth require similar amount of space within the PRR.

This allocation heuristic is far from perfect, and it may lead to internal frag-

mentation within the PRR. Since the entire graph is known, a better scheduler can

look at whether kernels are used multiple times in the graph. Also, since the multi-

ple image tiles will be passed through the entire graph, the reconfiguration schedule

is cyclic. Using these properties, a better scheduler can optimize for the fewest re-

configurations while also avoiding fragmentation. Rather than attempting to create

such an optimal heuristic, we went with a simple one (which has more reconfig-

urations than necessary, thereby conservatively underestimating the performance

impact) and ignored the fragmentation problem (since it is likely solvable). These

practical issues should be addressed in future work.

Impact of PR Rate and Image Size

One concern of using dynamic PR is the PR rate, or the speed at which a new con-

figuration can be loaded. Considering Equation 5.7 and Equation 5.10, this rate can

significantly influence the benefits of using dynamic PR. Although in this study we

used Xilinx FPGAs, the overall PR rate for Intel FPGAs is similar [93]. As a start-

ing point, Xilinx documents a maximum 400MByte/sec PR rate using their on-chip

93

Figure 5.10: V4 Dynamic PR and Static PR speedup vs ARM for Sobel Ap-

plication (4500 LUT budget, image size 1920×1080)

ICAP interface; this is specified as a 32b value every 100MHz clock cycle. How-

ever, Hansen et al. demonstrated this can be overclocked by more than a factor

of 5 to achieve 2.2GByte/sec on real devices [35]. Other studies have suggested

different architectures to achieve even faster PR rates. For example, Trimberger et

al. proposed a time-multiplexed FPGA architecture which provides 33GByte/sec

reconfiguration rate [84]. Unfortunately, FPGA vendors have not made it a prior-

ity to provide fast PR rates; we believe this work provides some of that missing

incentive.

Figure 5.10 shows the impact that PR rate has on speedup. In this figure, the

Sobel application is run on an SVP-V4 with both with dynamic PR and static PR on

an image of size 1920×1080. As the PR rate increases along the X-axis, the overall

speedup (relative to the ARM) also increases. At low PR rate values of 3.2GB/s or

lower, dynamic PR is not considered because it is slower than static. At 6.4GB/s

and above, dynamic PR becomes faster than static. Bypassing benefits more from

fast PR because it covers a greater proportion of the total runtime. These same

trends are demonstrated on the Canny-blur application on both an SVP-V4 version

with area budget of 4500 LUTs in Figure 5.11, and an SVP-V8 version with area

budget of 14000 LUTs in Figure 5.12.

Similar to how increasing the PR rate improves bypassing more, increasing the

94

Figure 5.11: V4 Dynamic PR and Static PR speedup vs ARM for Canny-blur

Application (4500 LUT budget, image size 1920×1080)

Figure 5.12: V8 Dynamic PR and Static PR speedup vs ARM for Canny-blur

Application (14000 LUT budget, image size 1920×1080)

image size can also improve performance, particularly at low PR rates. This is

shown in Figure 5.13 where speedup improves over larger images. This is because

the larger image size allows the use of a taller image tile, allowing the current node

computation to better hide the latency of configuration for future nodes. At low PR

rates, the proportion of time spent doing PR relative to the total computational size

95

0.5

1

2

4

8

16

32

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4 204.8 409.6 819.2 1638.4

S
p
e
e
d
u
p

Parial	Reconfiguration	Bandwidth(GB/sec)

352x240

480x480

1920x1080

3840x2160

V4

Figure 5.13: V4 Dynamic PR speedup vs ARM for Canny-Blur for different

image sizes (4500 LUT budget)

0.5

1

2

4

8

16

32

64

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4 204.8 409.6 819.2 1638.4

S
p
e
e
d
u
p

Parial	Reconfiguration	Bandwidth(GB/sec)

352x240

480x480

1920x1080

3840x2160

V8

Figure 5.14: V8 Dynamic PR speedup vs ARM for Canny-Blur for different

image sizes (4500 LUT budget)

goes down with larger images. At high PR rates, the PR overhead has already been

minimized so changing the image size has little impact on performance.

96

Impact of Node Fusion Heuristic

So far, all of the above results have been generated using the ILP approach. We also

tested the heuristic approach, which enables node fusion as a new optimization,

using the same throughput targets or area budgets. Just like the individual kernels,

the candidates for fusion, taken from Table 5.2, were presynthesized. We have

omitted the detailed results showing that the heuristic is able to match all of the

throughput results achieved by the ILP while using 9% less area. This area savings

could be useful to reduce the number of reconfigurations, thereby reducing the

reconfiguration time, or to increase the number of VCIs or their width, thereby

improving performance.

5.5 Summary

This chapter presented a method for the run-time acceleration of an OpenVX appli-

cation on an FPGA-based overlay system that uses a PRR which can host VCIs. To

do this, we pre-generated a library of different VCI implementations that fit the PRR

profile using the automated FPGA space/time scaling tool we introduced in chap-

ter 4. The OpenVX application’s compute graph is analyzed and each compute

kernel is run as either regular software or as a custom instruction in an accelerated

hardware pipeline configured on the PRR. A pipeline of compute kernels can some-

times be realized by chaining multiple VCI together using a custom multiplexer

network. With partial reconfiguration, this method can obtain speedups far beyond

what a plain SVP can accomplish. For example, on the Canny-blur application, an

8-lane SVP is 18 times faster than the plain ARM Cortex-A9. However, using ultra-

fast partial reconfiguration which is technically feasible but not yet supported on

modern FPGAs, a speed of 106 times faster is possible. This allows OpenVX pro-

grammers, who have no FPGA design knowledge, to achieve hardware-like speeds

within their vision application.

97

Chapter 6

Conclusions

This work broadens the overall usability of parallel resources by providing an en-

vironment which allows users to automatically explore space/time tradeoffs and

find suitable implementations regarding a throughput target or an area budget on

a wide range of different pipelined architectures. The contributions made in this

dissertation are summarized below.

First, we added automated space/time scaling for streaming applications to

compilation tools for MPPAs (a coarse-grained architecture). This was done by

proposing a Java-based HLS tool chain which finds all degrees of parallelism in a

general stream application and then uses throughput analysis and throughput prop-

agation to find possible bottlenecks. The proposed approach combines module

selection and replication methods with node combining and splitting in order to

automatically find a better area/throughput tradeoff. It also presents a heuristic

approach which is more flexible and can find design points that are computation-

ally infeasible or difficult to model using a classic ILP formulation. We examined

different benchmarks and the tool satisfied a variety of different throughput tar-

gets and area budgets. Our heuristic approach could achieve the throughput targets

using 30% less area compared to the ILP approach.

Second, automated exploration of space/time tradeoffs was added to a com-

mercial HLS tool for implementing CV applications targeting FPGAs. OpenVX was

used to define CV applications as STGs. This approach was verified with different

OpenVX benchmarks targeting several different FPGA sizes. Our tool is able to au-

98

tomatically achieve over 95% of the target area budget on average while improving

throughput. Our tool also can automatically satisfy a variety of throughput targets

while minimizing the area cost. The proposed system saves up to 30% of the area

cost compared to manually written implementations. Using the Inter-node Opti-

mizer step, our heuristic tradeoff finder is able to hit the same throughput targets

while saving 19% area on average compared to existing ILP approaches.

Third, an automated space/time tradeoff approach was used for implement-

ing CV applications targeting an FPGA-based overlay architecture that combines a

processor, a vector execution unit (SVP), and reconfigurable custom vector instruc-

tions. The SVP allows us to target more general applications and coupling it with

the FPGA fabric provides us an environment to accelerate computationally inten-

sive applications. Automated space/time scaling was used to automatically gener-

ate different VCIs for the SVP in order to use parallel resources more efficiently.

Also, Partial Reconfiguration (PR) was used for implementing VCIs in order to

time-share the parallel resources. Scratchpad bypassing capability was added to

VCIs in order to improve the performance. Moreover, node clustering and node

combining approaches are used to avoid local memory access as much as possible.

Last, pre-synthesized node fusion allows the heuristic approach to use additional

optimization opportunities which are difficult to model or computationally infea-

sible in classic ILP approach. The heuristic approach matches all the throughput

results achieved by the ILP approach while using 9% less area on chip.

Overall, the performance results achieve speedups far beyond what a plain SVP

can accomplish. For example, an 8-lane SVP achieves a speedup of 5.3, whereas

a VCI version is another 3.5 times faster, with a net speedup of 18.5 versus ARM

Cortex-A9 for running the Canny− blur application. This was achieved by using

automated space/time scaling, node clustering and dynamic PR (considering to-

day’s device restrictions). These speedup results can be significantly improved up

to 106 times faster than ARM if the PR rate increases in the future.

The continuing trend toward designing larger pipelined architectures, as well

as introducing more complex streaming applications, requires smarter and more

capable approaches in order to find all degrees of parallelism in the application and

use available parallel on-chip resources efficiently. In this work, we proposed an

environment in which users can explore automated space/time tradeoffs for STGs

99

however we only addressed the STG with DAG topologies. Addressing automated

space/time tradeoffs for cyclic graphs needs to be investigated. Moreover, we be-

lieve our approach can be used not only for CV applications but also for a wide

range of streaming applications which we did not address because they were out of

scope of this study.

100

Bibliography

[1] Adapteva-Inc. Epiphany-iv 64-core 28nm microprocessor. 2014. URL

http://www.adapteva.com/products/silicon-devices/e64g401/. → page 19

[2] P. J. Ashenden. The designer’s guide to VHDL, volume 3. Morgan

Kaufmann, 2010. → page 18

[3] Avnet-inc. Zedboard product briefs. 2017. URL http://www.zedboard.org/

sites/default/files/product briefs/5066-PB-AES-Z7EV-7Z020-G-V1b.pdf.

→ page 71

[4] M. Awad. Fpga supercomputing platforms: a survey. In Field

Programmable Logic and Applications, 2009. FPL 2009. International

Conference on, pages 564–568. IEEE, 2009. → page 23

[5] E. Ayguadé and J. Torres. Partitioning the statement per iteration space

using non-singular matrices. In Proceedings of the 7th international

conference on Supercomputing, pages 407–415. ACM, 1993. → page 11

[6] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for

high-performance computing. ACM Computing Surveys (CSUR), 26(4):

345–420, 1994. → pages 11, 31

[7] U. Banerjee. Unimodular transformations of double loops. University of

Illinois at Urbana-Champaign, Center for Supercomputing Research and

Development, 1990. → page 11

[8] U. Banerjee. Loop transformations for restructuring compilers: the

foundations. Springer Science & Business Media, 2007. → pages 11, 31

[9] C. Beckhoff, D. Koch, and J. Torresen. Go ahead: A partial reconfiguration

framework. In Field-Programmable Custom Computing Machines

(FCCM), 2012 IEEE 20th Annual International Symposium on, pages

37–44. IEEE, 2012. → page 78

101

http://www. adapteva.com/products/silicon-devices/e64g401/
http://www.zedboard.org/sites/default/files/product_briefs/5066-PB-AES-Z7EV-7Z020-G-V1b.pdf
http://www.zedboard.org/sites/default/files/product_briefs/5066-PB-AES-Z7EV-7Z020-G-V1b.pdf

[10] P. Bellows and B. Hutchings. Jhdl-an hdl for reconfigurable systems. In

FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE

Symposium on, pages 175–184. IEEE, 1998. → page 15

[11] V. Betz and J. Rose. Vpr: A new packing, placement and routing tool for

fpga research. In International Workshop on Field Programmable Logic

and Applications, pages 213–222. Springer, 1997. → page 65

[12] M. Butts, A. M. Jones, and P. Wasson. A structural object programming

model, architecture, chip and tools for reconfigurable computing. In

Field-Programmable Custom Computing Machines, 2007. FCCM 2007.

15th Annual IEEE Symposium on, pages 55–64. IEEE, 2007. → pages

xii, 2, 14, 20, 21, 22, 28

[13] M. Butts, B. Budlong, P. Wasson, and E. White. Reconfigurable work

farms on a massively parallel processor array. In Field-Programmable

Custom Computing Machines, 2008. FCCM’08. 16th International

Symposium on, pages 206–215. IEEE, 2008. → pages 2, 28

[14] D. Callahan, K. Kennedy, et al. Automatic decomposition of scientific

programs for parallel execution. In Proceedings of the 14th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages,

pages 63–76. ACM, 1987. → page 11

[15] A. Canis, J. Choi, B. Fort, B. Syrowik, R. L. Lian, Y. T. Chen, H. Hsiao,

J. Goeders, S. Brown, and J. Anderson. Legup high-level synthesis. In

FPGAs for Software Programmers, pages 175–190. Springer, 2016. →
page 14

[16] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. DeHon. Stream

computations organized for reconfigurable execution (score). In

International Workshop on Field Programmable Logic and Applications,

pages 605–614. Springer, 2000. → page 15

[17] D. Chen, J. Cong, P. Pan, et al. Fpga design automation: A survey.

Foundations and Trends R© in Electronic Design Automation, 1(3):195–330,

2006. → page 17

[18] C. Claus, F. H. Muller, J. Zeppenfeld, and W. Stechele. A new framework

to accelerate virtex-ii pro dynamic partial self-reconfiguration. In Parallel

and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE

International, pages 1–7. IEEE, 2007. → page 26

102

[19] C. Claus, W. Stechele, M. Kovatsch, J. Angermeier, and J. Teich. A

comparison of embedded reconfigurable video-processing architectures. In

Field Programmable Logic and Applications, 2008. FPL 2008.

International Conference on, pages 587–590. IEEE, 2008. → page 23

[20] S. Commuri, V. Tadigotla, and L. Sliger. Task-based hardware

reconfiguration in mobile robots using fpgas. Journal of Intelligent and

Robotic Systems, 49(2):111–134, 2007. → page 23

[21] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.

High-level synthesis for fpgas: From prototyping to deployment. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 30(4):473–491, 2011. → page 14

[22] J. Cong, M. Huang, B. Liu, P. Zhang, and Y. Zou. Combining module

selection and replication for throughput-driven streaming programs. In

Design, Automation & Test in Europe Conference & Exhibition (DATE),

2012, pages 1018–1023. IEEE, 2012. → pages 29, 37, 40, 51, 67

[23] L. Daoud, D. Zydek, and H. Selvaraj. A survey of high level synthesis

languages, tools, and compilers for reconfigurable high performance

computing. In Advances in Systems Science, pages 483–492. Springer,

2014. → page 2

[24] B. D. de Dinechin. Kalray mppa R©: Massively parallel processor array:

Revisiting dsp acceleration with the kalray mppa manycore processor. In

Hot Chips 27 Symposium (HCS), 2015 IEEE, pages 1–27. IEEE, 2015. →
page 19

[25] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.

LeBlanc. Design of ion-implanted mosfet’s with very small physical

dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974. →
page 1

[26] F. Dittmann and S. Frank. Caching in real-time reconfiguration port

scheduling. In Field Programmable Logic and Applications, 2007. FPL

2007. International Conference on, pages 740–744. IEEE, 2007. → page

25

[27] A. Duller, G. Panesar, and D. Towner. Parallel processing-the picochip

way. Communicating Processing Architectures, 2003:125–138, 2003. →
page 18

103

[28] E. El-Araby, I. Gonzalez, and T. El-Ghazawi. Exploiting partial runtime

reconfiguration for high-performance reconfigurable computing. ACM

Transactions on Reconfigurable Technology and Systems (TRETS), 1(4):21,

2009. → page 23

[29] P. Feautrier. Some efficient solutions to the affine scheduling problem. i.

one-dimensional time. International journal of parallel programming, 21

(5):313–347, 1992. → page 13

[30] K. Gilles. The semantics of a simple language for parallel programming.

Information processing, 74:471–475, 1974. → pages 15, 28

[31] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski. Stream-oriented fpga

computing in the streams-c high level language. In Field-Programmable

Custom Computing Machines, 2000 IEEE Symposium on, pages 49–56.

IEEE, 2000. → page 14

[32] M. B. Gokhale and J. M. Stone. Napa c: Compiling for a hybrid risc/fpga

architecture. In FPGAs for Custom Computing Machines, 1998.

Proceedings. IEEE Symposium on, pages 126–135. IEEE, 1998. → page 14

[33] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb,

C. Leger, J. Wong, H. Hoffmann, D. Maze, et al. A stream compiler for

communication-exposed architectures. In ACM SIGOPS Operating

Systems Review, volume 36, pages 291–303. ACM, 2002. → page 46

[34] J. Gray. Grvi phalanx: A massively parallel risc-v fpga accelerator

accelerator. In Field-Programmable Custom Computing Machines

(FCCM), 2016 IEEE 24th Annual International Symposium on, pages

17–20. IEEE, 2016. → pages 7, 48

[35] S. G. Hansen, D. Koch, and J. Torresen. High speed partial run-time

reconfiguration using enhanced icap hard macro. In Parallel and

Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE

International Symposium on, pages 174–180. IEEE, 2011. → pages 26, 94

[36] S. Hauck. Configuration prefetch for single context reconfigurable

coprocessors. In Proceedings of the 1998 ACM/SIGDA sixth international

symposium on Field programmable gate arrays, pages 65–74. ACM, 1998.

→ page 25

[37] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,

A. Vasilyev, M. Horowitz, and P. Hanrahan. Darkroom: Compiling

104

high-level image processing code into hardware pipelines. ACM Trans.

Graph., pages 144:1–144:11, 2014. → pages 51, 77

[38] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz, and

P. Hanrahan. Rigel: Flexible multi-rate image processing hardware. ACM

Trans. Graph., pages 85:1–85:11, 2016. → pages 51, 77

[39] M. Huebner, M. Ullmann, F. Weissel, and J. Becker. Real-time

configuration code decompression for dynamic fpga self-reconfiguration.

In Parallel and Distributed Processing Symposium, 2004. Proceedings.

18th International, page 138. IEEE, 2004. → page 26

[40] B. Hutchings, B. Nelson, S. West, and R. Curtis. Optical flow on the

ambric massively parallel processor array (mppa). In Field Programmable

Custom Computing Machines, 2009. FCCM’09. 17th IEEE Symposium on,

pages 141–148. IEEE, 2009. → pages 2, 23

[41] Intel-inc. Overview for the stratix iv device family. 2016. URL https:

//www.altera.com/en US/pdfs/literature/hb/stratix-iv/stx4 siv51001.pdf. →
page 65

[42] C. Kao. Benefits of partial reconfiguration. Xcell journal, 55:65–67, 2005.

→ page 23

[43] R. Kastner, J. Matai, and S. Neuendorffer. Parallel programming for fpgas.

arXiv preprint arXiv:1805.03648, 2018. → pages 5, 49

[44] K. Kennedy and K. S. McKinley. Optimizing for parallelism and data

locality. In Proceedings of the 6th international conference on

Supercomputing, pages 323–334. ACM, 1992. → page 11

[45] Khronos-Group. Openvx. 2017. URL https://www.khronos.org/openvx/.

→ page 51

[46] D. W. Knapp. Behavioral synthesis: digital system design using the

synopsys behavioral compiler. Prentice Hall PTR, 1996. → page 49

[47] D. Koch. Partial reconfiguration on FPGAs: architectures, tools and

applications, volume 153. Springer Science & Business Media, 2012. →
pages xii, 24, 25

[48] D. Koch, C. Beckhoff, and J. Teich. Bitstream decompression for high

speed fpga configuration from slow memories. In Field-Programmable

Technology, 2007. ICFPT 2007. International Conference on, pages

161–168. IEEE, 2007. → page 26

105

https://www.altera.com/en_US/pdfs/literature/hb/stratix-iv/stx4_siv51001.pdf
https://www.altera.com/en_US/pdfs/literature/hb/stratix-iv/stx4_siv51001.pdf
https://www.khronos.org/openvx/

[49] H. Kooti and E. Bozorgzadeh. Reconfiguration-aware task graph

scheduling. In Embedded and Ubiquitous Computing (EUC), 2015 IEEE

13th International Conference on, pages 163–167. IEEE, 2015. → page 87

[50] B. Krill, A. Ahmad, A. Amira, and H. Rabah. An efficient fpga-based

dynamic partial reconfiguration design flow and environment for image and

signal processing ip cores. Signal Processing: Image Communication, 25

(5):377–387, 2010. → page 23

[51] I. Kuon, R. Tessier, and J. Rose. Fpga architecture: Survey and challenges.

Foundations and trends in electronic design automation, 2(2):135–253,

2008. → page 16

[52] S. Lange and M. Middendorf. Hyperreconfigurable architectures for fast

run time reconfiguration. In Field-Programmable Custom Computing

Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on, pages

304–305. IEEE, 2004. → page 26

[53] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of

the IEEE, pages 1235–1245, 1987. → pages 15, 23

[54] Z. Li and S. Hauck. Don’t care discovery for fpga configuration

compression. In Proceedings of the 1999 ACM/SIGDA seventh

international symposium on Field programmable gate arrays, pages 91–98.

ACM, 1999. → page 26

[55] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing

synchronization with affine transforms. In Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’97, pages 201–214, 1997. ISBN 0-89791-853-3. → page 51

[56] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing

synchronization with affine transforms. In Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 201–214. ACM, 1997. → pages 11, 31

[57] D. Liu and B. C. Schafer. Efficient and reliable high-level synthesis design

space explorer for fpgas. In 2016 26th International Conference on Field

Programmable Logic and Applications (FPL), pages 1–8, 2016. → page 52

[58] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch. Run-time partial reconfiguration

speed investigation and architectural design space exploration. In Field

Programmable Logic and Applications, 2009. FPL 2009. International

Conference on, pages 498–502. IEEE, 2009. → page 26

106

[59] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,

M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose, and

V. Betz. Vtr 7.0: Next generation architecture and cad system for fpgas.

ACM Trans. Reconfigurable Technol. Syst., pages 6:1–6:30, 2014. → page

65

[60] A. Makhorin. Glpk (gnu linear programming kit). http://www. gnu.

org/software/glpk/, 2008. → pages 37, 48, 87

[61] P. Manet, D. Maufroid, L. Tosi, G. Gailliard, O. Mulertt, M. Di Ciano, J.-D.

Legat, D. Aulagnier, C. Gamrat, R. Liberati, et al. An evaluation of

dynamic partial reconfiguration for signal and image processing in

professional electronics applications. EURASIP Journal on Embedded

Systems, 2008:1, 2008. → page 26

[62] G. Martin and G. Smith. High-level synthesis: Past, present, and future.

IEEE Design & Test of Computers, 26(4):18–25, 2009. → page 2

[63] O. Mencer, M. Morf, and M. J. Flynn. Pam-blox: High performance fpga

design for adaptive computing. In FPGAs for Custom Computing

Machines, 1998. Proceedings. IEEE Symposium on, pages 167–174. IEEE,

1998. → page 14

[64] R. Nikhil. Bluespec system verilog: efficient, correct rtl from high level

specifications. In Formal Methods and Models for Co-Design, 2004.

MEMOCODE’04. Proceedings. Second ACM and IEEE International

Conference on, pages 69–70. IEEE, 2004. → page 15

[65] H. Omidian and G. G. Lemieux. Janus: A compilation system for balancing

parallelism and performance in openvx. In Journal of Physics: Conference

Series, volume 1004, page 012011. IOP Publishing, 2018. → page vi

[66] H. Omidian and G. G. F. Lemieux. Automated space/time scaling of

streaming task graph. International Workshop on Overlay Architectures for

FPGA (OLAF), abs/1606.03717, 2016. → page vi

[67] H. Omidian and G. G. F. Lemieux. Exploring automated space/time

tradeoffs for openvx compute graphs. In 2017 International Conference on

Field-Programmable Technology (FPT), Dec 2017. → page vi

[68] J. Parkhurst, J. Darringer, and B. Grundmann. From single core to

multi-core: preparing for a new exponential. In Proceedings of the 2006

IEEE/ACM international conference on Computer-aided design, pages

67–72. ACM, 2006. → page 1

107

[69] K. Paulsson, M. Hübner, S. Bayar, and J. Becker. Exploitation of run-time

partial reconfiguration for dynamic power management in xilinx spartan

iii-based systems. In ReCoSoC, pages 1–6, 2007. → page 23

[70] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and

M. Horowitz. Programming heterogeneous systems from an image

processing dsl. ACM Trans. Archit. Code Optim., pages 26:1–26:25, 2017.

URL http://doi.acm.org/10.1145/3107953. → page 77

[71] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. López-Lagunas, P. R.

Mattson, and J. D. Owens. A bandwidth-efficient architecture for media

processing. In Proceedings of the 31st annual ACM/IEEE international

symposium on Microarchitecture, pages 3–13. IEEE Computer Society

Press, 1998. → page 1

[72] M. Saldaña, A. Patel, C. Madill, D. Nunes, D. Wang, P. Chow, R. Wittig,

H. Styles, and A. Putnam. Mpi as a programming model for

high-performance reconfigurable computers. ACM Transactions on

Reconfigurable Technology and Systems (TRETS), 3(4):22, 2010. → page

23

[73] V. Sarkar and R. Thekkath. A general framework for iteration-reordering

loop transformations. SIGPLAN Not., pages 175–187, 1992. → page 51

[74] V. Sarkar and R. Thekkath. A general framework for iteration-reordering

loop transformations. In ACM SIGPLAN Notices, volume 27, pages

175–187. ACM, 1992. → pages 11, 31

[75] A. Severance and G. G. F. Lemieux. Embedded supercomputing in fpgas

with the vectorblox mxp matrix processor. In 2013 International

Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pages 1–10, 2013. → page 78

[76] A. Severance, J. Edwards, H. Omidian, and G. Lemieux. Soft vector

processors with streaming pipelines. In Proceedings of the 2014

ACM/SIGDA International Symposium on Field-programmable Gate

Arrays, FPGA ’14, pages 117–126, 2014. → page 74

[77] A. Singh, G. Parthasarathy, and M. Marek-Sadowska. Efficient circuit

clustering for area and power reduction in fpgas. ACM Transactions on

Design Automation of Electronic Systems (TODAES), 7(4):643–663, 2002.

→ page 32

108

http://doi.acm.org/10.1145/3107953

[78] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini. Adrenaline: An

openvx environment to optimize embedded vision applications on

many-core accelerators. In 2015 IEEE 9th International Symposium on

Embedded Multicore/Many-core Systems-on-Chip, pages 289–296, 2015.

→ pages 51, 77

[79] S. Taheri, J. Heo, P. Behnam, P. Veidenbaum, and A. Nicolau. Acceleration

framework for fpga implementation of openvx graph pipelines. Technical

report, Center for Embedded and Cyber-Physical Systems, University of

California, Irvine, 2018. → page 52

[80] R. Tessier, K. Pocek, and A. DeHon. Reconfigurable computing

architectures. Proceedings of the IEEE, 103(3):332–354, 2015. → page 13

[81] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language for

streaming applications. In International Conference on Compiler

Construction, pages 179–196. Springer, 2002. → page 46

[82] M. F. Tompkins. Optimization techniques for task allocation and

scheduling in distributed multi-agent operations. PhD thesis,

Massachusetts Institute of Technology, 2003. → page 87

[83] S. Toscher, T. Reinemann, and R. Kasper. An adaptive fpga-based

mechatronic control system supporting partial reconfiguration of controller

functionalities. In Adaptive Hardware and Systems, 2006. AHS 2006. First

NASA/ESA Conference on, pages 225–228. IEEE, 2006. → page 23

[84] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A time-multiplexed

fpga. In Field-Programmable Custom Computing Machines, 1997.

Proceedings., the 5th Annual IEEE Symposium on, pages 22–28. IEEE,

1997. → pages 26, 94

[85] J. L. Tripp, M. B. Gokhale, and K. D. Peterson. Trident: From high-level

language to hardware circuitry. Computer, 40(3), 2007. → page 14

[86] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson,

G. Landge, M. J. Meeuwsen, C. Watnik, A. T. Tran, Z. Xiao, et al. A

167-processor computational platform in 65 nm cmos. IEEE Journal of

Solid-State Circuits, 44(4):1130–1144, 2009. → page 19

[87] J. Villarreal, A. Park, W. Najjar, and R. Halstead. Designing modular

hardware accelerators in c with roccc 2.0. In Field-Programmable Custom

Computing Machines (FCCM), 2010 18th IEEE Annual International

Symposium on, pages 127–134. IEEE, 2010. → page 14

109

[88] G. K. Wallace. The jpeg still picture compression standard. IEEE

transactions on consumer electronics, 38(1):xviii–xxxiv, 1992. → pages

47, 56

[89] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas,

H. Silverman, and S. Ghosh. Prism-ii compiler and architecture. In FPGAs

for Custom Computing Machines, 1993. Proceedings. IEEE Workshop on,

pages 9–16. IEEE, 1993. → page 14

[90] L. Wirbel. Ambric lives on, in a parallel universe, 2011. URL

https://www.edn.com/electronics-blogs/fpga-gurus/4409421/

Ambric-Lives-On-in-a-Parallel-Universe. → page 21

[91] D. Wo and K. Forward. Compiling to the gate level for a reconfigurable

co-processor. In FPGAs for Custom Computing Machines, 1994.

Proceedings. IEEE Workshop on, pages 147–154. IEEE, 1994. → page 14

[92] M. E. Wolf. Improving locality and parallelism in nested loops. PhD

thesis, Citeseer, 1992. → page 11

[93] Z. Xiao, D. Koch, and M. Lujan. A partial reconfiguration controller for

altera stratix v fpgas. In Field Programmable Logic and Applications

(FPL), 2016 26th International Conference on, pages 1–4. IEEE, 2016. →
page 93

[94] Xilinx-inc. Axi4 stream interconnect. 2017. URL https://www.xilinx.com/

products/intellectual-property/axi4-stream interconnect.html. → page 52

[95] Xilinx-inc. revision enables responsive and reconfigurable vision systems.

2018. URL

https://www.xilinx.com/products/design-tools/embedded-vision-zone.html.

→ page 50

[96] Xilinx-inc. Vivado high-level synthesis. 2018. URL https:

//www.xilinx.com/products/design-tools/vivado/integration/esl-design.html.

→ pages 5, 49, 50

[97] Xilinx-inc. 7 series fpgas data sheet: Overview. 2018. URL

https://www.xilinx.com/support/documentation/data sheets/

ds180 7Series Overview.pdf. → page 66

[98] Xilinx-inc. Dma v7. 1, logicore ip product guide, vivado design suite,

2018. 2018. URL https://www.xilinx.com/products/intellectual-property/

axi4-stream interconnect.html. → page 56

110

https://www.edn.com/electronics-blogs/fpga-gurus/4409421/Ambric-Lives-On-in-a-Parallel-Universe
https://www.edn.com/electronics-blogs/fpga-gurus/4409421/Ambric-Lives-On-in-a-Parallel-Universe
https://www.xilinx.com/products/intellectual-property/axi4-stream_interconnect.html
https://www.xilinx.com/products/intellectual-property/axi4-stream_interconnect.html
https://www.xilinx.com/products/design-tools/embedded-vision-zone.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/products/intellectual-property/axi4-stream_interconnect.html
https://www.xilinx.com/products/intellectual-property/axi4-stream_interconnect.html

[99] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu, and

S. Vassiliadis. Dwarv: Delftworkbench automated reconfigurable vhdl

generator. In Field Programmable Logic and Applications, 2007. FPL

2007. International Conference on, pages 697–701. IEEE, 2007. → page

14

[100] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. Work,

T. Mohsenin, M. Singh, and B. Baas. An asynchronous array of simple

processors for dsp applications. In Solid-State Circuits Conference, 2006.

ISSCC 2006. Digest of Technical Papers. IEEE International, pages

1696–1705. IEEE, 2006. → pages 18, 19

[101] G. Zhong, V. Venkataramani, Y. Liang, T. Mitra, and S. Niar. Design space

exploration of multiple loops on fpgas using high level synthesis. In 2014

IEEE 32nd International Conference on Computer Design (ICCD), pages

456–463, 2014. → page 52

111

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.2.1 Experimental Architecture Models
	1.2.2 Experimental Methodology

	1.3 Contributions
	1.4 Dissertation Organization

	2 Background
	2.1 Finding Parallelism in a General Program
	2.2 Programming Models
	2.3 Reconfigurable Computing Platforms
	2.3.1 FPGA
	2.3.2 Massively Parallel Processor Array

	2.4 OpenVX
	2.5 Partial Reconfiguration

	3 MPPA Space/Time Scaling
	3.1 Introduction
	3.2 Finding Different Implementations
	3.2.1 Intra-Node Optimizer
	3.2.2 Inter-Node Optimizer
	3.2.3 Example: N-Body Problem

	3.3 Trade-off Finding Formulation and Solutions
	3.3.1 Integer Linear Programming Algorithm
	3.3.2 Heuristic Algorithm

	3.4 Experimental Results
	3.4.1 StreamIt
	3.4.2 JPEG

	3.5 Summary

	4 FPGA Space/Time Scaling
	4.1 Introduction
	4.2 Approach
	4.3 Tool Flow for OpenVX-based HLS
	4.3.1 OpenVX Programming Model
	4.3.2 Finding Different Implementations
	4.3.3 CV Accelerator on FPGA
	4.3.4 Heavily Parameterized C++-based OpenVX Kernels
	4.3.5 Intra-node Optimizer
	4.3.6 Inter-node Optimizer
	4.3.7 Trade-off Finding Formulation and Solutions

	4.4 Experimental Results
	4.5 Summary

	5 FPGA Overlay Space/Time Scaling with Custom Instructions
	5.1 Introduction
	5.2 System Overview
	5.3 Mapping OpenVX Applications to FPGA Overlay
	5.3.1 Finding Different Implementations
	5.3.2 Execution Time Analysis
	5.3.3 Solving the Space/Time Tradeoff

	5.4 Experimental Results
	5.5 Summary

	6 Conclusions
	Bibliography

