
Automated Spatio-Temporal Synchronous Modeling with
Multiple Graphs for Traffic Prediction

Fuxian Li
Department of Electronic

Engineering, Tsinghua University
Beijing, China

Huan Yan∗
Department of Electronic

Engineering, Tsinghua University
Beijing, China

Guangyin Jin
Department of Electronic

Engineering, Tsinghua University
Beijing, China

Yue Liu
AutoNavi, Alibaba Group

Beijing, China

Yong Li
Department of Electronic

Engineering, Tsinghua University
Beijing, China

Depeng Jin
Department of Electronic

Engineering, Tsinghua University
Beijing, China

ABSTRACT
Traffic prediction plays an important role in many intelligent trans-
portation systems. Many existing works design static neural net-
work architecture to capture complex spatio-temporal correlations,
which is hard to adapt to different datasets. Although recent neural
architecture search approaches have addressed this problem, it still
adopts a coarse-grained search with pre-defined and fixed com-
ponents in the search space for spatio-temporal modeling. In this
paper, we propose a novel neural architecture search framework,
entitled AutoSTS, for automated spatio-temporal synchronous mod-
eling in traffic prediction. To be specific, we design a graph neural
network (GNN) based architecture search module to capture local-
ized spatio-temporal correlations, where multiple graphs built from
different perspectives are jointly utilized to find a better message
passing way for mining such correlations. Further, we propose a
convolutional neural network (CNN) based architecture searchmod-
ule to capture temporal dependencies with various ranges, where
gated temporal convolutions with different kernel sizes and convo-
lution types are designed in search space. Extensive experiments on
six public datasets demonstrate that our model can achieve 4%∼10%
improvements compared with other methods.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; • Com-
putingmethodologies→Artificial intelligence;Machine learn-
ing.
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Figure 1: An example of complex spatio-temporal correla-
tions.
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1 INTRODUCTION
Traffic prediction is essential for a wide range of applications in
many intelligent transportation systems, such as traffic manage-
ment, navigation planning and congestion controlling. Precise pre-
diction can provide valuable reference for these applications, thus
greatly enhancing user service experience. The core of traffic pre-
diction is spatio-temporal modeling, which aims to capture the
complex and dynamic spatio-temporal correlations.

Figure 1 shows a typical example of the spatio-temporal corre-
lations.First, there exist geo-spatial dependencies, where adjacent
locations are connected in traffic network, as seen in Figure 1(a).
Second, although some nodes are distant with each other, they may
have similar temporal patterns, e.g., Figure 1(b). In most cases, the
geo-spatial dependencies and temporal-pattern similarities may ex-
ist at the same time.Moreover, each node not only influences itself at
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the proximate time steps, but also has potential impacts on its neigh-
boring nodes. We visualize such complex correlations in Figure 1(c).
Recent works [18, 31, 34] pay more attention on graph neural net-
work (GNN) based spatio-temporal modeling. These works treat
different locations of a road network as different nodes in a graph,
then employ GNNs for spatial modeling, and recurrent neural net-
works (RNNs) or convolutional neural networks (CNNs) for captur-
ing temporal dependencies. However, they fail to adaptively adjust
the network architectures according to various kinds of data, which
restricts the representation ability. Fortunately, Neural architecture
search (NAS) algorithm has been promoted to design the neural
networks automatically [4, 17, 19, 20, 23, 24, 26, 29, 37]. In particular,
AutoSTG [21] proposes an automated neural architecture search
framework, where the spatial convolution and temporal convolu-
tion are directly used as candidate operations in one search space.
Nevertheless, its pre-defined and fixed candidate operations limit
the latent combinations of searchable architectures. It is expected to
explore more fine-grained search for the inner architectures of both
spatial and temporal modules. Thus, the following two problems
need to be addressed.

(1) How to define the search space of graph convolution?
Many prior works make meaningful attempts on various graph
construction methods, such as the weighted directed graph [18], bi-
nary graph [10, 25], adaptive graph [31], POI graph [10], DTW [27]
graph [16, 33], free-flow reachability graph [5], edge-wise graph [3],
and localized spatio-temporal graph [25], etc. These graphs can
reflect complex and multi-faceted correlations among nodes. It
motivates us to design a general GNN-based architecture search
mechanism with multiple graphs, which can adaptively find a more
competitive message passing process for spatio-temporal modeling.
Following this motivation, neural architecture search (NAS) meth-
ods like [9, 14, 36] are proposed to address it. However, they neglect
one of the most essential parts of graph convolution, i.e., the ad-
jacency matrix, which determines the routes and weights of the
message passing process. Thus, it is challenging to define the search
space of graph convolution.

(2) How to learn multi-scale temporal dependencies? Al-
though RNNs [5, 18] and CNNs [34] can be used for temporal
modeling, it is difficult for their fixed neural architectures to learn
dynamic and complex temporal correlations from multiple scales.
For example, under unobstructed traffic conditions, the recent tem-
poral dependencies are sufficient to reflect the situation of traffic
flow. In contrast, under heavy traffic conditions, the occurrences of
congestion could cause the long-range impacts on traffic flow. Thus,
it is beneficial to employ fine-grained neural architecture search
into the temporal modules to capture the complex dependencies
adaptively. However, it is not trivial to design the search space for
mining multi-scale temporal dependencies.

To solve the above problems, we propose a novel neural archi-
tecture search approach, called AutoSTS, for automated spatio-
temporal synchronous modeling in traffic prediction. To be specific,
a GNN-based architecture search mechanism is designed to cap-
ture short-range spatio-temporal correlations, and a CNN-based
architecture search mechanism is employed to model long-range
temporal dependencies. Our main contributions are summarized as
follows.

• We design a GNN-based neural architecture search mecha-
nismwithmultiple pre-defined candidate graphs to find a bet-
ter message passing process for short-range spatio-temporal
modeling. Specifically, a novel final activation and fusion
mechanism is designed to tremendously improve the search
efficiency, while still improve the prediction accuracy.

• We propose a CNN-based neural architecture search mech-
anism with gated temporal convolutions of various kernel
sizes and convolution types. It can automatically search a
better stacking way of different temporal convolutions to
capture long-range temporal dependencies.

• Extensive experiments are conducted on six public datasets,
which demonstrates that our model can achieve at least
4%∼10% improvements of prediction performance compared
with the state-of-the-art baselines.

2 RELATEDWORKS
2.1 Neural Architecture Search
Neural architecture search (NAS) algorithm has been promoted to
design the neural networks automatically in recent years, which
has three main types: reinforcement learning-based, evolutionary-
based and differentiablemethods. The reinforcement learning-based
methods treat the optimal architecture search as a sequential deci-
sion task [19, 23, 37]. The evolutionary-based methods utilize some
evolutionary algorithms to search the optimal super-net [24, 26, 32].
However, their main limitations are huge computing overhead and
low training efficiency. For the differentiable methods, it enables
probabilistic neural architecture selection [4, 20, 28, 29]. Compared
with other two kinds of methods, the training efficiency of dif-
ferentiable methods has been greatly improved. Since efficiency
is important for the deployment of traffic prediction models, we
adopt differentiable NAS framework DARTS in this paper.

2.2 Traffic Prediction
To capture complex spatial and temporal correlations for traffic
prediction, some graph-based deep learning models are introduced
recently. STGCN [34] first combines graph convolution with tem-
poral convolution to capture spatio-temporal dynamics efficiently.
DCRNN [18] encodes the temporal information by gated recur-
rent unit (GRU) instead of temporal convolution. In addition, STS-
GCN [25] and STFGNN [16] introduce the spatio-temporal synchro-
nous graph based framework to capture both spatial and temporal
correlations in parallel. Graph-WaveNet [31] adopts the adaptive
graph convolution to improve the limited spatial relations from the
pre-defined traffic networks. In the most recent work, AutoSTG [21]
first makes attempts to integrate the neural architecture search
approach with spatio-temporal graph neural network based frame-
work to improve the prediction accuracy. However, this work can-
not select appropriate spatio-temporal learning modules from a
more fine-grained perspective.

3 PRELIMINARIES
The traffic network can be modeled as a graph G = (𝑉 , 𝐸,𝐴), where
𝑉 denotes the set of nodes |𝑉 | = 𝑁 , which represents the observa-
tion of 𝑁 traffic sensors; 𝐸 denotes the set of edges and 𝐴 denotes
the adjacency matrix to characterize the relations between different
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nodes. The graph signal 𝑋 (𝑡 )
G ∈ R𝑁×𝑑 denotes the feature matrix of

the graphG at time step 𝑡 , which consists of observed𝑑-dimensional
traffic features (e.g., the speed, volume) of each node. The task of
traffic prediction aims to learn a non-linear function 𝑓 (·) from pre-
vious 𝑇 speed series for forecasting next 𝑇

′
-step traffic speed from

𝑁 given sensors in the traffic network. The mathematical form is
defined as follows:

[X(𝑡−𝑇+1)
G , · · · ,X𝑡

G]
𝑓 ( ·)
−−−→ [X𝑡+1

G , · · · ,X𝑡+𝑇 ′

G ] (1)

4 OUR MODEL
The main architecture of AutoSTS is demonstrated in Figure 2(a).
We first employ a linear mapping to transform the input graph
signal into a latent space. At each layer, Short-range Architecture
SearchModule (SASM) and Long-range Architecture SearchModule
(LASM) are designed for short-range spatio-temporal modeling
and long-range temporal capturing, respectively. We then employ
residual mechanism and parameterized skip connections to avoid
gradient vanishing and enhance the robustness of our model. A
multilayer perceptron (MLP) is employed to get the final output.
In the following subsections, we introduce two core components
of AutoSTS, i.e., SASM and LASM, respectively. Finally, we show a
brief overview of the optimization algorithm.

4.1 Short-Range Architecture Search Module
4.1.1 Graph Convolution with Multiple Graphs. Traditional graph
convolution operation [15] can be formulated as

𝑔(𝑋 ) = 𝜙 (�̃�𝑋Θ), (2)

where �̃� ∈ R𝑁×𝑁 denotes the normalized adjacency matrix that
provides the paths and weights of message passing, 𝑋 ∈ R𝑁×𝐷

denotes the input graph signals, Θ ∈ R𝐷×𝐷′
denotes the learnable

parameters for linear mapping, and 𝜙 (·) denotes the nonlinear
activation function, such as Tanh and ReLU.

However, one simple graph cannot comprehensively describe
the complex and multi-faceted inter-node correlations. To make
good joint use of multiple graphs, we generalize Equation 2 to the
following formulation:

𝑔(𝑋 ) = 𝜙 (M(𝑋 ;G, 𝜻 )Θ), (3)

where M is a general message passing function based on the set
of multiple graphs G, and 𝜻 represents learnable parameters for
message passing process M.

When stacking multiple graph convolution layers, we have:

𝐻 ( 𝑗) =
∑︁
𝑖< 𝑗

𝑔 (𝑖, 𝑗) (𝐻 (𝑖) ),

𝐻𝑜𝑢𝑡 = 𝐴𝐺𝐺 ( [𝐻1, · · · , 𝐻𝐿]),
(4)

where 𝐻 (𝑖) is the output of the 𝑖𝑡ℎ graph convolution layer, 𝑔 (𝑖, 𝑗)

denotes the graph convolution which projects 𝐻 (𝑖) into an inter-
mediate hidden state. Then, 𝐻 ( 𝑗) is computed based on all of its
predecessors. 𝐴𝐺𝐺 is an aggregation function such as sum, aver-
age, mean and max pooling. 𝐿 is the number of graph convolution
layers.

A naive NAS-style implementation of Equation 3 and Equation 4
is to directly use the complete graph convolution procedures in
Equation 2 with various graphs in set G as candidate operations.
However, high complexity of candidate graph convolutions will
bring about huge consumption on computational resources, and
increase the risks of over-fitting. To solve this challenge, we first sepa-
rate theM and the Θ in Equation 3. Then we conduct the architecture
search on M, and design a novel final activation & fusion mecha-
nism for Θ. Especially, we simplifyM with much fewer parameters,
formulated as

M(𝑋 ;G, 𝜻 ) =
∑︁
𝐴∈A

𝛾𝐴𝐴𝑋, (5)

where 𝐴 is a candidate adjacency matrix in matrix set A, and 𝛾𝐴
is learnable to weight the messages from various graphs. Here we
simplify the 𝜻 in functionM with 𝛾𝐴 . In other words, we choose
�̃�𝑋 in Equation 2 as the basic style of candidate operations in search
space.

4.1.2 Details of SASM. To perform the effective search, we de-
sign the search architecture of SASM inspired by [20], as shown
in Figure 2(b). This is a direct acyclic graph (DAG), consisting of 𝐿
vertices which represent 𝐿 graph convolution layers with 𝐿 interme-
diate latent representations denoted as 𝑋 (𝑖) , 𝑖 = 1, · · · , 𝐿. Following
Equation 5, the mixed message passing operation M̄ (𝑖, 𝑗) from layer
𝑖 to layer 𝑗 is formulated as follow:

M̄ (𝑖, 𝑗) (𝑋 ) =
∑︁
𝐴∈A

exp(𝛼 (𝑖, 𝑗)
𝐴

)∑
𝐴′∈A exp(𝛼 (𝑖, 𝑗)

𝐴′ )
𝐴𝑋, (6)

where𝑋 ∈ R𝑁×𝐷 is the input graph representations,𝐴 ∈ R𝑁×𝑁 is a
candidate adjacencymatrix,A = {𝐴1, 𝐴2, · · · } is a set of pre-defined
candidate adjacency matrices, and 𝛼 (𝑖, 𝑗)

𝐴
is a learnable architecture

parameter to weight the operation 𝐴𝑋 associated with pair (𝑖, 𝑗).
Denote the original input graph signal as𝑋 (0) , each intermediate

representation is computed based on all of its predecessors:

𝑋 ( 𝑗) =
∑︁
𝑖< 𝑗

M̄ (𝑖, 𝑗) (𝑋 (𝑖) ). (7)

4.1.3 Final Activation & Fusion Module. During the message pass-
ing processes of graph convolutions, the spatio-temporal informa-
tion of nodes is propagated along the given graph structures, so
it is meaningful to aggregate intermediate representations with
different propagation ranges to get the comprehensive informa-
tion of message passing. Moreover, the nonlinear activation, linear
mapping and layer aggregation are necessary components of graph
convolutions. Thus, we design the Final Activation& FusionModule
(FAFM), which essentially acts as a combination of 𝜙 , Θ in Equa-
tion 3 and 𝐴𝐺𝐺 in Equation 4. In details, cropping operations [25]
are first used for all intermediate representations 𝑋 (𝑖) , 𝑖 = 1, · · · , 𝐿
in search space to simplify the results of message passing. After that,
we use gated linear units (GLUs) [6] for linear mappings and non-
linear activation. The aforementioned operations can be formulated
as:

H 𝑖 = 𝐺𝐿𝑈𝑖 (𝐶𝑟𝑜𝑝 (𝑋 (𝑖) )), 𝑖 = 1, · · · , 𝐿, (8)

where 𝑋 (𝑖) is intermediate representation of the 𝑖𝑡ℎ graph convolu-
tion layer,𝐶𝑟𝑜𝑝 is the cropping operation,𝐺𝐿𝑈𝑖 is the GLU module
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Figure 2: Detailed framework of AutoSTS. (a) is the main architecture of AutoSTS. The input is first projected by a Fully
Connected layer (FC). Then the Short-range Architecture Search Module (SASM) and the Long-range Architecture Search
Module (LASM) filter the input of each layer of AutoSTS in parallel to achieve comprehensive spatio-temporal modeling. After
fusing the output of SASM and LASM together, we employ residual mechanism and parameterized skip connections to avoid
gradient vanishing. Finally, the output is obtained by aggregating the hidden features of skip connections. (b) and (c) are
detailed structures of SASM and LASM, respectively.

applied to 𝑋 (𝑖) individually, formulated as follow:

𝐺𝐿𝑈 (𝑋 ) = (𝑋𝑊1 + 𝑏1) ⊙ 𝜎 (𝑋𝑊2 + 𝑏2), (9)

where𝑊1,𝑊2 ∈ R𝐷×𝐷′
, 𝑏1, 𝑏2 ∈ R𝐷′

are learnable parameters, ⊙
means Hadamard product and 𝜎 is the sigmoid activation function.

Finally, we employ a max pooling operation to aggregate all
intermediate representations and get the final output of SASM,
formulated as follow:

𝑋𝑜𝑢𝑡 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 ( [H1, · · · ,H𝐿]). (10)

At the end of search, we replace each mixed operation M̄ (𝑖, 𝑗)

with the most likely message passing operation to get the final
architecture, which can be formulated as follow:

M (𝑖, 𝑗) (𝑋 ) = (argmax𝐴∈A 𝛼
(𝑖, 𝑗)
𝐴

)𝑋 . (11)

4.1.4 Construction of Candidate Graphs. Inspired by [16], we adopt
the spatio-temporal synchronous graph convolution [25] to capture
localized spatio-temporal correlations. In spatio-temporal synchro-
nous graph convolution, the number of nodes is 𝑘𝑁 instead of 𝑁 ,
𝑁 is the number of original nodes in traffic network and 𝑘 denotes
the number of contiguous time steps in localized spatio-temporal
graph 𝐴 ∈ R𝑘𝑁×𝑘𝑁 . In this paper, 𝑘 is set to 4.

Specifically, we design 6 candidate adjacency matrices from mul-
tiple angles, and finally get A = {𝑂, 𝐼, 𝐴1, 𝐴2, 𝐴3, 𝐴4}, as illustrated
in Figure 3. In details, 𝑂 and 𝐼 mean zero mapping and identity

mapping respectively. 𝐴𝑇𝐺 is the adjacency matrix of the temporal
graph TG, which is calculated by DTW algorithm [27] to describe
the temporal similarities among traffic time series of node pairs.
We formulate 𝐴𝑇𝐺 as follow:

𝐴
𝑖 𝑗

𝑇𝐺
=

{1, 𝐷𝑇𝑊 (𝑆𝑖 , 𝑆 𝑗 ) < 𝜖

0, otherwise , (12)

where 𝑆𝑖 and 𝑆 𝑗 represent traffic time series of node 𝑖 and node 𝑗

respectively. We use 𝜖 as a threshold value to control the sparsity
of 𝐴𝑇𝐺 . Besides, 𝐴𝑆𝐺 is the adjacency matrix of the spatial graph
SG, which is calculated according to the spatial connectivity among
nodes in traffic network. We formulate 𝐴𝑆𝐺 as follow:

𝐴
𝑖 𝑗

𝑆𝐺
=

{1, 𝑖 𝑓 𝑣𝑖 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝑡𝑜 𝑣 𝑗
0, otherwise , (13)

where 𝑣𝑖 and 𝑣 𝑗 represent node 𝑖 and node 𝑗 respectively. Fur-
thermore, 𝐴1 and 𝐴3 are designed for inter-node connections at
proximate time steps, while 𝐴2 and 𝐴4 are built for intra-node
similarities at proximate time steps.

To the best of our knowledge, we take the first step to employ
neural architecture search on various candidate adjacency matri-
ces during graph convolutions. First, we focus on searching graph
convolutions with different graphs, rather than ways of node aggre-
gation or layer aggregation. In consideration of the existing kinds
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(a) TG based spatio-temporal graph and its adjacencymatrices

(b) SG based spatio-temporal graph and its adjacencymatrices

Figure 3: Pre-defined candidate graphs and their correspond-
ing matrices. 𝐴𝑇𝐶 is an identity matrix to describe self-
connectivity, TG is a temporal graph and SG is a spatial graph.

of graphs for traffic prediction, our method has great extensibil-
ity to make good use of graphs built from various perspectives.
Second, we improve the GNN-based NAS architecture by splitting
the complete graph convolution procedure, simplifying the candi-
date operations and designing the aforementioned FAFM. Thus, the
model efficiency would be greatly improved.

4.2 Long-Range Architecture Search Module
Temporal convolutional network (TCN) is essentially 1D CNN,
which benefits from its high efficiency. Comparatively, gated TCN [7]
is more powerful than TCN without losing too much efficiency,
and has been widely used for sequential modeling. Specifically, a
commonly used gated TCN is composed of two parallel 1D CNNs
followed by tangent hyperbolic activation function and sigmoid
function respectively, which can be formulated as follow:

Y = 𝜙 (Θ1 ★𝑋 + b) ⊙ 𝜎 (Θ2 ★𝑋 + c), (14)

where 𝑋 denotes the input of gated TCN, Θ1, Θ2, b and c are learn-
able parameters, ★ denotes 1D convolution operation, ⊙ represents
the element-wise product, 𝜙 (·) denotes the tangent hyperbolic acti-
vation function, and 𝜎 (·) represents the sigmoid function. Besides,
1D dilated convolutions [16, 31] are also introduced to enhance the
receptive field of TCN.

However, due to the oversimplified convolution kernel and con-
volution type, it is tough for traditional TCNs to deal with long
sequences and capture long-range temporal patterns in spatio-
temporal modeling. To tackle this challenge, on one hand, we should
consider various convolution types such as standard convolution,
separable convolution and dilated convolution, etc. On the other
hand, different kernel sizes should be jointly used to capture tem-
poral dependencies with various ranges, especially long range. Fol-
lowing the above analysis, we design the LASM, which will be
introduced as follows.

As shown in Figure 2(c), the search space of LASM is a a DARTS-
style [20] DAG consisting of𝑁𝑣 vertices. Denoting the input and the
intermediate latent representation of the 𝑖𝑡ℎ vertex in search space
as 𝑋 0 and 𝑋 (𝑖) , 𝑖 = 1, · · · , 𝑁𝑣 respectively, the output of LASM is
formulated as follow:

𝑋𝑜𝑢𝑡 =

𝑁𝑣∑︁
𝑗

∑︁
𝑖< 𝑗

∑︁
𝑜∈O

exp(𝛼 (𝑖, 𝑗)
𝑜 )∑

𝑜′∈O exp(𝛼 (𝑖, 𝑗)
𝑜′ )

𝑜 (𝑋 𝑖 ), (15)

where 𝑜 is a candidate operation in function set O = {𝑜1, 𝑜2, · · · },
and 𝛼 (𝑖, 𝑗)

𝑜 is a learnable architecture parameter to weight the oper-
ation 𝑜 associated with vertex pair (𝑖, 𝑗).

Specifically, we choose zero mapping, identity mapping and
gated TCNs with various kernel sizes and convolution types as
candidate operations in O. For instance, the candidate operations
can be gated standard convolution with 1×3 kernel, gated separable
convolution with 1 × 5 kernel and gated dilated convolution with
1 × 7 kernel, etc. After search process, we select the most likely
operation 𝑜 with the highest 𝛼 (𝑖, 𝑗)

𝑜 as the final operation for each
pair (𝑖, 𝑗), formulated as 𝑜 (𝑖, 𝑗) = argmax𝑜∈O 𝛼

(𝑖, 𝑗)
𝑜 .

4.3 Searching Algorithm
In AutoSTS, the architecture parameters include the scores of differ-
ent candidate adjacency matrices, i.e., the 𝛼𝐴 in SASM (Equation 6),
and the scores of candidate operations, i.e., the 𝛼𝑜 in LASM (Equa-
tion 15). The network weight parameters represent all learnable
parameters of the model except architecture parameters, such as
the parameters in FCs, MLP, and candidate gated TCNs. Similar
to [20], we first alternately update the weight parameters and the
architecture parameters with the training dataset and the validation
dataset separately, until the stopping criterion is met. After that,
we train the optimal architecture with the training dataset until
another stopping criterion is met.

5 EXPERIMENTS
In this section, we first describe the six public traffic datasets. Then
we validate the model performance of our AutoSTS on the datasets
for traffic prediction task, where several representative baseline
methods are chosen for comparison. Next, we conduct ablation
experiments to verify the effectiveness of key components and
mechanisms of AutoSTS. The parameter analysis and case study
are also conducted to further investigate the effectiveness of our
model. We conduct experiments to answer the research questions
summarized as follows:

• RQ1: How is the prediction performance of our proposed
AutoSTS compared with the state-of-the-art baselines?

• RQ2:How does our model performwithout key components
and mechanisms?

• RQ3:Does the final activation and fusionmechanism (FAFM)
help improve the efficiency of our model?

• RQ4: How do the hyperparameters of AutoSTS influence
the model performance?

5.1 Datasets
We use six public traffic datasets for performance evaluation. METR-
LA and PEMS-BAY are commonly used datasets released by [18].
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METR-LA is collected from loop detectors in the highway of Los
Angeles, and it contains 207 nodes and ranges from Mar 1st 2012 to
Jun 30th 2012. PEMS-BAY is collected by California Transportation
Agencies (CalTrans), and it contains 325 nodes and ranges from Jan
1st 2017 to May 31th 2017. We also evaluate the performance of
AutoSTS on PEMS03, PEMS04, PEMS07 and PEMS08, which are four
highway traffic datasets released by [25]. These four datasets are
collected from Caltrans Performance Measurement System (PeMS).
The time granularity of all six datasets is set to 5 minutes following
the setting of previous works [18, 25]. The pre-defined adjacency
matrices for each dataset are calculated based on road network
topology. Z-score normalization is applied to the traffic flow data.
Detailed statistics of datasets are shown in Table 1.

Table 1: Dataset description and statistics.

Datasets Number of nodes Time range
METR-LA 207 3/1/2012 - 6/30/2012
PEMS-BAY 325 1/1/2017 - 5/31/2017
PEMS03 358 9/1/2018 - 11/30/2018
PEMS04 307 1/1/2018 - 2/28/2018
PEMS07 883 5/1/2017 - 8/31/2017
PEMS08 170 7/1/2016 - 8/31/2016

5.2 Baselines
We compare our model with several state-of-art baselines, which
are introduced as follows:

• ARIMA [2]: This is a traditional method and has been
widely used for time series prediction. It integrates auto-
regression with moving average model.

• VAR [12]: Vector Auto-Regression can be used for time
series forecasting.

• SVR: This is a classical time series analysis model which
uses linear support vector machine for the regression task.

• FNN: This is a feed forward neural network with two hidden
layers and L2 regularization.

• FC-LSTM [13]: This is a well-known recurrent network
architecture with fully connected hidden layers.

• DCRNN [18]: This model integrates the Gated Recurrent
Unit (GRU) with dual directional diffusion graph convolution
for spatio-temporal graph modeling.

• STGCN [34]: This model incorporates graph convolutions
with 1D convolutional neural networks.

• ASTGCN [11]: This model designs spatial attention and
temporal attention mechanisms to achieve a better ability
of spatio-temporal modeling. Here we only take the recent
components of the model for fair comparison.

• Graph WaveNet [31]: This model combines the graph con-
volution with gated 1D dilated convolutional neural network,
where the adaptive adjacency matrix is proposed to model
the latent spatial correlations.

• STSGCN [25]: This model designs a novel spatio-temporal
synchronous graph convolution mechanism to model the
localized spatio-temporal correlations.

• STFGNN [16]: This model improves STSGCN with the
spatio-temporal fusion graph and gated 1D dilated convolu-
tional neural networks.

• STGODE [8]: This is a continuous GNN-based model with
neural ODE modeling.

• ST-MetaNet [22]: This model employs the meta learning
mechanism to generate the parameters of GAT and GRU.

• AGCRN [1]: This model integrates GRU with graph con-
volutions, where the adaptive graph and the node adaptive
parameter learning mechanism are proposed.

• GMAN [35]: This model designs spatial, temporal and trans-
form attentions for better spatio-temporal modeling.

• MTGNN [30]: This model employs dilated inception layers,
mix-hop propagation layers, and adaptive graph to capture
spatio-temporal correlations.

• AutoSTG [21]: This is a GNN-based and CNN-based model
with neural architecture search, where the pre-defined spa-
tial graph convolution and temporal convolution are in-
cluded in one candidate operation set to capture spatio-
temporal dependencies.

To evaluate the performances of all methods, we adopt three
commonly used metrics in traffic prediction field, including Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE), which can be formulated as
follows:

MAE(𝑦,𝑦) = 1
|Ω |

∑︁
𝑖∈Ω

|𝑦𝑖 − 𝑦𝑖 | ,

RMSE(𝑦,𝑦) =
√︄

1
|Ω |

∑︁
𝑖∈Ω

(𝑦𝑖 − 𝑦𝑖 )2,

MAPE(𝑦,𝑦) = 1
|Ω |

∑︁
𝑖∈Ω

����𝑦𝑖 − 𝑦𝑖

𝑦𝑖

���� ,
(16)

where 𝑦 = 𝑦1, · · · , 𝑦𝑛 represents the ground truth, 𝑦 = 𝑦1, · · · , 𝑦𝑛
denotes the predicted values, and Ω represents the indices of ob-
served samples.

5.3 Experiment Settings
Following the settings of previous methods [18, 25], we chrono-
logically split the METR-LA and PEMS-BAY datasets with 70%
for training, 10% for validation and 20% for testing. Besides, the
PEMS03, PEMS04, PEMS07, PEMS08 datasets are chronologically
split with 60% for training, 20% for validation and 20% for testing.
We use traffic flow in the past one hour to predict the flow in the
next one hour. AutoSTS is implemented by Pytorch 1.7 on virtual
workstations with Nvidia GeForce RTX 2080Ti and NVIDIA TESLA
V100 GPU. By default, AutoSTS contains 3 layers, where the depths
of graph convolution in SASM (the 𝐿 in equation 10) is set to 3 and
the number of vertices in LASM (the 𝑁𝑣 in equation 15) is 2. For
simplicity, we use gated standard convolutions with 1×3 kernel and
1 × 5 kernel as the candidate gated TCNs in LASM. The dimension
of hidden representations is set to 40. The model is trained by Adam
optimizer. The batch size is 32 and the learning rate is 0.001. MAE
is chosen as the loss function. AutoSTS is evaluated five times in
each dataset. During search process, we employ early stopping for
architecture search with tolerance 15 for 60 epochs. After that, we
reinitialize the optimizer and employ early stopping for training
with tolerance 30 for 200 epochs.
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5.4 Experiment Results and Analysis (RQ1)
Table 2 shows the performance of AutoSTS and baselines for 15
minutes, 30 minutes, and 60 minutes ahead prediction on METR-LA
and PEMS-BAY datasets. Table 3 demonstrates the performance
comparison of baseline models and AutoSTS, where the metrics
are MAE, RMSE and MAPE averaged for 60 minutes ahead predic-
tion. From the experimental results in Table 2 and Table 3, we can
find that AutoSTS consistently outperforms other baselines with
4%∼10% improvements on all datasets, which demonstrates the su-
periority of our proposed method. The performance improvements
of AutoSTS on PEMS-BAY dataset are relatively less significant.
This is because the models on PEMS-BAY can achieve much better
prediction accuracy comparedwith other datasets, making it hard to
further improve the performance. For example, the MAPE of some
simple methods like ARIMA, VAR, and SVR on PEMS-BAY dataset
can be 3.50%∼3.80% for 15 minutes ahead prediction, which is even
better than some deep learning methods like FNN (5.19%) and FC-
LSTM (4.80%). Besides, the worst MAPE performance (5.19%) for
15 minutes ahead prediction on PEMS-BAY dataset is much better
than the best MAPE performance (6.55%) on METR-LA dataset, as
shown in Table 2. STSGCN and STFGNN fail to perform well on
METR-LA and PEMS-BAY datasets, possibly due to the limited rep-
resentation ability of models and the missing values in data. All the
baselines except AutoSTG are based on manually-designed archi-
tectures, which fail to adjust themselves corresponding to the data.
AutoSTG employs neural architecture search on spatio-temporal
modeling and has a data-dependent architecture, hence its perfor-
mance is superior to most other baselines. However, the inner archi-
tectures of candidate spatial convolution and temporal convolution
of AutoSTG are both pre-defined and fixed without any search
inside them, which restricts the representation ability of the model.
Comparatively, we design a multi-scale and fine-grained search
framework for AutoSTS, i.e., SASM and LASM, through which the
model not only jointly uses multi-view graphs to capture short-
range spatio-temporal correlations, but also extracts long-range
temporal dependencies with optimized temporal convolutions.

5.5 Ablation Study (RQ2 & RQ3)
To evaluate the effectiveness of key components in AutoSTS, we
conduct ablation study on PEMS04 and PEMS08 datasets. The vari-
ants of AutoSTS are introduced as follows:

• w/o FAFM : this variant replaces FAFM in SASM with simple
add function, and here we use complete graph convolutions
(Equation 2) with the same set of candidate graphs as candi-
date operations.

• w/o SASM: this variant replaces SASM with fixed STFGN
Module [16].

• w/o LASM : this variant replaces LASM with fixed gated TCN.
• SASM Random: this variant samples an architecture from
search space in SASM during search.

• LASM Random: this variant samples an architecture from
search space in LASM during the search process.

• Random: this variant samples an architecture from search
space in both SASM and LASM, then directly trains the
randomly-sampled architecture for prediction.

(a) Time Consumption

(b) GPU Occupancy

Figure 4: Time Consumption and GPU Occupancy.

• w/o 𝐴𝑖𝑋 : this variant removes 𝐴𝑖𝑋 from the candidate oper-
ation set of SASM.

From the experimental results shown in Table 4, we can find
that AutoSTS outperforms all the ablation variants. Moreover, the
efficiency of our model is tremendously improved thanks to FAFM.
As demonstrated in Figure 4, when compared with w/o FAFM, the
percentage improvements of time consumption and GPU occu-
pancy are around 100% during search process, and 20%∼30% during
training process. Compared with the results of w/o SASM, AutoSTS
improves 6.34%, 7.15% and 5.07% in terms of MAE, MAPE and RMSE
on PEMS04. Meanwhile, it also improves 7.22%, 6.41% and 6.44% in
terms of MAE, MAPE and RMSE on PEMS08, which illustrates the
effectiveness of our GNN-based neural architecture search method
and the power of joint use of multiple graphs. With regard to w/o
LASM, in our ablation experiments, we use two intuitive designs of
candidate TCNs (standard convolutions with 1 × 3 kernel and 1 × 5
kernel respectively) to verify the effectiveness of LASM. The results
show that they are simple yet effective. We believe that other de-
signs of candidate TCNs with larger capacity (more diverse kernel
sizes and convolution types) will further improve the performance.
Moreover, there is a sharp fall in the learning ability of model with-
out architecture search process (SASM Random, LASM Random and
Random), demonstrating the effectiveness of our neural architec-
ture search mechanism. Finally, the results of w/o 𝐴𝑖𝑋 verify the
effectiveness of pre-designed candidate graphs. Here, the ablation
of one candidate graph will not bring about significant performance
degradation. This is because we still have three candidate adjacency
matrices if we just remove one of them, where the spatio-temporal
correlations can still be described from three different angles.
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Table 2: Performance comparison of baseline models and AutoSTS on METR-LA and PEMS-BAY datasets.

Dataset Models 15min 30min 60min
MAE MAPE(%) RMSE MAE MAPE(%) RMSE MAE MAPE(%) RMSE

M
ET

R-
LA

ARIMA 3.99 9.60 8.21 5.15 12.70 10.45 6.90 17.40 13.23
VAR 4.42 10.20 7.89 5.41 12.70 9.13 6.52 15.80 10.11
SVR 3.99 9.30 8.45 5.05 12.10 10.87 6.72 16.70 13.76
FNN 3.99 9.90 7.94 4.23 12.90 8.17 4.49 14.00 8.69

FC-LSTM 3.44 9.60 6.30 3.77 10.90 7.23 4.37 13.20 8.69
DCRNN 2.77 7.30 5.38 3.15 8.80 6.45 3.60 10.50 7.60
STGCN 2.88 7.62 5.74 3.47 9.57 7.24 4.59 12.70 9.40
STSGCN 2.79 7.42 5.45 3.14 8.81 6.42 3.65 10.67 7.81
STFGNN 2.72 7.24 5.26 3.10 8.63 6.30 3.55 10.56 7.47

ST-MetaNet 2.69 6.91 5.17 3.10 8.57 6.28 3.59 10.63 7.52
Graph WaveNet 2.69 6.90 5.15 3.07 8.37 6.22 3.53 10.01 7.37

AGCRN 2.87 7.70 5.58 3.23 9.00 6.58 3.62 10.38 7.51
GMAN 2.80 7.41 5.55 3.12 8.73 6.49 3.44 10.07 7.35
MTGNN 2.69 6.86 5.18 3.05 8.19 6.17 3.49 9.87 7.23
AutoSTG 2.70 6.94 5.17 3.08 8.40 6.19 3.46 9.85 7.31
AutoSTS 2.57 6.55 4.93 2.89 7.85 5.87 3.28 9.43 6.86

PE
M
S-
BA

Y

ARIMA 1.62 3.50 3.30 2.33 5.40 4.76 3.38 8.30 6.50
VAR 1.74 3.60 3.16 2.32 5.00 4.25 2.93 6.50 5.44
SVR 1.85 3.80 3.59 2.48 5.50 5.18 3.28 8.00 7.08
FNN 2.20 5.19 4.42 2.30 5.43 4.63 2.46 5.89 4.98

FC-LSTM 2.05 4.80 4.19 2.20 5.20 4.55 2.37 5.70 4.96
DCRNN 1.38 2.90 2.95 1.74 3.90 3.97 2.07 4.90 4.74
STGCN 1.36 2.90 2.96 1.81 4.17 4.27 2.49 5.79 5.69
STSGCN 1.38 2.92 3.02 1.76 3.95 4.07 2.11 4.96 4.85
STFGNN 1.35 2.83 2.91 1.72 3.82 3.89 2.02 4.79 4.63

ST-MetaNet 1.36 2.82 2.90 1.76 4.00 4.02 2.20 5.45 5.06
Graph WaveNet 1.34 2.76 2.81 1.65 3.68 3.71 1.95 4.61 4.48

AGCRN 1.37 2.94 2.87 1.69 3.87 3.85 1.96 4.64 4.54
GMAN 1.35 2.84 2.93 1.66 3.68 3.79 1.91 4.43 4.39
MTGNN 1.32 2.77 2.79 1.65 3.69 3.74 1.94 4.53 4.49
AutoSTG 1.33 2.79 2.78 1.63 3.66 3.62 1.91 4.57 4.42
AutoSTS 1.28 2.66 2.63 1.57 3.54 3.50 1.83 4.41 4.27

Table 3: Performance comparison of baseline models and AutoSTS on PEMS03, PEMS04, PEMS07 and PEMS08 datasets.

Datasets Metric FC-LSTM DCRNN STGCN ASTGCN Graph WaveNet STSGCN STFGNN STGODE AutoSTG AutoSTS

PEMS03
MAE 21.33 ± 0.24 18.18 ± 0.15 17.49 ± 0.46 17.69 ± 1.43 16.74 ± 0.05 17.48 ± 0.15 16.77 ± 0.09 16.53 ± 0.10 16.27 ± 0.27 14.61 ± 0.03

MAPE(%) 23.33 ± 4.23 18.91 ± 0.82 17.15 ± 0.45 19.40 ± 2.24 17.56 ± 1.66 16.78 ± 0.20 16.30± 0.09 16.68± 0.05 16.10 ± 0.03 14.18 ± 0.07
RMSE 35.11 ± 0.50 30.31 ± 0.25 30.12 ± 0.70 29.66 ± 1.68 27.75 ± 0.13 29.21 ± 0.56 28.34± 0.46 28.34± 0.46 27.63 ± 0.78 24.71 ± 0.40

PEMS04
MAE 27.14 ± 0.20 24.70 ± 0.22 22.70 ± 0.64 22.93 ± 1.29 20.95 ± 0.09 21.19 ± 0.10 19.83± 0.06 20.84± 0.07 20.38 ± 0.09 18.76 ± 0.08

MAPE(%) 18.20 ± 0.40 17.12 ± 0.37 14.59 ± 0.21 16.56 ± 1.36 14.55 ± 0.17 13.90 ± 0.05 13.02± 0.05 13.76 ± 0.04 14.12 ± 0.02 12.84 ± 0.01
RMSE 41.59 ± 0.21 38.12 ± 0.26 35.55 ± 0.75 35.22 ± 1.90 32.64 ± 0.11 33.65 ± 0.20 31.88± 0.14 32.84 ± 0.19 32.51 ± 0.12 30.31 ± 0.17

PEMS07
MAE 29.98 ± 0.42 25.30 ± 0.52 25.38 ± 0.49 28.05 ± 2.34 23.49 ± 0.08 24.26 ± 0.14 22.07± 0.11 23.02± 0.15 23.22 ± 0.33 20.26 ± 0.02

MAPE(%) 13.20 ± 0.53 11.66 ± 0.33 11.08 ± 0.18 13.92 ± 1.65 10.17 ± 0.23 10.21 ± 1.65 9.21± 0.07 10,09± 0.09 9.95 ± 0.01 8.54 ± 0.04
RMSE 45.94 ± 0.57 38.58 ± 0.70 38.78 ± 0.58 42.57 ± 3.31 36.32 ± 0.05 39.03 ± 0.27 35.80± 0.18 37.48 ± 0.39 36.47 ± 0.47 33.09 ± 0.01

PEMS08
MAE 22.20 ± 0.18 17.86 ± 0.03 18.02 ± 0.14 18.61 ± 0.40 16.51 ± 0.06 17.13 ± 0.09 16.64± 0.09 16.79± 0.08 16.37 ± 0.12 14.65 ± 0.04

MAPE(%) 14.20 ± 0.59 11.45 ± 0.03 11.40 ± 0.10 13.08 ± 1.00 10.64 ± 0.09 10.96 ± 0.07 10.60± 0.06 10.58± 0.04 10.36 ± 0.03 9.49 ± 0.07
RMSE 34.06 ± 0.32 27.83 ± 0.05 27.83 ± 0.20 28.16 ± 0.48 25.88 ± 0.16 26.80 ± 0.18 26.22± 0.15 26.01 ± 0.14 25.46 ± 0.18 23.52 ± 0.08

5.6 Parameter Analysis (RQ4)
To further investigate the effectiveness of our model, we conduct
parameter study on PEMS04 and PEMS08, including the number
of graph convolution layers of SASM 𝐿 and the number of vertices
in LASM 𝑁𝑣 . The experimental results are shown in Figure 5. As

shown in Figure 5(a) and (c), MAE on two datasets are close to be
optimal When 𝐿 is equal to 5. With the increase of the depth of
message passing 𝐿, MAE on PEMS04 and PEMS08 does not become
worse. This is because the SASM can adaptively search for a better
message passing process according to the data, thus prevent the
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Table 4: Ablation experiments.

Dataset Model&Variants MAE MAPE% RMSE

PEMS04

AutoSTS 18.76 12.84 30.31
w/o FAFM 19.10 13.10 30.65
w/o SASM 20.03 13.83 31.93
w/o LASM 18.89 13.09 30.38
SASM Random 23.00 16.03 36.14
LASM Random 19.32 13.51 30.98
Random 23.67 16.53 36.88
w/o 𝐴1𝑋 18.91 12.90 30.54
w/o 𝐴2𝑋 18.88 13.01 30.59
w/o 𝐴3𝑋 18.94 12.92 30.66
w/o 𝐴4𝑋 19.01 12.94 30.71

PEMS08

AutoSTS 14.65 9.49 23.52
w/o FAFM 14.97 9.64 23.86
w/o SASM 15.79 10.14 25.14
w/o LASM 14.85 9.79 23.65
SASM Random 17.69 11.40 28.25
LASM Random 15.21 9.80 24.12
Random 18.86 11.87 29.47
w/o 𝐴1𝑋 14.72 9.61 23.55
w/o 𝐴2𝑋 14.84 9.64 23.87
w/o 𝐴3𝑋 14.78 9.63 23.66
w/o 𝐴4𝑋 14.85 9.55 23.80

(a) # layers_SASM (PEMS04) (b) # vertices_LASM (PEMS04)

(c) # layers_SASM (PEMS08) (d) # vertices_LASM (PEMS08)

Figure 5: Studies on hyper-parameters.

graph convolution from the over-smoothing problem incurred by
excessive aggregation of node information. From Figure 5(b) and
(d), we can find that our model achieves the best results on these
two datasets when the value of 𝑁𝑣 is equal to 2. It indicates that the
overly complex architecture could arise the over-fitting problem,
thus hindering the performance improvement.

5.7 Case Study
We select PEMS04 and PEMS08 to further investigate the rela-
tions between their properties and the optimal neural architec-
tures on them. Two important properties of datasets are chosen

Table 5: The attributes of two datasets and the corresponding
neural architectures.

Properties PEMS04 PEMS08
Mean degree of TG 4.51 1.27

Mean node-wise PACF 0.1378 0.1144
Average num of TSGCs 75.6 48
Average num of TCNs 4.5 3.4

in this case, including the mean degree of TG and the mean par-
tial auto-correlation coefficient (PACF) of node-wise traffic flow.
To be specific, we use mean degree of TG to measure the overall
pattern similarity between different nodes on the datasets. Since
the temporal graphs are constructed by DTW distances, higher
degree means higher pattern similarity between different nodes.
We also use the mean partial auto-correlation coefficient (PACF) of
node-wise traffic flow to measure the auto-correlation of time series.
Higher PACF means higher temporal correlation in the time series.
To reveal the properties of the learned neural architectures, we
count temporal synchronous graphs convolutions (TSGC: 𝐴1𝑋 and
𝐴2𝑋 ) and temporal convolutions in the output neural architectures
on the two datasets. Note that we count and average these proper-
ties across the searched neural architectures from five independent
experiments.

As shown in Table 5, we observe that the neural architectures on
PEMS04 have more TSGCs and TCNs. Since the mean degree of TG
on PEMS04 is significantly higher than that on PEMS08, the overall
pattern similarity on PEMS04 is higher than PEMS08. Therefore,
more TSGCs are expected to extend the message passing hops for
learning long-range spatial dependencies. Similarly, the mean node-
wise PACF is higher on PEMS04, indicating that it is expected to
need more TCNs to generate a larger range of receptive field for
capturing long-range temporal dependencies.

Therefore, these results demonstrate that our model can ob-
tain more appropriate neural architectures to capture the spatio-
temporal correlations according to different datasets.

6 CONCLUSION
We propose a novel neural architecture search method via multiple
graphs to capture complex spatio-temporal correlations for traffic
prediction. Extensive experiments on six real-world datasets demon-
strate that our model can significantly enhance the prediction ac-
curacy. Besides, a novel final activation and fusion mechanism is
designed to improve both the search efficiency and prediction accu-
racy. In this paper, we give a first attempt to use multiple candidate
graphs in the architecture search framework. In future work, we
will plan to design the candidate graphs in a more fine-grained way.
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