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PURPOSE. To evaluate a machine learning algorithm that automatically grades age-related
macular degeneration (AMD) severity stages from optical coherence tomography (OCT)
scans.

METHODS. A total of 3265 OCT scans from 1016 patients with either no signs of AMD or with
signs of early, intermediate, or advanced AMD were randomly selected from a large European
multicenter database. A machine learning system was developed to automatically grade
unseen OCT scans into different AMD severity stages without requiring retinal layer
segmentation. The ability of the system to identify high-risk AMD stages and to assign the
correct severity stage was determined by using receiver operator characteristic (ROC) analysis
and Cohen’s j statistics (j), respectively. The results were compared to those of two human
observers. Reproducibility was assessed in an independent, publicly available data set of 384
OCT scans.

RESULTS. The system achieved an area under the ROC curve of 0.980 with a sensitivity of 98.2%
at a specificity of 91.2%. This compares favorably with the performance of human observers
who achieved sensitivities of 97.0% and 99.4% at specificities of 89.7% and 87.2%,
respectively. A good level of agreement with the reference was obtained (j ¼ 0.713) and
was in concordance with the human observers (j ¼ 0.775 and j ¼ 0.755, respectively).

CONCLUSIONS. A machine learning system capable of automatically grading OCT scans into
AMD severity stages was developed and showed similar performance as human observers.
The proposed automatic system allows for a quick and reliable grading of large quantities of
OCT scans, which could increase the efficiency of large-scale AMD studies and pave the way
for AMD screening using OCT.

Keywords: retinal image analysis, automated grading, OCT, AMD classification, machine
learning

Age-related macular degeneration (AMD) is the primary
cause of legal blindness among elderly people in developed

countries.1,2 AMD affects the central field of vision, slowly
progressing from early to intermediate stages, with no or only
subtle visual changes, to an advanced stage, where severe loss
of central vision may occur rapidly. Current therapy allows for
halting or reversing aspects of vision loss resulting from
AMD,3,4 but there is still a large percentage of nonresponders
to available treatments.5

Accurate grading of the AMD severity stage is important for
identification of patients at risk of progression who may benefit
most from therapy. In addition to patient stratification for high
risk, accurate staging of AMD in its progressive subtypes is of
great importance in the analysis of large data sets of patients
with early and intermediate stages of AMD in order to learn
more about the effect of phenotype on risk for progression to
late-stage AMD by detecting minor divergences between
phenotypes, including novel biomarkers.6,7

Optical coherence tomography (OCT) is becoming a
standard in clinical trials as well as in clinical practice for the

diagnosis and follow-up of patients with AMD.8,9 Current
spectral-domain OCT allows for a noninvasive, three-dimen-
sional visualization of the retina with high resolution. OCT is
capable of accurately characterizing the three-dimensional
shape and extent of drusen and their change over time in early
and intermediate AMD.10 Also, atrophic areas and signs of
neovascularization in advanced stages may be identified by
modern OCT technology.11–13 However, the manual analysis of
OCT volumes for AMD staging is time-consuming and prone to
errors owing to the necessity to review multiple scans to
identify distinguishing features associated with the different
stages. This problem cannot be solved without computer aided
detection to guarantee high quality of analysis at low costs and
time burden. Indeed, machine learning for automated retinal
image analysis has been acknowledged to be of major value in
risk screening for retinal diseases.14

In the past years, computer-based algorithms have demon-
strated their potential in the automatic analysis of retinal images
and, particularly, in OCT volumes.15 Previously proposed works
for OCT analysis have mostly focused on the development of
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automated retinal layer segmentation algorithms.7,16 Further-
more, machine learning has been applied to detect textural
properties for assessing changes in the structure of retinal
tissue composition,17 to detect and segment retinal vessels,18

and to detect various retinal lesions such as intraretinal cysts or
subretinal fluid.19 In recent years, deep learning methods have
gained popularity in the field of computer vision and are now
also entering the field of retinal image analysis, for example,
the problem of cyst segmentation has been tried with
convolutional neural networks with promising results.20

Although machine learning—and more recently, deep
learning—has made its mark in OCT analysis, it is still minor
compared to the considerable effort that has been devoted for
the automatic analysis of color fundus images.15 Only few
machine learning algorithms have been published that
automatically analyze OCT scans for AMD classification and
grading.21–26 Owing to the large variability of the pathologic
changes of AMD in OCT, these studies have mainly focused on
identifying only single severity stages of AMD. Specifically, as
the changes are particularly minimal in the earlier stages, most
studies have focused on discriminating patients with neovas-
cular AMD from normal patients or from other macular
pathologies not related to AMD.24–26 Different thickness
biometrics, as recently used to distinguish intermediate AMD
from normal subjects, depend strongly on accurate layer
segmentation algorithms.23 These algorithms have a tendency
to fail when evaluating heavily affected retinas and require
manual corrections to avoid misleading outcomes.27,28

In a previous work29 we have presented a method to
distinguish intermediate AMD from normal subjects, based on a
publicly available data set.23 To our knowledge, there is
currently no method available for the automated identification
of the different AMD severity stages, using OCT volumes.

In our current study we therefore extended and improved
upon our previous work by developing and evaluating a
machine learning algorithm that automatically grades four AMD
severity stages and distinguishes them from healthy controls,
based on OCT scans, without the need for an accurate
presegmentation of the retinal layers.

METHODS

Data

For this study a total of 3265 OCT volumes obtained from 1016
patients were randomly selected from the European Genetic
Database (EUGENDA; http://eugenda.org, in the public do-
main), a large multicenter database for clinical and molecular
analysis of AMD.30,31 Written informed consent was obtained
before enrolling patients in EUGENDA. The EUGENDA study
was performed according to the tenets set forth in the
Declaration of Helsinki, and Institutional Review Board
approval was obtained.

OCT volumes were acquired with a Spectralis HRAþOCT
(Heidelberg Engineering, Heidelberg, Germany) at a wave-
length of 870 nm, a transversal resolution ranging from 5.5 to
14 lm, and an axial resolution of up to 3.9 lm. The dimension
in the axial resolution was 496 pixels; in the transversal
direction the dimensions varied between 512 and 1536 pixels.
The number of slices, that is, the number of B-scans, varied
from 19 to 60, corresponding to a B-scan spacing ranging from
~320 up to ~110 lm, respectively. Before processing, to
remove the variability in resolution, all B-scans from an OCT
volume were resampled to a constant pixel size of 5.5 lm33.9
lm corresponding to the lowest resolution present in the data
set. This resampling scale was selected so as not to generate
new information due to upsampling.

For each OCT volume in the EUGENDA database, the AMD
severity stage was assessed by the Cologne Image Reading
Center and Laboratory (CIRCL). These stages or grades were
assigned from the assessment of a color fundus image acquired
at the same time of the OCT scan, following the AMD
classification criteria shown in Table 1. For this study, all
available OCT scans from a random subset of 1016 patients
were extracted. Scans with grade 6 or 7, that is, choroidal
neovascularization (CNV) without signs of AMD or ungradable,
respectively, were excluded from this study.

Example OCT scans from EUGENDA with different AMD
severity stages are shown in Figure 1. The data were randomly
divided into two sets (80/20 split on patient level): a training
set, consisting of 2884 OCT scans from 814 patients, for the
development and optimization of the machine learning
algorithm; and a test set, consisting of 381 OCT scans from
202 patients, for the evaluation of the algorithm. Scans from
the same patients were kept in the same set. When multiple
OCT volumes from the same eye were present, a single volume
was selected randomly to be included in the test set. Table 2
shows the distribution of OCT volumes for the different AMD
severity stages within both sets. The number of eyes in the
respective subgroup is denoted in parentheses.

To assess the generalizability of the proposed algorithm an
external set was used from a publicly available database23

containing 384 OCT volumes of which 269 show intermediate
AMD and 115 are controls. In this data set, intermediate AMD
was defined as having large drusen (>125 lm) in both eyes or
large drusen in one eligible eye and advanced AMD in the
fellow eye. OCT volumes were acquired by using a Bioptigen
SD-OCT imaging system (Bioptigen, Inc., Research Triangle
Park, NC, USA) with 1000 A-scans per B-scan and 100 B-scans
per volume in a 6.7 mm 3 6.7 mm region surrounding the
fovea. For further details and information concerning the
inclusion criteria, see article describing the data set.23

Machine Learning Algorithm

The proposed algorithm automatically analyzed a whole OCT
volume and indicated the corresponding AMD severity stage
from a general representation of the OCT content. The
algorithm was built around the Bag of Words (BoW) approach,
a computer-based model firstly introduced to perform text
categorization and further adapted for image classification.32 In
this approach, a ‘‘dictionary’’ is created by using representative

TABLE 1. Criteria for Grading AMD on Color Fundus Imaging
According to the CIRCL

Grade

AMD

Severity Stage Criteria

1 No AMD No drusen or small, hard drusen only.

2 Early AMD >10 small (<63 lm), hard drusen þ

pigmentary changes or 1–15

intermediate (63–124 lm) drusen.

3 Intermediate AMD >15 intermediate (63–124 lm) drusen

or any large (>125 lm) drusen or

GA not in the central circle of the

ETDRS grading grid.

4 Advanced AMD GA Presence of GA.

5 Advanced AMD CNV Evidence of active or previous CNV

lesion.

6 CNV without signs

for AMD

Chosen if CNV is present but no

drusen of any size are present

within field 2 of the ETDRS grid.

7 Cannot grade Image is regarded as not gradable.

ETDRS, Early Treatment Diabetic Retinopathy Study.
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visual words, where a visual word is usually defined through
local image patches showing a localized view of the image
content. Based on this dictionary, an image can then be
represented as a frequency vector (histogram) of visual word
occurrences. This general representation can be used to
compare and classify images and their content.33 To apply
the BoW approach for the analysis of OCT scans, the proposed
algorithm followed several steps (visualized in Fig. 2).

Salient Patch Detection. To define the visual words of the
dictionary, image patches were extracted from different
locations in the B-scans of the OCT volumes. Although these
patches can be randomly sampled from any region of the
image, only patches from regions mainly affected by AMD, that
is, the outer retinal layers,34 were considered in order to create
a dictionary with a higher information content for AMD
classification. To automatically identify these regions, a simple

FIGURE 1. Examples of B-scans showing the different severity stages of AMD as defined by the CIRCL grading criteria shown in Table 1: (a) No AMD,
(b) early AMD, (c) intermediate AMD, (d) advanced AMD with GA, and (e) advanced AMD with CNV.
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and coarse layer segmentation method suffices. First, the
absolute value of the Gaussian derivative35 of the OCT
reflectivity values along the axial direction was calculated for
each B-scan (see Figs. 3c, 4c). Next we thresholded the
resulting gradient image at the 90th percentile of the ordered
intensity values of the gradient image in order to identify
regions with large contrast changes, such as the boundaries of
high reflective layers (see Figs. 3d, 4d). To focus in the outer
retina, only points with an axial coordinate higher than the
average axial position of the detected regions were selected.
Image patches of size n3n were then randomly sampled from
the detected regions and normalized to zero mean and unit
variance in order to reduce variance and to enhance contrast.
Figures 3b and 4b show examples of selected locations for
patch extraction, while Figures 3e through 3h and Figures 4e
through 4h show examples of patches extracted from these
salient locations.

Dictionary Generation. A dictionary of representative
visual words for AMD classification was then created by using
the training set. M patches from the detected salient regions
were randomly sampled from each training OCT volume.
These patches were grouped into five sets by the AMD severity
stage from the OCT scan they belonged to. Each set of patches
was further partitioned into k subsets or clusters by using the
k-means–clustering algorithm, in which each patch belongs to
the cluster with the nearest mean or cluster centroid.36 Each
cluster centroid acts as a representative (or visual word) of the
patches belonging to each cluster. A dictionary of 5k visual
words was created by using the 5k cluster centroids calculated
from the training set. Having visual words from each of the
AMD severity stages provided a better representation of the
different stages, especially because one of the stages, namely,
stage 4, was slightly underrepresented in the training set.37 To
reduce computational complexity during the clustering

process, principal component analysis was applied to the
patches to lower the dimensional space,38 keeping the first p
principal components for further processing.

OCT Representation. Once the dictionary was created, a
given OCT volume could now be represented as a ‘‘bag of
visual words.’’ First, M patches were extracted from the
detected salient regions as described in the previous subsec-
tion. Each patch was then assigned to the nearest visual word
from the dictionary by using k–nearest neighbor search.39

Finally, the OCT content was represented as a histogram of the
visual word occurrences, where each bin of the histogram
counts how many times each of the visual words occurs in the
OCT volume.33 Figure 5 shows examples of the bag of visual
words representations for each AMD severity stage corre-
sponding to the images in Figure 1. For this example, a small
dictionary of 100 visual words was used to create the
histogram representations. Given this representation of the
OCT content as input, a multiclass random forest classifier was
then trained to identify the AMD severity stage.40 This classifier
was trained on the training set by using a ‘‘one-versus-all’’
approach.41 The output of this classifier is a vector of five
probabilities that indicate the likelihood of the OCT scan
belonging to each of the AMD severity stages. The class with
the highest probability was selected as the final classification
output. The processing time required to predict the AMD
severity stage for a single OCT volume is in the order of 2 to 5
seconds, depending on the scan density.

Observer Study

To compare the performance of the proposed machine
learning algorithm to that of human observers, two retinal
specialists, with 12 and 4 years of OCT reading experience,
manually analyzed the OCT volumes. Solely on the basis of
OCT information, the specialists were asked to assign an AMD
severity stage, following the criteria in Table 1. OCT scans
marked as stage 6 or 7 by at least one of the observers were
excluded from the statistical analysis. The volumes were
graded in different sessions depending on the observers’
availability. Scans were visualized on an LCD screen with a
custom retinal image analysis workstation. The software allows
for a uniform vendor-independent visualization with the
possibility of scrolling/zooming/panning.

Data Analysis

The performance of the machine learning algorithm and the
two human observers was compared separately to the
reference standard by using Cohen’s j agreement and receiver

TABLE 2. Distribution of OCT Volumes in the Training Set and Test Set
Given the AMD Severity Stage*

Grade

AMD

Severity Stage

Training

Set Test Set Total

1 No AMD 870 (731) 174 (174) 1044 (905)

2 Early AMD 299 (176) 40 (40) 339 (216)

3 Intermediate AMD 483 (222) 57 (57) 540 (279)

4 Advanced AMD GA 115 (67) 13 (13) 128 (80)

5 Advanced AMD CNV 1117 (383) 97 (97) 1214 (480)

Total 2884 (1579) 381 (381) 3265 (1960)

* The number of eyes in the respective subgroup is denoted in
parentheses.

FIGURE 2. Overview of the proposed algorithm for the identification of AMD severity stages, based on OCT images.
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operating characteristic (ROC) analysis. Bootstrap analysis42

was performed to obtain the mean ROC curve and the 95%
confidence intervals. We performed two different experiments
to evaluate the performance of the algorithm in different
scenarios: (1) AMD grading into five severity stages, as shown
in Table 1, in the test set; and (2) AMD high-risk level
identification in the test set and the external set. Instead of a
detailed AMD staging, in experiment 2 the algorithm was
retrained for the binary task of identifying high-risk patients for
progression to AMD, by grouping severity grades 1 to 2 into
low risk and 2 to 5 into high risk. This experiment allowed
comparison with previous works29 and the assessment of the
generalizability of the algorithm to data from a different source.
The area (Az) under the ROC curve and sensitivity/specificity
values were used as a performance measure for experiment 2.
For experiment 1, overall agreement between the reference
standard and the algorithm output and the observers’ opinion
was calculated by using j statistics (SPSS, v20.0.0; IBM Corp.,
Armonk, NY, USA). The parameters of the algorithm, namely,
the number M of patches per OCT volume, the patch size n,
the number p of principal components, and the number k of
visual words per AMD stage, were optimized by using one-
eighth of the training set. The parameter M has to be set high

enough to accurately capture the characteristics of the OCT
volume; it was set to 10,000 patches. A higher number of
patches had no effect on the performance. A grid search was
performed over the remaining three parameters. The param-
eter n was varied between 11 and 61 pixels, k was varied
between 50 and 2500 visual words, and p was varied from 10
to 150 components. The optimal values were identified as n¼
61 pixels, k ¼ 2500 visual words, and p ¼ 100 components.

RESULTS

Experiment 1: AMD Staging

The confusion matrix comparing the output of the machine
learning algorithm to the reference standard is shown in Table
3. As 14 images (3.7%) were deemed ungradable by at least one
of the two human observers, these images were excluded,
leaving a total of 367 OCT volume scans for statistical analysis.
Quantitatively, a j-value of 0.713 was obtained for the
automated grading of AMD into five severity stages. Tables 4
and 5 show the agreement between the human observers and
the reference standard, with a j-value of 0.775 and 0.755 for

FIGURE 3. Example showing the steps for salient patch detection: (a) original image, (b) selected saliency locations shown in red, (c) Gaussian
derivative along the axial direction, (d) output after thresholding the derivative image shown in (c) at the 90th percentile, and (e–h) examples of
extracted salient patches.
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observer 1 and observer 2, respectively. The interobserver
agreement was 0.796.

Experiment 2: AMD High-Risk Identification

The ROC curve for classifying patients as either being at low
risk or at high risk for developing advanced AMD is shown in
Figure 6a. An area under the ROC curve of 0.980 and a
maximum accuracy of 0.942 can be observed for classifying
OCT volumes in the test set. At the point of maximum
accuracy on the ROC curve, that is, the point closest to the top
left corner, a specificity of 0.912 and sensitivity of 0.982 were
obtained.

Figure 6a also shows the performance of the two human
observers in the test set. Observer 1 achieved a sensitivity of
0.970 and a specificity of 0.897; observer 2 obtained a
sensitivity of 0.994 and a specificity of 0.872. No significant
difference was observed between the observers and the
proposed machine learning algorithm. Figure 6b shows the
ROC curve of the proposed algorithm on the external set,
achieving an Az of 0.978. In our previous work, an Az of 0.993
has been achieved when training and evaluating the system
using the external set.29

DISCUSSION

In this study we assessed the performance of a machine
learning algorithm for the grading of AMD severity stages, using
OCT scans. A novelty of the developed system was the low
requirements with regard to retinal layer segmentation; a
simple and fast algorithm was sufficient to obtain high
performance.

In our large consecutive set of 3265 OCT scans from 1016
patients we demonstrated that the performance of our system
approached human performance in grading different AMD
stages. Quantitatively, a j-value of 0.713 was obtained, which
approaches the performance of both human observers. As
shown in the confusion matrix there was good agreement
between the proposed algorithm and the reference standard,
especially for grades 1, 4, and 5. These classes typically have
clear distinct visual characteristics, which are successfully
captured by the automated method. When considering class 2,
that is, early AMD, 21 cases were wrongly classified as
belonging to the control group. Similar errors are also shown
in the confusion matrices for both human observers in Tables 4
and 5. This might be caused by the minor visual changes that

FIGURE 4. Example showing the steps for salient patch detection: (a) original image, (b) selected saliency locations shown in red, (c) Gaussian
derivative along the axial direction, (d) output after thresholding the derivative image shown in (c) at the 90th percentile, and (e–h) examples of
extracted salient patches.
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FIGURE 5. Example of BoW representations based on a dictionary of 100 visual words and 10,000 patches corresponding to the images in Figure 1:
(a) no AMD, (b) early AMD, (c) intermediate AMD, (d) advanced AMD with GA, and (e) advanced AMD with CNV. Visual inspection already reveals
distinct differences between lower and higher stages.
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characterize early AMD, which can be easily overlooked by even
experienced graders. This type of error might also be caused by
the definition of the reference standard, as the assessment of
the severity stage was based on color fundus images instead of
OCT scans. Small drusen that are visible on color fundus
imaging might be missed by an OCT volume with a large
spacing between B-scans, introducing possible labeling errors.

On the other hand, nine early cases were wrongly classified
by the algorithm with a higher severity stage. The observers
each made this error in 14 and 20 cases, respectively. AMD
signs, such as nascent geographic atrophy (GA), which are not
visible on color fundus imaging, might be visible on OCT
imaging and could therefore be correlated with different
severity stages.11,12 Of the 107 advanced cases of AMD, only
two cases were misclassified as early AMD. After visual
inspection of these misclassified cases, signs of advanced
AMD were present, although to a small extent, which are
prone to be missed by the algorithm. A single global histogram
is created for an entire OCT volume, and a small localized
lesion might not contribute enough to the histogram for it to
be classified in a higher severity stage. Figure 7 shows an
example of an underestimated case containing a small GA
lesion. Advanced AMD with GA was underrepresented in our
data set; adding more samples from this severity stage might
further improve sensitivity and performance. For OCT volumes
outside of the specified range of AMD subcategories, the
system will attempt to assign the most fitting AMD category.
The system is trained to link certain structural changes in an
OCT image to a certain stage of AMD. If those structural
changes are similar, the method will wrongly classify the scan
as the most structurally similar AMD class. Adding training
samples from that class in the training set, as well as adding
other types of clinical information, might help to discriminate
between these categories.

For the identification of high-risk AMD stages, the system
achieved an Az of 0.980 with a sensitivity of 0.982 at a

specificity of 0.912. This compares favorably with the two
human observers who achieved sensitivities of 0.970 and 0.994
at specificities of 0.897 and 0.872, respectively. We also
evaluated the performance on the external set containing OCT
scans acquired by a different OCT scanner, for which the
amount of noise, image quality, and contrast varies strongly.43

The performance of the proposed algorithm for the identifica-
tion of high-risk cases reached an Az of 0.978, similar to the
performance obtained on the test set. This result showed that
our automated algorithm is highly discriminative and general-
izes well over different OCT scanners and imaging character-
istics. Note that a higher performance can be achieved (Az ¼
0.993 for the external set) if the algorithm is retrained with
scans of similar characteristics and acquired with the same
scanner, as we have shown in a previous study.29

A higher scan density allows for a better prediction of the
AMD severity grade and may even allow the use of 3D patches.
However, scan spacing encountered in OCTs from different
clinical settings and/or different scanners varies widely,
diminishing the impact of using 3D information. The use of
2D patches provides the method robustness against these
spacing changes, which is demonstrated in the similar
performance obtained for data sets with different spacing
(Fig. 6b).

For the proposed algorithm a rather large patch size is
selected (613 61) as compared to the patch size (93 9) used
in other classification methods based on BoW descriptors.33,44

Small patches are typically advised to allow a patch to function
as a common building block. A possible hypothesis for the
successful application of larger patches in the proposed
algorithm is the homogeneity of the data due to the consistent
structure of the retina, allowing larger patches to still be
general enough to function as a common building block for a
retinal OCT image. It can also be hypothesized that owing to
their size, larger patches are better at capturing retinal
pathology, which is difficult to capture in smaller image
patches.

As noted earlier, small localized lesions might not contribute
enough to the global BoW histogram for the algorithm to
classify them correctly. For the current implementation, the
saliency detector selects the same number of salient locations
in every B-scan; modifying the saliency detector to focus more
strongly on B-scans with pathology might remove this
limitation.

The system has been shown to be highly robust to
variations in image quality. This is shown by the performance
on both the private dataset and also the external data set. The
private data used to train and evaluate the algorithm are part of
the EUGENDA consortium and are obtained from multiple
institutes with varying imaging protocols, resulting in OCT
volumes with varying scan-density, resolution, and noise levels
due to different settings for the B-scan averaging parameter

TABLE 3. Confusion Matrices for the Staging of AMD Into the Five
Severity Stages Defined in Table 1 Between the Machine Learning
Algorithm and the Reference Standard

Reference

Standard

Machine Learning Algorithm

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Total

Grade 1 154 5 4 0 2 165

Grade 2 21 8 6 1 2 38

Grade 3 5 3 41 4 4 57

Grade 4 0 1 0 10 1 12

Grade 5 0 1 7 5 82 95

Total 180 18 58 20 91 367

TABLE 4. Confusion Matrices for the Staging of AMD Into the Five
Severity Stages Defined in Table 1 Between Observer 1 and the
Reference Standard

Reference

Standard

Human Observer 1

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Total

Grade 1 149 9 3 2 2 165

Grade 2 10 14 12 2 0 38

Grade 3 1 4 48 3 1 57

Grade 4 0 0 0 11 1 12

Grade 5 0 0 1 7 87 95

Total 160 27 64 25 91 367

TABLE 5. Confusion Matrices for the Staging of AMD Into the Five
Severity Stages Defined in Table 1 Between Observer 2 and the
Reference Standard

Reference

Standard

Human Observer 2

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Total

Grade 1 145 14 5 0 1 165

Grade 2 10 8 14 2 4 38

Grade 3 0 1 48 5 3 57

Grade 4 0 0 1 10 1 12

Grade 5 0 0 1 1 93 95

Total 155 23 69 18 102 367
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used in the Heidelberg Spectralis OCT scanner. The external
set is obtained with a Bioptigen OCT scanner that does not
implement B-scan averaging, resulting in B-scans with a
substantially higher level of noise. The proposed system has
been shown to be invariant to these quality variations by
achieving a similar classification performance without the need
for retraining the algorithm.

Considering the strengths and possible limitations of the
developed automated classification algorithm, a few clinical
applications are to be considered or are within reach. One
such application would be the identification of AMD sub-
groups in large population studies. To gain more insight into
risk factors and disease mechanisms involved in AMD, there is a
need for detailed analysis of genotype–phenotype correla-
tions.31 Manual identification of AMD subgroups in large
studies is time-consuming and prone to error, as human
grading can be subjective. An automated system does not suffer
from fatigue or state of mind, and is therefore less prone to
variability. The proposed system has performance in the range
of human graders and can therefore be of major importance in

selecting homogeneous subgroups in such large population
studies. Another possible application of the algorithm, based
on the results described in ‘‘Experiment 2: AMD High-Risk
Identification,’’ is the automated stratification of patients at
high risk for AMD in a screening setting based on OCT imaging.
An automated system could improve the efficacy of the
ophthalmologist by separating out the easy-to-diagnose from
the difficult-to-diagnose patients.

In conclusion, we developed a fully automated system to
identify four different AMD stages and to discriminate these
from healthy status. The system proved to have excellent
performance compared to that of expert human observers on
data from different OCT vendors in two distinct large data sets.
Our data suggest this new algorithm allows for fast and reliable
identification of homogeneous AMD subgroups on a large
scale, for example, in population studies, multicenter data sets,
and screening settings. Our automatic approach should
therefore be considered as a reliable and cost-effective
alternative for human graders in future AMD research.

FIGURE 6. ROC curves of the proposed machine learning algorithm for AMD high-risk identification on (a) the test set and (b) the external set. The
performance of the human observers in the test set is also included.

FIGURE 7. Example case that is misclassified by the machine learning algorithm. The OCT volume is classified as being early AMD, while a small but
apparent GA lesion (indicated by the red arrows) is present.
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