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Abstract. Building a knowledge-based system is like developing a scientific theory. Although a knowledge base

does not constitute a theory of some natural phenomenon, it does represent a theory of how a class of professionals

approaches an application task. As when scientists develop a natural theory, builders of expert systems first must

formulate a model of the behavior that they wish to understand and then must corroborate and extend that model

with the aid of specific examples. Thus there are two interrelated phases of knowledge-base construction: (1) model

building and (2) model extension. Computer-based tools can assist developers with both phases of the knowledge-

acquisition process. Workers in the area of knowledge acquisition have developed computer-based tools that empha-

size either the building of new models or the extension of existing models. The PROTEGE knowledge-acquisition

system addresses these two activities individually and facilitates the construction of expert systems when the same

general model can be applied to a variety of application tasks.
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1. Introduction

Knowledge acquisition is the process of eliciting the expertise of authorities in an applica-

tion area and of formalizing that knowledge within a computer program. From the time

of McCarthy's [1968] early proposal for the "Advice Taker" (a theoretical program that

could act on the statements about the world that its users typed into it in predicate logic),

workers in artificial intelligence (AI) have described tools that could facilitate the knowledge-

acquisition process. Knowledge acquistion often is depicted as the cumbersome activity

whereby expertise is transferred from the minds of application specialists to those of the

computer scientists who build expert systems (knowledge engineers), and thence to the

knowledge bases of expert systems. Most builders of knowledge-acquisition tools conse-

quently perceive knowledge acquisition as a problem in knowledge flow.

The depiction of knowledge acquisition as the transfer of expertise has caused many re-

searchers to view knowledge engineers as middlemen, whose naivete in the application

area impedes communication and clogs the pipeline during knowledge extraction. Davis'

[1976] landmark knowledge-acquisition program, TEIRESIAS, was predicated on the propo-

sition that, if domain experts could enter their knowledge directly into expert systems, the

need for knowledge engineers during the refinement of new knowledge bases would be

eliminated. Although Davis' suggestion was influential, TEIRESIAS never actually was

used by the expert physicians for whom it was intended. During the more than one dozen

years that have ensued since the development of TEIRESIAS, a score of computer-based
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knowledge-acquisition tools have been constructed, most designed to eliminate the need

for knowledge engineers [Boose 1989]. Despite this nearly universal goal, not one of these

tools has supplanted the humans needed to assist application specialists in the construction

and maintenance of production-quality expert systems [Kitto 1989]. Although current

knowledge-acquisition tools may greatly facilitate the process, development of most expert

systems still requires intermediaries and still is often bottlenecked.

The emphasis on knowledge transfer and the view of the knowledge engineer as an inter-

mediary, however, have hindered the recognition that knowledge acquisition is a creative

and inventive activity. When knowledge engineers interview application specialists to develop

expert systems, they begin to form mental models of how the experts solve problems; the

experts, of course, have mental models of their own that attempt to capture their professional

problem-solving behavior. In the course of building the expert system, both the knowledge

engineers and the experts continually revise their respective mental models. Although the

knowledge engineers and the application specialists may have very different mental models

at the outset of their collaboration, the models eventually converge. This convergence is

possible (1) because the knowledge-acquisition process forces all parties to commit their

mental models to a fixed, publicly examinable form—typically, the emerging knowledge

base; and (2) because the frequent consideration of examples and test cases forces the system

builders to assess, corroborate, and revise their models. The often-cited difficulties of knowl-

edge acquisition can be ascribed, in general, to creating and agreeing on a shared model

of problem solving [Winograd and Flores 1986; Regoczei and Plantinga 1987].

The creation of a knowledge base is much like the creation of a scientific theory. Unlike

traditional scientists, however, builders of expert systems are not concerned with the elabora-

tion of theories of natural phenomena; these knowledge engineers instead seek to develop

theories of expert behavior. In constructing a knowledge base, system builders first define

a general model (or theory) of the application task to be performed. In the case of the

MYCIN system [Buchanan and Shortliffe 1984], for example, that general task model was

one of diagnosing and treating infectious diseases. Given the initial model, MYCIN's devel-

opers validated and revised that model as necessary, attempting to fit the model to specific

clinical problems. Once the essential model was worked out, it was then extended to include

knowledge of particular kinds of bacteremia and, later, of meningitis. For example, after

the basic system had been designed, the developers of MYCIN augmented the program's

knowledge base to permit diagnosis and treatment of bacterial, fungal, viral, and tuberculous

meningitis by making four separate extensions to the original MYCIN model.

Thus knowledge acquisition can be viewed as comprising two interrelated phases: (1) build-

ing a general task model—that is, creating an intention of the proposed system's behavior,

followed by (2) filling in the specific content knowledge in the domain that is consistent

with the general model—that is, creating extensions [Addis 1987]. In this paper, I shall

discuss the special nature of these two stages of knowledge acquisition, with an emphasis

on the kinds of computer-based tools that can facilitate the two phases. Knowledge-acquisition

systems such as ROGET [Bennett 1985] are model-building tools that are particularly well

suited to help knowledge engineers and application specialists to develop theories of expert

problem solving. Other systems, such as OPAL [Musen, et al. 1987], are model-extending

tools that are best used by domain experts working along to define specific applications.

Recent work on the PROTEGE knowledge-acquisition system [Musen 1989a, bl demonstrates
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how a model-building tool can help knowledge engineers to fashion a general task model,

such that that model then can be used by a second model-extending tool to permit experts

to define specific applications. In particular, PROTEGE allows system builders to create

general models of application tasks that can be solved with the method of skeletal-plan refine-

ment [Friedland and Iwasaki 1985]; PROTEGE then generates automatically knowledge-

acquisition tools like OPAL that domain experts can use to enter the content knowledge

for individual applications.

2. The Problem of Creating Models

Computer-based knowledge-acquisition tools, unlike traditional machine-learning programs,

assume that knowledge will be formalized as the consequence of an interaction with a human

expert. This interaction, which undeniably constitutes the greatest strength of the knowledge-

engineering approach, also is the source of substantial liability. Application specialists cannot

simply transfer their expertise to a computer, and knowledge-acquisition programs often

cannot accept an expert's entries at face value. Understanding why a direct transfer of exper-

tise is impossible both points to a major distinction between current research in knowledge

acquisition and work in machine learning, and motivates important design decisions made

in the construction of PROTEGE.

Like the construction of other large pieces of software, the engineering of knowledge-

based systems requires significant creativity on the part of system builders. Creativity is

essential because the application specialists whose professional acumen is to be encoded

as a knowledge base often cannot verbalize how they actually go about solving problems.

Experts may not be merely inarticulate in explaining their behavior; they frequently are

tongue-tied for reasons stemming from the very nature of human intelligence.

2.1. The Paradox of Expertise

Human cognitive skills appear to be acquired in at least three generally distinct stages of

learning [Fitts 1964; LaBerge and Samuels 1974; Johnson 1983]. Although different authors

have used different terms to describe the three phases, there is concordance regarding the

qualitative changes that occur in the way that people seem to retrieve information during

problem solving. Initially, there is the cognitive stage, during which an individual identifies

the actions that are appropriate in particular circumstances, either as a result of direct instruc-

tion or from observation of other people. In this stage, the learner often verbally rehearses

information needed for execution of the skill. Next comes the associative phase of learning,

in which the relationships noted during the cognitive stage are practiced and verbal media-

tion begins to disappear. With repetition and feedback, the person begins to apply the actions

accurately in a fluent and efficient manner. Then, in the final autonomous stage, the learner

compiles the relationships from repeated practice to the point where he can perform them

without conscious awareness. Suddenly, the person performs the actions appropriately, pro-

ficiently, and effortlessly—without thinking. The knowledge has become tacit [Fodor 1968],

There is substantial evidence that, as humans become experienced in an application area

and repeatedly apply their know-how to specific tasks, their knowledge becomes compiled
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and thus inaccessible to their consciousness. Experts lose awareness of what they know.

The knowledge that experts acquired as novices may be retrievable in a declarative form,

yet the skills that these professionals actually practice are procedural in nature [Anderson

1987]. Although there is no consensus on how such procedural knowledge is stored within

the nervous system [Rumelhart and Norman 1983], the inability of experts to verbalize

these compiled associations is well accepted [Nisbett and Wilson 1977; Lyons 1986]. The

consequence is that the special knowledge that we would most like to incorporate into our

expert systems often is that knowledge about which experts are least able to talk. Johnson

[1983] has identified this phenomenon as the paradox of expertise.

The paradox is confirmed by experimental data, as well as by much acecdotal experience.

Johnson [1983], for example, reports that he once enrolled in classes at the University of

Minnesota Medical School as part of his investigation of the process of medical diagnosis.

At the same time, Johnson had the opportunity to study a medical colleague (one of his

teachers) caring for patients on the hospital wards. Johnson compared the physician's ob-

served clinical behavior with the diagnostic methods his colleague was teaching in the class-

room. To Johnson's surprise, the medical-school professor's behavior in practice seemed

to contradict what the teacher professed. When confronted with these observations, Johnson's

subject responded:

Oh, I know that, but you see I don't know how I actually do diagnosis, and yet I need

to teach things to students. I create what I think of as plausible means of doing tasks

and hope students will be able to convert them into effective ones. [Johnson 1983, p. 81]

The clinician in this example recognized explicitly that he could not verbalize his com-

piled expertise in medical diagnosis. The problem for knowledge engineers and for builders

of knowledge-acquisition tools, however, is that people rarely know the limits of their tacit

knowledge. When asked to report on their compiled expertise, subjects often volunteer

plausible answers that may well be incorrect. In experimental situations, subjects have been

shown to be frequently (1) unaware of the existence of a stimulus or cue influencing a

response, (2) unaware that a response has been affected by a stimulus, and (3) unaware

that a cognitive response has even occurred. Instead, subjects give verbal reports of their

cognition based on prior causal theories from their nontacit memory [Nisbett and Wilson

1977]. Furthermore, because Western culture mistakenly teaches us that accurate introspec-

tion somehow should be possible [Lyons 1986], people freely explain and rationalize their

compiled behaviors without recognizing that these explanations frequently are incorrect.

2.2. Authentic and Reconstructed Strategies

When asked questions about tacit processes, experts volunteer plausible answers that may

not reflect their true behavior. These believable, although sometimes inaccurate, responses

are known as reconstructed reasoning methods [Johnson 1983]. Reconstructed methods

typically are acknowledged and endorsed by entire problem-solving communities. They

form the basis of most major textbooks. The disadvantage of these methods, however, is
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that they do not always work. Slovic and Lichtenstein [1971], for example, asked stock brokers

to weight the importance of various factors that influenced these brokers' investment deci-

sions. A regression analysis of actual decisions made by the stock brokers revealed computed

weights for these factors that were poorly correlated with the brokers' subjective ratings.

More important, there was a negative correlation between the accuracy of introspection

and the stock brokers' years of experience. More recently, Michalski and Chilausky [1980]

found that decision rules elicited from plant pathologists for the diagnosis of soybean diseases

performed less accurately than did a rule set that was automatically induced by application

of the AQ11 algorithm to a library of test cases. (The experts' actual diagnoses were used

as the gold standard against which the two sets of rules were judged.)

Many workers in knowledge acquisition have consequently argued for the elicitation of

authentic (as opposed to reconstructed) methods of reasoning in hopes of improving expert-

system performance [Johnson 1983; Cleaves 1987; Meyer, et al. 1989]. The goal is deter-

mination of the behaviors actually used by experts in performing relevant tasks. Acquisi-

tion of authentic knowledge, not surprisingly, requires more than just posing direct ques-

tions and asking application experts to introspect. Despite intense research to develop non-

biasing interviewing techniques [for example, Ericsson and Simon 1984], psychometric

methods [for example, Cooke and McDonald 1987], and ethnographic approaches [for

example, Belkin et al., 1987], the elicitation of authentic problem-solving strategies remains

cumbersome and often is impractical. The translation of authentic reasoning methods (when

such methods can be elicited) into current knowledge-system architectures in a manner

that avoids artifacts due to the knowledge-representation language itself also is an unsolved

problem.

Knowledge engineers, therefore, must apprehend both the authentic and the reconstructed

knowledge derived from application specialists and must assess that knowledge objectively.

The engineers serve the important function of detecting gaps in the knowledge and of help-

ing the application specialists to fill those gaps by defining plausible sequences of actions

that can achieve the necessary goals. Knowledge engineers thus create theories of how the

experts tacitly solve problems. The knowledge bases that embody those theories may not

achieve the same level of performance as do the procedures actually used by domain experts,

but the knowledge bases nevertheless can be observed, extended, and easily disseminated

to other people in need of advice. It is incorrect to view a knowledge base as an embodi-

ment of some human's problem-solving expertise. Knowledge bases instead represent only

models of expert behavior—models that attempt to approximate, but that do not reproduce,

the actual problem-solving steps used by humans [Clancey 1986].

When attempting to automate knowledge acquisition, we must identify the roles that knowl-

edge engineers—and that computer-based tools—can play in either the creation or the exten-

sion of expert models. The PROTEGE system has been developed under the premise that,

at present, it is neither possible nor desirable to build tools to automate the entire knowledge-

acquisition process. We can find data in support of that proposition by examining how knowl-

edge engineers and experts have tried to use previous knowledge-acquisition tools to develop

practical knowledge bases. Some automated tools help system developers to craft a model

of the application task to be performed. Other tools assume that a model of the task area

already exists. We now consider these two classes of knowledge-acquistion programs in

detail.
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3. Tools for Creating Task Models

When building an expert system, developers must first perform a requirements analysis

and must identify the task that the expert system will perform. Then, knowledge engineers

and application specialists traditionally must work together to construct a model of the

proposed system's behavior. This model generally corresponds to the developers' theory

of how the expert actually solves problems. Much of the necessary modeling activity entails

what Newell [1982] refers to as knowledge-level analysis—determining (1) the goals for an

intelligent system, (2) the actions of which the system is capable, and (3) the knowledge

that the system can use to select actions that can achieve the goals. The process of knowledge-

level analysis makes no assumptions about the set of symbols with which the expert system

ultimately will be encoded (that is, about the rules, frames, or other data structures within

the knowledge-representation language). The concern at this stage is only the behaviors

of which the system will be capable.

There is increasing agreement in the literature that system builders should model the

behavior of a proposed system at the knowledge level before they begin to implement the

system. One modeling approach centers on defining abstract, domain-independent strategies

known as problem-solving methods that can form the basis of languages that system builders

can use to describe specific application tasks [Clancey 1985; McDermott 1988], For exam-

ple, Clancey's [1985] model of the method of heuristic classification includes abstract notions

such as (1) conclusions that the problem solver may select from a pre-enumerated set,

(2) solution-refinement hierarchies that allow the problem solver to narrow down the set

of conclusions that it makes, (3) data-abstraction hierarchies that allow the problem solver

to generalize from specific input data, and (4) heuristics that link abstractions of the user's

input data to potential solutions.

Clancey derived the heuristic-classification model from a retrospective analysis of the

behavior of a number of expert systems. Knowledge engineers, however, can apply such

models of problem solving prospectively when they create new knowledge bases, structuring

and clarifying the models that they create. Given an application task, such as MYCIN's

task of identifying potential causes of infectious disease, developers can use the domain-

independent concepts in the heuristic-classification model to define the intended behavior

of an evolving system without reference to individual data structures that might be required

to implement that behavior within the computer. By relating task-specific knowledge (such

as attributes of possible infectious deseases) to well-understood problem-solving methods

(such as the method of heuristic classification), developers clarify the roles that the knowl-

edge plays in the system's production of recommendations, facilitating both the encoding

and the maintenance of that system [McDermott 1988].

Researchers in AI have identified a number of domain-independent problem-solving

methods that can assist system builders in the creation of knowledge-level models [Clancey

1985; Chandrasekaran 1986; McDermott 1988]. Considerable work concentrates on the

elucidation of still other models of problem solving, particularly methods that might be

applied to tasks that cannot be performed using classification. Although there is increasing

consensus on the importance of the modeling approach, the knowledge-acquisition literature

is fragmented by the use of inconsistent terminology. For example, whereas many researchers

use the term problem-solving method for these abstract strategies [Clancey 1985; McDermott
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1988; Boose 1989; Musen 1989c], workers at Ohio State University advocate the term generic

task [Chandrasekaran 1986]. Yet most authors use the word task (without the "generic"

modifier) to refer to an application problem to be solved. Unfortunately, the distinction

between a task and a generic task often confuses both readers and authors. The developers

of the KADS system for knowledge acquisition [Breuker and Wielinga 1987] use the expres-

sion interpretation model to refer to the formalization of a problem-solving method. In

this paper, I consistently use the expression problem-solving method—or simply method—

when referring to an abstract solution mechanism. The term task denotes the statement

of an application problem, without regard to how that problem might be solved.

A source of additional confusion may arise in this paper, however, because there often

are two kinds of models under discussion. First, there are models of methods, which repre-

sent sets of both terms and relationships for describing abstract, domain-independent solu-

tion strategies. Second, there are models of tasks, which represent terms and relationships

for defining application problems to be solved. Frequently, system builders use the terms

and relationships of a model of a problem-solving method (for example, heuristic classifica-

tion) to define the specific terms and relationships that are needed to model an application

task (for example, organism identification in MYCIN). If the task can be solved using the

method, then the model of the method can provide a structure for the model of the task.

Indeed, task models often can be viewed as direct extensions (or instantiations) of models

of problem-solving methods [Musen 1989c].

Recently, several workers have developed computer-based knowledge-acquisition tools that

expand this notion of relating task-specific knowledge to a predefined model of a problem-

solving method [for example, Bennett 1985; Eshelman 1988; Marcus 1988]. Each of these

tools presupposes a model of a different problem-solving method. Knowledge engineers

use the terms and relationships in these models of problem solving to create new models

for the solution of application tasks (Figure 1). In this paper, I refer to these method-oriented

programs as model-building tools, because these tools help their users to devise and refine

task models. To create the task models, users extend a pre-existing model of some problem-

solving method. Each extension defines how the domain-independent method can be used

to solve a particular application task.

Figure 1. Creating a task model. Knowledge-acquisition tools such as ROGET contain models of domain-independent
problem-solving methods. Users of such tools extend the problem-solving models to define specific application tasks.
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ROGET [Bennett 1985], for example, was a knowledge-acquisition tool that contained

a model of diagnosis that was a specialized form of heuristic classification. The program

asked its user to identify the problems to be diagnosed, the causes of those problems, and

the data that could be used to suggest, to confirm, or to rule out those causes and problems.

A user's dialog with ROGET created a knowledge-level specification of the application

task, which was then translated into EMYCIN symbols that could form the basis of a working

consultation program. The knowledge engineer, however, modeled the application task (for

example, the organism-identification task in MYCIN) in terms of the abstract notions of

"problems," "causes," and "data." The developer never had to think in terms of the produc-

tion rules or other data structures that EMYCIN ultimately would require to generate the

proper diagnostic behavior.

A number of analogous method-based tools have been described subsequently, including

MORE [Kahn, Nowlan, and McDermott 1985], MOLE [Eshelman 1988], and SALT

[Marcus 1988]. PROTEGE (which I shall describe in Section 5) is also of this class. Each

of these tools provides a language that allows its users to create models of how application

tasks can be solved. In each case, that language is one of a particular problem-solving

method. Like ROGET, both MORE and MOLE assume that a user's task can be solved

using a specialized form of heuristic classification. PROTEGE and SALT, on the other

hand, adopt problem-solving methods in which the solution is constructed. The method

assumed by PROTEGE is a specialized form of skeletal-plan refinement [Friedland and

Iwasaki 1985]. The method built into SALT is a constraint-satisfaction strategy known as

propose and revise.

Tools such as MORE, MOLE, and SALT allow their users to do much more than to

create models of application tasks. Users of these tools also extend the task models that

they develop with the many domain-specific facts that are necessary to generate complete

knowledge bases. Unlike PROTEGE, these other tools do not sharply distinguish between

the activities of building models and those of extending them. However, because the process

of task-model extension is necessarily preceded by that of task-model creation, it is appro-

priate to view such method-based tools as knowledge-acquisition aids that assist users in

building task models.

In principle, all these model-building tools can be used by domain experts working alone.

Indeed, mechanical engineers used SALT to develop an expert system that configures ele-

vators for new buildings [Marcus 1988]. Such method-based tools, however, are used most

effectively by knowledge engineers [Musen 1989c]. The terms and relationships of the

problem-solving models assumed by the tools (for example, terms in ROGET such as "prob-

lems" and "causes") have precise semantics—distinct from these terms' vernacular mean-

ings—that may not be clear to untrained users. A naive user who recognizes such terms

as familiar lexical entities, but who may not appreciate the subtleties of the problem-solving

model that the terms denote, will be incapable of translating his mental model of a domain

task into an effective knowledge base. More important, the tacit nature of human expertise

often makes it difficult for application specialists independently to develop robust models

of their own behavior. For example, Kitto [1989] reports that when domain experts attempted

to use the KNACK knowledge-acquisition tool [Klinker 1988] without the aid of knowledge

engineers, the experts' inability to create models of the tasks to be performed constituted
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a major stumbling block. The entry of instantiating knowledge to extend task models that

already had been developed with help from knowledge engineers, however, was much more

straightforward for these experts.

4. Tools for Extending Task Models

Regardless of whether a computer-based tool is used to help developers to fashion the task

model, after a knowledge engineer and domain expert have created a model of the intended

behavior of the expert system, that model must be validated. An important form of valida-

tion is to ascertain how well the model applies to closely related application tasks. For

example, given a task model that correctly identifies the presence of infections involving

one class of micro-organism, system builders will want to confirm that the model can be

extended to identify additional classes of potential pathogens. In this phase of knowledge

acquisition, the developers test their model by establishing how that model applies to new

situations. The system builders' original knowledge-level model is an intention of how prob-

lem solving occurs; each specific situation for which the model can be shown to apply

is an extension of that model.1

Although creating a knowledge base may be difficult, extending an existing model is

less cognitively taxing. Whereas experts may not be able to introspect and to articulate

the process knowledge that allows them to solve problems [Johnson 1983; Winograd and

Flores 1986], these experts certainly are adept at voluntering the content knowledge that

may be either consistent or inconsistent with a given model. For example, a physician may

not be able to provide a coherent description of how he actually diagnoses infectious diseases,

but he may be able to describe readily the differences between bacterial and fungal menin-

gitis. Thus, although knowledge engineers typically are needed to help to craft an initial

task model, application experts may require little assistance either in extending an existing

model or in identifying specific situations in which a given model fails. The frequently

raised concern that the experts may not articulate authentic knowledge becomes moot when

the specification of only content knowledge is at issue.

The automated knowledge-acquisition tools that are most suited for direct use by domain

experts consequently are those that ask their users to extend existing models, rather than
to create new ones [Musen 1989c]. Such tools both assume a predefined problem-solving

method and incorporate a model of a class of application tasks; users extend the general

task model to define specific applications (Figure 2). Unlike the detailed task models that

knowledge engineers create and extend using tools such as MOLE and SALT, the task models

that developers build into this latter set of model-extending knowledge-acquisition tools

remain relatively abstract; the models are intentions. Rather than describing a particular

task to be performed, these models define the characteristics of classes of application tasks

that users might want to specify.

An example of such a tool is OPAL [Musen, et al. 1987], which was built by our laboratory
to streamline knowledge acquisition for a medical expert system known as ONCOCIN [Tu,

et al. 1989]. OPAL contains a model of the general task of administering cancer therapy

and asks physicians to extend that model to specific cancer-therapy plans. OPAL's task model

presupposes that patients will be treated with groups of drugs called chemotherapies. OPAL
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Figure 2. Extending a task model. Knowledge acquisition tools such as OPAL contain models of application-task

areas. Users of tools such as OPAL extend the general task models to define specific applications (for example,

particular cancer-treatment plans).

does not require its user to stipulate how chemotherapies are administered; such a model

was developed by the knowledge engineers who built OPAL. Rather, the program asks its

physician-user only to identify the sequence of chemotherapies in a particular treatment

plan, to enter the doses of the relevant drugs, and to indicate how the administration of

chemotherapy must be modified in response to changes in a patient's condition. Although

the individual treatment plans are complex, the pre-existing task model reduces the process

of defining new cancer treatments to simply filling in the blanks of graphical forms from

menus (Figure 3), or to piecing together sequences of icons using a graphical flowchart

language [Figure 4; Musen, et al. 1988]. OPAL thus solicits from the user an extension

to its predefined task model that specifies a new treatment plan; the program then auto-

matically generates from that extension a knowledge base that can be interpreted by the

ONCOCIN system to carry out that plan.

The task model in OPAL makes assumptions regarding everything from the nature of

chemotherapy to the kinds of conditions that can mandate modifications to a physician's treat-

ment plan. Such assumptions define a closed world. There is no way to add new concepts

to the model. OPAL allows physicians to create novel instantiations of existing concepts (for

example, a user can readily define a previously unknown drug or chemotherapy), but the

general classes of concepts in the model are predetermined. The task model tends to be suf-

ficient, however, because of the highly stylized nature of cancer therapy. Because the terms

in the model have precise, intuitive meanings that match the physicians' common usage of

these terms, it is relatively simple for application specialists to fill in the blanks and to con-

nect the flowchart icons in proper sequence to define new therapies. In 1986 alone, physi-

cians used OPAL to enter 36 cancer-treatment plans. Each plan could be entered in a few

hours or days. Previously, knowledge engineers and cancer specialists had typically required

several weeks of work to encode each such plan using traditional, manual techniques.

System builders construct tools such as OPAL with the assumption that they will create

multiple extensions to a given task model (for example, that they will create multiple chemo-

therapy knowledge bases). It would not be practical to incur the expense of programming

such a tool if the system were not to be used repeatedly. There are a number of application

areas where knowledge engineers have built tools to facilitate the construction of multiple,
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Figure 3. OPAL form for actions related to laboratory-test results. In this form, the physician is specifying how

therapy should be modified if the level of bilirubin in a patient's blood is elevated to more than 2.0 mg/dl.

figure 4. OPAL flowchart language. OPAL allows physicians to create visual programs corresponding to the proce-

dural specification of chemotherapies (CHEMO) and X-ray therapies (XRT) in a given cancer-treatment plan. Below

the region where the flowchart is entered is a palette of reference icons, used to add new nodes to the graph.

The specification that has been entered in this figure calls for a single course of VAM chemotherapy to be given,

followed by administration of POCC chemotherapy until the parameter CR (complete response) becomes true.

related knowledge bases. For example, Freiling and Alexander [1984] developed INKA

to aid knowledge acquisition for an expert system that troubleshoots electronic instruments;

each knowledge base created with INKA specifies fault-detection strategies for diagnosing

a particular device. Similarly, Gale [1987] built a program called Student to aid knowledge

acquisition for an expert system that advises researchers on the use of data-analysis programs;

each knowledge base produced with Student specifies the use of a different statistical routine.

In diverse domains such as medical therapy, event scheduling, and process control, system

builders would benefit from tools such as OPAL that allow application experts to work

alone, extending pre-existing task models to specify the knowledge that defines new task

instances.
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Although model-extending tools such as OPAL can be powerful in allowing domain spe-

cialists to author large knowledge bases without the concurrent need for knowledge engineers,

each such tool is necessarily tied to a specific task model. For example, if someone is

not interested in constructing a knowledge base for cancer chemotherapy, OPAL is useless

to him. Tools such as OPAL can play a significiant role in the life cycle of expert systems

when developers require multiple knowledge bases for sets of related domain tasks. The

challenge for tool builders is to recognize appropriate application areas and to generate

such domain-specific programs rapidly and efficiently.

Building the models that form the basis of systems such as OPAL and Student is itself

a problem in knowledge acquisition. Constructing such task-specific tools thus constitutes

another kind of bottleneck. OPAL, for example, required 3.5 person-years to develop before

any knowledge bases could be encoded. Building OPAL was cumbersome because, whenever

developers altered their model of cancer therapy, OPAL had to be reprogrammed. More

important, because that task model was not represented explicitly within OPAL, refining

the model required kowledge engineers to modify LISP expressions throughout the system's

program code; there was no knowledge-level representation of the model. These obstacles

to maintaining OPAL, and the desire to transfer the methodology to application areas other

than cancer therapy, prompted the development of PROTEGE.

5. Generation of Tools that Extend Task Models

A tool for building task models (such as ROGET), which presupposes a particular problem-

solving method, is best used by knowledge engineers to create knowlede-level models of

the tasks that expert systems will perform. On the other hand, a tool for extending task

models (such as OPAL), which presupposes a particular set of application tasks, can be

used by application experts independently to define specific task instances. The two classes

of tools are each suited for distinct phases of the expert-system life cycle. Because model

building is invariably followed by model extension—and because the process of model exten-

sion often uncovers deficiencies in the original model that need to be repaired—an important

goal is to make the use of these two types of tools as integrated as possible. An example

of the necessary integration has been achieved with the research system called PROTEGE

[Musen 1989a, b].

5.1. The PROTEGE System

PROTEGE is a knowledge-acquisition tool that, like ROGET, assumes a particular problem-

solving method—namely, a variant of skeletal-plan refinement [Friedland and Iwasaki 1985].

In performing skeletal planning, a problem solver decomposes a problem's abstract (skeletal)

solution into one or more constituent plans that are each worked out in more detail than

is the abstract plan. These constituent plans, however, may themselves be skeletal in nature

and may require further distillation into subcomponents that are more fleshed out. The

refinement process continues until a concrete solution to the problem is achieved.
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The expert systems that PROTEGE ultimately constructs produce as their output fully

instantiated plans for their users to follow. In the cancer-chemotherapy domain, for example,

such plans provide the details of the treatment that physicians should prescribe for an indi-

vidual patient at specific stages of therapy. The method of skeletal-plan refinement has been

applied to practical tasks not only in the ONCOCIN system [Tu, et al. 1989], but also

in Friedland's [1979] MOLGEN program and in various versions of the Digitalis Therapy

Advisor [Silverman 1975; Swartout 1981]. The method is well suited for applications that

require construction of solutions for which the problem solver's reasoning does not need

to concentrate on the details of selecting and ordering individual plan operators. In tasks

that can be solved by skeletal-plan refinement, the availability of substantial domain knowl-

edge makes it possible for the nuances of operator selection and of constraint satisfaction

to be precompiled into the skeletal plans themselves. The problem-solving method conse-

quently avoids search in favor of the instantiation of predefined partial plans [Friedland

and Iwasaki 1985].

PROTEGE allows a system builder to create an explicit model of a set of application

tasks that can be solved by skeletal-plan refinement. PROTEGE then generates automatically

a knowledge-acquisition tool like OPAL that is custom-tailored for the set of application

tasks that was modeled (Figure 5). PROTEGE recently has been used to construct p-OPAL,

a knowledge-acquisition tool for the cancer-therapy domain that reproduces the functionality

of OPAL. A second program created using PROTEGE, called HTN, allows physicians to
enter treatment plans for the management of patients with hypertension [Musen 1989a].

Unlike OPAL, which required many months to program by hand, both p-OPAL and HTN

were generated with PROTEGE after only a few days of work.

Figure 5. Creating and extending task models with PROTEGE. Knowledge engineers extend the model of skeletal-plan

refinement in PROTEGE to create general task models; the application-specific tools that PROTEGE generates

then allow domain experts to extend those task models to define individual applications.
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With PROTEGE, a knowledge engineer defines a task model by filling out a series of

graphical forms in a manner similar to the way in which oncologists fill out the forms

in OPAL. As in OPAL, the PROTEGE forms cluster together related information for presen-

tation to the user and allow data to be examined and edited using direct-manipulation tech-

niques. Although both PROTEGE and OPAL acquire knowledge using hypermedia interfaces

[Conklin 1987] and share common styles of human-computer interaction, the nature of the

knowledge that users enter into the two systems is quite different. Whereas OPAL acquires

knowledge of specific application tasks, PROTEGE acquires knowledge of general task

areas. Users enter into OPAL knowledge that is expressed in terms of that program's prede-

fined model of cancer-therapy administration. The knowledge that users enter into PROTEGE,

on the other hand, is couched in terms of a predefined model of skeletal-plan refinement.

When PROTEGE is first activated, the system's main menu appears on the workstation

screen (Figure 6). This form allows access to other PROTEGE forms that are available

at the next organizational level. Via the main menu, the user can cause forms to be displayed

that allow him to enter and edit the terms and relationships in a task model.

Figure 6. PROTEGE main-menu form. This form asks the user for the name of the knowledge-editing system

for which specifications are to be entered or edited using PROTEGE. Once the name has been entered via the

pop-up menu, the user can access forms for various topics by selecting the blanks in the menu. The top three

items (PLANNING ENTITIES, TASK-LEVEL ACTIONS, and INPUT DATA) correspond to the three principal

components of PROTEGE'S model of skeletal planning.
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Task models created using PROTEGE have the same three general components as does

the cancer-therapy task model that was hand-coded into OPAL: (1) the planning entities

in the domain from which the target expert system will refine its skeletal plans (for exam-

ple, concepts such as the administration chemotherapies and drugs in oncology), (2) actions

that can modify the application of one of the planning entities (for example, concepts such

as attenuating the dose of a drug or delaying treatment), and (3) input data that will be

entered by the user of the target expert system, the values of which may determine whether

any of the actions should be applied (for example, concepts such as laboratory-test results).

The challenge for PROTEGE users is to create a model of the task area under considera-

tion that can be represented using the terms and relationships of the predefined skeletal-

planning model. The knowledge engineer and domain specialist thus must examine the

application area and discern the kinds of abstract plans that experts may construct. The

developers then map the components of those plans into a hierarchy of PROTEGE planning

entities and establish the attributes of those plan components that are relevant during prob-

lem solving. The users also must determine how experts may modify the standard plans

in the task area on the basis of external conditions, modeling such potential plan alterations

as a set of PROTEGE task actions. Finally, the knowledge engineer and application specialist

must consider those external features that may bear on the system's recommendations. These

features are modeled as input data in PROTEGE'S terminology. The PROTEGE interface

assists the developers by providing an explicit structure and a convenient notation for record-

ing the components of the task model. Nevertheless, knowledge engineers and application

specialists still must collaborate using traditional techniques to elucidate that model in the

first place.

The mechanics of entering a task model in PROTEGE are straightforward. For example,

selecting PLANNING ENTITIES from the main menu in Figure 6 causes PROTEGE to

display the corresponding form for defining the components of skeletal plans in the relevant

application domain. Figure 7 shows this planning-entities form filled out for the hypertension-

therapy task, as was done to produce the HTN knowledge-editing tool. In the figure, the

knowledge engineer has specified that the most general component of a plan is called a

protocol, and that a problem solver may refine hypertension protocols into more detailed

plans that entail the prescription of tablets, the ordering of tests, and the passage of wait

periods. The specifications for these components say nothing about the particular kinds

of tablets that might be prescribed or the precise tests that might be ordered during the

administration of a particular treatment protocol for high blood pressure; the specifications

form only an intention of the application tasks that are possible in the hypertension domain.

Once PROTEGE generates a knowledge-editing tool based on this task model, then applica-

tion specialists can enter the extensions to the model that define individual treatment plans.

The problems of building a task model and of extending that model are therefore separated.

In addition to the form for PLANNING ENTITIES in Figure 7, PROTEGE contains

eleven other forms that knowledge engineers fill in to describe various aspects of a task

model [Musen 1989a]. Each form acquires information related to a particular topic (attributes

of planning entities, properties of attributes of planning entities, actions, attributes of actions,

and so on). All the forms contain blanks for making entries, as well as icons that allow

transfer from one form to the next. When the user selects with the mouse pointing device

a triangular-arrow icon in one of these forms, PROTEGE displays a new form for entry
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Figure 7. PROTEGE form for planning entities. This form is used to enter the planning entities in an application

area and to specify their compositional hierarchy. The knowledge engineer types in the names of the entities

using the right column. Before the engineer can type in the name of a new entity, however, he must first identify

the "parent" entity of which the new entity is a component. In the hypertension-therapy domain, PROTOCOLS

comprise the administration of TABLETS, TESTs, and WAIT periods. Selecting the arrow next to the blank filled

in with the word TABLET would open the PROTEGE form in Figure 8.

of information at the next lower level of detail. For example, if the knowledge engineer

selects the arrow next to the blank for the TABLET planning entity in Figure 7, PROTEGE

will open up a form for editing the attributes of TABLETs (Figure 8). PROTEGE uses

just one form to solicit the attributes of all planning entities that the knowledge engineer

may define. Because different entities necessarily have different attributes, however, the

way that the knowledge engineer fills out the form will depend on the particular entity

the attributes of which are to be entered. When the knowledge engineer selects an arrow

next to one of the attributes listed in Figure 8, another PROTEGE form appears for editing

the properties of the indicated attribute. Thus, PROTEGE uses a hierarchy of graphical

forms that acquire knowledge at increasingly fine levels of granularity. All forms in the

system permit the user to return to the more general form from which the current form

was invoked by selecting an icon labeled finished.

Whenever possible, PROTEGE allows the user to fill in the necessary blanks by making

selections from pop-up menus that the system generates dynamically. This approach not

only minimizes the amount of typing that is necessary, but also helps to ensure that the
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Figure & PROTEGE form for attributes of planning entities. This form lists the attributes of the selected class

of planning entity—in this case, tablet. PROTEGE enters the first six attributes automatically, as these are common

to all classes. The knowledge engineer types in the remainder of the attributes. Selecting one of the arrows causes

PROTEGE to display another form that describes the properties of the corresponding attribute.

knowledge engineer's entries are consistent with information that has been stipulated previ-

ously. The specifications that the user enters into PROTEGE are stored as n-tuples in a

relational database. When the user selects invoke editor from the PROTEGE main menu

(see Figure 6), the system queries the database and constructs a knowledge-acquisition tool

based on those data that is tailored for the intended application area.

The semantics both of the knowledge engineer's entries into PROTEGE and of the

relational-database schema are grounded in the system's predefined model of skeletal-plan

refinement. Thus, when a user indicates that hypertension protocols comprise the administra-

tion of tablets, tests, and wait periods (as in Figure 7), the intention of these compositional

relationships is established by the meaning ascribed to relationships among plan components

in the model of skeletal planning. In interacting with PROTEGE, a knowledge engineer

consequently uses his understanding of the terms and relationships in the skeletal-planning

model to define task-specific concepts in a domain-independent manner.

For each attribute of each task-specific entity that the knowledge engineer describes for

PROTEGE (see Figure 8), the engineer must determine how the attribute is associated with

a particular distinguishing value and what the data type of that value is. For each such

attribute, the knowledge engineer must indicate whether the corresponding value is constant

for all instances of that entity. If the value is indeed fixed, then the knowledge engineer

simply enters that value into PROTEGE. (For example, the ROUTE-OF-ADMINISTRATION

attribute of all instances of antihypertensive tablets has the value oral.) If the value varies

depending on circumstances that can be determined only at the time that the skeletal plan

is refined, then the knowledge engineer indicates to PROTEGE how the target expert system

can ascertain that value at run time. (For example, the CURRENT-DOSE attribute of all

tablets has an integer value that the target expert system computes via rules that are invoked
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at the time of each patient consultation.) Alternatively, the value of an attribute may be

independent of consultation-related conditions, but contingent on the particular instance

of the planning entity. (For example, the value of the INITIAL-DOSE attribute of antihyper-

tensive drugs may vary from tablet to tablet, but still may be a constant for any individual

tablet instance.) These instance-specific values represent elements of domain knowledge

that can be precompiled into the skeletal plans that the target expert system ultimately will

refine. The knowledge-acquisition tools that PROTEGE generates allow users to define

such instance-specific values for particular application tasks. In entering these values, users

of the PROTEGE-generated tools extend the general task model that the knowledge engineer

created using PROTEGE, describing individual applications within the task area.

5.2. Custom-Tailored Model-Extending Tools

The knowledge-acquisition tools that PROTEGE creates produce as their output usable

knowledge bases. These knowledge bases allow an expert-system shell extracted from the

ONCOCIN program (called e-ONCOCIN) to solve application tasks via the method of skele-

tal planning. Users of the PROTEGE-generated knowledge-acquisition tools, however, are

not required to think in terms of either the structure of these knowledge bases or the skeletal-

planning method. Instead, the users view their interactions in terms of the task model devel-

oped using PROTEGE. Like OPAL, the tools generated by PROTEGE help their users

to create new knowledge bases by facilitating the extension of task models, and thus are

intended for use directly by application specialists [Musen 1989c].

The hypertension-therapy model discussed previously has been used by PROTEGE to

create a knowledge editor, HTN, that allows physicians to construct knowledge bases for

hypertension management [Musen 1989a]. The description of planning entities entered into

the PROTEGE form in Figure 7, for example, provides the basis for a graphical environ-

ment in HTN in which users depict the procedures for carrying out individual hypertension

protocols (Figure 9). The model of skeletal-plan refinement built into PROTEGE assumes

that effecting any given plan component necessarily entails carrying out a sequence of opera-

tions involving instances of plan components at the next level of granularity. Because the

task model entered into PROTEGE states that hypertension protocols comprise the adminis-

tration of tablets, tests, and wait periods (see Figure 7), the HTN user automatically is

presented with a flowchart language for indicating how individual hypertension protocols

are composed of a sequence of instances of precisely such elements. The domain-independent

icons with which the user represents the flow of control (namely, START, STOP, RANDOM-

IZE, and DECIDE) and the SUBSCHEMA icon with which he creates graphical subroutines

are built into the graphical language; however, the domain-specific icons (namely, TABLET,

TEST, and WAIT) are derived from the task model defined at the PROTEGE level. The

flowchart shown in Figure 9 describes a typical experimental protocol in which researchers

first administer a placebo tablet for three visits, while monitoring the patients' baseline

blood pressure. The physicians then prescribe an active antihypertensive drug for several

visits, then withhold all medication and observe the patients for any withdrawal effects.

Concurrent with this procedure, a number of laboratory investigations are performed at

designated intervals.
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Figure 9. HTN flowchart environment. The HTN knowledge-editing tool includes a graphical language with which

physicians draw out the sequence of steps in a protocol for antihypertensive drugs. All task-specific features of

this language were derived from the explicit task model that knowledge engineers created previously using

PROTEGE. Compare this flowchart with the diagram constructed using OPAL in Figure 4.

When knowledge engineers use PROTEGE to generate knowledge-editing tools for other

application areas, similar flowcharting environments are created; the task-dependent aspects

of those environments, of course, reflect the models created at the PROTEGE level. Unlike

the flowchart language in OPAL, the PROTEGE-generated languages can be modified easily

by the knowledge engineer. The developer needs only to edit the task model using PROTEGE

and then to regenerate the corresponding knowledge editor. The PROTEGE-derived tools

transparently convert the flowchart diagrams that users draw on the workstation screen into

augmented transition networks (ATNs) that are incorporated within the knowledge bases

of the target expert systems. The e-ONCOCIN inference engine uses these ATNs to deter-

mine how instances of skeletal-planning entities (for example, specific hypertension pro-

tocols) should be refined into their component skeletal plans from one consultation to the

next, Thus, the ATN constructed from the flowchart in Figure 9 would specify that, on

the first e-ONCOCIN consultation for a particular patient, the protocol should be refined

to include the administration of an electrocardiogram (ECG), a chest X-ray study (CXR),

a complete blood count (CBC), a urinalysis (U/A), and a blood-chemistry panel (SMA-18)—

all of which are instances of tests—and that the administration of a placebo tablet also should

occur. On the occasion of the subsequent consultation for the patient, the ATN would indi-

cate that refinement of the protocol plan requires only the administration of placebo.

In addition to the flowcharting environments, the tools created by PROTEGE incorporate

a variety of graphical forms that are much like those in OPAL (see Figure 3). The domain-

specific features of the forms in the PROTEGE-generated system, however, are derived

from the explicit task models that knowledge engineers create using PROTEGE. Figure 10,

for example, shows one of the graphical forms in HTN. This form allows hypertension
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Figure 10. HTN form for vital-sign measurements. This form allows physician experts to enter actions to take

within hypertension protocols in response to changes in a patient's vital signs. Here, the expert is about to specify

actions for e-ONCOCIN to recommend whenever the treating physician notes that a patient's diastolic blood presure

(when measured with the patient in the sitting position) is greater than 90 mm Hg. All task-specific features

of this form were derived from the explicit task model created at the PROTEGE level. Compare with the OPAL

form in Figure 3. (SYST stands for systolic; DIAST stands for diastolic; STAND, SIT, and LIE indicate whether

the patient is standing, sitting, or lying down when the corresponding measurement is taken.)

specialists to indicate how therapy should be modified in response to changes in a patient's

vital signs. A list of possible vital-sign measurements that knowledge engineers previously

entered into PROTEGE appears at the top of this form. The HTN form in Figure 10 allows

physician-experts to indicate actions that e-ONCOCIN should recommend if the end user

notes that any of a patient's vital signs (blood pressure, pulse, weight, or respiratory rate)

is elevated, depressed, or within a particular range. In the figure, the expert is about to

enter the specification that, if a patient's diastolic blood pressure (measured with the patient

in the sitting position) is greater than 90 mm Hg, then the dose of the drug that the patient

is taking should be increased. (The expert indicates by how much to increase the dose using

another form that HTN subsequently displays.) The menu of permitted actions shown in

Figure 10 includes choices such as end protocol, add tablet, and order test. When knowledge

engineers created the hypertension task model, the meanings of these actions were specified.

Although the hypertension-related actions are relatively simple, in domains such as cancer

chemotherapy, task actions can be quite complex and can affect a variety of plan compo-

nents simultaneously [Musen 1989a]. An application specialist who enters knowledge into a
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PROTEGE-generated tool does not need to be concerned with the often-thorny issues of

working out the semantics of such actions; the user merely selects the predefined actions

from the menu. The user, however, still must understand and agree to the semantics estab-

lished by the developers who created the relevant task model in the first place.

5.3. The Performance Element: e-ONCOCIN

The e-ONCOCIN shell has been derived from the ONCOCIN cancer-chemotherapy advice

system [Tu, et al. 1989] in much the same way that EMYCIN was distilled from the MYCIN

program [Buchanan and Shortliffe 1984]. The shell comprises (1) an inference mechanism

that instantiates frame hierarchies using methods such as production rules, ATNs, attached

procedures, and queries to the expert-system user, (2) a database for storing time-dependent

information that was either entered by the end user or concluded by the system during previ-

ous consultations [Kahn, Ferguson, Shortliffe, and Fagan 1986], and (3) a graphical user

interface that acquires data from the user and that displays the recommendations concluded

by the system. The systems created by PROTEGE therefore must deliver to e-ONCOCIN

(1) a knowledge base, (2) a database schema, and (3) specifications for constructing the user

interface. These three functional components are encoded as a set of objects in an object-

oriented programming language [Lane 1986]. Representation of the simple hypertension proto-

col described in Section 5.2 (see Figures 9 and 10) required HTN to generate 177 objects.

Users interact with e-ONCOCIN much as they do with the original ONCOCIN system

[Lane, et al. 1986]. Each time that a consultation is run on a particular case, the user enters

data into a time-oriented spreadsheet (Figure 11). Because the complete spreadsheet is typ-

ically too large to be displayed on the workstation screen in its entirety, the interface is

divided into sections, such that each section refers to a specific class of input data or to

a different portion of e-ONCOCIN's recommendation. With the mouse, users select specific

sections of the spreadsheet to examine and then enter current input data into the rightmost

column of the indicated sections. (The interface makes it convenient for the users to examine

data from previous consultations and to review the recommendations that e-ONCOCIN

suggested during these past encounters, because the data are displayed chronologically by

column.) After all the current data have been entered, e-ONCOCIN completes its refinement

of the relevant skeletal plan and displays the system's recommendation in the corresponding

portion of the spreadsheet. In Figure 11, the recommendation appears in the sections labeled

tablets and tests.

The e-ONCOCIN system, like any expert-system shell, assumes a particular knowledge-

representation syntax (namely, a hierarchy of frames with attached productions rules and

ATNs). The semantics of e-ONCOCIN knowledge bases are determined operationally by

the behavior that results when the inference engine is applied to those frames, production

rules, and ATNs. At the same time, e-ONCOCIN's behavior can be described in terms

of the skeletal-planning model that is built into PROTEGE. When a PROTEGE-generated

tool is used to build an e-ONCOCIN knowledge base, the tool automatically constructs

the frames and other symbols that will cause e-ONCOCIN's activity during a consultation

to match the task model that the knowledge engineer first created with PROTEGE and

that the application specialist extended using the resultant tool.
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Figure 11. Interface for e-ONCOCIN expert systems. In addition to a knowledge base describing a particular

hypertension protocol, HTN generates a user interface for e-ONCOCIN based both on the general task model

entered into PROTEGE and on the specific hypertension protocol entered into HTN. The interface consists of

a spreadsheet, with each column representing the occurrence of a different e-ONCOCIN consultation regarding

the same patient case. In the figure, the sequence of tablets and tests that have been administered corresponds

with the HTN flowchart diagram in Figure 9.

The model of skeletal planning that knowledge engineers extend at the PROTEGE level

to create new task models ultimately is constrained by the limitations of the e-ONCOCIN

shell. Thus, a plan described with PROTEGE can be refined only in a top-down manner,

because the current e-ONCOCIN architecture does not include a general mechanism for

performing backtracking to satisfy constraints [Tu, et al. 1989]. Similarly, the input data

described at the PROTEGE level must be associated with only discrete time intervals that

correspond with elements of past or current plans—a restriction that reflects the semantics

of the e-ONCOCIN temporal data model [Kahn, Ferguson, et al. 1986]. Future work in

our laboratory to enhance the capabilities of the e-ONCOCIN shell ultimately will allow

refinement of the problem-solving model built into PROTEGE and will expand the applica-

bility of the system. In the absence of a meta-metalevel editor to alter PROTEGE'S method-

specific assumptions, such changes will require manual reprogramming.
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6. Discussion

For over 20 years, many workers in AI have viewed knowledge acquisition as a problem

in the transfer of expertise. Concentrating on the issue of knowledge transfer, these research-

ers have tried to identify impediments to successful knowledge acquisition and have suggested

that automated tools can help to improve knowledge flow. Historically, the knowledge engi-

neer is perceived as an intermediary who must interview the expert and then transform the

expert's rules of thumb into representations that can be interpreted by the computer. Because

the knowledge engineer is inexperienced in the application area and because the expert

is unable to envision how his knowledge might be captured within the knowledge base,

failures in communication are inevitable. In the traditional view, the knowledge-acquisition

bottleneck occurs because of these communication difficulties; if the application experts

could somehow record their knowledge directly, without having to explain everything to

the knowledge engineers, the development and maintenance of knowledge bases would be

accelerated.

From the time of TEIRESIAS, the knowledge-acquisition community has struggled to

build tools that might allow application specialists to work alone, bypassing the need for

knowledge engineers. Although the knowledge-base-maintenance features of TEIRESIAS

were never put into practical use, the program set a standard for how most researchers

believed automated knowledge-acquisition tools should function. At conferences and in

the literature, developers of new tools boast whenever application specialists have been

successful in encoding portions of their knowledge without assistance from human interme-

diaries. Although such examples are laudable, what often is missing from these reports

is careful evaluation of the results that have been achieved. It is often impossible to know

how to assign credit for a tool's apparent success. What features of the tool, of the applica-

tion specialist, or of the situations in which the tool was used were most relevant? More

important, knowledge entered directly by application specialists themselves is unlikely to

be authentic (see Section 2.2). Whenever domain experts use knowledge-acquisition tools

without the mediating influence of a knowledge engineer, system builders must be willing

to accept that the entered knowledge may not reflect the behavior that the experts actually

exhibit in practice. Whether the discrepancy significantly degrades the performance of the

target expert system almost never is assessed.

OPAL, for example, is a tool that cancer specialists often use alone without the aid of

knowledge engineers. Like most knowledge-acquisition programs, there are many aspects

of OPAL that never have been evaluated formally. Once the system was put into routine

use, however, the obvious rapidity with which oncology protocols could be encoded using

OPAL made knowledge engineers unenthusiastic, to say the least, about engaging in academic

experiments that required manual knowledge-engineering techniques. At the same time,

because the knowledge that users entered into OPAL was never tacit (but rather entailed

content knowledge about the doses of drugs and the sequencing of chemotherapies), system

builders never saw the need to question the authenticity of the physicians' specifications.

Indeed, knowledge bases created with OPAL have been shown to achieve expert-level per-

formance [Shwe, et al. 1989].

The acquisition of authentic knowledge becomes an issue when system builders create

new task models. It is during this early stage of knowledge acquisition that developers
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formulate their initial theories of how experts solve problems. It is also during this early

stage that knowledge engineers—and computer-based tools—can greatly facilitate the model-

ing process.

Many workers in AI have described expert-system knowledge bases as unstructured collec-

tions of rules that correspond with the problem-solving heuristics actually used by experts.

In this traditional view, the rules are considered to be modular and independent; each rule

thus lacks relationships with other rules in the knowledge base and is devoid of any pre-

ordained role in problem solving. Recently, however, the elucidation of heuristic classification

[Clancey 1985] and of other problem-solving methods [Chandrasekaran 1986; McDermott

1988] has provided an alternative perspective that offers much more guidance to the pro-

grammers who develop and maintain complex knowledge bases. In this new light, expert-

system behavior need not be caused by the seemingly random results of one "modular"

rule triggering the invocation of another; rather, such behavior can result from the applica-

tion of coherent, domain-independent strategies. Emphasizing these problem-solving

methods allows sytem builders to clarify the roles that elicited knowledge plays in arriving

at a task solution and provides a structure by which to direct further knowledge-elicitation

work. The use of an explicit model of problem solving (such as that of heuristic classifica-

tion) when creating the incipient task model in no way guarantees that knowledge engineers

will obtain authentic knowledge from application specialists. The model's framework simply

helps system builders to structure the elicited knowledge and to determine where there still

may be gaps.

Models of problem-solving methods vary in the assumptions that they make about the

tasks to which the method can be applied. Very general methods, such as heuristic classifica-

tion, make few assumptions and, therefore, have tremendous applicability. A great many

diagnostic tasks and plan-selection operations, for example, can be represented as extensions

of the heuristic-classification model. The generality of the model, however, limits the struc-

ture that the heuristic-classification model can impose on the way that knowledge engineers

represent domain tasks. There is a direct tradeoff between the applicability of a problem-

solving model and the guidance that the model can provide for system builders. The more

specialized, less widely applicable models incorporated within programs such as MOLE

[Eshelman 1988] and SALT [Marcus 1988] have, in practice, been more helpful to developers

attempting to structure domain tasks than have more abstract models such as heuristic classi-

fication. The advantage of the more specialized models is that they provide greater assistance

in distinguishing the different ways in which a problem solver may use domain knowledge

to arrive at a solution. To apply these more detailed models, however, system builders must

be able to foresee whether a proposed method will be successful in addressing the task

at hand, or whether that method will prove to be too restrictive.

Models of problem solving, when embodied within a computer-based tool, are much

more useful to system developers than are models that are mapped out only on paper. The

ability to translate a user's extensions of the model into machine-readable knowledge bases

is an obvious advantage. A more subtle, but perhaps more important, benefit arises because

automated tools can facilitate the presentation of complex systems. The graphical forms

in PROTEGE, for example, group together related data and emphasize the relationships

entered by the user. Each transition from one form to another moves the user's view of

the task model that he is creating to a different level within an abstraction hierarchy. The
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forms help to break up a knowledge engineer's entries into manageable portions, and the

relationships among the forms emphasize the relationships among the components of the

user's specifications. The same advantages in knowledge presentation accrue in model-

extending tools as well. Users of programs such as OPAL and those generated by PROTEGE

benefit from graphical presentation formats that accentuate the relationships among large

numbers of entries and that organize those entries coherently.

PROTEGE offers the additional advantage that users can extend a predefined model of

problem solving in two discrete stages. Knowledge engineers first extend a model of skeletal-

plan refinement to create a task model. Domain experts then extend that task model (itself

an extension of the model of the method) to define individual applications. By viewing

knowledge acquisition as the process of task-model formation followed by the process of

task-model extension, system builders can think critically about these two phases of the

expert-system lifecycle and can identify features of knowledge-acquisition tools best suited

for each phase. Rather than concentrating on whether the need for knowledge engineers

has been obviated by a particular tool—and implicitly assuming that eliminating the knowl-

edge engineers is a necessary and sufficient metric of success—developers can consider

the roles that knowledge engineers might play in helping application specialists to build

models. The knowledge engineer should be regarded as a potential partner, rather than

as an inherent marplot, allowing workers in AI to develop more effective strategies for

acquiring and representing the tacit knowledge that separates experts from novices. At the

same time, by recognizing the ease with which application specialists can enter the content

knowledge that extends pre-existing models, developers can build tools such as OPAL that

experts can indeed use independently.

The PROTEGE system demonstrates a divide-and-conquer strategy that separates the

model-building work that application specialists best perform with the aid of knowledge

engineers from the model-extending work that application specialists easily can perform

independently. At the PROTEGE level, knowledge engineers work with domain experts

to build models of tasks that can be solved using the method of skeletal-plan refinement.

These models can then be used as the foundation for custom-tailored knowledge-editing

tools. PROTEGE is used to map out the structure of the task and, consequently, the process

by which a problem solver might arrive at a recommendation. The tools that PROTEGE

generates, on the other hand, acquire knowledge about the content of specific plans. Although

these two phases of knowledge acquisition sometimes may be strictly sequential in nature,

attempts to enter content knowledge frequently point out deficiencies in the initial task model;

PROTEGE'S division of labor allows knowledge engineers to alter the task model easily

whenever application specialists encounter problems during their model-extension work.

(With OPAL, changes to the task model always required cumbersome reprogramming of

LISP code.)

The decision regarding the optimum way to separate task knowledge into a fixed, reusable

portion and a variable, application-specific portion is an important judgment that all

PROTEGE users must face. The declaration of the classes of entities in the domain and

the attributes of those entities is necessarily part of the task model entered into PROTEGE.

The values of those attributes, however, may either be predefined as part of the task model

(or have predefined methods by which the attributes' values may be concluded) or be iden-

tified as content knowledge to be entered by the user of the tool that PROTEGE generates.
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Whether an attribute's value should be considered a constant element of the task model

or part of the application-specific content knowledge is determined by the nature of the

task domain and by the role that that attribute plays in problem solving.

Although demonstrated within the context of the skeletal-planning method, the PROTEGE

approach also should apply to other methods of problem solving. For example, if the system

were adapted for an inference engine that is well-suited for solving problems using heuristic

classification (such as EMYCIN), knowledge engineers then would use PROTEGE to create

models of classification tasks, rather than models of planning tasks. A knowledge engineer,

for instance, might use PROTEGE to describe the set of classification problems that is

encountered during geological mineral exploration, as was done in the Prospector system

[Reboh 1981]. A knowledge-acquisition tool generated by PROTEGE then could be used

by expert geologists to enter specific ore-deposit models. The ore-deposit models could

be converted to knowledge bases for expert systems that workers in the field would use

to detemine the most favorable drilling sites for particular minerals.

Where there are multiple, related tasks within an application area—and when there is

thus the need to construct multiple knowledge bases—the PROTEGE approach offers a

considerable advantage. The difficult problem of creating a computational model of the

domain task does not disappear; the need for knowledge engineers to help application special-

ists to build such a model does not disappear either. Nevertheless, the methodology allows

system builders to confront only a single bottleneck. If knowledge engineers and domain

experts first use tools such as PROTEGE to build the required task models, those experts

then can go to work on their own, extending those task models to define multiple knowledge

bases. The models incorporated within the tools that PROTEGE generates, however, may

not always account for all the professional behaviors that system builders ultimately may

observe in an application area. When the user of a PROTEGE-generated tool is unable

to extend the given task model to specify a required action (that is, if he must unexpectedly

describe an entity that is not within the original model), the task model may have to be

augmented at the PROTEGE level.

Like natural theories that are proposed, tested, and revised, the models constructed by

knowledge-acquisition tools display a distinct life cycle. Workers in AI have built a variety

of tools, each addressing different aspects of this modeling process. Tools such as ROGET

assist developers with the initial model-building phase when the task still may be ill defined.

Tools such as OPAL aid in the final model-extending phase, when the task area is well

understood and end users require multiple, related knowledge bases. The new challenge

is to integrate these approaches, allowing model building to be followed by model extension,

providing continuous assistance from the time that the application task is first identified

to the time that the final knowledge base is disseminated to end users.

PROTEGE is the first step toward that integration. Workers in AI, however, have not

yet identified an optimal technology for acquiring knowledge for expert systems, and even

less is known about acquiring domain knowledge for the purposes of building knowledge-

acquisition tools. Consequently, there will be substantial opportunities for research as the

PROTEGE approach is broadened to other task areas, to other problem-solving methods,

and to other knowledge-system architectures. In the process of expanding the techniques

demonstrated by PROTEGE, we shall be able to learn more about the structure and applica-

bility of new problem-solving methods and about the modeling of domain tasks.
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Notes

1. We also could refer to each situation in which the model applies as an instantiation, although many authors

reserve that word for descriptions of symbols within a knowledge-representation language. In this paper,

therefore, I use the term extension.
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