
Automated State Abstraction for Options using

the U-Tree Algorithm

Anders Jonsson, Andrew G. Barto
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{ajonsson,barto}@cs.umass.edu

Abstract

Learning a complex task can be significantly facilitated by defining a
hierarchy of subtasks. An agent can learn to choose between various
temporally abstract actions, each solving an assigned subtask, to accom
plish the overall task. In this paper, we study hierarchical learning using
the framework of options. We argue that to take full advantage of hier
archical structure, one should perform option-specific state abstraction,
and that if this is to scale to larger tasks, state abstraction should be au
tomated. We adapt McCallum's U-Tree algorithm to automatically build
option-specific representations of the state feature space, and we illus
trate the resulting algorithm using a simple hierarchical task. Results
suggest that automated option-specific state abstraction is an attractive
approach to making hierarchical learning systems more effective.

1 Introduction

Researchers in the field of reinforcement learning have recently focused considerable at
tention on temporally abstract actions (e.g., [1,3,5,6,7,9]). The term temporally abstract
describes actions that can take variable amounts of time. One motivation for using tem
porally abstract actions is that they can be used to exploit the hierarchical structure of a
problem. Among other things, a hierarchical structure is a natural way to incorporate prior
knowledge into a learning system by allowing reuse of temporally abstract actions whose
policies were learned in other tasks. Learning in a hierarchy can also significantly reduce
the number of situations between which a learning agent needs to discriminate.

We use the framework of options [6, 9], which extends the theory of reinforcement learn
ing to include temporally abstract actions. In many cases, accurately executing an option's

policy does not depend on all state features available to the learning agent. Further, the
features that are relevant often differ from option to option. Within a hierarchical learn
ing system, it is possible to perform option-specific state abstraction by which irrelevant
features specific to each option are ignored. Using option-specific state abstraction in a
hierarchical learning system can save memory through the development of compact state
representations, and it can accelerate learning because of the generalization induced by the
abstraction.

Dietterich [2] introduced action-specific state abstraction in a hierarchy of temporally ab
stract actions. However, his approach requires the system developer to define a set of
relevant state features for each action prior to learning. As the complexity of a problem
grows, it becomes increasingly difficult to hand-code such state representations. One way
to remedy this problem is to use an automated process for constructing state representa
tions.

We apply McCallum's U-Tree algorithm [4] to individual options to achieve automated,
option-specific state abstraction. The U-Tree algorithm automatically builds a state-feature
representation starting from one that makes no distinctions between different observation
vectors. Thus, no specification of state-feature dependencies is necessary prior to learning.

In Section 2, we give a brief description of the U-Tree algorithm. Section 3 introduces
modifications necessary to make the U-Tree algorithm suitable for learning in a hierarchical
system. We describe the setup of our experiments in Section 4 and present the results in
Section 5. Section 6 concludes with a discussion of future work.

2 The U -Tree algorithm

The U-Tree algorithm [4] retains a history of transition instances Tt = < Tt- l ,at- I , Tt , St >
composed of the observation vector, St , at time step t, the previous action, at-l , the reward,
Tt, received during the transition into St, and the previous instance, Tt- l. A decision tree
the U-Tree-sorts a new instance Tt based on its components and assigns it to a unique leaf
of the tree. The distinctions associated with a leaf are determined by the root-to-leaf path.

For each leaf-action pair (Lj ,a), the algorithm keeps an action value Q(Lj ,a) estimating
the future discounted reward associated with being in Lj and executing a. The utility of
a leaf is denoted U(Lj) = maxaQ(Lj ,a). The algorithm also keeps a model consisting
of estimated transition probabilities Pr (Lk IL j , a) and expected immediate rewards R(L j , a)
computed from the transition instances. The model is used in performing one sweep of
value iteration after the execution of each action, modifying the values of all leaf-action
pairs (Lj ,a):

Q(Lj ,a) ~ R(Lj ,a) + yLPr(Lk ILj ,a)U (Lk).
Lk

One can use other reinforcement learning algorithms to update the action values, such as
Q-learning or prioritized sweeping.

The U-Tree algorithm periodically adds new distinctions to the tree in the form of tem
porary nodes, called fringe nodes, and performs statistical tests to see whether the added
distinctions increase the predictive power ofthe U-Tree. Each distinction is based on (1) a
perceptual dimension, which is either an observation or a previous action, and (2) a history
index, indicating how far back in the current history the dimension will be examined. Each
leaf of the tree is extended with a subtree of a fixed depth, z, constructed from permutations
of all distinctions not already on the path to the leaf. The instances associated with the leaf
are distributed to the leaves of the added subtree-the fringe nodes-according to the cor
responding distinctions. A statistical test, the Kolmogorov-Smirnov (KS) test, compares
the distributions of future discounted reward of the leaf node's policy action with that of a
fringe node's policy action. The distribution of future discounted reward associated with

a node Lj and its policy action a = argmaxa Q(Lj ,a) is composed of the estimated future
discounted reward of individual instances Tt E T(Lj , a) given by:

V(Tt) = Tt+ l + yLPr(Lk ILj ,a)U(Lk).
Lk

The KS test outputs a statistical difference dL ,Lk E [0, 1] between the distributions of two
nodes Lj and Lk. The U-Tree algorithm retains the subtree of distinctions i at a leaf Lj

if the sum of the KS statistical differences over the fringe nodes F(Lj , i) of the subtree is

(1) larger than the sum of the KS differences of all other subtrees, and (2) exceeds some

threshold 8. That is, the tree is extended from leaf L j with a subtree i of new distinctions if

for all subtrees m -=I- i:

~ dL F(L i) > ~ dL F(L· m) £..J J l } 1 £,..;) 1) 1

F (Lj ,i) F(Lj ,m)

and ~ dL· F(L· i) > 8.
£,..; J ' J '

F(Lj ,i)

Whenever the tree is extended, the action values of the previous leaf node are passed on to

the new leaf nodes.

One can restrict the number of distinctions an agent can make at anyone time by imposing

a limit on the depth of the V-Tree. The length of the history the algorithm needs to retain

depends only on the tree size and not on the size of the overall state set. Consequently, the
algorithm has the potential to scale well to large tasks.

In previous experiments, the V-Tree algorithm was able to learn a compact state represen
tation together with a satisfactory policy in a complex driving task [4]. A version of the

V-Tree algorithm suitable for continuous state spaces has also been developed and success

fully used in robot soccer [10].

3 Adapting the U -Tree algorithm for options

We now turn to the issue of adapting the V-Tree algorithm for use with options and hier

archicallearning architectures. Given a finite Markov decision process with state set S, an

option 0 =< 1, rr , ~ > consists of a setl ~ S of states from which the option can be initiated,
a closed-loop policy rr for the choice of actions, and a termination condition ~ which, for

each state, gives the probability that the option will terminate when that state is reached.
Primitive actions generalize to options that always terminate after one time step. It is easy

to define hierarchies of options in which the policy of an option can select other options.

A local reward function can be associated with an option to facilitate learning the option's
policy.

What makes the V-Tree algorithm so suitable for performing option-specific state abstrac

tion is that a V-Tree simultaneously defines a state representation and a policy over this
representation. With a separate V-Tree assigned to each option, the algorithm is able to

perform state abstraction separately for each option while modifying its policy.

Because options at different levels of a hierarchy operate on different time scales, their

transition instances must take different forms. To make our scheme work, we need to add

a notion of temporal abstraction to the definition of a transition instance:

Definition: A transition instance of an option 0 has the form "fro = < ~ ~ k' O/-k, R/ , s/ >,
where s/ is the observation vector at time step t, O/-k is the option previously executed by

option 0, terminating at time t and with a duration k, R/ = I. ~ 11 - 1 r/ - k+i is the discounted

sum of rewards received during the execution of O/- b and ~ ~ k is the previous instance.

Since options at one level in a hierarchy are executed one at a time, they will each experi

ence a different sequence of transition instances. For the V-Tree algorithm to work under

these conditions, the U-Tree of each option has to keep its own history of instances and
base distinctions on these instances alone.

The V-Tree algorithm was developed for infinite-horizon tasks. Because an option termi

nates and may not be executed again for some time, its associated history will be made up

of finite segments corresponding to separate executions of the option. The first transition

Figure 1: The Taxi task

instance recorded during an execution is independent of the last instance recorded during
a previous execution. Consequently, we do not allow updates across segments. With these
modifications, the V-Tree algorithm can be applied to hierarchical learning with options.

3.1 Intra-option learning

When several options operate in the same parts of the state space and choose from among
the same actions, it is possible to learn something about one option from the behavior
generated by the execution of other options. In a process called intra-option learning [8],
the action values of one option are updated based on actions executed in another, associated
option. The update only occurs if the action executed in the latter has a non-zero probability
of being executed in the former.

Similarly, we can base distinctions in the V-Tree associated with one option on transition
instances recorded during the execution of another option. We do this by adding instances
recorded during the execution of one option to the history of each associated option. By
associating each instance with a vector of leaves, one for the V-Tree of each option, this
approach does not require additional memory for keeping multiple copies of an instance.

For the scheme to work, we introduce a vector of rewards Rt = {Kj'} in an instance ~o,

where Rf' is the discounted sum of local rewards for each option 0' associated with Ot-k.

4 Experiments

We tested our version of the V-Tree algorithm on the Taxi task [1], in which an agent
the taxi-moves around on a grid (Figure 1). The taxi is assigned the task of delivering
passengers from their locations to their destination, both chosen at random from the set of
pick-up/drop-off sites P = {1,2,3,4}. The taxi agent's observation vector s = (x,y,i,d)
is composed of the (x,y) -position of the taxi, the location i E P U {taxi} of the current
passenger, and this passenger's destination d E P. The actions available to the taxi are
Pick-up, Drop-off, and Move(m), m E {N,E,S , w}, the four cardinal directions. When
a passenger is delivered, a new passenger appears at a random pickup site. The rewards
provided to the taxi are:

19 for delivering the passenger
- 11 for illegal Pick-up or Drop-off

- 1 for any other action (including moving into walls)

To aid the taxi agent we introduced four options: Navigate(p) =< [P, 1tP, ~P >, p E P,

where, letting S denote the set of all observation vectors and GP = {(x ,y, i , d) E S I (x,y) is
the location of p}:

[P: S - GP

1tP : the policy for getting to GP that the agent is trying to learn
~P : 1 if s E GP; 0 otherwise.

We further introduced a local reward Rf for Naviga te(p), identical to the global reward

provided to the agent with the exception that Rf = 9 for reaching GP.

In our application of the V-Tree algorithm to the taxi problem, the history of each option
had a maximum length of 6,000 instances. If this length was exceeded, the oldest instance

in the history was discarded. Expanding the tree was only considered if there were more

than 3,000 instances in the history. We set the expansion depth z to 1 and the expansion
threshold 8 to 1.0, except when no distinctions were present in the tree, in which case

8 = 0.3. The algorithm used this lower threshold when the agent was not able to make

any distinctions because it is difficult in this case to accumulate enough evidence of statis

tical difference to accept a distinction. Since the V-Tree algorithm does not go back and
reconsider distinctions in the tree, it is important to reduce the number of incorrect distinc
tions due to sparse statistical evidence. Therefore, our implementation only compared two

distributions of future discounted reward between leaves if each contained more than 15

instances.

Because the taxi task is fully observable, we set the history index of the V-tree algorithm

to zero. For exploration, the system used an £-softmax strategy, which picks a random

action with probability £ and performs softmax otherwise. Normally, tuning the softmax

temperature 't provides a good balance between exploration and exploitation, but as the
V-Tree evolves, a new value of't may improve performance. To avoid re-tuning 't, the

£-random part ensured that all actions were executed regularly.

We designed one set of experiments to examine the efficiency of intra-option learning. We

randomly selected one of the options Naviga te(p) to execute, and randomly selected a
new position for the taxi whenever it reached p, ignoring the issue of delivering a passenger.

At the beginning of each learning run, we assigned a V-Tree containing a single node to

each option. In one set of runs, the algorithm used intra-option learning, and in another

set, it used regular learning in which the V-Trees of different options did not share any
instances.

In a second set of experiments, the policies of the options and the overall Taxi task were

learned in parallel. We allowed the policy of the overall task to choose between the options
Navigate(p), and the actions pick-up and Drop-off. The reward provided for the

overall task was the sum of global reward and local reward of the option currently being ex

ecuted (cf. Digney [3]). When a passenger was delivered, a new taxi position was selected
randomly and a new passenger appeared at a randomly selected pickup site.

5 Results

The results from the intra-option learning experiments are shown in Figure 2. The graphs

for intra-option learning (solid) and regular learning (broken) are averaged over 5 indepen

dent runs. We tuned 't and £ for each set of learning runs to give maximum performance.
At intervals of 500 time steps, the V-Trees of the options were saved and evaluated sepa

rately. The evaluation consisted of fixing a target, repeatedly navigating to that target for

25,000 time steps, randomly repositioning the taxi every time the target was reached, re

peating for all targets, and adding the rewards. From these results, We conclude that (1)
intra-option learning converges faster than regular learning, and (2) intra-option learning

achieves a higher level of performance. Faster convergence is due to the fact that the his

tories associated with the options fill up more quickly during intra-option learning. Higher
performance is achieved because the amount of evidence is larger. The target of an option is

only reached once during each execution of the option, whereas it might be reached several

times during the execution of another option.

In the second set of experiments, we performed 10 learning runs, each with a duration of

0 4

-Intraopllon

- - Regulllr

2 2 5 3

Time steps

Figure 2: Comparison between intra-option and regular learning

200,000 time steps. Figure 3 shows an example of the resulting V -Trees. Nodes that repre

sent distinctions are drawn as circles, and leaf nodes are shown as squares or, in most cases,
omitted. In the figure, a denotes a distinction over the previously executed option (in the

order Navigate(p), pick-up and Drop-off), and other letters denote a distinction

over the corresponding observation. Note that the V-Tree ofNavigate(l) did not make a

distinction between x-positions in the lower part of the grid. In some places, for example in
Navigate(4), the right branch of x, the algorithm made a suboptimal distinction. A dis
tinction over y would have given a smaller number of leaves and would have been sufficient

to represent an optimal policy. The V-Trees in the figure contain a total of 188 leaf nodes.

Across 10 runs, the number of leaf nodes varied from 154 to 259, with an average of 189.

Some leaf nodes were never visited, making the actual number of states even smaller. This

is comparable to the results of Dietterich [2] who hand-coded a representation containing
106 states. Compared to the 500 distinct states in a flat representation of the task, or the

2,500 distinct states that the five policies would require without abstraction, our result is a
significant improvement. Certainly, the memory required to store histories should also be

taken into account. However, we believe that the memory savings due to option-specific

state abstraction in larger tasks will significantly outweigh the memory requirement for
V-Trees.

6 Conclusion

We have shown that the V-Tree algorithm can be used with options in a hierarchical learn

ing system. Our results suggest that automated option-specific state abstraction performed

by the algorithm is an attractive approach to making hierarchical learning systems more

effective. Although our testbed was small, we believe this is an important first step toward

automated state abstraction in hierarchies. We also incorporated intra-option learning into
the V-Tree algorithm, a method that allows a learning agent to extract more information
from the training data. Results show that intra-option learning can significantly improve

the performance of a learning agent performing option-specific state abstraction.

Although our main motivation for developing a hierarchical version of the V-Tree algorithm

was automating state abstraction, the new definition of a transition instance enables history
to be structured hierarchically, something that is useful when learning to solve problems in

partially observable domains.

Future work will examine the performance of option-specific state abstraction using the

V-Tree algorithm in larger, more realistic tasks. We also plan to develop a version of

~aVigate(l)

ddc10~ x

~'(3)

Figure 3: U-Trees for different policies

the U-Tree algorithm that goes back in the tree and reconsiders distinctions. This has
the potential to improve the performance of the algorithm by correcting nodes for which
incorrect distinctions were made.

Acknowledgments

The authors would like to thank Tom Dietterich for providing code for the Taxi task, Andrew McCal

lum for valuable cOll'espondence regarding the U -Tree algorithm, and Ted Perkins for reading and

providing helpful comments on the paper. This work was funded by the National Science Founda

tion under Grant No. ECS-9980062. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily reflect the views of the

National Science Foundation.

References

[1] Dietterich, T. (2000). Hierarchical reinforcement leaming with the MAXQ value function de
composition. Artificial Intelligence Research 13:227-303.

[2] Dietterich, T. (2000) State Abstraction in MAXQ Hierarchical Reinforcement Learning. In S. A.
Solla, T. K. Leen, and K.-R. Muller (eds .), Advances in Neural Information Processing Systems

12, pp. 994-1000. Cambridge MA: MIT Press.

[3] Digney, B. (1996) Emergent hierarchical control structures: Leaming reactivelhierarchical re
lationships in reinforcement environments. In P. Meas and M. Mataric (eds.), From animals to

animats 4. Cambridge MA: MIT Press .

[4] McCallum, A. (1995) Reinforcement Learning with Selective Perception and Hidden State. PhD

thesis, Computer Science DepaItment, University of Rochester.

[5] PaI1', R. , and Russell, S. (1998) Reinforcement leaming with hierarchies of machines. In M. 1.
Jordan, M. J. Keams, and S. A. Solla (eds.), Advances in Neural Information Processing Systems

10, pp. 1043- 1049. Cambridge MA: MIT Press.

[6] Precup, D., and Sutton, R. (1998) Multi-time models for temporally abstract planning. In M. 1.

Jordan, M. J. Keams, and S. A. Solla (eds.), Advances in Neural Information Processing Systems

10, pp. 1050-1056. Cambridge MA: MIT Press.

[7] Singh, S. (1992) Reinforcement leaming with a hierarchy of abstract models. In Proc. of the 10th

National Con! on Artificial Intelligence, pp. 202-207. Menlo Park, CA: AAAI PresslMIT Press.

[8] Sutton, R., Precup, D., and Singh, S. (1998) Intra-Option Leaming about Temporally Abstract

Actions. In Proc. of the 15th Inti. Con! on Machine Learning, ICML'98, pp. 556-564. Morgan
Kaufman.

[9] Sutton, R., Precup, D., and Singh, S. (1999) Between MDPs and semi-MDPs: A framework for

temporal abstraction in reinforcement learning. Artificial Intelligence 112:181- 211.

[10] Uther, w., and Veloso, M. (1997) Generalizing Adversarial Reinforcement Leaming. AAAI Fall

Symposium on Model Directed Autonomous Systems.

