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Abstract

Robot configuration design is hampered by the lack of established, well-known
design rules, and designers cannot easily grasp the space of possible designs and the im-
pact of all design variables on a robot’s performance. Realistically, a human can only de-
sign and evaluate several candidate configurations, though there may be thousands of
competitive designs that should be investigated. In contrast, an automated approach to
configuration synthesis can create tens of thousands of designs and measure the perfor-
mance of each one without relying on previous experience or design rules.

This thesis creates Darwin2K, an extensible, automated system for robot configu-
ration synthesis. This research focuses on the development of synthesis capabilities re-
quired for many robot design problems: a flexible and effective synthesis algorithm,
useful simulation capabilities, appropriate representation of robots and their properties,
and the ability to accomodate application-specific synthesis needs. Darwin2K can synthe-
size and optimize kinematics, dynamics, structural geometry, actuator selection, and task
and control parameters for a wide range of robots.

Darwin2K uses an evolutionary algorithm to synthesize robots, and utilizes two
new multi-objective selection procedures that are applicable to other evolutionary design
domains. The evolutionary algorithm can effectively optimize multiple performance ob-
jectives while satisfying multiple performance constraints, and can generate a range of so-
lutions representing different trade-offs between objectives. Darwin2K uses a novel
representation for robot configurations called the parameterized module configuration
graph, enabling efficient and extensible synthesis of mobile robots, of single, multiple and
bifurcating manipulators, and of robots with either modular or monolithic construction.

Task-specific simulation is used to provide the synthesis algorithm with perfor-
mance measurements for each robot. Darwin2K can automatically derive dynamic equa-
tions for each robot it simulates, enabling dynamic simulation to be used during synthesis
for the first time. Darwin2K also includes a variety of simulation components, including
Jacobian and PID controllers, algorithms for estimating link deflection and for detecting
collisions; modules for robot links, joints (including actuator models), tools, and bases
(fixed and mobile); and metrics such as task coverage, task completion time, end effector
error, actuator saturation, and link deflection. A significant component of the system is its
extensible object-oriented software architecture, which allows new simulation capabili-
ties and robot modules to be added without impacting the synthesis algorithm. The ar-
chitecture also encourages re-use of existing toolkit components, allowing task-specific
simulators to be quickly constructed.

Darwin2K’s synthesis algorithm, simulation capabilities, and extensible architec-
ture combine to allow synthesis of robots for a wide range of tasks. Results are presented
for nearly 150 synthesis experiments for six different applications, including synthesis of
a free-flying 22-DOF robot with multiple manipulators and a walking machine for zero-
gravity truss walking. The synthesis system and results represent a significant advance in
the state-of-the-art in automated synthesis for robotics.
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Introduction    1

1 Introduction

Robot configuration design is often performed in an ad hoc manner. The configu-
ration process is hampered by the lack of established, well-known design rules for trans-
lating the requirements of a task into a robot configuration, and human designers cannot
easily grasp the space of possible designs and the impact of all design variables on a ro-
bot’s performance. Instead, they must rely on intuition and their own experience with re-
lated design problems, and on engineering rules applicable only to parts of the robot such
as individual motors or links. Even when modifying an existing design, small changes to
one part of the robot can drastically alter the performance of the whole: changing a single
Denavit-Hartenberg parameter for a manipulator may reduce the dimensionality of the
robot’s workspace; increasing the size of one actuator may cause other actuators’ torque
limits to be exceeded; increasing the mass of one link may require other links to be
strengthened; and so on. It is also difficult to determine if a candidate design is suitable
for a specific task: Can it perform the required motions? Does it do so without colliding
with objects in its environment, or with parts of itself? Can the robot’s actuators provide
the necessary forces and torques? How much energy does the robot use during the task?
How accurately can the robot perform the task? Each of these questions (and usually oth-
ers) must be answered to determine if a robot can satisfactorily meet a task’s needs. Real-
istically, a human can only design and evaluate several candidate configurations, though
there may be thousands of competitive designs that should be investigated. In contrast, a
comprehensive and flexible automated approach to configuration synthesis can create
tens of thousands of designs and measure the performance of each one without relying
on previous experience or design rules.

When designing a robot for a task with many new characteristics, relevant experi-
ence in the design team may be limited and may restrict the range of designs that are ex-
plored. Frequently, a person or team investigates a small number of concepts based on
previous design experiences and selects a few that look promising. This initial brain-
storming often consists of qualitative thought experiments and back-of-the-envelope cal-
culations to predict how well each design meets the major requirements of the task: Can
each robot perform the basic motions required? Will the robot’s kinematics necessitate
large actuation forces or be prone to collisions and link interference? Based on the an-
swers to these questions, one of the candidate configurations is selected for simulation
and further design. Only after detailed simulation of the robot and its controller do some
problems become apparent. Significant effort has now been invested in the design, such
as deriving inverse kinematics for the robot, devising an appropriate controller, and
searching through catalogs for motors and gearboxes. Much of this effort is robot-specific
and is lost if a different design is chosen; therefore, from this point forward the preferred
method of addressing design shortcomings is to modify the design rather than to start
over with a different configuration. Once the robot is built, further changes may be re-
quired due to unforeseen problems or interactions. Significant design iterations are often
not practical since much of a project’s schedule and resources may be dedicated to creat-
ing a single robot; building a second or third robot to remedy design flaws is beyond the
scope of many projects. Thus, it is crucial to perform as much analysis and simulation as
possible before the robot is built, and it is highly desirable to get it right the first time --
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since the first time may be the only time. Given the opportunity to build a second robot,
the designers can think of things they would have done differently; examples can be
found in [Bares93], [Bares99], and [Arocena98]. Many of the changes would require mak-
ing different decisions in the early stages of the design process, when the focus is on lim-
iting the number of designs as quickly as possible. However, detailed analysis of multiple
designs is discouraged given the analysis tools currently available and the tight schedule
of many robot design projects. If many different designs could be readily simulated with
reasonable fidelity then the decision to commit to a particular design would be better-in-
formed, leading to fewer surprises down the road and providing more confidence that
the chosen design will be successful.

The challenges of robot configuration design make automated synthesis methods
attractive. Table 1.1 summarizes the limitations of manual design and how they can be

addressed by automated synthesis. Synthesis programs frequently evaluate 104 to 105 dif-
ferent solutions during the search for a feasible or optimal solutions; clearly, evaluating
this many designs is impractical for a human designer. Thus, the design space can be
more thoroughly searched by automated synthesis tools than by a human designer alone.
If accurate simulation and analysis programs are used to evaluate designs during the syn-
thesis process, then the designer can have high confidence that the automatically gener-
ated designs will have satisfactory performance for the desired application.

Because synthesis tools can use simulation and search in place of design rules and
experience, they can create solutions to complex or poorly understood design problems
where relevant experience is lacking in the design team. Similarly, an automated synthe-
sis tool can produce unintuitive yet well-optimized designs that human designers -- with
biases towards familiar or easily-understood designs -- would not create. A side effect of
evaluating robots in simulation is that it can be easy for a human designer to manually
modify solutions and then simulate them with the simulator used by the synthesis pro-
gram, thereby reducing the cycle time of design iterations. Finally, a synthesis tool can re-
duce the time and cost required to generate new designs by performing a large part of the
design and analysis process for engineered artifacts.

Table 1.1:  Comparison of manual and automated design
Many of the limitations of manual design can be addressed by an automated
synthesis method that uses extensive search and simulation. Automated
synthesis can be used to replace or augment the manual configuration design
process.

Manual design Automated synthesis

Few designs are created or evaluated Generates and evaluates many designs

Designs limited by relevant experience Uses search instead of experience

Few general design rules Uses search and directly measures robot
performance

Difficult to predict robot performance Uses simulation to evaluate each design

Hard for a human to grasp design space
and impact of variables

Explores the design space by sampling, directly
measures effects of variables
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1.1 Problem Statement

There exists a need for a widely-applicable automated synthesis tool for robot configuration
design. Compared to current design practices, such a tool would enable more thorough exploration
of the design space, and more accurate assessment of candidate configuration performance.

1.1.1 Scope

This thesis addresses the development of a capable and extensible software system
for robot configuration synthesis. The goal is to create a synthesis system that is applica-
ble to a wide range of robot configuration design problems due to its extensibility and its
core synthesis and analysis capabilities. The system should be expansive in the properties
that can be synthesized: kinematics, dynamics, non-kinematic geometry, actuators, and
other component selections should be generated by the system, and it should be possible
to add new properties to be synthesized as demanded by specific tasks. The synthesis sys-
tem should be capable of creating a wide range of robots, including mobile robots and
manipulators (or combinations thereof) with modular or monolithic construction. The ro-
bots created by the systems should be well suited for the task at hand, meeting multiple
design requirements while optimizing one or more performance objectives such as speed
or system mass. This demands an appropriate synthesis algorithm, one that is capable of
efficiently searching a large design space while optimizing multiple objective functions in
a manner relevant to the task at hand.

Equally important is the ability of the system to accurately predict the performance
of each robot, since inaccurate or incomplete performance predictions give the designer
little confidence that the robot will behave as indicated by the synthesizer. In this thesis,
task-specific simulation will be used as the primary means of predicting a robot’s perfor-
mance. To accurately assess robot performance with respect to a task’s requirements, the
system should include a library of commonly required simulation capabilities such as ki-
nematic and dynamic simulation, actuator modeling, collision detection, and controllers
for Cartesian and joint-space trajectory following. At the same time, the system should al-
low new robot components, analysis tools, robot controllers, performance metrics, and
task representations to be added and to interact with existing capabilities so that task-rel-
evant evaluation methods can be easily created. The addition of new simulation capabil-
ities or robot components should not affect the synthesis algorithm, as this will limit the
applicability of the system.

This thesis will not address detailed electromechanical design and issues such as
cable routing, sensor selection and placement, nor will synthesis of control programs be
addressed. Since the focus of this thesis is the creation of a broadly-applicable synthesis
tool, in-depth investigation of task representations or performance characterization for
specific types of robots (e.g. 6-DOF manipulators) will not be performed. The main issues
addressed will be the development of core capabilities that are required for many robot
design problems: a flexible and effective synthesis algorithm, useful simulation capabili-
ties, appropriate representation of robots and their properties, and the ability to accomo-
date application-specific synthesis needs. Successfully addressing these issues will result
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in a practical, widely-applicable synthesis system for robot configuration design.

1.1.2 Research Issues

Optimizing multiple metrics. Real-world design problems inevitably have multi-
ple requirements. The better an optimization method can capture the requirements, the
more efficiently it can generate results that are appropriate for the application being ad-
dressed. For design, the optimization algorithm should account for the relative impor-
tance of different metrics as perceived by the designer (e.g. completing the task is always
more important than how much power is used). Optimization of multiple metrics is an
open area of research in both evolutionary optimization and in other domains. Finding
an efficient method for optimizing multiple metrics is especially important when assess-
ing the performance of each solution is expensive, as it is for robot configuration synthe-
sis.

Architecture for extensibility. There is no single way of describing the require-
ments for every application, or for measuring the performance of every robot. A rover for
planetary exploration has drastically different requirements than a manipulator for dex-
trous manipulation, which in turn has different requirements than a manipulator used for
excavating soil. If a synthesis systems is to be useful for a range of applications, it must
allow the use of appropriate representations for tasks and requirements, and must make
it easy for these new representations to be incorporated. Any dependencies between the
synthesis algorithm and the details of a particular application will require the synthesis
algorithm to be modified when addressing new applications. At the same time, applica-
tion-specific needs must be addressed by the system as a whole if the system is to be ca-
pable of generating relevant results. Balancing these two needs has been a driving force
for the system architecture.

Equally important to achieving wide applicability is the robot representation used
by the system. Allowing new robot topologies and components is necessary to enable the
system to address new design problems, as the restriction to a narrow domain (e.g. single
serial chain manipulators with fixed bases) limits the class of design problems for which
the system can be used. Some synthesis tasks may require mobile robots; some may re-
quire manipulators; some may require that a robot be assembled from prefabricated mod-
ules. Some tasks may require optimization of actuator selection; some may require
optimization of structural geometry; some may require optimization of the robot’s con-
troller. Choosing a representation that allows for a diversity of topologies and properties
is thus important for a robot synthesis system that will not be limited to a small range of
design problems.

Robustness vs. computation time. Creating an effective synthesis algorithm en-
tails finding an appropriate trade-off between robustness and execution time. In machine
learning circles, this is known as the exploration versus exploitation trade-off: How
should an algorithm balance exploration of new (and potentially better) areas of the
search space against exploiting known, promising solutions? Narrowing the search to fo-
cus around a promising configuration may quickly lead to a feasible solution, but may
make the system more susceptible to local minima in the search space. On the other hand,
a more conservative algorithm might unnecessarily explore many solutions because it
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does not commit to refining a promising design early on. Throughout this work, it has
been important to find a balance between exploitation and exploration that gives reason-
able robustness while remaining practical in terms of runtime.

Simulation fidelity vs. computation time. The performance of each configuration
must be assessed in order to judge its suitability for the task at hand. In this thesis, simu-
lation is used to evaluate each robot’s performance so finding an appropriate balance be-
tween simulation fidelity and computation time is an important issue. The type of
simulation (kinematic or dynamic) is one key factor that has significant impact on synthe-
sis speed and fidelity; others include the approximations made by the simulation tools
(such as those for computing link deflections), and the complexity of the representative
task used to evaluate each robot’s performance. Another basic manifestation of the fidel-
ity vs. computation trade-off is the choice of control algorithms. Local algorithms require
orders of magnitude less time to generate motion commands than global algorithms, but
are not guaranteed to find optimal paths or avoid collisions. The synthesis algorithm will
be biased towards configurations that perform well with the controller used in simulation;
typically this will mean that robot performance is underestimated if globally-optimal
control is not used. One alternative to incurring computational cost of global, deliberative
planning is to co-evolve a motion plan along with each robot, though this just shifts the
burden of optimal control onto the synthesis algorithm. To ensure a reasonable system
runtime, this research has utilized local control algorithms while including some task and
control parameters (such as via point location and velocity and acceleration profiles) in
the synthesis process.

1.2 Related Work

There has been much prior work in the area of robot design. However, research in
automated design--that is, the development of software systems which perform a signifi-
cant part of the synthesis of a robot--has been limited to a handful of systems with widely
varying scope and goals. When examining the scope of these, it is important to distin-
guish between configuration synthesis and configuration optimization. Configuration
synthesis aims to generate kinematic type and dimensions (at the minimum) for a novel
robot, while configuration optimization assumes a more limited range of solution types
and refines their properties to improve performance. [Bentley99a] makes a distinction be-
tween synthesis and optimization for evolutionary methods of automated design in gen-
eral. He divides evolutionary design approaches into “creative evolutionary design” and
“evolutionary design optimization”, and quotes [Rosenman97] to describe the continuum
between them:

The lesser the knowledge about existing relationships between the requirement
and the form to satisfy those requirements, the more a design problem tends towards
creative design. [Rosenman97]

Configuration synthesis corresponds to creative evolutionary design: the overall
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form of the configuration (solution) is not known a priori and must be created and opti-
mized by the synthesizer. In contrast, configuration optimization (and evolutionary de-
sign optimization) assumes a particular solution form for which optimal parameter
values must be chosen. Configuration synthesis and configuration optimization have sig-
nificantly different scope and require different techniques. Synthesizing kinematic type
-- rather than selecting from a small set of kinematic types or performing only parametric
optimization -- requires more complex representations for robots and tasks and needs
more flexible simulation, control, analysis, and numerical search tools than configuration
optimization. When the solution form is limited (as in configuration optimization), ana-
lytic or closed-form methods can often be used; however, these methods are too limited
in scope when synthesizing kinematic type, dynamics, actuator selection, and additional
properties. For example, if an optimization problem consists of selecting one of several
manipulators and computing an optimal location for the robot’s base, then closed-form
inverse kinematics can be used to control each robot in simulation. On the other hand, if
the kinematic form of a solution is being synthesized then both synthesis and simulation
become more challenging. In the latter case, the design space is larger and simulating each
robot requires a more flexible controller that does not require a priori knowledge of a ro-
bot’s inverse kinematics. As with creative evolutionary design and evolutionary design
optimization, there is a continuum of complexity rather than a clear dividing line between
robot synthesis and optimization. One rough measure of complexity of a synthesis or op-
timization method is the extent to which the solution process relies on analytic methods;
methods which make use of closed-form equations for simulation (e.g. inverse kinemat-
ics) or for determining optimality can do so because the space of possible solutions is suf-
ficiently restricted.

The remainder of this section presents a comprehensive review of research in the
automated synthesis and optimization of robot configurations, and also gives a sampling
of synthesis and optimization work for domains other than robot configuration.

1.2.1 Robot configuration synthesis and optimization

Previous approaches to robot configuration synthesis can be divided into two cat-
egories: modular synthesis, and non-modular or monolithic synthesis. The former group
is characterized by constructing robots from fixed modules, mirroring a set of reconfig-
urable hardware modules from which the actual robot is built. The latter group has syn-
thesized robots which consist of purely kinematic descriptions (i.e. Denavit-Hartenberg
(DH) parameters or equivalent) and which are not built from fixed modules. Another in-
teresting distinction is between systems which estimate performance through simulation,
and those which use heuristics based on inherent properties of the robot as a measure of
performance. Evaluation through simulation is typically much more expensive and often
requires many parallel evaluation processes, while heuristic evaluation is faster but is less
accurate in predicting robot performance. Nearly all approaches to configuration synthe-
sis have employed evolutionary algorithms of some sort, due to the robustness of such
algorithms to local minima and to search spaces that are highly nonlinear and of varying
dimension.

Several systems addressed the assembly of a set of fixed modules into robotic sys-
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tems. The goal of these systems is to take advantage of the inherent reconfigurability and
rapid deployment potential of modular robot systems by synthesizing an assembly of
modules for a specific task. Paredis synthesized fault-tolerant manipulators and trajecto-
ries from a set of fixed modules using a distributed genetic algorithm (GA) [Paredis96].
Each module was characterized by geometric, inertial, and actuator models, and a contin-
uous kinematic simulation was used to evaluate each manipulator. Number of collisions,
task completion, tolerance to single-joint failure, and actuator torque capacity were com-
bined into a single objective function to guide optimization. This system used a fairly re-
alistic kinematic simulator which simulated each robot over the entire task. The controller
used in this work generated trajectories that were tolerant to any single joint failure, and
as with most other systems, obstacle avoidance was not performed by the controller. In-
stead, the number of collisions during the task (both self-collisions, and collisions with the
payload or obstacles) was used as a metric to be minimized by the synthesis algorithm.
Because of the high computational cost of simulation, many evaluation tasks were execut-
ed in parallel to give reasonable system runtimes. The completeness of module represen-
tation (including geometric, inertial, and actuator properties) and fidelity of simulation
and control are this work’s main contributions to robot synthesis.

[Ambrose94] presented an approach to modular design of planar manipulators.
Significantly, this system accounted for manipulator mass, actuator speed and torque ca-
pabilities, joint friction and backlash, and link stiffness in addition to other inherent prop-
erties of planar modular manipulators. Arm performance was measured as a weighted
sum of these metrics, with feasibility criteria for each metric determined by estimates of
task requirements. A comparison of predicted arm performance and measurements from
the actual physical assembly were also presented. While this approach worked well for
planar manipulators and optimized many important non-kinematic robot properties, the
effectiveness of using only inherent robot properties for evaluation is questionable for
more complex, three-dimensional tasks in which obstacle avoidance, gravity compensa-
tion, and dextrous manipulation are important.

Farritor, Rutman, and Cole demonstrated a system for synthesizing modular
walking robots for an inspection task [Farritor96a], [Farritor96b], [Farritor98],
[Rutman95], [Cole93]. Each module included information on cost, size, mass, and capa-
bility (maximum force or torque for actuators and energy capacity for power modules).
Rutman developed hierarchical selection procedures to quickly reduce the search space
of modules, and evaluated assemblies with several simple heuristics such as leg length
and power consumption (based on the power supply and number of joint modules). Rut-
man’s work was restricted to bilaterally-symmetric walkers and heuristic evaluation of
each robot in 2D. Farritor replaced Rutman’s final exhaustive search phase with a genetic
algorithm and manually selected several promising designs from the output of the GA to
be further evaluated. The candidate designs were then evaluated on the task at discrete
time steps (corresponding to different phases in the robots’ gaits) with a manually-gener-
ated, generic motion plan. Another genetic algorithm then generated motion plans for
each robot from a set of motion control software modules, demonstrating improved per-
formance over the initial generic plan (detailed in [Cole93] and [Farritor98]). The auto-
mated design procedure was much faster than other approaches that use simulation for
evaluation, although the fitness values computed by the genetic algorithm were not good
predictors of performance. Farritor’s system required more manual intervention than
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other approaches when filtering synthesized designs and did not focus on accurately pre-
dicting performance during the automated design phase; however, the system required
significantly less time to create configurations than approaches using simulation to mea-
sure candidate performance. Additionally, the evolutionary synthesis of motion plans
was a significant part of the system and was demonstrated for both the synthesized robot
and an actual mobile robot. On the whole, this work is distinguished in that it addressed
synthesis of a mobile robot and synthesized effective motion plans for the robot and task.

Three systems demonstrated synthesis of assemblies of joint and link modules, us-
ing weighted sums of kinematic performance metrics for their objective functions
[Chen95], [Chocron97], [Han97]. All three used reachability and manipulability as part of
the objective function, and Chocron added a metric measuring the distance from each link
to a number of spherical obstacles. Though presented in the context of design for modular
robots, both Chocron and Han allowed the length of link modules to vary. Han presents
a two-step method for modular synthesis of non-redundant manipulators with revolute
joints: an analytic procedure for choosing the kinematic type based on the desired end-
point trajectory, and a genetic algorithm to determine link lengths that maximize manip-
ulability during simulation along the trajectory. The actual physical link modules can be
manually adjusted so that their lengths match the computed values. Chocron uses two ge-
netic algorithms: the top-level GA synthesizes an assembly of link and joint modules, and
the lower-level GA optimizes joint positions for several discrete task points for each robot
generated by the top-level GA. This system thus evolved discrete poses for each manip-
ulator, rather than continuously simulating the robot as it performed a task. All three of
these systems only synthesized kinematic properties (Denavit-Hartenberg parameters),
though the modules in Chen’s system contained representations of non-kinematic mod-
ule geometry (i.e. 3-D polygonal representations, instead of simply modeling links with
line segments).

Other work has focused on the synthesis of non-modular manipulators, though all
of it has been concerned only with kinematic properties and does not address actuator se-
lection or synthesis of structural and dynamic properties. Kim explored task-based kine-
matic synthesis of manipulators [Kim93]. This system generated Denavit-Hartenberg
parameters, joint limits, joint positions, and the base location for fixed-base manipulators.
This system used a genetic algorithm with multiple subpopulations for each task point
(up to 7 task points were used in design problems) and gradually enforced design and
task constraints so that the multiple populations converged on a single solution. As with
other systems, a weighted sum of metrics was used with manipulability as the sole objec-
tive function and other metrics (e.g. task reachability and observance of joint limits) as
constraints. A kinematic type generation procedure iterated over the different kinematic
types for a given number of degrees of freedom, with the multipopulation GA perform-
ing optimization of link lengths and other variables within each kinematic type. The num-
ber of DOFs was fixed by the designer for each synthesis task, and the kinematic type was
restricted for more complex design problems: the orientation of the first joint was fixed,
as was the kinematic type of the final 3 DOFs. Significant contributions of this work in-
clude the use of continuous kinematic simulation in evaluation, the synthesis of non-
modular manipulators, and the synthesis of base pose and joint limits for manipulators.

One application-specific approach is described in [McCrea97]. This system ad-
dressed the kinematic synthesis of a 6-DOF manipulator for a bridge restoration task us-
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ing a genetic algorithm. The algorithm operated in two phases. The first phase selected
one of two kinematic types for the first three DOFs (3 revolute joints [RRR], or 2 revolute
joints followed by a prismatic joint [RRP]), as well as the location of the elbow along the
arm for the RRR configuration and the optimal movement sectors for each joint. Total arm
length was fixed for each configuration, as a “unit workspace” was used. In this phase,
number of collisions and percent coverage were used as metrics. The second phase select-
ed one of two wrist types and generated velocity and acceleration parameters for each
joint, using productivity and dexterity as metrics. As no actuators or dynamic properties
were synthesized, the acceleration and velocity parameters determined by the system did
not effectively predict the productivity of the robot. Closed-form inverse kinematics were
used due to the restricted kinematic types.

Chedmail and Ramstein used a GA to synthesize overall length and one of two ki-
nematic types (two rotary joints, or one rotary and one prismatic) for a 2DOF planar ma-
nipulator, based on path completion and number of collisions with obstacles
[Chedmail96]. They also applied the GA to the selection of one of four commercial ma-
nipulators and determination of location for the manipulator’s fixed base which allowed
a path to be followed without collisions.

Paredis and Khosla also explored kinematic synthesis of non-modular robots us-
ing numerical optimization to explore a subspace of kinematic space (D-H parameters, joint
angles, and task points) [Paredis93]. In this approach, manipulators are represented as D-
H parameters, with links modeled as line segments. Simulated annealing, random line
search, and random sampling were used to find D-H parameters. Generalized inverse ki-
nematics determined joint angles for each task point and set of D-H parameters. Reach-
ability, collision-free motion, and joint limits constrained the search, as did the
requirement that the last 3 joint axes intersect at a point (which also allowed the use of a
simpler form of inverse kinematics).

Roston’s thesis explored the use of genetic algorithms in several design problems:
designing planar linkages for a desired motion; 1-dimensional frame walkers for travers-
ing 1-D stepping stone terrain; and generating control programs for the frame walkers.

Katragadda developed Synergy, a general software framework for robot design
[Katragadda97]. Synergy is built around a design spreadsheet that allows the designer
and several optimization algorithms to modify designs, while using multiple simulta-
neous simulations to evaluate different dimensions of performance (such as mechanical,
electrical, and thermal). This approach was able to perform parametric optimization and
component selection, as well as generate simple controllers. Because of Synergy’s frame-
work and its ability to use external modeling programs, Synergy was able to simulate a
wide range of properties. Additionally, Synergy provided the designer with insightful
causal relationships between components--for example, using a faster CPU on a lunar
rover would require more mass to be dedicated to power and heat dissipation, which in
turn increase the payload requirements on launch vehicle and rockets used for descent to
the lunar surface. However, due to its breadth in systemic optimization, Synergy’s abili-
ties to synthesize robot geometry and generate novel configurations were limited com-
pared to other approaches to robot synthesis.

In addition to the systems outlined above that focus on configuration synthesis,
there have been several systems or methods for robot optimization in narrow problem
domains. Rastegar, Liu, and Mattice developed an approach to determine the link
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lengths, diameters, and control gains for a two-link planar manipulator with revolute
joints to optimize accuracy for high-speed trajectory following [Rastegar98]. Moon and
Kota present a kinematic synthesis method for reconfigurable machine tools, in which the
kinematic requirements of a machining task are matched by an assembly of machine tool
modules [Moon98]. Other robot design approaches for specific problems can be found in
[Au92], [Park89], and [Tsai85]. The systematic design of wheeled rovers for specific ter-
rain characteristics has also been addressed, in [Apostolopoulus96].

1.2.2 Synthesis and optimization in other fields

Much work has been done in synthesis tools for fields other than robotics. Synthe-
sis tools have been particularly effective in digital VLSI circuit design, for example
([Brayton90], [Kuh90]). Several overviews of synthesis and analysis tools are available;
see [Katragadda97] for a broad discussion of design and synthesis tools. [Bentley99a] pro-
vides an overview of the use of evolutionary algorithms for a broad range of design prob-
lems. Among these are GADES [Bentley99b] which creates non-articulated polyhedral
objects from three-dimensional primitives. This system was applied to the synthesis of
optical prisms, coffee tables, hospital floor plans, boat hulls, and car bodies. [Funes99]
presents a system that evolves Lego structures to support masses or withstand forces,
such as simple bridges, scaffolds, and cranes. The use of a genetic algorithm to design fly-
wheels is presented in [Eby99].

Sims has applied genetic techniques to create, among other things, virtual crea-
tures which interact in a dynamic simulation [Sims94]. These creatures are represented as
directed graphs, which are instantiated as articulated connections of rigid bodies with
embedded control laws and actuators at each connection. The creatures also included
joint angle, contact, and light sensors, as well as a brain that contained control laws
evolved along with the physical description. Sims used the algorithm to generate crea-
tures for several scenarios: swimming, walking, jumping, following or fleeing light, and
competing with another creature to grasp a block. This work generated impressive (and
entertaining) results, though the constraints on performance and form of solution were
much more relaxed than in robot synthesis problems.

Koza pioneered Genetic Programming (GP), the use of evolutionary techniques to
synthesize arbitrary computer programs [Koza92], [Koza94]. Much like robot synthesis
approaches where a desired task is specified, a desired output for a program is specified
and an evolutionary algorithm generates program trees (in the form of LISP expressions)
which are optimized to produce a desired output or behavior. GP uses a population as in
a GA, but uses special operators which work with program trees. Examples of problems
solved by GP include function approximation, control of a simple planar manipulator,
and navigation algorithms for planar mobile robots. GP has also been applied to the syn-
thesis of high-performance analog filter circuits [Koza96]. In this case, GP is used to
evolve programs which modify an initial kernel solution, rather than evolving the solu-
tion directly. The resulting circuits are competitive with human-generated designs, and
include evolved subcircuits that are well known in circuit design.

Numerous analysis, optimization, and synthesis tools have been developed for
digital circuit design. These tools range from the simplification of boolean logic circuits,
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to behavioral simulation of digital circuits [Cadence94], placement of transistors in VLSI
layout [Kuh90], automatic netlist generation for VLSI layouts [Synopsis94] and their sub-
sequent simulation, and generation of test cases to verify correct operation [Sunrise94].
The layout of chips and connections on printed circuit boards has also been addressed
[Pads99]. There has also been significant work in analog circuit synthesis. Examples in-
clude [Ochotta96] and [Krasnicki99]. The work by Krasnicki et al uses a hybrid genetic/
simulated annealing algorithm for optimization, and is similar to Paredis’ system and to
the system described in this thesis in that it uses multiple distributed processes for eval-
uation. It uses high-fidelity simulation for evaluating candidate designs and distributes
the cost of evaluation over a network of workstations.

1.2.3 Limitations of Previous Work

Previous work has demonstrated the feasibility of automated configuration syn-
thesis for various restricted classes of robots, and has shown that evolutionary algorithms
can effectively perform configuration synthesis. However, several limitations are evident
in the existing body of research in robot synthesis. Each system to date has specifically ad-
dressed the synthesis of either manipulators or mobile robots. The only systems to per-
form any non-kinematic synthesis were those using fixed modules. The systems for non-
modular robots are purely kinematic and have all modeled manipulators as joints con-
nected by zero-thickness line segments. The strictly modular systems, while able to rep-
resent non-kinematic properties, are by definition not able to independently vary non-
kinematic properties such as actuators or link structure, thus leading to suboptimal solu-
tions. Previous systems have not addressed analysis and simulation needs such as dy-
namic simulation and estimation of link deformation due to loads, thus inhibiting the
ability of these systems to meaningfully optimize actuator selection, link structural geom-
etry, and inertial properties. Most synthesis systems have addressed fairly specific classes
of design problems (e.g. kinematic synthesis with coverage and collision-free motion re-
quirements), and none have been aimed at creating an extensible, general-purpose robot
configuration synthesis system. Many approaches have made gross simplifications to the
analysis problem in order to reduce computation time, while not taking advantage of the
fact that genetic approaches are inherently parallelizable, and that the availability of CPU
power will most likely continue to increase in the future. These simplifications affect the
quality of the synthesized result and the accuracy of the prediction of the robot’s perfor-
mance, thus limiting the designer’s confidence in the design. Though the time/quality
trade-off must be made somewhere, it seems likely that giving precedence to synthesis
quality rather than time will yield results that are more useful to the robot designer. In
summary, these shortcomings have limited the practicality and applicability of previous
systems, and must be remedied if an effective, broadly-relevant synthesis system is to be
created.

1.3 Approach
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This thesis creates Darwin2K, an extensible automated system for robot configura-
tion synthesis. The synthesis process is based on an evolutionary algorithm: the current
set of solutions are represented as a population of designs, and new solutions are created
by selecting prior solutions based on their performance and combining or modifying
them via several genetic operators. The performance of each solution is assessed through
simulation on the prescribed task. Since the evaluation of each candidate design is inde-
pendent of the evaluation of any other design, many evaluations are carried out in paral-
lel over a network of heterogeneous computers to reduce the time required for synthesis
(Figure 1.1).

Each robot configuration is represented as an assembly of parameterized modules.
Each module represents part of a robot and is a self-contained software object (Figure 1.2).
Modules have parameters describing arbitrary properties--for example, a parameter
might represent dimension (kinematic or structural), a discrete component selection, or a
task or control parameter. Modules may vary in complexity from a single link, to a joint
module, to a manipulator, to an entire mobile robot. Each type of module interprets its
parameters internally, rather than having a centralized function to interpret parameters
for every type of module. Because of this, it is possible to add new modules with new
types of properties without requiring the synthesizer to be changed. On the other hand,
if a single centralized function were used, then this function would have to be modified
whenever a new type of module was needed.

Robot configurations are constructed by connecting modules together in a direct-
ed, acyclic graph. This parameterized module configuration graph (PMCG) allows the synthe-
sis algorithm to generate diverse robot topologies and combine parts of different
configurations. The PMCG also allows subassemblies of the configuration to be duplicat-
ed, so that a walking robot could contain a single leg representation that is used multiple
times to preserve symmetry. Figure 1.3 shows a simple example of how multiple refer-
ences to a subgraph are duplicated when the PMCG is instantiated into a description of
the robot’s links and joints. The primary limitation of this representation is that it restricts
the ways in which parallel mechanisms can be created; this will be discussed in Chapter
2. The use of the parameterized module configuration graph as a representation is the
main way in which Darwin2K is specialized for robot synthesis; this representation is not

Synthesis
configurations

performance data

Figure 1.1:  Distributed synthesis architecture
Since the evaluation of each robot is independent and evaluation is the main
bottleneck in the synthesis process, many evaluation tasks are distributed over a
network of workstations to provide performance measurements to the synthesis
algorithm.

task-specific
library

Evaluator

task-specific
library

Engine

task
specification
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appropriate for other types of design synthesis such as circuit synthesis or program gen-
eration.

The synthesis process must measure the performance of candidate designs; these
measurements are computed by evaluating each configuration in simulation. The simu-
lation is task-specific, with performance metrics dictated by the task’s requirements.
Darwin2K contains a variety of simulation components, including kinematic and dynam-
ic simulators, several controllers, algorithms for computing joint torque and link deflec-

Parameters:
• motor selection
• gearhead selection
• material selection
• tube outer diameter
• tube wall thickness
• overall length

Figure 1.2:  Sample parameterized module
A rightAngleJoint module is shown here with a list of its parameters. The first
two parameters select a motor and gearbox for the module’s single degree of
freedom (whose joint axis is labelled ); one parameter chooses a material (e.g. a
particular aluminum alloy) for the module, and the remaining parameters determine
the module’s size. Each of the parameters can be individually varied by the
synthesizer. The module’s two connectors are labelled c1 and c2, respectively.

Ẑ

motor

gearhead

length

diameter

material

wall thickness

link 2

link 1

Ẑ

c1

c2

Instantiation

Figure 1.3:  Schematic view of configuration graph showing symmetry
During creation of a configuration’s geometry, multiple references to a module
result in multiple copies of the subgraph rooted at the module.
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tion and for detecting collisions; modules for robot links, joints (including motors and
gearboxes), tools, and bases (fixed and mobile); and metrics such as task coverage, task
completion time, end effector error, actuator saturation, and link deflection. The software
objects used in the evaluation process are implemented in a common framework that al-
lows new types of simulation and analysis objects to be added while maximizing reuse of
existing components. Entirely new methods of simulation (for example, an underwater
robot might require a dynamic simulator which accounts for hydrodynamic forces) can
be added, as can new simulation components such as controllers.

The extensible nature of the synthesis framework is a significant contribution of
this thesis. Extensibility is dependent to a large degree on the isolation of the details of
task and robot from the synthesizer: the synthesizer tells each evaluation task the metrics
to use and the robot to evaluate, and the evaluation task returns performance data for the
robot. The synthesizer does not depend on the internals of the evaluation process; only
the results of evaluation are relevant to the synthesizer. Similarly, the genetic operators
used by the synthesizer do not need to know the details of each module, such as what
each parameter means. This simple interface allows new module types to be added with-
out requiring the synthesizer to be changed in any way. Combined with the synthesizer
and the toolkit of simulation capabilities, Darwin2K’s extensible architecture makes it
possible to effectively synthesize task-specific robots for a wide range of applications.

1.4 Contributions

The framework and implementation developed in this thesis addresses the limita-
tions outlined in Section 1.2.3, resulting in a synthesis system significantly more capable
than previous approaches (as summarized in Table 1.2). Briefly, the contributions of this
thesis are:

• An extensible framework for robot configuration synthesis and optimi-
zation, allowing the addition of new robot properties and components,
task representations and requirements, and simulation and analysis
capabilities without impacting the synthesis process or architecture;

• a practical software toolkit for synthesis, including a library of robot
components and modules, and simulation, control, and analysis algo-
rithms;

• a new representation for robot configurations, allowing representation
and synthesis of a wide range of robots and properties, and allowing
new robot components and properties to be optimized without requir-
ing modification of the synthesizer;

• new methods for optimizing multiple metrics in a task-relevant way,
including two algorithms that are applicable to other evolutionary
design domains;

• novel analysis and optimization capabilities in automated robot synthe-
sis, such as dynamic simulation and estimation of link deflection;
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• a demonstration of the solution of configuration synthesis problems of
a complexity and scope exceeding previous work. This includes synthe-
sis and optimization of robot kinematics, dynamics, link structure, actu-
ators, task parameters, and base pose for manipulators and mobile
robots.

These contributions constitute a significant advancement of the state of the art in
robot synthesis tools.

❍ - included in representation
● - included in representation and optimized by system

Darwin2K ● ● ● ● ● ● ● ● ● ● ● ●

Paredis[96] ● ● ● ❍ ●

Chen ● ● ● ❍

Farritor ● ● ● ● ❍ ● ❍ ●

Ambrose ● ● ● ●

Chocron ● ● ● ● ●

Han ● ● ● ❍ ❍

Kim ● ● ● ●

McCrea ● ● ●

Paredis[93] ● ● ●

Chedmail ● ● ❍

Roston ● ● ●
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Table 1.2: Comparison of Darwin2K to previous robot synthesis systems.
Perhaps most significant is the fact that the only prior systems to have optimized (or
even represented) components or non-kinematic geometry were those with fixed
modules.
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1.5 Dissertation Overview

This chapter presented relevant background in automated synthesis and provided
an overview of the thesis. Chapter 2 discusses representation and architecture issues, giv-
ing details of the robot representation, interfaces between the synthesizer and evaluation
algorithms, and software architecture. The system’s extensibility is a direct result of the
topics discussed in Chapter 2.

The synthesis algorithm is described in Chapter 3. This includes the genetic oper-
ators, criteria for selecting configurations for reproduction and deletion, the use of perfor-
mance metrics by the synthesizer, synthesis for multiple task constraints and objective
functions, and an ‘elitist’ strategy for multiple prioritized metrics. Chapter 4 details the
evaluation process and describes the simulation and analysis algorithms and metrics in
the synthesis toolkit. Chapter 5 presents several synthesis experiments, demonstrating
the capabilities of the system and providing some insight into factors that affect the syn-
thesis process. Chapter 6 presents the conclusions and contributions of the thesis. The ap-
pendices present some implementation details of various aspects of the system. The
reader is encouraged to make use of the Glossary as well.



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

Representation and Architecture    17

2 Representation and Architecture

The goal of this thesis is to build a practical, widely-applicable synthesis tool for
robotics. The applicability of any robot synthesis method is determined primarily by the
representations used for robots and tasks. Previous synthesis work has not focused on the
development of extensible, general-purpose systems, and has thus been limited in appli-
cability by representation and extensibility. In previous systems, significant aspects of the
robot or task were hard-coded into the synthesis algorithm, making it difficult to change
those aspects as required by different tasks. To achieve significant applicability and gen-
erality, a robot synthesis system should have few, if any, dependencies between the syn-
thesis algorithm and the robot and task representations. Specifically, a synthesizer should
not rely on rules, representation, or operations that are specific to a particular type of ro-
bot, or particular components, because this limits the synthesizer to those robot types or
components. Similarly, the synthesizer should not rely on knowledge specific to a partic-
ular task, as this requires the synthesizer to be changed should a different task be desired.

This chapter describes two aspects of Darwin2K which provide the system’s appli-
cability and extensibility: the Parameterized Module Configuration Graph representa-
tion, from which robots are built; and the extensible software architecture, which allows
new tasks and analysis tools to be added without impacting the synthesis algorithm.
These features make Darwin2K significantly more flexible than previous synthesis sys-
tems.

2.1 Robot representation

Darwin2K uses a representation for robots called the Parameterized Module Con-
figuration Graph (PMCG), first presented in [Leger97]. As the name implies, robots are
composed of modules, each of which may contain parameters describing properties of the
module. These modules are connected to each other in a configuration graph, which deter-
mines the topology of the robot. This section motivates the use of parameterized modules,
discusses their implementation, and then describes the configuration graph. Finally, the
PMCG is compared to previous representations used in robot synthesis, and its limita-
tions are discussed.

Like previous robot synthesis systems, Darwin2K uses an evolutionary algorithm
(EA). Evolutionary algorithms are a class of optimization algorithms based on the princi-
ples of natural selection (or survival of the fittest) and sexual reproduction (creating a new
artifact by combining descriptions of two other artifacts). Genetic Algorithms (GAs)
[Holland75] are the most common type of EAs; Genetic Programming (GP) [Koza94] is
another oft-used class. EAs require a way of representing a solution (in this case, a robot
configuration) such that parts and properties of different solutions may be interchanged;
this symbolic representation is called a genotype. At the highest level, EAs operate by mea-
suring the fitness (performance) of different genotypes, and preferentially selecting high-
fitness genotypes for reproduction. One feature of EAs is that they can be blind: they do
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not require any knowledge of how the genotype is interpreted, or how the fitness of a gen-
otype is measured [Goldberg89]. When properly exploited, this blindness is extremely
powerful: it allows the EA to be independent of the fitness computation or details of gen-
otype interpretation, so that these can be arbitrarily changed without requiring any mod-
ification to the EA. For example, the standard genetic algorithm represents solutions as a
fixed-length string of bits, and does not depend on how the bits are interpreted to repre-
sent a specific solution when measuring the fitness of the solution. A GA views a solution
simply as strings of bits and a fitness measurement; the actual meaning of the bit string
and the method of determining the fitness of the bit string are irrelevant to the GA. The
interpretation and fitness measurement can thus change as new problems are addressed,
but the solution representation and fitness measurements themselves do not appear any
different to the GA. On the other hand, if a particular GA depends on knowing how parts
of the bit string are interpreted or how they relate to each other, then the GA will have to
be changed if the interpretation is modified. Thus, if we wish to maximize the ability of a
robot synthesis system to address new problems and synthesize arbitrary properties, then
we should choose a genotype representation that minimizes what the EA must know
about the genotype’s interpretation.

So far, we know that the genotype representation should hide the details of inter-
pretation from the EA, and the EA needs to be able to exchange properties between dif-
ferent genotypes. These are very general requirements; to determine an appropriate
genotype representation, we must consider the types of robots and properties that will be
synthesized. It is desirable to be able to synthesize both kinematic and non-kinematic
properties for both modular and non-modular robots. It is also desirable to address syn-
thesis of manipulators (including multiple or bifurcated manipulators) and mobile ro-
bots. Manipulators require some way to represent serial chains; mobile robots may
require multiple serial chains (in the case of walkers), wheeled, or even free-flying bodies.
Different types of robots require different properties to be synthesized: manipulators re-
quire parameters describing kinematics, dynamics, and actuators, while a wheeled rover
needs descriptions of suspension, wheel diameter, and perhaps even sensor placement--
and the rover may also have a manipulator on it. One possible genotype (as in
[McCrea97]) would be to represent each type of robot as a fixed set of parameters (with
each new design task requiring a specific parameter set), so that the evolutionary algo-
rithm operates on the variables without knowing what they represent. This encapsulates
the interpretation of the genotype in task-specific code, allowing new properties to be
represented and synthesized, and new tasks to be addressed. However, this representa-
tion has some limitations: each task or robot type requires a new way of representing so-
lutions, and the fixed set of parameters makes it difficult to vary the size (such as number
of degrees of freedom) of solutions.

Another representation is that used by modular robot synthesis methods: robots
are assembled from a set of fixed modules, and the evolutionary algorithm replaces or re-
orders modules, and also swaps modules between solutions. This makes it possible for
each module to be self-contained so that the evolutionary algorithm does not need to
know many of the details of each module, apart from how the module connects to other
modules. Additionally, the evolutionary algorithm can exchange information between
robots of varying size and topology by swapping modules or sets of modules between ro-
bots. However, using a purely modular approach has a significant drawbacks. Properties
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of the robot cannot be varied except by exchanging modules, which has one of two impli-
cations: either the synthesized designs will be poorly optimized due to limited selection
of module properties; or a large number of similar modules (such as elbow joint modules
with varying dimensions and actuators) are required, and the synthesizer must know
how the modules are similar.

2.1.1 Parameterized Modules

By combining purely modular and purely parametric representations, the limita-
tions of both approaches can be eliminated. This parameterized module representation is
similar to a fixed module representation, but allows each type of module to have an arbi-
trary number of parameters. A module’s parameters represent arbitrary properties of the
module, such as geometric dimensions, actuator type, or even controller parameters.
Each module is a self-contained software object and can include kinematic, dynamic,
structural, and other representations in addition to special-purpose routines for simula-
tion, control, and analysis. The complexity of a module can vary: at one extreme, a mod-
ule with no parameters might represent a link of a robot with fixed properties (i.e. a fixed
module), and at the other extreme a module might be an entire mobile robot with param-
eters for each property (i.e. a parameter set describing a robot). The synthesis algorithm
can vary the parameters of modules, and the way the modules are connected (Figure 2.1);
when coupled with appropriate analysis capabilities, this allows synthesis and optimiza-
tion of properties such as actuators, structural dimensions, kinematics, and dynamics.

As with purely modular synthesis, each module type specifies the location of its
connectors, which are used to attach modules to each other. These connectors do not need
to have a physical embodiment in the robot’s hardware; they are simply for specifying
how modules can be connected together. Naturally, if Darwin2K is being applied to a

topological
change

parametric
change

Figure 2.1:  Parametric and topological modification
Darwin2K represents robots as connected assemblies of parameterized modules.
This allows the synthesis algorithm to vary both robot parameters (top) and
topology (bottom).
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purely modular design problem, the modules can contain geometric and other represen-
tations for the connectors of the actual hardware modules, but this is not required when
synthesizing non-modular robots.

Parameterized modules have two important and related advantages over fixed
modules. The first is that the synthesizer can independently vary a parameterized mod-
ule’s properties, thus allowing changes to be made with minimal accidental disruption of
well-optimized features. In contrast, if fixed modules were used then the synthesizer
would have a difficult time independently varying a single parameter: it would have to
know how each of the modules differ from every other module, or it would have to blind-
ly select another module which could lose information about properties that are already
well-optimized. The second advantage of parameterized modules is that they can effi-
ciently represent a wide range of module properties. For example, a typical joint module
in Darwin2K might have parameters which specify the motor, gearhead, overall length,
outer diameter, and inner diameter. If each of these variables can have 8 discrete values,

there are 85 = 32768 different variations of the joint module. If purely modular design was
being used, 32768 different fixed modules would be required to represent the same set of
module properties. Clearly, it is impractical for a human to specify the properties of each
different fixed module, and automatically specifying the properties for the entire range of
modules is effectively the same as using parameterized modules. Storage management
and memory issues also become more important if such a large number of modules is re-
quired. Thus, the ability of parameterized modules to represent a large space of module
properties, coupled with their ability to allow independent variation of properties, en-
ables efficient and independent optimization of robot attributes.

Parameterized modules also have significant advantages over purely parametric
representations. First, they do not assume any fixed, global interpretation of the parame-
ters. Two robots might be identical except that one has a joint with a brake on it. Using
parameterized modules, the robots would have a different module type for that joint, one
with an extra parameter describing the brake. This difference does not have a global im-
pact on the representation of the robot because the brake parameter is encapsulated in the
module. A purely parametric representation would require a new procedure for inter-
preting the set of parameters; the addition of an extra parameter causes a global change
in the parameter interpretation.

Second, parameterized modules allow information to be exchanged between solu-
tions of varying size. For example, the parameters describing the wrist structure of a 6-
DOF manipulator may also be useful for a 7-DOF manipulator. A purely parametric ap-
proach does not tag the parameters with any sort of identifier, so there would be no way
of ensuring that the wrist parameters for the 6-DOF robot end up in the right place for the
7-DOF robot. Parameterized modules effectively tag each parameter with an identifier
that specifies how it is interpreted; thus, when the wrist modules from the 6-DOF robot
are exchanged with those of the 7-DOF robot, the parameters retain their meaning be-
cause they remain associated with the same modules. Modules also provide the synthe-
sizer with building blocks of an appropriate level of detail: a lower-level representation
might require the synthesizer to figure out geometric details that are obvious to a human
designer (e.g. a motor and gearbox should be located near each other and near the joint),
while a higher-level representation (e.g. selecting from a number of existing manipula-
tors) would not allow much optimization to be performed.
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Darwin2K’s modules present a simple, consistent interface to the synthesis algo-
rithm: each module has a type identifier, a component context label, a list of parameters,
and a list of attachments to other modules. The module type identifier allows the synthe-
sizer to exchange information between modules of similar type. The component context
label is reference to a list of components (e.g. motors and gearheads) to be used when in-
terpreting the module’s parameters; the component context (list) itself, and the properties
of the individual components, are specified in a component database file. (See Section
4.7.6 for descriptions of the component models used in Darwin2K.) The attachment list
describes how the module is connected to other modules, and the parameter list deter-
mines the properties of the module. The synthesizer does not need to know how each pa-
rameter is interpreted, thus allowing parameters to represent arbitrary properties. Since
modules are self-contained, there is no single global function which interprets parame-
ters; thus, new module types can be added with out requiring modification of existing
code.

Each parameter has several attributes: minimum and maximum values, a number
of bits, an integer value, the actual parameter value, and a const flag. The minimum and
maximum values determine the range of actual values; the number of bits determines the
resolution (or discretization) of the actual value, and the integer value is the binary rep-
resentation of the actual value. The actual value a is obtained from the number of bits b,
minimum value m, maximum value M, and integer value i by a simple linear interpola-
tion:

(2.1)

Values of i range from 0 to 2b-1; thus, an integer value of 0 gives an actual value of m, and

an integer value of 2b-1 gives an actual value of M. The const flag may take one of two val-
ues: var, indicating that i (and thus a) may be changed by the synthesizer; or const, in-
dicating that i and a are fixed. Thus, the designer can specify values for some parameters
if their optimal values are known a priori (or if they should be fixed for any reason). The
LISP-like text format used to specify parameters in Darwin2K (and in the text of this the-
sis) is as follows:

While some parameters represent continuous values such as dimensions, others
may specify discrete properties such as motor, material, or gearhead selections. In these
cases, only the number of bits, integer value, and const flag are used. The component
context mentioned earlier specifies which components are determined by each of a mod-
ule’s parameters. This component context consists of a list of permissible components for
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each selection parameter, and is described in a component database file. In the compo-
nent database file, the component context for a particular type of joint module might look
like this:

In this case, parameter 0 would select a motor (from the componentList labeled
“motors”), and parameter 1 would select a gearhead (from the list labeled “gearHeads”);
other parameters of the module do not select components and so are not mentioned in the
component context. In addition to the component contexts, the component database file
contains descriptions of each component, such as the density and modulus of elasticity
for materials, or the gear ratio, efficiency, and torque and velocity limits for gearheads.
Using actual component descriptions from manufacturers’ catalogs can help reduce de-
sign time, since a human engineer will not have to search through catalogs to find com-
ponents that meet all design constraints.

Each type of component (rotaryActuator and gearBox in the example above)
is a software class, with code for parsing entries in the component file. In this way, new
component types can be added (complete with parsing procedures); since there is no glo-
bal, monolithic function for parsing the whole component database file, new component
types can be added without requiring modification to the existing parsing code.

Some selection parameters may have dependencies on other selection parameters:
for example, one parameter can specify a motor, and another can specify a gearhead.
However, not all gearheads are compatible with all motors. To handle compatibility con-
straints such as this, Darwin2K allows components to specify dependencies on other com-
ponents in the component database file. The order of a module’s parameters determines

how the component dependencies are resolved: a component specified by the jth param-
eter can depend only on the components selected by parameters 0 through j-1, thus pre-
venting cyclic dependencies. The procedure for determining a module’s components
from its parameters and component context is shown in Figure 2.2.

Internally, each module type in Darwin2K is a C++ class, and specific modules are

context revoluteJoint {
parameter 0 "motors";
parameter 1 "gearHeads";

}

componentList "motors" {
rotaryActuator "maxonRE25.118755";
rotaryActuator "maxon2260.815";
rotaryActuator "maxonRE36.118800";
rotaryActuator "maxon2260.889";

}

componentList "gearHeads" {
gearBox "maxon16.118188";
gearBox "maxon26.110396";
gearBox "maxon32.110464";
gearBox "maxon42.110404";

}
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C++ objects. (If the reader is not familiar with object-oriented programing, see Appendix
A for brief description of object-oriented programming and its use in Darwin2K.) All
modules in Darwin2K are derived from the module class, so they share a common min-
imum interface. Each module has a (possibly empty) list of parameters that the synthesiz-
er may change. Since modules are self-contained software objects, they also contain
several functions (called methods) that are used when measuring the performance of the
robot. Some modules have specialized methods, but at the bare minimum each module
must specify a createGeometry method, which creates a polyhedral representation of
the module’s physical geometry. This polyhedral representation may be as simple or as
complex as the designer wishes, and is used to generate the kinematic, geometric, and in-
ertial properties of the module. Each module’s geometry consists of one or more part ob-

procedure chooseComponents(parameterList PL,
componentContext CC
module M) {

parameter p; /* parameter being used to select component */
list l; /* list of components for one parameter */
component c; /* specific component choice */

for j = 0 to (|PL|-1) {
p = PL[j];

if p is a component selection parameter then {
/* we need to select a component for p */
l = list of allowable components for p from CC;

/* next, filter components from l that are not */
/* compatible with previous components         */
for k = 0 to j-1 {

if PL[k] is a selection parameter then {
c = component for PL[k];
remove components from l that are incompatible

with c;
}

       }

/* now, l contains only components that are   */
/* compatible with previous components.       */
/* p’s component is the ith entry in l, where   */
/* i is p.i, the integer value for p.           */

/* add the selected component to M’s list of components */
addComponenentToModule(M, l[p.i]);

}
}

}

Figure 2.2:  Pseudocode for selecting components
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jects, each of which contains one or more polyhedra. A module’s parts are connected
together by fixed, rotating, or translating connections, allowing joints to be created.
Darwin2K provides geometric primitives for parts and polyhedra so that the createGe-
ometry method for new module types can be easily implemented. createGeometry
is also tasked with specifying the location of the coordinate frames of the module’s con-
nectors, which are used to attach modules together.

Darwin2K has several abstract classes derived from the module class: dofMod-
ules (those with degrees of freedom), linkModules (those without degrees of free-
dom), and toolModules (those representing end effectors). Additionally, dofModules
are subdivided into jointModules and baseModules. The synthesizer differentiates
between these broad classes of modules, so that nonsensical robots are avoided: for exam-
ple, replacing a robot’s base with a tool would result in an infeasible robot. Each of these
subclasses defines some new methods and/or members; for example, toolModule de-
fines a tool control point (TCP) data member and a method for converting the TCP to the
module’s link coordinate system, and a dofModule contains methods for querying about
the torque, position, and velocity limits of the module’s degree(s) of freedom. These
methods are used not by the synthesizer, but by the evaluation algorithms described in
Chapter 4. New module types can be derived from these generic classes, and since they
present a consistent interface to the evaluation algorithms, the algorithms do not require
modification to work with the new modules: for example, different types of joint modules
may have different numbers of parameters, and may interpret their parameters different-
ly, but they all have the same interface to the synthesizer and simulation algorithms, so
the algorithms can be independent of the details of the modules’ internals. Darwin2K
currently contains approximately 40 module classes for various bases, links, tools, and
joints. Some are general-purpose and are useful for many problems, while others are task-
specific (that is, they were implemented for a particular design problem). Table 2.1 shows
a selection of these modules and their properties. Appendix B also lists a number of pa-
rameterized modules and gives a description and parameter list for each.

2.1.2 Connecting modules: the configuration graph

Parameterized modules describe only parts of a robot; an additional representa-
tion is needed to complete the robot description. The configuration graph is just that: it
describes the way the modules are connected to each other. The configuration graph is a
directed acyclic graph (DAG) in which nodes are modules and edges are physical connec-
tions between modules. The edges of the graph are directed: modules specify connections
to their children via outgoing edges, but do not refer to their parent connections (incom-
ing edges). The configuration graph is stored as a list of topologically sorted modules, and
cycles in the graph are prevented by only allowing modules to specify attachments to
modules which occur later in this list. Each module in a configuration can specify an at-
tachment to another module for each connector. Attachments contain several fields: the
ID of the connector on the parent module, the index of the child module, the ID of the con-
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Table 2.1: Sample of Darwin2K’s modules

module type parameters

rightAngleJoint components: motor, gearbox, material
length between connectors
tube diameter
wall thickness

inlineRevolute2 components: motor, gearbox, material
length between connectors
tube diameter
wall thickness

prismaticTube components: motor, gearbox, lead screw, material
outer diameter
wall thickness
segment length

hollowTube material selection
length
outer diameter
wall thickness

oclChassis wheelbase, engine location (front to back),
front-to-back position of connector (to which other
 modules can be attached)
connector height

offsetElbow components: motor, gearbox, material
distance between actuator housing and plate
initial joint angle
wall thickness

stackerBase total number of bins, number of bins vertically,
x and y location of connector,
x and y location of payload entry point

scaraElbow components: motor, gearbox for each of 3 joints;
material for all links
length, wall thickness, diameter for links
joint angle offsets for each joint
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nector on the child module, a const-flag, handedness, and a twist parameter

The connector IDs simply identify which connectors are being attached; the twist param-
eter indicates the angle of rotation about the z-axis of the child’s connector with respect
to the parent’s connector. The handedness can be either left, right, or inherit, and
indicates whether the module’s geometry should be normal (left) or a mirror image
(right) A handedness of inherit means that the module should have the same hand-
edness as its parent module. As with parameters, the const-flag can be used to indicate
that a property (in this case, the module and connector references) should not be changed
by the synthesizer. This allows the designer to specify that a particular sequence of mod-
ules should be untouched by genetic manipulations. For example, if the designer knew
that a particular wrist configuration and end effector are required, then she would set the
const-flag for the attachment between the wrist module and end effector. Thus, the de-
signer can easily add significant constraints on the final form of the synthesis results, ef-
fectively incorporating task-specific knowledge and human expertise into the synthesis
process. Figure 2.3 shows the text representation of a simple robot, and its physical instan-
tiation.

For the purposes of simulation and analysis, the configuration graph is instantiat-
ed into a mechanism consisting of links (rigid bodies) connected by joints. This process is
performed recursively, starting with the base and proceeding in a depth-first manner.
The createGeometry method is called for each module, and the parts on either side
of inter-module connections are then attached to each other by a rigid connection. (All
connections between modules are rigid; the only non-rigid connections are those forming
joints between parts within the same module.) After all modules have created their geo-
metric representation, the parts that are rigidly connected (as opposed to those connected
by translating or rotation connections) are grouped into rigid bodies, and the inertial
properties of each rigid body are computed using Coriolis [Baraff96]. The mechanism is
thus represented by a tree, with nodes representing rigid bodies (links) and edges repre-
senting joints between bodies. The root of the tree is the one of the base’s links. Figure 2.4
shows the configuration graph and mechanism (links and joints) representations for a
simple, non-branching manipulator. After creating the mechanism representing the ro-
bot, the mechanism tree is traversed to identify serial chains. The mechanism and serial
chain representations are used by numerous algorithms during the evaluation process,
such as computing the robot’s Jacobian or dynamic model.

While the mechanism graph is a tree, the configuration graph may not be: when
the graph is interpreted as mechanism, multiple connections referring to the same mod-
ule will result in multiple copies of that module and its children. This allows pieces of a
mechanism to be duplicated to preserve symmetry. For example, a hexapod robot would

(var 0 (0 1 left (var 0 270 2 1)))

const flag
parent connector ID

index of child module
child connector ID

handedness
twist parameter
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((inlineRevolute2 revoluteJoint ((var 0 0 3 0)
 (var 0 0 5 5)
 (const 0 0 2 0)
 (var 0.05 0.15 3 5)
 (var 0.002 0.005 3 1)
 (var 0.05 1.5 4 2))

 ((var 0 (1 0 left (var 0 270 2 3)))))
 (offsetElbow revoluteJoint ((var 0 0 3 2)

     (var 0 0 5 18)
     (const 0 0 2 0)
     (var -180 135 3 7)
     (const 0.003 0.01 3 3)
     (var 0.005 0.03 2 1))

      ((var 1 (2 0 left (var 0 270 2 0)))))
 (inlineRevolute2 revoluteJoint ((var 0 0 3 0)

 (var 0 0 5 5)
 (const 0 0 2 0)
 (var 0.05 0.15 3 2)
 (var 0.002 0.005 3 1)
 (var 0.05 1.5 4 4))

      ((var 1 (3 1 left (var 0 270 2 3)))))
 (offsetElbow revoluteJoint ((var 0 0 3 0)

     (var 0 0 5 16)
     (const 0 0 2 0)
     (var -180 135 3 7)
     (const 0.003 0.01 3 3)
     (var 0.005 0.03 2 1))

      ((var 0 (4 0 left (var 0 270 2 0)))))
 (simpleTool ((const 0.05 0.1 3 0))

     ()))
(var 0.3 2 4 9)
(var 0.5 10 4 15)

inlineRevolute2

offsetElbow

offsetElbow

simpleTool

(inlineRevolute2 revoluteJoint ((var 0 0 3 0)
 (var 0 0 5 5)
 (const 0 0 2 0)
 (var 0.05 0.15 3 5)
 (var 0.002 0.005 3 1)
 (var 0.05 1.5 4 2))

 ((var 0 (1 0 left (var 0 270 2 0)))))

module type component context

task parameters

attachment: connector 0 of parent goes to child module 1, connector 0; twist = 0 deg

parameter list

Figure 2.3:  Sample configuration and text description
A 4-DOF manipulator constructed from five parameterized modules and with two task
parameters is shown at top left, along with its text description (top right). Each module
is labeled with a bold number to show the correspondence between the robot and text.
At bottom is module 0, with labels detailing parts of the module description.

0
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3

4

1
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3

4

inlineRevolute2
0

motor
gearbox
material
diameter
wall thickness
length
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have one base with 6 connectors, each of which is attached to the same module (the base
of a leg) in the configuration graph. Figure 2.5 shows an example of a free-flying robot
with two identical arms. Note that there are two connections from the second module to
the third; thus, the third module (and all its child modules) are duplicated, creating two
identical arms.

Since it may be desirable to optimize some properties that describe the task (such
as via point location or path-following velocity for a trajectory), configurations may op-
tionally contain one or more task parameters. This is simply a list of parameters that are
interpreted by the evaluation and simulation algorithms. Whether task parameters are in-
cluded in a configuration depends on the task being addressed, and the number of task
parameters must be the same for all configurations in a given synthesis run. The synthe-
sizer only needs to know how many task parameters are being used, not what they mean
or which parts of the task they correspond to; each software object used in the simulator
parses its corresponding task parameters, thus isolating the interpretation of the task pa-
rameters from the synthesis algorithm.

Figure 2.4:  Configuration shown as modules and links
(a) shows the configuration from Figure 2.3 as a configuration graph, with modules
connected by attachments (arrows).
(b) shows the robot represented as a mechanism, with links connected by joints.
In this figure, the joint axes are represented by arrows, and the links have been
displaced along the joint axes for clarity. The root link of the mechanism is
indicated by the dashed arrow.

(a) modules (b) links

root link
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The Parameterized Module Configuration Graph is significantly more flexible
than representations used in previous robot synthesis work. This representation is able to
express purely modular, purely parametric, and hybrid robots, and thus is useful for
modular and non-modular design. In prior systems, representations for non-modular ro-
bots were purely parametric and did not include non-kinematic features of the robot such
as actuators, inertial properties, and link geometry. The only systems to include represen-
tations of these properties used purely modular representations, so non-kinematic prop-
erties could not be independently varied. The PMCG also allows synthesis of mobile
robots, multiple and branching manipulators, and allows the inclusion of task-specific
knowledge through the use of const-flags for both parameters and robot topology.

2.1.3 Limitations of the Parameterized Module Configuration Graph

The primary limitation of the PMCG is the restriction on the form of parallel mech-
anisms: multiple connections to a single module in the PMCG result in duplication of the
module, rather than multiple connections to the same physical module (Figure 2.6a). Be-
cause of this, multiple modules cannot lie in parallel in the configuration graph. Howev-
er, parallel mechanisms can be created within a single module (Figure 2.6b) by specifying
all but one of the connections between the parts forming a loop. The module can then
use its own internal procedures for ensuring correct positioning of the links and joints in
the loop. It should be noted that Darwin2K’s does not include any algorithms for parallel

instantiation

Figure 2.5:  Configuration graph for a two-armed robot
At top is a symbolic view of a configuration graph. Each node is a module, and each edge
is a connection between modules. The second module from the left has two outgoing
connections to the third module; when the graph is parsed to create a description of the
robot’s links and joints, the subgraph rooted at the third module is duplicated, thus
preserving symmetry.

process
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kinematics, dynamics, or other types of analysis, though these can be added through the
extensible architecture discussed in Section 2.2.

Another limitation of the PMCG stems from the fact that each module has a fixed
number of parameters. This makes it difficult to represent variable mechanism size and
topology within a module while retaining independent parameters for each of the mod-
ule’s constituent parts. For example, a module could represent a serpentine manipulator
with a parameter for the number of links in the arm; however, since the number of param-
eters is fixed, the properties of each link in the serpentine manipulator could not be varied
independently by the synthesizer. Perhaps the most significant impact of this restriction
is in synthesis of mobile robots, where the ability to synthesize complex linkages such as
those used in some suspensions is limited to parametric variations on fixed topologies.
Still, the ability to choose between different topologies (e.g. multiple mobile base types)
and optimize their parameters is an important capability.

2.2 Extensible Software Architecture

Each application has its own task description and requirements, which drive the
properties of the robot being designed -- whether it is being designed manually, or by an

A

B

B

C A

B

B C

C

(a) loops in configuration graph get split before creating mechanism

D

(b) parallel linkages can be created within a single module

E

D
E

Figure 2.6:  Parallel configuration graphs and mechanisms in Darwin2K
Loops in the configuration graph (multiple references to a single module) result in
duplication of those modules that are referenced more than once, e.g. the module
labeled “C” in (a). However, parallel mechanisms can exist within a single module
in Darwin2K, as in the circled module in (b).

E
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automated synthesis method. No single task representation short of a fully-featured lan-
guage can represent the range of tasks for all robots: a planetary rover may have to navi-
gate over rough terrain and around obstacles, while a manipulator may have to spray
paint an object of known shape and position. Similarly, the requirements of each applica-
tion are different: a planetary rover should have minimum mass and power requirements
while maximizing the ability to cross rugged terrain, but the spray painting robot might
be concerned with painting the entire object as fast as possible, minimizing speed changes
and not colliding with objects in the workcell. A flexible robot synthesis system should
not be dependent on a specific task representation, as this will limit the system’s applica-
bility.

The Parameterized Module Configuration Graph allows a wide variety of robot
types, topologies, and properties to be represented; an equally flexible means of describ-
ing applications is also needed. To achieve this, Darwin2K employs an extensible, object-
oriented software architecture that allows new task representations, simulation and anal-
ysis algorithms, and performance metrics to be added. The reason for this is simple: there
is no one task representation that is suitable for all robots. Several robot programming
and scripting languages have been developed for manipulators, precisely because differ-
ent tasks require different plans, control schemes, and data structures. Most robots, par-
ticularly field or mobile robots, are controlled by programs written in a high-level
language such as C. For this reason, it makes sense for an extensible synthesis system to
allow special-purpose code (written in a high-level language) to be used for task repre-
sentation, control, and simulation. With that said, there are certain primitives (such as tra-
jectories in Cartesian space, PID controllers, and dynamic simulation algorithms) that are
broadly applicable in robotics. Darwin2K includes a set of these primitives (described in
Chapter 4) and allows new tasks, control algorithms, and simulation methods to be added
(written in C++) without requiring modification of the existing code or architecture.

Another factor that affects the applicability of a robot synthesis system is the de-
gree of coupling between the synthesis algorithm and the task. In some systems, there are
explicit dependencies between the task and synthesizer. For example, in [Kim92], there is
a separate population of robots for each via point in a trajectory; if the number of via
points in the trajectory is changed, then the synthesizer’s properties (number of sub-pop-
ulations) must change as well, and it seems likely that the synthesizer’s performance
would be affected by the number of via points. Ideally, the synthesis algorithm used by a
synthesis tool should not depend on the task being addressed, so that the task can be
changed without affecting the synthesis algorithm. Thus, if wide applicability is a goal,
then the system should allow new task representations to be added and the synthesizer
should be completely independent of task.

Darwin2K’s software architecture has been designed so that the synthesizer is in-
sulated from the details of task and robot primitives. This is enforced to a degree such that
new task-specific capabilities are added to Darwin2K through dynamic libraries, so that
the synthesis and the evaluation programs do not even need to be recompiled. (Any pa-
rameterized modules or simulation algorithms that are specific to the task and hand can
be compiled into libraries, which are then linked at runtime by Darwin2K.) The synthe-
sizer operates on configuration graphs, and requires fitness measurements for each con-
figuration it generates. However, the synthesizer does not depend on the internals of the
modules, task requirements, or evaluation process; thus, it makes sense to define an in-
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terface between the synthesis and evaluation procedures so that all task-specific informa-
tion (including the internals of modules) are contained entirely in the evaluation library,
which is not used by the synthesizer. This separation allows application-specific task rep-
resentations and simulations to be used when evaluating the performance of configura-
tions. Additionally, since the synthesizer is an evolutionary algorithm, it can be easily
parallelized. Darwin2K takes advantage of this by having one process containing the syn-
thesizer, and many identical processes for evaluation. The synthesis process (called the
Evolutionary Synthesis Engine, or ESE) sends configuration graphs to the evaluation pro-
cesses (called Evaluators), and Evaluators send performance measurements back to the
ESE. A shared-memory and TCP/IP-based communications package called Real Time
Communications (RTC) is used for communication [Pedersen98], allowing processes to
be distributed over a network of heterogeneous workstations. RTC provides efficient and
robust communication between processes; the entire system can tolerate the failure of in-
dividual modules.

Using many identical evaluation processes lends easy scalability to the system:
new processes can be dynamically added as more computers are available, and a process
can sleep indefinitely if another user requires use of the computer. Each evaluation pro-
cess periodically checks the machine it is running on to see if the CPU load is high or if
any users are active; if so, the process will sleep for several minutes to avoid interfering
with others’ work. Another benefit of having identical distributed processes is that the
failure of any evaluator has no impact other than to make the system run a bit slower. In
contrast, other distributed approaches have used heterogeneous distributed processes
that had limitations to scalability and robustness to failure. The system in [Kim93] used
one process per trajectory point, thus tying the number of processes to the number of
points in the trajectory, and in [Paredis96] each evaluation process (rather than the central
population database) applied a specific genetic operator, so adding or removing process-
es altered the relative frequency with which different genetic operators were applied. In
both of these systems the synthesis algorithms were affected by the addition or subtrac-
tion of distributed processes, thus making them more sensitive to machine availability
and program crashes.

Figure 2.7 shows a schematic view of the synthesis architecture. Both the ESE and
Evaluator programs use dynamic libraries for application-specific code. The ESE’s library
only needs to contain limited descriptions of modules and performance metrics: for mod-
ules, it contains the module name, type, and number of connectors and parameters; and
for metrics, the metric name and the range of values that the metric produces. (Metrics are
described in detail in Chapter 4.) This allows the synthesizer to manipulate configuration
graphs, and use metrics for selecting robots to be reproduced or modified as the design
space is explored.

The Evaluator’s library contains much more information, such as module-specific
analysis and simulation code, task-specific simulation algorithms, and code that enables
metrics to measure performance. Many of these simulation capabilities are implemented
as self-contained evComponents; examples include collision detection, PID and Jacobi-
an-based controllers, a motion planner, and trajectory representations. The evCompo-
nents are used by an evaluator, which is a task-specific C++ object for performing
simulation initialization and high-level control. evComponents provide a standard in-
terface to the evaluator class, so that if (for example) a new metric requires a new anal-
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ysis capability, a new evComponent can be created which performs the analysis while
working with existing evaluators. evComponents also provide their own functions
for parsing parameter files and for obtaining task parameters from a configuration.
Darwin2K includes a set of evComponents (described in Chapter 4) that are widely ap-
plicable, so that task-specific simulators for new synthesis problems can be quickly con-
structed.

2.3 Summary

Previous approaches to automated robot synthesis have not focused on the cre-
ation of general and extensible systems, and have been limited by robot and task repre-
sentations. Darwin2K’s Parameterized Module Configuration Graph is significantly
more flexible than the representations used in previous work, allowing representation
(and synthesis, with appropriate analysis tools) of fixed-base and mobile robots, multiple
and branching manipulators, modular and non-modular robots, as well as arbitrary para-
metric properties. To take advantage of the flexibility of the PMCG representation,
Darwin2K’s software architecture allows new task representations, simulation methods,
performance metrics, and other software components to be easily integrated. Additional-
ly, Darwin2K’s synthesis algorithm is independent of the internals of robots and tasks, re-
lying only on small, well-defined interface to metrics and modules. This combination of
flexible robot representation, extensible architecture, and a task- and robot-independent
synthesizer enable Darwin2K to address a wide range of robot synthesis problems.
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& ID
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Figure 2.7:  Schematic view of synthesis architecture
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3 Synthesis Methodology

3.1 Introduction

What is desirable in a general-purpose synthesis methodology for robots? To an-
swer this question, we must consider the input to, and output from, the configuration
process. Design problems usually have multiple, often-conflicting performance require-
ments; the synthesis method should be able to capture these requirements and generate
designs which meet them. It is also desirable to be able to incorporate human design ex-
pertise, since the designer may know properties that are useful or required of the solu-
tion, thus reducing the computational cost of synthesis and increasing the quality of the
generated design. A general-purpose synthesis method for robots should not rely on de-
tails of the artifact to be generated, or of the requirements, as this limits the applicability
of the method. Substantial synthesis of any type of artifact is often computationally ex-
pensive; anything that reduces the computational cost (either in CPU time or the amount
of time a person must wait for the result) is beneficial. In particular, it is beneficial to be
able to take advantage of multiple computers and to change the scope of the synthesis
process based on available computing power.

These requirements have driven the development of Darwin2K’s synthesis pro-
cess. Like previous work in automated synthesis of robots, Darwin2K uses an evolution-
ary algorithm to synthesize robot configurations. Evolutionary algorithms are
appropriate for configuration synthesis for several reasons:

• they are more flexible than analytical approaches since they do not
have to make assumptions about the solution form, or the relationship
between solution form and performance;

• they can effectively deal with discrete, continuous, and mixed search
spaces and solutions of varying size;

• they offer reasonable robustness to local minima in the search space;
and

• they are easily parallelizable, reducing system runtime

The first point above has significant impact on the applicability of Darwin2K: it al-
lows the synthesizer to determine arbitrary robot properties and to use arbitrary means
of calculating robot performance. In contrast, analytic approaches to synthesis often have
significant restrictions on the number and type of properties being synthesized, and can
be limited to optimizing metrics whose values can be computed by formulae, rather than
through simulation. The second and third points are relevant to the quality of the synthe-
sis result: the search space in design problems is often high-dimensional, non-linear, and
can have a mixture of discrete and continuous properties, so the ability to operate over
the entire design space (not just a small region of it) is crucial in determining the synthe-
sizer’s applicability. Additionally, the design space invariably has many local optima;
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while it may not be reasonable to expect an algorithm to consistently reach the global op-
timum, it should ideally be able to reach well-optimized or near-optimal solutions. Final-
ly, the parallelizability of evolutionary algorithms is of great importance: the quality of
the synthesis result generally improves with the amount of computation, and some prob-
lems cannot be addressed in a reasonable amount of time on a single computer. For these
reasons, evolutionary algorithms are a good match for automated synthesis.

A synthesis method needs to be able to create designs which satisfy multiple per-
formance requirements. Typically, some of these requirements are conflicting (e.g. speed
versus power, or capability versus mass and cost), and there are often non-linear depen-
dencies between requirements that affect the relative merits of solutions. As a trivial ex-
ample, a robot that remains motionless will use much less power than a robot that can
complete the task at hand, yet the motionless robot is, to a human, clearly the inferior of
the two. Ideally, the synthesis method should consider the nonlinear and discontinuous
nature of the interactions between requirements during the synthesis process.

3.1.1 System Overview

Darwin2K consists of an Evolutionary Synthesis Engine (ESE, also referred to as
the synthesizer) which creates configurations, and one or more evaluation processes which
provide fitness measurements to the synthesizer. The synthesizer uses genetic operators to
create new solutions from existing parent solutions, with parent solutions selected for re-
production based on fitness. Because fitness evaluations can be relatively expensive (typ-
ically ranging from 1 to 60 seconds of CPU time) yet are independent from each other,
they are best performed in a distributed manner--hence the multiple evaluation process-
es. In the usual formulation of a genetic algorithm (GA), the GA creates an entire popula-
tion of solutions at once, and then measures the fitness of each solution; this is called a
generational approach. When fitness computations must be distributed to reduce the algo-
rithm’s runtime, the generational approach can be wasteful: the faster evaluation process-
es will idle after finishing their assigned computations as the GA waits for the fitness
results from the slowest evaluation processes. The steady-state genetic algorithm (SSGA)
[Whitley90] remedies this by continually generating new solutions and adding them to
the population, while removing less-fit solutions to make room. Darwin2K uses the
steady-state approach to make efficient use of distributed computing resources.

To select configurations for reproduction in a way that can optimize multiple ob-
jective functions, the synthesizer can use one of two methods: Requirement Prioritization
or a Configuration Decision Function. Requirement Prioritization captures the relative
importance of task requirements in an intuitive way and efficiently guides the synthesizer
as it explores the design space. The CDF encodes the designer’s decision process for de-
termining which of two configurations is better, and is used by the synthesizer to choose
configurations for reproduction and deletion. To prevent well-optimized designs from
being lost due to the probabilistic nature of evolutionary algorithms, the synthesizer uses
an elitist method that is appropriate for multi-objective optimization. This method com-
bines Pareto-optimality (the notion that a solution is not inferior to any other solution)
and solution feasibility (relative to a set of task requirements) when deciding whether a
solution can be removed from the population to make room for new solutions.
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Finally, because of the way Darwin2K uses the Parameterized Module Configura-
tion Graph (PMCG) representation (described in Chapter 2), existing knowledge of useful
robot properties (from both human designers and from previous synthesis runs) can be
directly incorporated. This has several beneficial effects: synthesis time can reduced (or
synthesis quality improved) by including partial solutions known to be useful; the scope
of synthesis can be increased or reduced depending on the computing available; and the
synthesis tool can be used to iteratively refine solutions.

3.2 Genetic Operators

One defining feature of evolutionary algorithms is that they create new solutions
from existing, tested ones. This creation is done by genetic operators, which are procedures
that modify or combine solutions to create new solutions. Three broad classes of genetic
operators are crossover operators, mutation operators, and duplication. Crossover opera-
tors typically create two copies of parent solutions and then exchange parts between the
copies; they are the primary source of progress in many evolutionary algorithms. Dupli-
cation simply creates a copy of a solution, though it can be counterproductive in steady-
state GAs and is not used by itself Darwin2K (see Section 3.4.3). Mutation operators ran-
domly alter properties of solutions, and are useful for introducing new genetic material
into the population and for recovering material that has been lost due to limited popula-
tion size. Mutation is most effective when the population has reached a local minima. In
general, mutation operators are used infrequently and are applied to new solutions gen-
erated by crossover or duplication.

3.2.1 Crossover Operators

In a Simple Genetic Algorithm [Goldberg89], solutions are represented as a string
of symbols. Most commonly, the symbols are bits, and the crossover operator works by
exchanging bits between solutions (Figure 3.1). 1-point crossover consists of exchanging
all of the bits before or after a randomly-chosen crossover point at the same location in both
strings; for example, an offspring of two parents of length n would have its first m bits
from one parent, and the remaining n-m from the other. 2-point crossover entails choos-
ing two crossover points, and exchanging information in the segment between, or outside
of, the points. Both 1- and 2-point crossover are limited in the possible ways information
can be exchanged: for two parent strings of length n (generating two offspring of length
n), there are 2n ways a 1-point crossover operator can exchange information between

strings, and n2 - n ways for a 2-point crossover operator to exchange information. A more
capable crossover operator is the uniform crossover operator, which can exchange infor-

mation independently at each bit, thus allowing 2n different outcomes. Experimental re-
sults have suggested that uniform crossover is more effective than 1- and 2-point
crossover [Syswerda89].
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In Genetic Programming, solutions are represented by tree structures rather than
bit-strings, thus requiring different crossover operators. However, the basic concept is the
same as the 1-point crossover operator for strings: select a crossover point (in each of two
parent trees), and swap the subtrees beneath the crossover point. Since Darwin2K con-
tains both graph and bitstring components (the modules are connected in a graph, and
each module has parameters that are represented as bitstrings), the crossover operators
are slightly different. Additionally, Darwin2K’s crossover operators have to work with
constant parameters and constant attachments that the designer has indicated should not
be changed. At one extreme, every attachment between modules might be designated as
const; at the other, a purely modular design problem might have modules with no pa-
rameters, or with every parameter’s const flag set. To handle these cases (and those in
between), Darwin2K has both a parameter crossover operator and a module crossover operator.
Briefly, the parameter crossover operator looks for modules of the same type and per-
forms a uniform crossover on the parameters that are not marked const in either mod-
ule, while the module crossover operator searches for non-const attachments and
exchanges the subgraphs after the attachment points.

The parameter crossover operator searches monotonically through two configura-
tions’ module lists. Beginning with the first module in each configuration, the operator
checks to see if the modules’ types and component contexts are the same. If so, it performs
uniform crossover on the modules’ non-const parameters (Figure 3.2). If corresponding
parameters have different ranges and resolutions in the different modules, the minimum
and maximum values for the parameters are adjusted to cover the union of the two pa-
rameters’ original ranges, and the numbers of bits for the parameters are adjusted so that
the resolution is equal to or greater than the parameter with higher resolution. Each pa-
rameter’s floating-point value is then converted into an integer value based on the new
range and resolution, and finally uniform crossover is performed. In practice, adjustment
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10111011

00100100

bbbaaaaa aabbbbaa babbaaba

parent a

parent b

1-point 2-point uniform
crossover crossover crossover

Figure 3.1:  Crossover operators for bit strings
Three common methods of crossover for bit strings are shown here: (a) 1-point
crossover, (b) 2-point crossover, and (c) uniform crossover. Two parent strings are
shown at top, and a template is given for each crossover operator (string of a’s and
b’s) showing which parent each bit comes from in the offspring.

(a) (b) (c)
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of the range and resolution of parameters can be avoided by specifying the same range
and resolution for corresponding parameters if multiple instances of a module are
present in the list of modules used for a synthesis problem. After performing the cross-
over for the parameters of the two compatible modules, uniform crossover is performed
on the non-const twist parameters of attachments that connect to corresponding connec-
tors on both modules (e.g. an attachment to connector 1 of a rightAngleJoint module
will only be crossed with an attachment to connector 1 of another rightAngleJoint
module). The crossover operation for the attachments’ twist parameters is identical to the
crossover used for the modules’ parameters.

Once parameter and attachment crossover have been performed for one pair of
modules, the parameter crossover operator steps to the next modules in the configura-
tions’ module lists. If the modules are not compatible, the operator continues to step
through one of the configuration’s modules (starting from the last module that was mod-
ified) until a compatible module is found. Uniform crossover is performed on the mod-
ules’ parameters and attachments, and then the operator moves to the next module in
both configurations. This process is repeated until the end of one configuration’s module
lists is reached. Finally, if there are any task parameters associated with the configura-
tions (see Section 2.1.2), uniform crossover is performed on them. The parameter cross-
over operator has the property that if two configurations are topologically identical (i.e.
have the same sequence modules connected in the same way), then the resulting cross-
over is equivalent to a uniform crossover on the bit string formed by concatenating the
configurations’ variable parameters and attachments. When the topologies are not iden-
tical, the parameter crossover operate still does a thorough job of exchanging relevant ge-
netic material. Figure 3.3a illustrates how parameter and attachment information is
exchanged between configurations for several cases.

Module crossover (Figure 3.3b and Figure 3.4) is more complex than parameter
crossover. It begins by finding a var attachment in each configuration cfga and cfgb; these

are the two crossover points cpa and cpb which point to subgraphs ga and gb, respectively.

ga is copied into cfgb, and any var attachments in cfgb that point to gb are changed to point

011110101 10 11 001

101001100 00 01 111

001110101 00 11 101

111001100 10 01 011

parent module b

parent module a offspring module a

offspring module b
parameter crossover

Figure 3.2:  Parameter crossover within a module
For each pair of compatible modules in two parent configurations (parent modules
a and b above), the parameter crossover operator performs uniform crossover on
the non-const parameters (bit strings in white boxes) to create new modules for the
offspring configurations. Boldface digits in the offspring come from a, while plain
digits come from b. Note that the const parameters (the shaded boxes) do not
change in the offspring.
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to ga (const attachments to gb remain unchanged). Finally, any subgraphs within gb that

do not have any incoming attachments are removed (such as module F in configuration
cfgb in Figure 3.4). This process is repeated with cfga and gb. As with the parameter cross-

over operator, if the configurations have any task parameters then uniform crossover is
performed on them.

The module crossover operator can create configurations whose topologies differ
substantially from their parents. This ability allows useful configuration subgraphs to be
exchanged between configurations of different size and topology: for example, a useful
wrist assembly in a 6-DOF arm can be grafted onto part of a 7-DOF arm. While this can
be beneficial in exploring new parts of the design space, it can also be very disruptive to
well-optimized features: for example, two robots with 6 1-DOF joint modules each may
generate one robot with 0 degrees of freedom and another with 12, and neither may per-
form as well as the originals. In the later stages of synthesis, where topology is likely to
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A B C

D

Figure 3.3:  Parameter and Module Crossover Operators
(a) The parameter crossover operator performs uniform crossover on the
parameters of the modules connected by dashed lines. The figure shows three
different examples; in each case, parameter crossover is performed on
corresponding modules of the same type in both configurations (e.g. the modules
connected by dashed lines).

(b) The module crossover operator exchanges subgraphs occurring after the
crossover points (bold dashed lines). In the middle example, all attachments to
module B get modified to point to F in the new configuration; in the example on the
right, the upper (grey) configuration has one const attachment to B (denoted by the
striped line), which is preserved in the new configuration.
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be well-optimized, module crossover will rarely be productive. In these cases, it may be
more desirable to use a crossover operator which preserves common topology between
the parent configurations: after all, if two solutions are selected because they both per-
form well, then it stands to reason that the features they have in common (rather than the
ones they do not) are the likely cause for the solutions’ good performances. Thus, preserv-
ing common features of two fit parents in the offspring they generate can lead to im-
proved performance [Chen99]. In a normal genetic algorithm operating on fixed-length
bitstrings, the crossover operator (be it 1-point, 2-point, or uniform) will preserve any fea-
tures that two parents have in common: since bits in corresponding locations in the two
configurations are swapped, any bits that are the same in both configurations do not
change.

This is not the case for configuration graphs: explicit action is required to preserve
common features during crossover. The commonality-preserving crossover operator (CPCO)
preserves the largest common subgraph in two PMCGs and ensures that it is present in
the offspring. Commonality-preserving crossover uses the module crossover operator to
do the actual crossover; the only differences are in how the crossover points are chosen,
and that a parameter crossover is performed within the common subgraphs shared by the
configurations. The first step is to identify the largest common subgraph shared by the
two configurations. This process relies on a procedure called growSubgraph, which
takes two modules as input and finds the largest subgraph that begins at the given mod-
ules and is topologically identical in both configurations. By topologically identical, we
mean that corresponding modules in the two subgraphs have identical types and compo-
nent contexts (if any), and that corresponding attachments between modules within one
subgraph are identical (same connectors, modules, and twist angles) in the other sub-
graph. growSubgraph starts with two modules of identical type and examines the mod-
ules’ attachments; if any attachments are identical, then growSubgraph is called
recursively on the modules to which the attachments lead. growSubgraph computes the

Figure 3.4:  Steps of module crossover
(a) original configurations (b) subgraph after crossover point is copied into the other
configuration. (c) all var attachments to the old subgraph (not just the attachment at the
crossover point) are switched to the newly-copied one (d) unconnected subgraphs are
deleted.
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size of the common subgraphs (number of modules) and a mapping between correspond-
ing modules in the subgraphs. (The mapping is simply an array that contains the indices
of corresponding modules in the two subgraphs.) The CPCO calls growSubgraph for ev-
ery pair of corresponding modules with the same type and component context in the two
configurations, and records the largest common subgraph and its associated starting
points and mapping.

At this point, the CPCO has identified the largest common subgraph; this will be
preserved during the crossover operation. The next step is to perform a parameter cross-
over between corresponding modules in the subgraphs. The mapping computed by
growSubgraph is used to select the modules for parameter crossover. After the param-
eter crossover, the CPCO chooses module crossover points in the configurations that lie
outside the common subgraph, thus ensuring that the crossover will not disrupt the topol-
ogy shared by the two configurations. Module crossover is then performed using the
same method as the module crossover operator.

3.2.2 Mutation Operators

While crossover operators can generate a vast range of solutions, they are unable
to introduce attributes that do not already exist in the population. For example, if all of
the elbowJoint modules in the configurations of a population have a ‘0’ in a particular
bit of a particular parameter, then no crossover or duplication operator will be able to
generate a configuration with a ‘1’ in that location. Similarly, if no configurations in the
population contain an elbowJoint module at all, then neither will the result of any
crossover or duplication. This becomes significant as the population converges towards
a local minima. At some point, the only way out of a local minima will be through a mu-
tation, since a finite population size and decreasing diversity imply that some attributes
will be lost. Mutation operators can introduce new attributes that have either been lost
or that were never in the population to start with.

Darwin2K contains several different mutation operators, corresponding to differ-
ent features in the configuration graph. The parameter mutation operator makes random
changes to a module’s parameters, while attachment mutation makes random changes to
the twist parameter of an attachment. These operators are very straightforward: the pa-
rameter mutation operator randomly selects a var parameter and performs a creep muta-
tion, which increases or decreases the parameter’s integer value by a small, random
amount (in this case, up to +/- 2). Attachment mutation randomly selects an attachment
with a var twist parameter and randomly selects a new value for the parameter. While
a creep mutation could be used instead of selecting a random value, the twist parameter
for attachments is often coarsely-discretized (90 degree increments), with several basical-
ly equivalent orientations. Because of these factors, a creep mutation on twist parameters
effectively ends up being a randomization anyway.

The other mutation operators change the topology of the configuration graph. The
insertion and deletion operators add and delete modules, respectively, while the module re-
placement operator replaces a module and the permutation operator exchanges two mod-
ules within a configuration. These operators are more complex than the parameter and
attachment mutation operators, since they must change the configuration’s topology
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while ensuring that they do not disrupt any const attachments. The insertion operator
randomly selects a var attachment in the configuration graph. If m is the module pointed

to by the attachment (i.e. the attachment is an incoming edge to m), the insertion operator
inserts a new link or joint module (with random parameter values) before m in the con-
figuration graph. Any var attachments that were connected to m are changed to connect

to the new module, while const attachments to m remain unchanged. The deletion op-
erator finds a module with at least one var attachment to it and only one child, and any
var attachments to the module are redirected to the module’s child. If there are no const
attachments to the module, then the module is removed from the configuration graph;
otherwise, it remains and the const attachments are unchanged.

The module replacement operator selects a module with no const attachments to
or from it, and replaces it with a module of similar general type (base, link, joint, or tool)
that has at least as many connectors as were used on the module being replaced (e.g. a
module which has attachments to three of its connectors will only be replaced by a mod-
ule with three or more connectors, though a module that has three connectors, only two
of which are used, can be replaced with a module with only two connectors). As with the
insertion operator, the parameters of the module being inserted are randomized. The per-
mutation operator finds two modules that are internal nodes in the configuration graph
(i.e. have incoming and outgoing attachments), have only var attachments to and from
them, and have the same number of attachments. The modules are exchanged in the
graph, as are their outgoing attachments.

The module replacement and insertion operators both create new modules and in-
sert them into configurations. These modules come from the module database, which is
a list of modules specified by the designer. The ranges, numbers of bits, const flags, and
values for the parameters of the modules in the database are all set by the designer though
a database file, thus allowing module properties to be specified in advance if beneficial
properties are known. The component context of each module is also set in the database
file. When a module from the database is selected for insertion, a copy is made and the
copy’s var parameters are randomized. However, any const parameters retain their
original values.

3.3 Selecting Configurations for Reproduction and

Deletion

Just as the use of genetic operators is a defining property of evolutionary algo-
rithms, so is the idea of fitness-based selection. This is based on the principle of natural
selection: organisms that are somehow more ‘fit’ than other, competing organisms will be
able to reproduce more, and thus will have a greater influence on the gene pool of the spe-
cies. In nature, the selection process is automatic: those organisms that reproduce most
before dying will have the greatest influence. In an evolutionary algorithm, an artificial
means of rewarding ‘fit’ solutions is required: when selecting solutions to be reproduced,
those that perform better are more likely to be selected. Additionally, steady-state evo-
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lutionary algorithms like Darwin2K require a method of selecting solutions for deletion
to make room in the population for new solutions. The method used for selection (for
both reproduction and deletion) plays a large role in determining the performance of the
evolutionary algorithm, particularly when multiple metrics are used to measure the fit-
ness of solutions.

The final selection methodology used in Darwin2K is, appropriately enough, the
result of a number of evolutionary steps. Each step was a decision made in response to an
observed shortcoming of the method being used at the time. Certainly, at many junctions
different options could have been explored, which would likely have changed the meth-
odology now being used. In retrospect, and in light of evolutionary algorithms in fields
other than robot design, the decisions were reasonable and have indeed resulted in an ef-
fective system. The organization of this section reflects the design decisions, both in or-
dering and in content. Briefly, four methods of selection were investigated. Initially, a
simple weighted sum was used to create a single selection probability from multiple per-
formance metrics. This method often favored unacceptable solutions over acceptable
ones; to overcome this problem, two alternate methods were formulated: the Configura-
tion Decision Function, which allows the designer to specify a method of comparing two
solutions to decide which is better; and the Metric Decision Function, which the designer
specifies to indicate which metrics should be used for selection based on properties of the
population. The Metric Decision Function was the more promising of the two methods,
but was not intuitive for the designer. Requirement Prioritization was a response to the
non-intuitive interface of the Metric Decision Function and is the method now used in
Darwin2K. Requirement Prioritization is based on specifying a priority and acceptability
criteria for each metric, which the synthesizer uses to decide which metric to use for se-
lecting configurations. This method is easy for the designer to use and can efficiently
guide the synthesizer in optimizing multiple metrics.

3.3.1 Basic formulation of selection

A common method for performing selection in evolutionary algorithms is fitness-
proportionate selection. This entails computing the fitness (performance) of each solution
and then probabilistically selecting a solution from the population, where a solution’s
chance of being selected is directly proportional to its fitness. This is the primary method
used in Adaptation in Natural and Artificial Systems ([Holland75]) and Genetic Programming
([Koza92]), two important texts on evolutionary algorithms; a modified version of it is
used in Darwin2K.

In fitness-proportionate selection as formulated in [Koza92], a solution’s perfor-
mance (called the raw fitness) is translated into a scalar called standardized fitness. This is a
number greater than zero, with zero being the best possible value. In Darwin2K, each
type of fitness measurement (performance metric) performs this conversion internally
(See Section 4.8 for details on how standardized fitness is computed for various metrics),
though the general idea is:

(3.1)s i( ) scale
max raw fitness– positive sense

raw fitness min– negative sense
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where positive sense indicates that a larger raw fitness is better, and negative sense indi-
cates that smaller raw fitness is better. Negative standardized fitness values are clipped
to zero. The standardized fitness is then translated into adjusted fitness by the equation

(3.2)

where s(i) is the standardized fitness of configuration i and a(i) is the adjusted fitness of
the same configuration. Adjusted fitness ranges from 0 to 1, with 1 being best. For exam-
ple, two configurations with standardized fitness values of 5 and 6, and another two con-
figurations having standardized fitness 0 and 1, will have adjusted fitness values of 0.0067
and 0.0024, and 1 and 0.37 respectively. The difference in standardized fitness is 1 in both
cases, and the ratio between adjusted fitness values is the same as well: 1/e. This provides
a consistent selection pressure for better-than-average configurations over the whole
range of standardized fitness values, and assigns high selection probability to solutions
with significantly better-than-average standardized fitness. The scale value for a particu-
lar metric and task can be chosen to provide a multiplication in selection probability pro-
portional to the incremental change in the raw value of the metric. For example, if we
want a 5kg reduction in mass to lead to a twofold increase in adjusted fitness, we would
use the formula

(3.3)

where r is the desired ratio of increase in adjusted fitness for an improvement of magni-

tude  in the raw value of the metric.
The selection probability of a configuration is directly proportional to its adjusted

fitness; the actual probability of selection (also referred to as the normalized fitness) is the
adjusted fitness normalized by the sum of the adjusted fitness values of all configurations
in the population:

(3.4)

Though the normalized fitness is not stored explicitly for each configuration in
Darwin2K, it is computed each time a selection is made. When selecting a configuration
for deletion, the probability of selection is proportional to the inverse of the adjusted fit-
ness:

(3.5)

 and again, the actual probability of selection is normalized over the entire population:

(3.6)

In some work such as [Koza92], a different formulation of adjusted fitness is used:
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a(i) = 1/(1+s(i)). However, this did not provide a consistent selection pressure throughout
the synthesis process, especially when the best possible raw fitness was not known in ad-
vance. If it turns out not to be possible to achieve a standardized fitness of 0, then there
may be little selection pressure using the 1/(1+s(i)) formulation. On the other hand, using
the exponential formulation for adjusted fitness means that an increase in standardized
fitness of constant value will always result in an increase in adjusted fitness of a constant
multiple, which can consistently provide large selection pressure towards solutions that
outperform the rest of the population. While increased selection pressure can cause an
evolutionary algorithm to converge too quickly and settle into a part of the search space
that is far from optimal, better results have been achieved using the exponential formula-
tion for adjusted fitness.

Consider the case where the metric being optimized is the mass m of a robot. If we
do not know the best (minimum) mass that a feasible configuration can achieve, we could
make a reasonable but conservative guess--let’s say it is 5kg for a certain problem. Thus,
if we choose a scale factor of 1 then the standardized fitness for a mass m would be m-5.
If one configuration has a mass of 15kg and another has a mass of 15.5kg, then with the
exponential formulation the lighter one will be 64% more likely to be selected for repro-
duction. With the formulation in [Koza92], the lighter one will be 5% more likely to be se-
lected. If it turns out that the best possible mass is 10kg, let us examine the case where the
synthesizer succeeds in generating the optimal configuration. If we have a configuration
with mass 10.5kg, and another with mass 10kg (which is optimal, though the synthesizer
doesn’t know it), then with the exponential formulation the lighter one will still have a
64% greater selection probability for the 0.5kg difference in mass. Using the formulation
of adjusted fitness from [Koza92], the lighter configuration will only have a 10% greater
chance of being selected--even though it has achieved the optimal value. The exponential
formulation is thus able to consistently differentiate between configurations when the op-
timal value of a metric cannot be accurately specified in advance. Additionally, the expo-
nential formulation of adjusted fitness provides a consistent selection pressure when
selecting configurations for deletion.

It is worth noting that the scale factor used in converting raw fitness to standard-
ized fitness directly controls the multiplicative increase in selection probability per linear
decrease in standardize fitness. In the absence of better information, a rule of thumb for
choosing a scale factor is that the range of variation in a metric’s raw value should rough-
ly map to the interval [0,5] in standardized fitness; in practice this has worked well
enough to preclude a detailed study of the best way to select the scale factor.

The fitness-proportionate selection method described above is fine when the fit-
ness of a configuration can be measured by a single metric. However, the vast majority
design problems are characterized by multiple, often-conflicting performance metrics,
some of which can be considered task requirements: there is a certain threshold a solution
must meet to be considered feasible. General examples of conflicting metrics are cost ver-
sus performance, mass versus capability, and speed versus accuracy.

The easiest and most common way of handling multiple metrics is scalarization:
collapsing a vector of metrics into a scalar using some sort of scalarizing function. All pre-
vious approaches for robot synthesis performed scalarization by taking some function of
a weighted sum of metrics:
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(3.7)

where wj is the weight for the jth metric and fj(i) is the fitness for metric j of configuration

i, and g is a function (often the identify function, or an exponential). Darwin2K initially
used a weighted sum

(3.8)

but the usual problems were encountered: choosing appropriate values for wi was non-

trivial, and the synthesizer frequently assigned (based on the weighting scheme) the
highest selection probability to designs that were inferior to others in the population.

A scalarization approach used for design synthesis will have shortcomings if it
does not account for the nonlinear dependencies between metrics. The fundamental
problem with simple scalarization is that it does not capture the relative merits of differ-
ent designs as perceived by the designer -- and it is the designer’s goals that the synthe-
sizer is trying to achieve. As a trivial example, consider the following: show a person two
cars, one that gets 40 miles to the gallon and can be driven for thousands of miles between
repairs, and one that gets 300 miles to the gallon yet whose wheels can only rotate
through one revolution. If you ask the person which one they would rather drive, they
are likely to pick the first one. The person will not assign weights to mileage and maxi-
mum distance traveled and calculate a function from the weighted performance metrics.
The thought process is probably more akin to asking the questions, “Does each car meet
my minimum requirements? If so, which performance trade-offs are most desirable to
me?” When using scalarization methods that do not explicitly account for the significance
of metrics, there will always be cases where a design that is in the designer’s eyes inferior
to another design will appear superior according to scalarization. In practice, these cases
occur quite frequently and can cause the synthesizer to concentrate on inferior designs. A
better approach for optimizing multiple objective functions for design is to somehow en-
code the significance of each metric and any conditional dependencies between them, so
that the synthesizer can make better decisions. Two possible ways of doing this are to tell
the synthesizer how to meaningfully compare configurations, and to tell the synthesizer
which metric(s) should be used for selection at a given time. Both approaches were inves-
tigated before focusing on the latter, as it is easier for the designer to specify and improves
the effectiveness of the elitist approach outlined below.

The next section describes the development and implementation of both ap-
proaches, but before delving into them it is useful to introduce the concept of elitism. In a
generational EA, elitism means always duplicating the best few solutions when the next
generation is created; in a steady-state algorithm, elitism always preserves the best few
solutions. Elitism prevents an EA from losing the best solutions found to date and can
improve convergence toward good solutions by giving them more opportunities for re-
production.

When a single objective function is used, the notion of ‘best’ is obvious; when mul-
tiple objectives are being optimized the notion of “best” must be interpreted appropriate-
ly. The simplest way is to consider the “best” solutions to be those that have the best
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fitness in any single metric over the entire population; however, this is a very limited def-
inition as it does not consider solutions which make trade-offs between metrics. A more
useful definition of the set of “best” is the Pareto-optimal set. Pareto-optimality can be un-
derstood in terms of dominance:

• solution sa is said to dominate solution sb if sa is better than sb with

respect to one or more metrics, and is equal to sb in the remaining met-

rics.

The Pareto-optimal set is the set of solutions that are not dominated by any other solution;
this set contains solutions which have varying trade-offs between metrics. This is the ba-
sis for Darwin2K’s elitist strategy: configurations in the Pareto-optimal set should not be
deleted. In practice, the size of the Pareto-optimal set can easily approach the size of the
population, making it difficult to find configurations to delete (and ultimately requiring
the population size to be increased if we are to avoid deleting Pareto-optimal configura-
tions). This becomes more pronounced as the number of metrics increases. To alleviate
this, feasibility is added as a requirement for elitism: if any configurations in the popula-
tion are feasible according to the task requirements, then only those configurations that
are in the Pareto-optimal set of the feasible solutions are prevented from being deleted. A
configuration is said to be feasible if it meets the acceptance criteria for (or satisfies) each
metric. We thus define the elite set as follows:

(3.9)

where E is the elite set, P is the population, F is the set of feasible configurations from P,
and PO(x) is the Pareto-optimal set of x. E can also be understood in terms of a modified
dominance relationship:

• solution sa is said to feasibly dominate solution sb if sa is feasible and sb is

not, or if sa dominates sb and both solutions have equal feasibility.

The elite set is thus the set of solutions that are not feasibly dominated by any other solu-
tions. Note that feasibility and domination are understood to be defined with respect to
a set of metrics. Basing elitism on the elite set as defined here, rather than on the Pareto-
set, significantly reduces but does not eliminate the need to increase the population size
to accommodate an expanding set of elite solutions.

3.3.2  Configuration Decision Functions

One way to encapsulate the significance of, and dependencies between, metrics is
for the synthesizer to ask the designer, “Which of these two configurations is better?”
While it is not feasible to do this for every choice made by the synthesizer, we can ask the
designer to specify a configuration decision function (CDF) that attempts to capture the de-

E
PO P( ) if |F| = 0

PO F( ) if |F| > 0
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signer’s decision process for comparing two configurations. For the automobile example
in the previous section, the CDF might be something like:

Is each car capable of taking me to work every day? If so, the one with better gas mileage is
best. If not, then the one that takes me the farthest is best. If they have equal ranges, the one with
better mileage is best.

While we could ask the designer to write a snippet of C++ code which would be
compiled into the system, this would be inconvenient when making changes and in any
case a fully-featured language is not required. Instead, the CDF is specified in a C-like
format that is interpreted at runtime, which is more concise and convenient for the de-
signer.  Several primitives are required:

• comparison: a > b (or <, =, >=, etc.)
• conditional: if-then-else
• boolean operations: AND, OR, NOT
• decision statement: cfga is better, or cfgb is better

• values: metric i for cfga, numerical constants

• arithmetic operators: +, -, /, etc.

The UNIX tools yacc and lex [Levine92] were used to create an interpreter for the
CDF with the primitives listed above. A sample CDF specification file is shown in Figure
3.5. This CDF sequentially compares the raw metric values of the two configurations, in
an order that indicates the relative importance of each metric: if one configuration com-
pletes more of the task than the other, then that configuration is always considered better.
The error metric is only used to decide between configurations when one or both has er-
ror greater than a threshold; differences in error below that threshold are not to be con-
sidered significant. Actuator saturation and link deflection are treated similarly.

The CDF tells the synthesizer how to decide which of two configurations is better,
but does not compute an explicit fitness value that can be used for fitness-proportionate
selection. Instead, tournament selection [Goldberg91] is used with the CDF. Tournament
selection randomly chooses two configuration and uses the CDF to select the better of the
two for reproduction (or the worse of the two, for deletion). When used with a steady-
state EA, tournament selection provides an inherent, though small, level of elitism: clear-
ly, the best solution will never be selected for deletion. One property of tournament selec-
tion is that it does not create as much selection pressure towards good configurations as
fitness-proportionate selection does. This is a trade-off: on one hand, the EA is less sus-
ceptible to premature convergence, but on the other hand it may take longer to reach a
good solution. Initial experiments indicated that using tournament selection with a CDF
decreased the likelihood of the synthesizer getting trapped in a local minima as compared
to the weighted sum approach.

The grammar used for the CDF can also be used to specify the feasibility decision
function, which can be used to limit the elite set as discussed in Section 3.3.1. The simplest
form of the Feasibility Decision Function compares one or more of a configuration’s raw
fitness values to a threshold to determine if it is feasible; however, more complex func-
tions can be specified if desired.

Rank selection [Goldberg91] can also be used with the CDF, though it was not in-
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vestigated. In rank selection, all solutions in the population are sorted based on fitness
and are then assigned selection probabilities based on their rank. Since sorting relies on
comparing two elements in a set, the CDF can be used for the sorting operation. However
further investigation of the CDF did not seem as useful as exploring methods based on
fitness-proportionate selection. Modifying Darwin2K to perform rank selection was cost-
lier than extending fitness-proportionate selection, so rank selection was not explored.

// first, decide on percentage of task completed (metric 0)
if (cfg1->metric[0] > cfg2->metric[0]) return cfg1;
else if (cfg2->metric[0] > cfg1->metric[0]) return cfg2;

// choose cfg w/ fewer collisions (metric 1)
if (cfg1->metric[1] < cfg2->metric[1]) return cfg1;
else if (cfg2->metric[1] < cfg1->metric[1]) return cfg2;

// decide on error (metric 2) only if > 3cm
if (cfg1->metric[2] > 0.03 || cfg2->metric[2] > 0.03) {
 if (cfg1->metric[2] < cfg2->metric[2]) return cfg1;
 else if (cfg2->metric[2] < cfg1->metric[2]) return cfg2;
}

// decide on link deflection (metric 3) only if > 5mm
if (cfg1->metric[3] > 0.005 || cfg2->metric[3] > 0.005) {
 if (cfg1->metric[3] < cfg2->metric[3]) return cfg1;
 else if (cfg2->metric[3] < cfg1->metric[3]) return cfg2;
}

// decide on actuator saturation (metric 4) only if > 0.5
if (cfg1->metric[4] > 0.5 || cfg2->metric[4] > 0.5) {
 if (cfg1->metric[4] < cfg2->metric[4]) return cfg1;
 else if (cfg2->metric[4] < cfg1->metric[4]) return cfg2;
}

// decide on time (metric 5)
if (cfg1->metric[5] < cfg2->metric[5]) return cfg1;
return cfg2;

Figure 3.5:  Example CDF file
This CDF essentially prioritizes different metrics: path completion is most important,
followed by number of collisions, error, link deflection, joint torque, and task
completion time. Note that error, link deflection, and joint torque all have
acceptability criteria greater than zero, so comparison is only performed if one or
both configurations do not meet the criteria. The raw fitness (rather than
standardized) is used for each metric comparison.
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3.3.3 Metric Decision Functions and Requirement Prioritization

If we wish to use fitness-proportionate selection for multiple metrics, we cannot
use the CDF. While an improved scalarization approach that uses conditional logic may
be appropriate, we can also try to guide the synthesizer by telling it which metrics it
should be optimizing at a given point in time. The motivation for this was the observation
that if there is little variation in a particular metric, then making selections based on that
metric is not very meaningful: in the limit, if all solutions have the same value in one met-
ric, then selecting based on that metric amounts to uniformly random selection. One way
of choosing which metric to use for selection is to use a statistical feature such as variance
to determine which metric can best discriminate between good and bad configurations at
a given point in time; however, initial experiments with this approach were not promis-
ing. One reason is that different metrics have different ranges--sometimes by orders of
magnitude; another reason is that fitness values often do not follow a normal distribution.
But the most important cause of failure is that statistics do not capture the desires of the
designer. Different metrics have different priorities in the mind of the designer; a stan-
dard deviation of x may be meaningless in one metric, but it may be the difference be-
tween acceptable and unacceptable designs in another. The metric decision function (MDF)
thus arose in an attempt to answer the question, “What variation in a metric is meaningful
in terms of the task’s requirements?”

As with the Configuration Decision Function, the MDF is specified by the designer
in a text file that is interpreted at runtime; however the MDF has slightly different prim-
itives since it deals with properties of the population as a whole, and selects metrics rather
than configurations. One primitive is the fraction of population comparison (FPC). This com-
putes the fraction of the population that has a specific metric less than, equal to, or greater
than a threshold. For example, if 90% of the population has a task completion metric of
100%, then the synthesizer shouldn’t select based on task completion. The other key prim-
itive for the MDF is the metric selection statement, of which there are two types: a fixed
metric selection which returns a specific metric, and a weighted random metric selection,
which chooses a metric based on a set of weights, in which case a metric’s chance of se-
lection is directly proportional to the weight it is assigned. The initial formulation of
MDFs used these primitives as well as the operators and conditional statements used for
Configuration Decision Functions. While effective at optimizing multiple metrics, speci-
fying a useful MDF in this way was not intuitive and often required the designer to spec-
ify many if-then statements, as shown in Figure 3.6. To make MDF specification easier for
the designer, a weight assignment statement was added which allowed the selection
probabilities for each metric to be set independently, thus reducing the complexity of the
MDF file. Figure 3.7 shows an MDF equivalent to the one in Figure 3.6, but with the use
of the weight assignment statement.

The structure of the MDF is more visible in Figure 3.7: path completion and col-
lision avoidance are emphasized first, but once most of the population performs well for
those metrics, the priorities of some other metrics (maximum error, link deflection, and
peak joint torque) are increased. Finally, when error and link deflection reach acceptable
levels for most of the population, peak joint torque and task completion time alone are
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// first focus on path completion (metric 0)
if (fpc(metric[0] > 0.9) < 0.5) {
// less than half the population has completion > 0.9; improve it

  if (fpc(metric[1] == 0.0) < 0.5) {
    // need to improve collisions (metric 1)
    // give weights of 1 to path completion (metric 0) and
    // collisions (metric 1), and give weights of 0.1 to all other
    // metrics
    return random(1, 1, 0.1, 0.1, 0.1, 0.1);
  } else {

// need to improve completion, but not collisions
    return random(1, 0.1, 0.1, 0.1, 0.1, 0.1);
  }
} else if (fpc(metric[1] == 0.0) < 0.5) {
// population is okay with respect to task completion, but

  // less than half can complete the task with no collisions.
  // give a weight of 1 to collisions and 0.1 to other metrics
  return random(0.1, 1, 0.1, 0.1, 0.1, 0.1);
}

// path completion and number of collisions are ok, so focus on
// other metrics
if (fpc(metric[2] > 0.03) < 0.5) {
  // optimize error (2)
  if (fpc(metric[3] < 0.005) < 0.5) {
    // link deflection (3) needs improvement
    if (fpc(metric[4] < 0.5) < 0.5) {
      // need to reduce actuator saturation (4), too
      return random(0.1, 0.1, 1, 1, 1, 0.1);
    }
    return random(0.1, 0.1, 1, 1, 0.1, 0.1);
  }

  if (fpc(metric[4] < 0.5) < 0.5) {
    // improve actuator saturation (4)
    return random(0.1, 0.1, 1, 0.1, 1, 0.1);
  }

  return random(0.1, 0.1, 1, 0.1, 0.1, 0.1);
}

// keep trying to reduce actuator saturation (4) and time (5)
return random(0.1, 0.1, 0.1, 0.1, 1, 1);

Figure 3.6:  Sample MDF specification file
The random function returns a metric chosen randomly based on the weights specified
in its arguments. For example, random(0.9, 0.1) will return metric 0 90% of the time
and metric 1 10% of the time. Note that random normalizes the weights so that they do
not have to sum to one as specified by the designer.
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assigned high weights. Soon after implementing this change, it became apparent that the
weights could be adaptively set in a more continuous manner: for example, the selection
probability for a metric could be proportional to the fraction of the population that did
not satisfy the metric. This approach seemed to work well and made specifying the MDF
more straightforward. Note that the Feasibility Decision Function mentioned in Section
3.3.2 is also used with the MDF to limit the size of the elite set based on feasibility.

While initial experiments with the MDF were promising, the interface was awk-
ward and required the designer to make choices in specifying the MDF that in practice
would likely be made arbitrarily, since there was no clear guide for how to translate task
requirements into an MDF. At the same time, an idiom seemed prevalent in the MDFs
that had been used successfully: high-priority metrics were optimized first, and lower-
priority metrics were only considered after some configurations satisfied the high-prior-
ity metrics.

Requirement Prioritization thus arose as a way of formalizing this idiom to capture
the relative importance of different metrics in a way compatible with fitness-proportion-
ate selection. For each metric, the designer assigns a priority and an optional acceptance

weights = 0.1;  // assign 0.1 to all weights

if (fpc(metric[0] > 0.9) < 0.5 ||
    fpc(metric[1] == 0.0) < 0.5) {
  // focus on path completion (metric 0) & collisions (metric 1)
  if (fpc(metric[0] > 0.9) < 0.5)  weights[0] = 1;
  if (fpc(metric[1] == 0.0) < 0.5)  weights[1] = 1;

  return random(weights);
}

if (fpc(metric[2] > 0.03) < 0.5) {
  // need to improve error (metric 2)
  weights[2] = 1;

  // see if link deflection needs improvement
  if (fpc(metric[3] < 0.005) < 0.5) weights[3] = 1;

  // reduce actuator saturation if necessary
  if (fpc(metric[4] < 0.5) < 0.2) weights[4] = 1;

  return random(weights);
}

// keep trying to reduce actuator saturation (4) and time (5)
weights[4] = 1; // actuator saturation
weights[5] = 1; // time

return random(weights);

Figure 3.7:  MDF specification using weight assignment
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threshold in terms of raw fitness. The priority is simply an integer indicating the impor-
tance of the metric relative to the other metrics, and more than one metric may share the
same priority. This is far simpler than specifying a full MDF: no rules must be specified,
and in contrast to the many weights and thresholds required for the MDF, the only nu-
merical constants that Requirement Prioritization needs are in terms of the task: the im-
portance of each metric, and a feasibility threshold:

This is clearly less involved than specifying a MDF or a CDF and implicitly includes the
FDF as well. (Note that a lower value of priority indicates higher importance.)

Darwin2K uses Requirement Prioritization to adaptively set metric selection
weights. Starting with the metrics having priority 0 (i.e. most important), each group of
equal-priority metrics (called a requirement group) is optimized in turn. Let us denote the
group of metrics with priority p as gp. The set Gp is then defined to be the set {g0, g1, ... ,

gp}. We say that gp is satisfied when at least one configuration meets the acceptance criteria

for each of gp’s metrics, and that Gp is satisfied when its members are all satisfied by a sin-

gle configuration. Once the population contains a certain number of configurations which
satisfy Gp, Darwin2K moves to Gp+1. When optimizing for Gp, the probability of choosing

a metric of priority > p is zero; for metrics in Gp, the selection probability is directly pro-

portional to a weight w assigned to each metric by the rule

(3.10)

where fi is the fraction of the population that does not satisfy metric i. The effect of this

process is that less-important metrics are not addressed until the more-important ones are
satisfied, and metrics that are satisfied by few configurations are given more importance
than those that are satisfied by many. For example, it makes no sense to select configura-
tions based on the time they spend on a task if none can complete it; thus, task completion
is assigned a lower priority number (higher importance) than task execution time. Addi-
tionally, if most of the population can complete a task, but few can do it without any col-
lisions, then it is more useful to select configurations based on number of collisions than
on task completion.

As mentioned earlier, the size of the Pareto-optimal set can easily approach the
size of the population if elitism is used, thus requiring that either Pareto-optimal config-
urations be deleted, or that the population size be increased. Also noted was that feasibil-

priority = 0   metric 0   threshold: == 1.0 // task completion
               metric 1   threshold: == 0.0 // # collisions

priority = 1   metric 2   threshold: < 0.03 // error
               metric 3   threshold: < 0.005 // deflection
               metric 4   threshold: < 0.5 // saturation

priority = 2   metric 5   threshold: none // time

w
2 if metric i is not satisfied

1 f i if metric i is satisfied–
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ity can be used to limit the number of configurations in the elite set. Requirement
Prioritization can further reduce the size of the elite set in two ways: by reducing the num-
ber of metrics that are used to determine Pareto-optimality, and by incrementally adding
feasibility requirements for those groups of metrics that have been satisfied. If the group
of metrics currently being optimized has priority p, then the set of metrics M used to de-
termine Pareto-optimality are determined as follows:

• if Gp-1 is not satisfied, then M contains the metrics in Gp’s members

• if Gp-1 is satisfied then M contains only gp’s metrics

It may seem that Gp-1 will always be satisfied when optimizing for Gp, but this may not

be true if the metrics in gp require a new simulation method that may more accurately

compute values for metrics in Gp-1. An example of this is when Gp contains the dynam-

icPathCompletion metric, which requires dynamic simulation to measure task com-
pletion. In this case, the task completion as measured earlier in kinematic simulation may
be inaccurate, and no existing configurations may meet Gp-1’s feasibility thresholds when

re-evaluated with dynamic simulation. After a new configuration c has been evaluated, it
is tested to see if it satisfies Gp. M is determined as above and the elite set E is recomputed

using the feasibly dominant relationship with respect to M (as defined in Section 3.3.1) to
determine membership in E. Figure 3.8 shows the algorithm used to update the elite set.

Darwin2K uses adjusted fitness rather than raw fitness to determine dominance.
Raw fitness can take on any value, but it is clipped to a limit specified by the designer be-
fore computing the standardized and then adjusted fitness. This allows the designer to in-
dicate that raw fitness values above or below a certain threshold are equivalent in terms
of their relevance to the task, since any raw fitness values past the threshold will be as-

procedure updateOptimalSet(configuration c, set O)
boolean wasDominated = 0;

for cold in O {
if c feasibly-dominates cold then

remove cold from O;
else if cold feasibly-dominates c then

wasDominated = 1;
exit loop;

endif

}

if (wasDominated = 0) then

add c to O;
endif

end

Figure 3.8:  Algorithm for updating the elite set
Each time a configuration is added to the population, this function updates the elite
set according to the feasibly dominant relationship described in Section 3.3.1.
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signed the same adjusted fitness.
Requirement Prioritization is effective for addressing robot design problems with

multiple metrics, and it is the method used in most of the experiments documented in
Chapter 5. The ability of Requirement Prioritization to effectively capture task-specific
dependencies between metrics, and to do so in a manner that is very easy for the designer
to specify, make it attractive for synthesis. Additionally, Requirement Prioritization in-
crementally adds feasibility conditions on the elite set, creating a good trade-off between
preserving configurations that perform well and having to accomodate an unmanageably
large set of elite solutions.

3.4 Synthesis Process

We have just seen how Darwin2K selects configurations for reproduction and de-
letion, and how it creates new configurations using the genetic operators. While these are
the core operations performed by the Evolutionary Synthesis Engine, there are other aux-
iliary supporting procedures that round out the system. These include generating an ini-
tial population, deciding which genetic operators to use, controlling the size and diversity
of the population, deciding when to move to the next group of metrics, and communicat-
ing with evaluation processes.

3.4.1 Generating configurations

The synthesis process begins with the initial population. This can be the final pop-
ulation of a previous synthesis run, but more frequently it is created using the genetic op-
erators. However, the genetic operators can only combine and modify existing
configurations; they do not create configurations from scratch. Thus, one or more initial
kernel configurations are required for the operators to work on. These kernels are specified
by the designer and can be as trivial or complex as desired. If the designer knows some
parametric or topological features that will be useful to the synthesizer, he can provide
them as kernel configurations and can optionally ensure that the features remain present
in every configuration generated by the synthesizer through the use of const flags on pa-
rameters and attachments. On the other hand, if nothing is known about properties of
configurations that will be useful for the task, then the kernel can be trivial, consisting of
a tool module attached to a base module. Partial or complete solutions from previous syn-
thesis runs can be included as well; for example, if a particularly well-optimized assembly
of modules forming a wrist was discovered by Darwin2K in a previous run, then it can be
included as part of a kernel.

Figure 3.9 shows a data flow diagram for the creation of the initial population. The
process works by randomly applying genetic operators to configurations randomly se-
lected from a pool. Initially this pool contains only the kernels, but each newly-generated
configuration is added to the pool. The process of expanding the pool may have one or
two passes, depending on whether the designer specifies any configuration filters. These
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filters provide an inexpensive way of limiting the search space by culling inappropriate
designs before they are evaluated. As with other aspects of Darwin2K, the designer can
create task-specific filters as part of a dynamic library; however Darwin2K includes three
general purpose filters: the dofFilter, the endPointFilter, and the moduleRedun-
dancyFilter. The dofFilter culls any configurations having a number of degrees of
freedom outside a specified range; the endPointFilter is similar but checks for an al-
lowable number of endpoints (tools). The moduleRedundancyFilter removes config-
urations having two forbidden pairs of modules connected together; the designer
provides a list of pairs of modules (and their specific connectors, if desired) that should
not be attached to together. The main purpose of the moduleRedundancyFilter is to
prevent kinematically redundant modules from following each other: for example, two
joint modules that perform a twist motion should not be connected to each other, since
their joint axes will be colinear. This filter is a generalized version of the Module Assem-
bly Preference in [Chen95].

During the first pass (which is the only one if no filters are used), every configura-
tion that is generated is added to the pool. Half the time, a single parent configuration is
selected at random from the pool, and is duplicated; the other half of the time, two parents
are selected at random and the module crossover operator is used to create two new con-
figurations. Mutation operators are then applied to the new configurations, with each op-
erator having a 50% probability of being applied to each new configuration. The non-
const module and task parameters of each new configuration are then randomized, and
then each offspring is added to the pool. This continues until the pool reaches a desired
size, or until more than two configurations have been generated and a time-out is reached
(since it can be difficult to create new configurations if the filters are very restrictive or if
the kernels have many const-flags set). If filters are being used, then any configurations
in the pool that do not pass filtering are removed, and the generation process is repeated
for a second pass. During the second pass, only those configurations that pass filtering are
added to the pool.

Upon completing the generation of the initial population, all of the configurations
are put into the evaluation queue and are in turn sent to the available evaluation processes;
this begins the synthesizer’s main loop, as shown in Figure 3.10. Many evaluation pro-
cesses can be run simultaneously on different workstations to reduce system runtime;
typically, between 10 and 40 computers were used in this work. The synthesizer’s event
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genetic

operators filters

Figure 3.9:  Data flow for generating initial population
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pass 2 only
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loop monitors messages from the evaluation processes, sending them configurations
when they are ready and later receiving the results. The evaluation queue contains con-
figurations that have not yet been evaluated. These configurations can only be added to
the population once their fitnesses are known, since fitness measurements are required
when selecting configurations from the population. Whenever an evaluator sends a mes-
sage indicating that it is free, the synthesizer removes several configuations from the
queue and sends them to the waiting evaluator. Initially, the queue contains only the con-
figurations generated from the kernels. To provide an adequate diversity of genetic ma-
terial for the synthesizer, the number of initial configurations can be much larger than the
nominal population size used during the bulk of the synthesis process. After the queue
has been emptied of the initial configurations and all results have been received, config-
urations are selected for deletion and are removed from the population until the desired
population size is reached. This is called decimation ([Koza92]) since most of the initial
population is culled after it has been evaluated.

For the remainder of the synthesis process, the synthesizer creates configurations
whenever the evaluation queue is empty, and deletes configurations from the population
to make room for new configurations. When creating configurations, the synthesizer
chooses which genetic operators to use based on probabilities set by the designer. The de-
signer can independently set the probabilities for the crossover operators (module, pa-
rameter, and commonality-preserving), with the probability of duplication being
computed as one minus the sum of the crossover probabilities. Mutation operators are ap-
plied independently from crossover and duplication, and have much smaller probabili-
ties since their effects can be disruptive if used continuously. Additionally, the
synthesizer adjusts the probability of mutation based on an estimate of how stagnant the
population is. The reason for this is that mutation is most useful when the population has
reached a local optima and requires new genetic material to escape it. In early experi-
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ments it was observed that the population could quickly escape a local optima if the mu-
tation probabilities were temporarily increased via the synthesizer’s user interface. To
automate this process, the synthesizer increases the probability of mutation based on the
time since a configuration was added to the elite set. The probability of application pi for

each mutation operator is computed from the operator’s base probability pi,base and a time

constant c specified by the designer such that the total probability of mutation (over all
mutation operators) increases exponentially with the number of configurations generated
since the last improvement in the elite set:

(3.11)

where t is the number of the current configuration being generated, tlast is the number of

the last configuration to be added to the elite set, and . α is precomputed

for a range of total mutation probabilities, and the maximum mutation probability can be
specified by the designer. While a more accurate measure of stagnation might directly
measure the diversity of configurations, rather than a plateau in their performance, this
simple approach seems to work adequately. One interesting property of the synthesizer
is that since a large number of good configurations can be preserved via the elitist strategy
mentioned previously, very high mutation rates can be tolerated without undoing the
progress already achieved.

To avoid deleting configurations in the elite set, the synthesizer must occasionally
increase the size of the population. It does this whenever the size of the elite set is 90% of
the size of the population; in this case, it increases population size by 10%. This typically
happens when optimizing the final group of metrics; surprisingly, the increased popula-
tion size does not appear to adversely affect the rate of improvement in the final group’s
metrics: the best raw fitness (for each metric) over the elite set continues to improve with-
out much apparent dependence on the growing population size. One possible explana-
tion is that the optimal configurations that make trade-offs (instead of having one
extremely good metric) have small selection probability compared to those feasible con-
figurations at an extreme, due to the exponential nature of adjusted fitness. Thus, the con-
figurations with significantly better-than-average performance in one or more metrics
will continue to drive the search, as they will be selected much more frequently than any
of the multitude of trade-off configurations. The trade-off configurations may thus just
‘stick around’ without significantly affecting the selection probability of the feasible solu-
tions at the extremes. The final stage of the synthesis process is characterized by an ever-
expanding set of feasibly-optimal solutions, providing a sampling of a trade-off surface
between the different metrics of the final metric group.

3.4.2 Requirement Prioritization and control flow

When Requirement Prioritization is used for selecting configurations for repro-
duction and deletion, the synthesizer must decide when to move to the next group of met-
rics. Additionally, the synthesizer can take advantage of the incremental way in which
metrics are addressed under Requirement Prioritization. The general idea is that the syn-
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thesizer should try to generate a reasonable number of configurations before moving to
the next group of metrics, but should not spend too much time in the current group if it
has generated at least a few feasible configurations. The synthesizer will advance to the
next group of metrics when it has generated a certain number of configurations since cre-
ating the first feasible configuration, or when a certain fraction of the population is feasi-
ble. The thresholds involved do not appear to be critical. Upon moving to the next group
of metrics, the synthesizer first clears the elite set and puts copies of each configuration in
the population into the evaluation queue. It is necessary to re-evaluate the population be-
cause evaluators only record performance for the metrics that are in the previous priority
groups; the fitness for metrics in the new requirement group will not have been mea-
sured. While requiring the population to be re-evaluated, this allows evaluators to per-
form only those computations necessary for the metrics being currently used. This is
almost always a good trade-off since the number of re-evaluations is typically a fraction
of a percent of the total number of evaluations during a synthesis run, while relatively ex-
pensive evaluation methods such as dynamic simulation can be avoided during the first
stages of synthesis. In addition to re-evaluating the population when moving to the next
group of metrics, the synthesizer also takes the opportunity to expand the search space a
bit by creating copies of the configurations that were feasible and randomizing their task
parameters. Finally, if the population had been increased past the desired size, configu-
rations are deleted until the desired size is reached. While configurations that were in the
elite set may now be deleted (since the elite set was cleared), their duplicates will be eval-
uated and will re-join the elite set if they remain fit in light of the new metrics.

The synthesizer continues to move through the requirement groups until the last
one is reached or until the termination condition is true. The designer can specify three
parameters for the termination condition: a time limit, a group limit, and a minimum lim-
it. The synthesizer will never go beyond the time limit, but otherwise will always surpass
the minimum limit. The group limit indicates how many configurations should be gener-
ated since the last metric group advancement, or since the first feasible configuration for
the group was generated. The general idea of the group limit is to keep working towards
the last requirement group as long as some progress has been made in the not-too-distant
past. In practice, the synthesizer usually reaches the final requirement group without
nearing the group or minimum limits and is instead halted by the time limit.

3.4.3 Preserving population diversity

Explicit measures must be taken to prevent a single configuration from dominat-
ing the population; otherwise, the population will contain many identical copies of a con-
figuration, which clearly do not contribute any additional information about the search
space. Because configurations can potentially persist in the population indefinitely, every
time a configuration is duplicated its probability of selection is effectively increased fur-
ther. This creates a positive feedback loop, frequently resulting in a population that con-
sists mostly of identical configurations. In a generational EA (as opposed to Darwin2K’s
steady-state EA), this is not a problem: a duplication does not immediately affect the
probability of a configuration being reproduced, since the duplicate is added to the next
generation instead of to the current population. Darwin2K prevents duplicate configura-
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tions from being introduced into the population by searching the population for existing
configurations that are identical to each new configuration If the new configuration is a
copy, then mutation operators are applied until a novel configuration is generated (or un-
til a time-out is reached). Obviously, comparing every new configuration against every
configuration in the population would be quite expensive; to avoid this, a multidimen-
sional hash table is used to drastically reduce the number of comparisons required to as-
certain if a configuration already exists in the population.

3.4.4 Using commonality-preserving crossover for encapsulation

In Genetic Programming, the encapsulation operator creates a new node from a sub-
tree in a solution so that the subtree is effectively protected from potentially disruptive
operations. A related but more powerful concept in Genetic Programming is the automat-
ically defined function; this is similar to encapsulation, but it creates a new function that
may be treated like any built-in one. Analogous operators in Darwin2K would be collaps-
ing a subgraph of the PMCG into a single module with fixed parameters, and collapsing
a subgraph into a module with variable parameters and then adding it to the module da-
tabase. The const-flags of the PMCG make a hybrid solution easy: by setting the const-
flags of a subgraph’s attachments, the topology of the subgraph becomes fixed (thus im-
mune to disruptive genetic operators), but the parameters can still be varied. However,
the subgraph is not actually collapsed into a module or added to the module database, so
it is not used by the insertion and replacement operators. This operation is called subgraph
preservation and is used in conjunction with the commonality-preserving crossover oper-
ator. Whenever the Commonality-Preserving Crossover Operator is applied to two feasi-
ble configurations and subgraph preservation has been enabled by the user, there is a 50%
chance that the subgraph preserved by the CPCO will be fixed via the const-flags. When
this happens, any const-flags of the attachments in the subgraph that are not already
const are sent to a new value, subp (for subgraph-preserving). subp is identical in
meaning to const, with two exceptions: it can be returned to var if a future application
of the CPCO finds a larger subgraph that should be preserved, and a subp attachment is
always reset to var when the synthesizer advances to the next group of metrics. Sub-
graph preservation simultaneously protects beneficial topology in the PMCG and helps
limit the search space to parametric variation, which is often where improvement will be
found once feasible configurations have been generated. However, excessive use of sub-
graph preservation can lead to premature convergence by restricting the search space too
early; this is why it is used sparingly, and why subp flags are reset to var when moving
to the next metric group.

3.5 Summary

Darwin2K uses a distributed evolutionary algorithm to perform robot synthesis.
The embodiment of this algorithm, called the Evolutionary Synthesis Engine (ESE), cre-
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ates an initial population from one or more designer-specified kernels by randomly ap-
plying genetic operators, and then evaluates the initial population. After decimating the
initial population to yield a population of smaller size, the synthesizer begins selection of
configurations for reproduction based on Requirement Prioritization, and creates new
configurations from them via the genetic operators. Distributed evaluation processes
compute fitness measurements for the new configurations, after which the synthesizer
adds the configurations to the population. This process continues until a termination con-
dition is reached.

A key challenge is effective synthesis for multiple requirements and objective
functions, and several task-based methods for this were explored before deciding on Re-
quirement Prioritization for its efficiency, task-relevance, and ease of specification for the
designer. The Parameterized Module Configuration Graph representation used by the
synthesizer lets the designer easily specify partial solutions or properties to the synthesiz-
er and allows topological and parametric synthesis of robots via a range of genetic oper-
ators. Several modifications to the basic evolutionary algorithm are included in the ESE,
including diversity maintenance, population resizing, indefinite preservation of feasibly
optimal configurations, and automatic adjustment of mutation probabilities.

The remaining piece of Darwin2K is the evaluation process. While the synthesizer
is responsible for exploring the search space, it cannot do its job without performance es-
timates for each configuration. Darwin2K’s utility is thus ultimately determined not only
by the synthesis algorithm but by the efficiency and accuracy of the methods used for
evaluation, which are the subject of the next chapter.
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4 Robot Evaluation

Darwin2K relies on robot performance measurements to guide the synthesis pro-
cess. The synthesizer sends configurations to evaluation tasks to measure their suitability
for the task, and the evaluators return an indicator of the robot’s performance as mea-
sured by one or more metrics. It is crucial that the metrics used to measure performance
match the needs of the task: the synthesizer attempts to generate configurations that op-
timize the metrics, so if the metrics do not match the task then the synthesizer will not
generate appropriate solutions.

Robot performance is difficult to predict without simulation. For this reason,
Darwin2K uses simulation to generate performance measurements to the synthesizer.
Simulation allows task requirements to be directly represented through the task descrip-
tion, choice of performance metrics, and acceptability criteria. For example, a task re-
quirement might be “complete the task in less than twenty seconds” or “follow a family
of trajectories without exceeding joint torque limits”. The alternative to simulation is to
use heuristics based on inherent properties of the robot, such as “legs having length be-
tween lmin and lmax are best” [Farritor98]. Heuristic metrics measure how well a robot’s

properties agree with the designer’s expectations of the best properties; they do not mea-

sure how well the robot meets the task’s requirements1. While heuristic methods can re-
flect the designer’s intuition and experience with similar problems, if the designer’s
expectations are not accurate then the synthesizer will not generate robots that are well-
suited for the task. Simulation is a more direct and accurate method of assessing a robot’s
suitability for a task, and thus allows the synthesizer to generate task-relevant robots.

The simulation method used for evaluation depends on the task representation
and requirements. A rover and a manipulator perform different tasks, and may require
significantly different simulation methods and task representations. Darwin2K’s archi-
tecture separates optimization from evaluation, allowing new evaluation methods to be
added as new tasks are addressed. At the same time, Darwin2K provides some core sim-
ulation and evaluation capabilities that are useful for many design problems. Evaluation
methods can thus be quickly implemented and integrated so that the optimizer can be ap-
plied to novel synthesis problems.

In addition to enabling task-specific evaluation methods using existing simulation
components, extensibility of the evaluation process allows task-specific planning and
control algorithms to be used. Robot performance depends on how the robot is con-
trolled, not just the inherent properties of the robot. A general-purpose controller may not
be optimal for a new task and may cause a robot’s performance to be underestimated. The
ability to add new control algorithms to the synthesis toolkit (while using the existing task
representations and optimization algorithm) is thus important in ensuring wide applica-
bility of the synthesis system.

During simulation, metrics measure and record aspects of a robot’s performance,
and then convert the performance data to a standardized form usable by the optimization
algorithm. Darwin2K currently provides two simulation methods: kinematic and dynam-

1. For some tasks, some of the robot’s properties (such as mass) are task requirements. In these
cases, it makes sense to use a physical property as a measure of performance.
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ic. Many aspects of performance can be measured in a kinematic simulation, where the
controller can directly command the acceleration for each of a robot’s degree’s of free-
dom. Some non-kinematic measurements such as joint torque and link deflection can be
made based on a kinematic simulation, but dynamic simulation is required to estimate
performance when inertial forces are important (e.g. in low-gravity environments), when
actuators must be operated at their torque limits for a significant portion of a task, or
when the robot’s motions cannot be predicted from control inputs alone. Dynamic simu-
lation can calculate the motion of a robot given a set of applied forces, thus allowing the
robot’s performance to be predicted in the presence of actuator saturation, controller er-
ror, or significant inertial forces. Darwin2K’s kinematic and dynamic simulation methods
are applicable to serial-chain and branching manipulators, with provisions made for mo-
bile bases.

The balance of this chapter describes Darwin2K’s simulation and evaluation algo-
rithms. The kinematic control and planning algorithms are described first, followed by
robot dynamics, link deflection computations, and finally the performance metrics and
their interface to the optimization algorithm.

4.1 Simulator Architecture

Darwin2K’s simulator architecture is designed to allow task-specific algorithms
and task representations to be added while working with existing simulation capabilities.
At the highest level, an evaluator performs initialization for simulation components
(called evComponents) and provides high-level simulation control. The evaluator
class is a base class for other evaluators, and does not include any type of evaluation itself
-- other classes such as the pathEvaluator can be derived from it to meet the needs of
specific task representations. The evaluator defines the interface between the simula-
tion internals and the rest of Darwin2K’s software, and also keeps track of the configura-
tion being evaluated and the metrics and evComponents being used for simulation. The
evaluator also parses the initialization file to read its own parameters and to determine
which evComponents are required, and then passes component-specific information
from the file to each evComponent. If any task parameters are included in the optimiza-
tion process, the evaluator passes each task parameter to its corresponding evCompo-
nent (or interprets the task parameter itself, if one of the evaluator’s variables was
specified as a task parameter). The evaluator also calls the appropriate initialization
and cleanup functions for each configuration being evaluated and performs other book-
keeping functions. In addition to these functions, classes derived from the evaluator also
contain code for controlling the simulation: for example, at each time step in a simulation
the pathEvaluator tells a DEsolver to query a controller for a command and then
compute the robot’s state at the next time step, then checks if any collisions have occurred
using the collisionDetector, and determines if the robot has completed the task by
reaching the end of the current path. The pathEvaluator is the only general-purpose
evaluator in Darwin2K; other evaluators can be created for task-specific needs, while tak-
ing advantage of the infrastructure of the base evaluator class.
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As mentioned above, many simulation capabilities are implemented as self-con-
tained evComponents which share a common interface allowing them to work with the
evaluator class. Table 4.1 lists Darwin2K’s general-purpose evComponents; the task-
specific evComponents used in the experiments in Chapter 5 are not shown. (See Appen-
dix A for a complete list of evaluators, evComponents, and other classes.) Some of the
evComponents have task variables that can be included in a configuration’s list of task
parameters so that they can be optimized during the synthesis process; these are listed in
the right-hand column for each component.

While many simulation and evaluation capabilities are implemented as evCompo-
nents, several core functions that require detailed knowledge of module internals are
implemented as part of the configuration class. These algorithms -- computing dy-
namic models, link deflections, and Jacobians -- depend on inherent properties of the con-
figuration; thus, it makes sense that the configuration performs these calculations (rather

Table 4.1:  General-purpose simulator components and desciptions
Listed above are the general-purpose evComponents, their descriptions, and
their task variables. The task variables are those that can optionally be included
in a configuration’s task parameters, allowing optimization of their values.

evComponent class Description Task variables

sriController Jacobian-based controller used
for following endpoint
trajectories

singularity thresholds,
variables for

using  redundant DOFs

ffController sriController augmented
with robot’s dynamic
 model; useful for free-flyers

same as sriController

pidController joint-space PID controller none

path represents an end-effector
trajectory in 3D

linear and angular velocity
and acceleration

relativePath as relativePath, but trajecto-
ries are relative to a moving co-
ordinate system

same as path

payload geometric and inertial model of
unarticulated payloads

initial position and
orientation

rungeKutta4 integrates robot state during
simulation

none

collisionDetector detects self-collisions and
collisions with obstacles

none

motionPlanner generates collision-free
paths for planar mobile robots

none

reactionForceCalculator accounts for reaction forces
between multiple end-effectors
handling the same object

none
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than an external procedure), since some modules may have special-purpose methods that
must be used.

4.2 Computing Robot State

The most fundamental job of the simulator is to compute the motion of the robot.
In Darwin2K, the DEsolver is a numerical differential equation solver responsible for
computing the motion of the robot over a short time-step given the current position, ve-
locity, and acceleration of each of the robot’s degrees of freedom. After the evaluator
initially tells the DEsolver which controller is to be used, the DEsolver queries the
controller for a command, computes the robot’s state derivative (velocity and accelera-
tion), and integrates the state derivative (using a method such as Runge-Kutta 4) to deter-
mine the motion of the robot. The interface between the DEsolver and controller
enables new controllers to be added without affecting the physical simulation process:
the controller provides an acceleration or torque command for each of the robot’s degrees
of freedom, while the DEsolver knows nothing about the controller’s internals. The
controller can also specify a maximum time step so that the DEsolver knows how fre-
quently to query the controller for commands.

The DEsolver supports two modes of simulation: kinematic and dynamic. Kine-
matic simulation only considers positions, velocities, and accelerations; there is no inclu-
sion of force, torque, mass, or angular inertia when computing the motion of the robot.
In contrast, dynamic simulation is based on the forces and torques applied to the robot’s
links and computes the accelerations caused by those forces and torques. When kinematic
simulation is being used, the DEsolver asks the controller for an acceleration com-
mand for each of the robot’s degrees of freedom. This set of commands is the state accel-

eration vector , and is appended to the robot’s state velocity vector ( ) to form the

robot’s state derivative which the solver uses to compute a new robot state . S itself is

composed of the position vector and the velocity vector : . When the DE-
solver is performing dynamic simulation, the controller supplies a force/torque com-
mand (one force or torque for each degree of freedom). These torques are then limited
based on maximum actuator force capabilities, and then the solver uses the robot’s dy-

namic model (see Section 4.4.2) to compute based on the applied forces and torques.
As with kinematic simulation, this computed acceleration vector is concatenated to the

robot’s current velocity vector to form . Depending on the specific type of DEsolver,
a number of state derivative calculations may be made when computing the robot’s new
state; the simplest solver is the euler solver, which updates the robot’s state according
to the formula

(4.1)

where is the time step being used. While this update formula is very straightforward

Θ̇̇ Θ̇

Ṡ S
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-- simply multiply the derivative by the time step and add the result to the current state -
- it has extremely bad numerical properties and is really only useful as a demonstration
of the basic process. Darwin2K includes a DEsolver implementing the Runge Kutta 4 al-
gorithm (see e.g. [Press92]), called the rungeKutta4. This method is much more stable
and is used in the experiments in Chapter 5.

Choosing the stepsize ∆t is critical to simulation speed and stability, and the opti-
mal size changes with the robot’s state and the controller’s commands. Because of this,
the DEsolver uses an adaptive stepsize method called step doubling [Press92] to balance
computational efficiency and numerical accuracy. Briefly, this method operates by esti-
mating the error for the current stepsize by taking one large step of size ∆t, recording the
resulting state, and then comparing the state to that computed from two small steps of
size ∆t/2. The DEsolver then computes an error estimate from the two states, which is
used to adjust the stepsize based on the error properties of the integration algorithm and
the maximum allowable error (set by the designer). The error estimate used in the adap-
tive stepsize algorithm is defined as

(4.2)

where Pi, ∆t is the position of the ith end effector of the robot after a step of ∆t, and Pi, ∆t/2

is the position of the ith end effector after 2 steps of size ∆t/2. This error, and a correspond-
ing new step size, is computed after every two steps of ∆t/2, so that the simulator is al-
ways using an appropriate step size. It is worth noting that this error estimate includes
the effects of the controller’s commands on the simulation stability; thus, if a robot is op-
erating near a singularity, the DEsolver will automatically decrease the time step to yield
stable simulation results. Conversely, if the controller’s commands are not changing rap-
idly and the robot’s motion is smooth, the DEsolver will choose a large stepsize to de-
crease simulation time.

4.3 Singularity-Robust Inverse Controller

Simulating a robot requires a means of controlling it. Robot synthesis presents dif-
ficult requirements for control algorithms: A typical synthesis run may involve simulat-
ing ten to one hundred thousand different robots, which means that the control algorithm
must be applicable to a huge diversity of robot properties while being computationally
efficient. The robots being simulated may have less than 6 degrees of freedom, or they
may be redundant; they may have fixed or mobile bases, and single, multiple, or bifurcat-
ing manipulators; they may have revolute or prismatic joints. Automatically deriving in-
verse kinematics for arbitrary serial-chain manipulators (including branching
manipulators and redundant manipulators) is not feasible, and analytic solutions are
known for only a limited range of kinematic types. Deliberative planning is sufficiently
flexible to allow use with a broad range of robot topologies, but such methods are too ex-
pensive given present-day computing resources and the large number of simulations re-
quired. Other methods are numerical, local approaches based on the robot’s Jacobian.

error max Pi ∆t, Pi ∆t /2,–( )=
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These methods can deal with the range of robots required for synthesis and are compu-
tationally efficient. In addition, Jacobian controllers have a degree of robustness to errors
in motion execution (due to actuator saturation or other causes) since they generate com-
mands based on the robot’s present state. The primary drawback of Jacobian controllers
is that they are local in nature and thus have limited abilities to avoid workspace obstacles
and satisfy other constraints (e.g. avoidance of joint limits or minimization of time or en-
ergy). Still, the flexibility and computational efficiency of Jacobian-based control schemes
outweigh their limitations, and including some pose or trajectory variables in the synthe-
sis process can provide a means of improving their performance. Thus, Jacobian-based
controllers are an appropriate match for automated synthesis, at least until sufficient
computing power is available to make deliberative planning practical.

Manipulator tasks are often specified as a path through space for an end-effector.
To address this common scenario, Darwin2K includes a Jacobian-based controller that
uses the Singularity-Robust Inverse (SRI) to map end-effector velocity commands to joint
velocities for serial-chain and branching manipulators ([Nakamura86], [Nakamura91]).
The sriController uses a single Jacobian matrix for an entire robot (including mobile
base and multiple or branching manipulators, if any) and uses the SRI to calculate the re-
quired joint velocities. Darwin2K also provides a reasonably flexible end-effector path
representation which generates end-effector position and velocity commands, though
other path representations can be used with the Jacobian-based controller.

4.3.1 Calculating Jacobians

The sriController uses a robot’s Jacobian to generate commands for all of the
robot’s degrees of freedom. The controller’s first step is to query the robot for its complete
Jacobian matrix, including mobile bases and multiple or branching serial chains. This is
accomplished by searching through the robot mechanism to identify all serial chains and
end effectors, computing a Jacobian for each chain, computing the base’s Jacobian, and
forming a single Jacobian from all of the chain and base Jacobians. Each row of blocks in
the final Jacobian shows how one endpoint is affected by motions of each joint; one col-
umn of blocks in the Jacobian shows how one base or serial chain affects each endpoint.
For example, the robot in Figure 4.1 consists of a free-flying 6 DOF base and two 7 DOF
arms attached to the base by a common 3 DOF serial chain. Each of the 7 DOF arms has
an end effector, so the robot’s Jacobian is:

(4.3)J
J e1 c1, 0 J e1 com, J e1 base,

0 J e2 c2, J e2 com, J e2 base,

=
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where

Figure 4.2 gives a schematic view relating the Jacobian blocks to the robot’s degrees of
freedom and end effectors. The two zero blocks in the Jacobian indicate that the joints of
one arm do not affect the motion of the other arm’s endpoint. In this case, the Cartesian
velocity vector dx would have 12 elements, 6 for each endpoint; the joint vector dθ would
have 23 elements.The algorithm for identifying serial chains is straightforward. Each joint
attached to the base is the root of a serial chain; each chain is grown until either an end-
point is reached or a branch is found (a branch occurs when 3 or more joints are attached
to a single link). At branches, the parent chain ends and new chains are created for each
of the joints that are not part of the parent chain. For serial chains, each column of a block
in the Jacobian is calculated in the usual way (see e.g. [Craig89]), using the endpoint and
serial chain corresponding to the block. Because of Darwin2K’s object-oriented software
approach, each type of base has both data and procedures associated with it. One of these
procedures is the calculation of the base’s Jacobian; this provides a standard interface be-

Figure 4.1:  Free flying 23 DOF robot
The robot is shown here after following separate endpoint trajectories with each
arm under control of the SRI controller.

J e1 c1, Jacobian for endpoint 1 w.r.t. arm 1,=

J e2 c2, Jacobian for endpoint 2 w.r.t. arm 2,=

J e1 com, Jacobian for endpoint 1 w.r.t. the common chain,=

J e2 com, Jacobian for endpoint 2 w.r.t. the common chain,=

J e1 base, Jacobian for endpoint 1 w.r.t. the base,=

J e2 base, Jacobian for endpoint 2 w.r.t. the base.=
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tween the Jacobian controller and all bases. Note that when using Jacobian control to com-
mand a robot with a non-holonomic base, some of the base’s DOFs are not used: For
example, the steering angle of an Ackerman base would be fixed and the corresponding
column in the Jacobian would be a zero vector, since a differential change in the steering
angle does not independently cause motion of the robot. The driving (forward-reverse)
degree of freedom would still be used in this case, since it directly causes the robot to
move.

4.3.2 The Singularity-Robust Inverse

The sriController uses a generalized inverse of a robot’s Jacobian to compute
the joint motions that will cause a desired end-effector motion. To allow stable motions
to be computed near a robot’s singularities, Darwin2K uses the Singularity-Robust In-
verse [Nakamura86], rather than the pseudoinverse. Briefly, the Singularity-Robust In-

verse (SRI) J*of the Jacobian matrix J is identical to the pseudoinverse J# (defined as

JT(JJT)-1) except when the robot (and thus its Jacobian) approaches a singularity. Near sin-
gularities, the SRI assumes the form

(4.4)

where I is the identity matrix, and λ is a scalar. Roughly speaking, λ provides some damp-
ing when J becomes singular.  λ is determined by the following equation [Kelmar90]:

Je2,baseJe1,base

Je1,com Je2,com

Je2,c2Je1,c1

Figure 4.2:  Schematic view of Jacobain sub-matrices
The dotted lines indicate how different blocks of the Jacobian in Equation 4.3 relate
to the robot’s degrees of freedom and end effectors. (The robot is shown in Figure
4.1.)

J∗ J T JJ
T λ I+( ) 1–

=
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(4.5)

where λo is a constant and ωi is the measure of manipulability at time step i. It approaches

zero as the robot nears a singular configuration; thus, by looking at how ω changes over
time, proximity to a singular configuration can be detected. Note that when λ is zero, J*

and J# (the pseudoinverse) are identical.
After calculating J*, the joint motion dθ for the desired end-effector motion dx can

be computed from the SRI by . Normally, the actual endpoint motion caused
by dθ will be identical to dx; however, when using the SRI the motion will deviate slightly
near a singularity due to the robot’s inability to move along the singular direction. Note
that the controller scales the dθ vector appropriately if any joint’s velocity exceeds its ac-
tuator’s capability; this prevents the trajectory from deviating spatially from the desired
path, though it does cause temporal deviation.

Since some tasks do not require full spatial motion, the optimal robot may have

less than 6 degrees of freedom for each end effector2. For example, many vehicles used in
construction (such as an excavator or material handler) do not have 6 degrees of freedom,
but it is still desirable to be able to control them. This presents a problem for the calcula-

tion of ω,which is normally computed as . If a robot has fewer than 6 de-
grees of freedom, ω will always be zero. A better way to compute ω would only consider
the degrees of freedom that the robot has. We can do this by considering ω in a different
way: it is the product of the singular values of J. The singular values of a matrix M are de-

fined as the square-roots of the eigenvalues of MTM. Since the product of the eigenvalues

of MTM is the determinant of MTM, the product of the singular values of M is equal to

. In light of this, we can redefine ω to be the product of the non-zero singular
values of J. This allows us to use the SRI even when a mechanism is always singular. If a
mechanism has less than six DOFs, one or more of its singular values will always be zero.
By monitoring the product of the non-zero singular values, we can still determine when
the mechanism is approaching a singular configuration.

The singular values can be computed by the Singular Value Decomposition (SVD)
[Press92]:

(4.6)

where U and V are each orthogonal matrices and is a diagonal matrix containing the
singular values of M. In addition to the singular values, SVD provides several other use-

ful pieces of information: the pseudoinverse J# (equal to when no singular values

are 0); the minimum norm joint velocity vector dθ (via J#); and the nullspace of J (the col-
umns of V corresponding to the zero singular values form an orthonormal basis to the
nullspace). dθ is used directly to control the robot when not in the vicinity of a singularity;

2. Kinematically redundant robots (those with > 6 DOFs for each end effector) do not require any
special modification to the SRI algorithm.
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the nullspace can be used to optimize an objective function when the robot has some re-
dundant degrees of freedom, as will be discussed in the following section.

The DEsolver uses acceleration commands when integrating the robot state, but
the method outlined above computes a vector of differential joint motions dθ. The sri-
Controller accounts for this by using the desired end effector velocity as dx, and then

using a simple divided-differences formula to compute the acceleration command from

the current velocity command  and current joint velocity vector :

. (4.7)

4.3.3 Using redundant degrees of freedom

If a robot has any kinematic redundancy, then any differential joint motion in the
nullspace of the Jacobian will not cause any endpoint motion. The sriController takes
advantage of this fact by using nullspace motions to optimize a function of the robot’s
configuration without affecting the robot’s trajectory. This nullspace optimization is a
simple gradient descent which tries to minimize a scalar function of the joint angles. This
is done by computing the gradient of the objective function and projecting this gradient
onto the nullspace. This projected vector can be multiplied by a scalar and added to the
least-squares solution dθ.

One way to use this redundancy is the avoidance of joint limits [Liegeois77]. To en-
courage each joint to remain near the middle of its range of motion, we can use the fol-
lowing objective function defined over the joint vector:

(4.8)

(4.9)

is at a minimum when all joints are in the middle of their ranges, so moving
opposite the gradient direction will make the robot avoid its joint limits.

After computing the gradient of the function to be optimized, the gradient must be
projected onto the nullspace of the Jacobian. The basis N of the nullspace can be found in
the V matrix from the Singular Value Decomposition. The matrix which projects a joint
vector onto the nullspace is thus:

(4.10)

Note that this projection can also be computed as

(4.11)

but the former is often more efficient considering the small size of the nullspace matrix

θ̇̇

θ̇ θ̇current

θ̇̇ θ̇ θ̇current–( )
∆t

-----------------------------=

F θ( ) 1
n
---

θi ai–

θi max, ai–
---------------------- 

 
i 1=

n

∑=

ai

θi max, θi min,+

2
------------------------------=

F θ( )

P N N T N( ) 1– N T=

P I J #J–=



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

Robot Evaluation    73

relative to J. In either case, the final joint motion can be computed as

(4.12)

where ε is a scalar determining the size of the gradient descent step. In practice, this meth-
od does cause some motion of the end-effector due to the finite (as opposed to infinitesi-
mal) simulation step size, which can make very precise motions difficult. To account for

this, nullspace optimization is only performed when is greater than a threshold. This
threshold and ε can both be included as task parameters, since their effects on precision
are hard to predict in advance.

4.3.4 Trajectory representations

The sriController causes the endpoints of a robot to move with a specified ve-
locity; Darwin2K provides two trajectory representations -- the path and relative-
Path --that generates velocity commands. The path generates commands to move the
endpoints toward successive points along a path in a straight line, and includes parame-
ters for linear and angular velocity and acceleration. The path also includes a number of
properties for each waypoint: whether to stop at or move through the waypoint, distance
and velocity thresholds (how close the end effector must approach, and how slowly it
must be moving, before moving to the next waypoint), and a force and torque to be ap-
plied. The relativePath is derived from the path and is similar except that waypoints
are defined relative to a link, payload, or other moving coordinate system. Other types of
trajectories can be derived from the genericPath class, allowing them to be used with
the sriController.

4.4 Robot Dynamics

Accounting for robot dynamics is necessary when synthesizing the non-kinematic
properties of a robot such as actuator type and the structural geometry and inertial prop-
erties of links. Link sizing depends on the loads that must be supported by the link, in-
cluding actuators, tool forces, and forces applied by other links. Actuator selection
depends on velocity and acceleration requirements, and also on tool forces and static forc-
es (e.g. gravity) due to link mass. Thus, actuator selection and link geometry cannot be
meaningfully optimized without accounting for dynamics. As has been noted in
[Paredis93], kinematic and dynamic design are not independent problems; determining
satisfactory values for a robot’s dynamic properties may require modifications to kine-
matic properties. Thus, it is best if kinematic and dynamic properties can be simulta-
neously optimized.

There are two distinct but related ways of accounting for dynamics: computing the
forces required to cause a desired motion (also known as inverse dynamics), and comput-
ing the motion of the robot given a set of applied forces (forward dynamics, or dynamic

dθ J∗ dx εP∇ F–=

∇ F
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simulation). When a controller supplies acceleration commands and is assumed to have
accurate knowledge of the robot’s dynamics and actuator capabilities, the robot’s motion
can be accurately predicted on the basis of kinematics alone and the required actuator
forces can be computed from the robot’s motion using inverse dynamics equations. A ro-
bot’s actuator saturation can thus be measured, allowing it to be used as a metric that is
minimized by the synthesizer.

While this approach is acceptable for some synthesis problems, there are some
tasks for which dynamic simulation is necessary or useful. Robots for zero-gravity or mi-
crogravity environments may experience significant motion due to reaction and inertial
forces; in these cases, the robot’s motion cannot be known from a purely kinematic simu-
lation, as the robot’s base cannot be considered immobile and will move due to actuator
and external forces. Dynamic simulation is also necessary when modeling the effects of
imperfect controllers, controllers that supply torque rather than acceleration commands,
and controllers that do not use a dynamic model of the robot. For example, some tasks
require that actuators are operated at maximum torque during substantial portions of the
task in order to move as quickly as possible. Earthmoving machines are often controlled
in joint-space when moving a payload between two positions. In this case, task execution
time is limited by the acceleration and velocity of each degree of freedom, which in turn
is limited by available actuator force. Since the actuators are frequently operated in satu-
ration and since task completion time depends heavily on maximum actuator force, it is
not sufficient to simply measure actuator saturation. The effects of limited actuator torque
must be accounted for when determining the machine’s motion since the controller can-
not accurately predict how the robot will move. Finally, dynamic simulation can be useful
for tasks where accurate trajectory following is required only at some points, while dur-
ing most of the task some actuator saturation is acceptable. In these cases, it can be desir-
able to know how actuator saturation affects power consumption, collisions due to
unexpected motions, execution time, and other metrics. Both the forward and inverse dy-
namic methods are based on the iterative Newton-Euler formulation of dynamics for se-
rial chain manipulators, with modifications to allow multiple and branching
manipulators and base dynamics.

4.4.1 Computing torques for a desired motion

When a task requires that a robot manipulator follow a trajectory closely, the ro-
bot’s actuators must be sized to provide adequate torque during execution of the trajec-
tory. To ensure this, we can measure the torque required at each joint to cause the motions
necessary to follow the trajectory. If the torque at any joint exceeds the joint’s torque lim-
its, the robot will deviate from the trajectory. Recording how much a robot’s actuators are
saturated during a task allows the synthesizer to select designs with adequately-sized ac-
tuators.

The basic algorithm for computing the joint torques required to move each joint of
a serial chain at a desired velocity and acceleration is described in [Craig 89]; the equa-
tions are replicated here in Figures 4.3 and 4.4. Briefly, joint velocities and accelerations
are propagated from the base outward to the tip of each serial chain, computing link ve-
locities, accelerations, and inertial forces and moments for each link along the way. The
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Figure 4.3:  Iterative Newton-Euler equations for serial chain dynamics.
Underlined terms in the equations above denote S-vals (see Section 4.4.2), and all
quantities are in world coordinates (rather than link coordinates). fi and ni for the final link
in a serial chain are computed from tool forces (for terminal chains) or from the sum of
forces and moments applied to child serial chains (for chains supporting other branches).
vi, ωi, and for the first link of each child chains are computed from the distal links of the
parent chain.  See Figure 4.4 for a graphical depiction of vector quantities.

θi - angle of revolute joint i Fi+1 - inertial force for link i+1

di - length of prismatic joint i Ni+1- inertial moment for link i+1

τi - torque to apply at joint i fi - force applied by link i to link i+1

 - axis of joint i (unit length) ni+1- moment applied by link i to link i+1

mi+1 - mass of link i+1 Ii+1 - world-space inertia tensor of link i+1

 - angular velocity of link i+1 PCi+1 - vector from joint i to link i+1’s c.o.m.

- acceleration at base of link i+1 Pi+1 - vector from joint i-1 to joint i

 - acceleration of link i+1’s c.o.m. ei - effective inertia of actuator i
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forces acting on each link are then accumulated, moving inward back to the base. This
method can be used with multiple serial chains (including those in branching manipula-
tors) by treating each serial chain in isolation. When two or more serial chains are at-
tached to the end of a parent chain, the linear acceleration and angular velocity and
acceleration of the distal link of the parent chain are used to set the acceleration and ve-
locity of the base links of the child chains. After propagating the velocities and accelera-
tions down the child chains (including their children, if any), the forces are propagated
back to the base of each child. These reaction forces are then applied to the distal link of
the parent chain, as if they were tool forces. This method can be used with a kinematic
simulation to compute the necessary joint torques for arbitrary joint accelerations and ve-
locities at each time step of the simulation. The actuatorSaturation metric (see Sec-
tion 4.8.2) can then be used to compare the required joint torques to each actuator’s peak
and continuous ratings to determine if the actuators can provide adequate torque during
the task. This enables the synthesizer to synthesize an appropriate selection of actuators
based on the task’s requirements.

4.4.2 Computing motion from force and torque

Dynamic simulation computes the motion of the robot due to applied forces and
is useful when the motion of the robot cannot be predicted solely on the basis of a control-

Zi
^

joint i link i+1

PCi+1

Pi+1

joint i-1

ωi+1

.vi+1
. ωi+1

Fi+1

Ni+1

ni+1

fi+1

vCi+1
.

Figure 4.4:  Definition of vector quantities for Newton-Euler equations
This figure shows the quantities relating to link i+1 for the iterative Newton-Euler
equations listed in Figure 4.3.
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ler’s commands. This occurs when the robot’s controller is providing torque commands,
when significant actuator saturation is expected, when the controller is not commanding
all of the robot’s degrees of freedom, or when the controller does not have complete and
accurate information about the robot’s dynamic model. In these cases, dynamic simula-
tion must be used to compute the motion of the robot. The goal of dynamic simulation is

to compute the state derivative of a robot’s DOFs given the current state

of the robot and a set of torques to be applied to each DOF. The robot’s state
derivative is then integrated to compute the robot’s new state. The first step is to solve the

robot’s dynamic equations for the acceleration vector. (The velocity is already known.)
The general form of the dynamic equation of an n-DOF robot consisting of a generalized
base and one or more (possibly branching) serial chains is:

(4.13)

Where T is an n-vector of torques, M is an n x n mass matrix, and V is an n-vector that

includes centrifugal, coriolis, gravity, and friction terms. Solving for  yields:

(4.14)

When deriving the dynamic equation for a manipulator symbolically, one can ap-
ply the Newton-Euler equations to create an equation for each joint torque (i.e. an element
of T). The terms in each equation can then be grouped into quantities that multiply a joint
acceleration (elements of M), and quantities that do not multiply a joint acceleration (ele-
ments of V). Each element of M and V can then be numerically evaluated and, along with

the applied torque vector T, can be used to solve for .

A full symbolic representation for the dynamic equations is not necessary: the only

variables we need to solve for are the joint accelerations (i.e. the elements of ) and we

know from the structure of Equation 4.14 that joint accelerations will never be multiplied
with each other or appear as arguments to any function. Thus, we simply need to keep

each separate, and record the sum of the terms that do not contain any joint accelera-
tions. Darwin2K implements this approach by separately accumulating the coefficients of

each as the Newton-Euler equations are evaluated numerically. For example, if the ex-

pression  is evaluated for

giving , then the result would be the vector [1 2] since the coefficient of is 2 and
the constant coefficient is 1. This vector is called an s-val (short for “separated value”),
since each joint acceleration’s coefficient (only one in this case) is recorded separately. For
a robot with n degrees of freedom, s-vals will have n+1 entries (one for each DOF accel-
eration and one for all other terms). Thus, the expression

(4.15)
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is represented by the s-val . Computing a scalar numeric value for an s-

val based on numeric values for ’s is accomplished by taking the dot product of the s-
val with an augmented vector of accelerations:

(4.16)

Note that when evaluating equations using s-vals, all terms that do not contain any joint
accelerations get lumped into the constant term (e.g. m0 in Equation 4.16).

When the entire set of torque equations is evaluated using s-vals, the result is a set
of vectors (s-vals), with one s-val for each element of T. Each s-val directly represents the

row of M and element of V for the corresponding element of T. After evaluating the ith

DOF’s torque equation, the entries of the s-val for Ti are copied into the appropriate row

of M and V. If Ti is the s-val , then the ith element of V would be m0, and

[m1 ... mn] would compose the ith row of M. After evaluating all torque equations, M and

V can be used in two ways: to compute the joint torques required for a desired set of ac-
celerations (using Equation 4.13 above), or to compute the accelerations caused by a given
set of joint torques (Equation 4.14).

Evaluating the torque equations requires arithmetic operators that work on scalars
and vectors composed of s-vals. The s-vals in the Newton-Euler equations in Figure 4.3
are underlined; the operators needed are those having one or more s-val arguments. In
particular, note that no two s-vals are ever multiplied with each other. This reflects the
fact that the dynamic equations do not contain any product of joint accelerations.

The behavior of the s-val operators can be deduced given the s-val representation
and the distributive property. After representing each s-val as the sum shown in Equation
4.15, we can apply the normal operator symbolically and then regroup the acceleration
terms to derive the symbolic form of the result. For example, the addition operator for two
s-vals behaves as follows:

(4.17)

In this case, the sum of the s-vals is simply the sum of their two vector representa-
tions. (Keep in mind that the two s-val arguments and the result ultimately represent sca-
lar values, when evaluated numerically in the context of a set of given joint accelerations.)
A more complex operator is the vector cross-product, which operates on one normal vec-
tor and one s-val vector:
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(4.18)

Since the cross-product operator is a linear operator and s is a sum, we can treat each el-
ement of the resulting s-val as the cross-product of the corresponding element of s with v:

(4.19)

The behavior of the other operators can be derived in a similar fashion. The s-val
scalar and vector types are implemented as C++ classes, and the operators are used via
operator overloading. However, instead of producing a numeric value for each operation,
an expression tree is built once and then evaluated numerically during each time step of
the simulation.

To build the expression tree, the Newton-Euler equations are evaluated using s-val
arithmetic. The tree is constructed once during an initialization phase and then evaluated
numerically at each simulation step. During tree construction, each application of an op-
erator to an s-val results in the construction of an operator node, which maintains refer-
ences to its arguments. When a numerical value is requested from an operator, the
operator queries its arguments (children) for their values, and then performs the neces-
sary computation for its own value. Caching is used so that operators do not re-compute
their values unless the values of their arguments have changed; this allows efficient reuse
of intermediate results. The numerical evaluation process of a single torque equation is a
depth-first traversal of the expression tree rooted at the torque s-val, and the result is a
row from M and V (i.e. the value of the torque s-val). This is repeated for each torque s-
val, thus filling in all of M and V.

Figure 4.5 shows the expression tree built by this process for a one-link manipula-
tor. During initialization, the Newton-Euler equations for the robot are symbolically eval-
uated using s-vals. Each s-val arithmetic operator creates a node in the tree; the children
of the node are the arguments to the operator. Each s-val on the left-hand side of an equa-
tion is essentially a reference to one of the operators in the equation; the s-val’s value is
the value returned by the operator. The other variables in the tree are references to scalar
or vector numeric variables; their values are set (based on the robot’s state) before evalu-
ating the tree. Figure 4.6 shows how the tree is evaluated numerically. First, the numeri-
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cal variables are set, and is set to (0 1) (since = 0 + 1 ). Next, the numeric value of τ is

computed. In the figure the dynamic equations are evaluated in the normal order, though
in the implementation this would be triggered by the depth-first traversal: the s-val for τ
is evaluated, which causes its arguments to be evaluated before being used; this evalua-
tion ripples down the tree, and then the values propagate back up the tree. The values of
M and V (both 1x1 for the one-DOF robot) are then extracted from τ: these comprise the
robot’s dynamic model for the current state. The two boxed equations in the lower right
of Figure 4.6 can be used to compute the torque required for a given acceleration, and the
acceleration caused by a given torque. The two equations make sense: a 2kg mass at the
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Figure 4.5:  Building and evaluating S-val dynamic equations for a one-link
manipulator with point mass.

Underlined variables are s-vals, and are shown next to the operators that are
assigned to them. Other variables are numeric variables; their values are set based
on the robot’s state each time the tree is evaluated numerically. Note that * denotes
scalar multiplication in the expression tree.
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end of a 1m lever requires (2kg x 1m x 9.8m/s2) = 19.6Nm of torque to remain at rest un-

der 1g of gravity, and requires (2kg x 1m x 1m x rad/s2) = 2 Nm of torque to accelerate
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Figure 4.6:  Numeric evaluation of the s-vals for the one-link robot.
The numeric variables are set before evaluating the s-val for τ. τ’s value contains M and
V (both 1x1 in this case), which can be used for computing torques and accelerations.
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at  rad/s.

This method handles multiple serial chains (independent, or from bifurcated ma-
nipulators) in the same way as the method in Section 4.4.1: velocities and accelerations are
propagated from the distal links of a parent chain to the base links of the child chains, and
reaction forces from the children’s base links are added to the applied forces of the parent
link. The robot state vector includes the joint positions and velocities for the DOFs of all
serial chains, and each s-val contains an element for every DOF, not just the DOFs in a
single serial chain. Mobile bases can be incorporated similarly: the state vector is aug-
mented to contain the base’s state (the position, orientation, and linear and angular veloc-
ities of the robots’ base link), and the base module constructs dynamic equations for the
base link using s-vals; in essence, there is simply a 6-DOF joint between ground and the
robot’s base. The acceleration and velocity of each serial chain rooted on the base is set
from the base link’s acceleration and velocity (taking into account the attachment location
of each chain), and the reaction forces from each chain are applied to base link. Using the
variables defined in Table 4.2, the base dynamic equations are:

(4.20)

(4.21)

θ̇̇

Table 4.2:  Variable definitions for base dynamics equations
Underlined variables are s-vals. All variables are vectors except for Ib, which is a
3x3 matrix, and mb, which is a scalar.

Variable Definition

reaction moment from the ith serial chain attached to the base

reaction force from the ith serial chain attached to the base

world-space location of the first joint of the ith serial chain attached to the base

world-space location of the base link’s center of mass

acceleration (including gravity and inertial acceleration) of the base’s reference frame

acceleration of the base’s center of mass relative to the base reference frame

angular acceleration of the base’s reference frame

angular acceleration of the base link relative to the base reference frame

total angular velocity of the base link

total angular acceleration of the base link

world-space moment of inertia of the base link

mass of the base link
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(4.22)

(4.23)

(4.24)

(4.25)

The elements of and (Equations 4.24 and 4.25, respectively) are added to the system

of dynamic equations for the robot’s serial chains, and the s-vals are augmented with six

extra numbers (three each for and ). If the base has any actuators (e.g. cold gas jets

for a free-flying space robot), then the actuator forces can be applied via and . If the

base can only move in the plane, then the base module can lock the degrees of freedom

for , , and just as joint DOFs are locked (see Section 4.4.3 below). Alternatively, the

out-of-plane reaction force and moments can then be calculated based on the robot’s ac-
celerations using the inverse dynamic model, with the out-of-plane accelerations set to ze-
ro. The normal force and coefficient of friction between the locomotion system and the
ground can also be used to limit the tractive forces.

4.4.3 Computational considerations

As might be expected, dynamic simulation is slower than kinematic simulation
due to the added burden of computing the robot’s dynamic model and using it to com-
pute the robot’s acceleration. For example, dynamic simulation of a 6-DOF manipulator
requires roughly twice the computation time of a kinematic simulation, and the disparity
grows as the number of degrees of freedom increases. Fortunately, the optimizer tells the
evaluator which metrics are currently being optimized so the evaluator can forego expen-
sive evaluations (such as dynamic simulation) if no metrics require it.

Several improvements to the basic algorithm decrease computational complexity.
In the expression trees for larger robots (especially robots with mobile bases or multiple
serial chains), many s-vals will depend on only a few joint accelerations. We can take ad-
vantage of this by recording which entries are used as the tree is built, and only perform-
ing calculations on them. Each operator keeps an array of dependency flags, one for each
joint and the constant element. An element of the operators’s array is 1 if the correspond-
ing element of any child’s array is 1, and 0 otherwise. This eliminates many non-useful
computations (i.e. multiplying by zero), thus speeding execution time. A further imple-
mentation advantage of the expression tree is that it is a fixed data structure and does not
require intermediate results to be repeatedly allocated and deallocated during every eval-
uation; this reduces memory fragmentation and eliminates time spent allocating and ini-
tializing temporary variables. Finally, if any degrees of freedom will remain fixed over a
period of time, the corresponding rows and columns in M, V, and T can be eliminated to
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reduce the cost of solving the system of equations. When large portions of a robot (such
as one manipulator of a multi-manipulator robot) are not being moved, this can signifi-
cantly reduce computational complexity and improve the accuracy and stability, which
in turn allows a larger time step to be used. The drawback to this approach is that the forc-
es and torques for the locked degrees of freedom are not computed; if power or torque
estimates for these DOFs are desired, then the inverse dynamic model must also be used.

4.4.4 A controller for free-flyers that accounts for dynamics

When simulating a free-flying robot with one or more manipulators, the accelera-
tion of the robot’s base may not be known ahead of time. For example, in a space applica-
tion it may be desirable to minimize use of the base’s thrusters, so during manipulation
the thrusters would not be used to counter reaction forces applied by the robot’s manip-
ulator. This presents a problem for the sriController: the desired accelerations for the
joints are known (they can be computed based on the desired end-effector acceleration),
and the force to be applied by the base’s actuators is known (it is zero), but the joint
torques and base accelerations are not known. In contrast, when the robot’s base is fixed
(or is being actuated), the accelerations for all DOFs are known and the dynamic model
can be used to compute torque commands for all actuators. When the base is allowed to
float, the controller knows some accelerations and some forces, and needs to compute the
remaining accelerations and forces. The ffController solves this problem by breaking
up the system of dynamic equations, rather than solving them simultaneously. Instead of
the system

, (4.26)

the ffController uses the system

(4.27)

where Tb is a 6-vector containing the force and torque applied to the base (zero in this

case), Tc is a vector of n joint torques (n is the total number of DOFs in the robot’s serial

chains), is a 6-vector containing the linear and angular acceleration of the base, and

is an n-vector of joint accelerations. The block matrices Mbb, Mbc, Mcb, and Mcc are ex-

tracted from M and have sizes 6 x 6, 6 x n, n x 6, and n x n, respectively. Similarly, Vb and

Vc are extracted from V and have lengths 6 and n, respectively. As mentioned above, the

controller knows Tb (zero since the base’s actuators are not being used) and , which is

computed from the desired end-effector accelerations using the same method as the sri-
Controller. Since Mbb, Mbc, Vb, and Tb are known, we can start by solving the first row
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of Equation 4.27 for :

(4.28)

(4.29)

The only remaining unknown is , which can be computed directly from the second

row of Equation 4.27:

(4.30)

Finally, the torque vectors Tb (which is [0 0 0 0 0 0]T) and Tc are concatenated into a (6+n)-

vector and given to the DEsolver, which first limits any joint torques that exceed actua-
tor capabilities and then uses the dynamic model to compute the actual accelerations. (If
no joint torques are beyond their respective actuators’ capabilities, then the acceleration
commands generated by the ffController are used directly, since plugging the com-
manded torques into the dynamic equations would yield the same accelerations.)

4.4.5 Summary

This section presented a method for automatically deriving a symbolic dynamic
model for robots, which can then be used to numerically evaluate both forward and in-
verse dynamics. Significantly, this method allows dynamic simulation to be used for au-
tomated synthesis of robots; previous systems for automated synthesis were restricted to
kinematic simulation during the synthesis process. This section also described the ff-
Controller, which uses the dynamic model to control free-flying robots.

4.5 Link Deflection

Optimal link sizing and actuator selection are interdependent: stiffer links are
heavier than lighter ones, thus requiring more powerful actuators for a desired level of
performance. But larger actuators add more mass, thus requiring greater stiffness. To op-
timize actuator selection and total robot mass, the stiffness of a robot’s links must be ac-
counted for. If the cross-sections of a robot’s links are fixed during the synthesis process,
then one of two undesirable outcomes is likely: some links will be oversized (for example,
the distal links of a manipulator may not need to be as stiff as proximal links), thus in-
creasing system mass and actuator requirements; or some links will be undersized, lead-
ing to unacceptable deflections or link failure in extreme cases. By estimating link
deflection at each time step of simulation, Darwin2K can generate robot designs with ap-
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propriately-sized links and actuators.
The approach taken in this work is to compute the deflection of each endpoint of

the robot by combining deflection estimates from the robot’s links. Some important sim-
plifying assumptions are made to facilitate fast and general computation:

• each link of the robot is modeled as a set of segments, each having uni-
form cross-section and material;

• deflections are computed only for links in the interior of serial chains
(Figure 4.7);

• link deflection reaches unacceptable levels before the maximum
strength of a link’s material is reached, and before buckling occurs;

• inertial forces decrease linearly along a link, moving towards the distal
end;

• forces are applied at points lying on the principal axis of each link; and
• forces are aligned with the centroidal axes of each link.

These assumptions have implications on the accuracy of the deflection calculations; their
effects are discussed in Section 4.5.3. The last two assumptions can be satisfied by design-
ing modules appropriately: for example, circular cross-sections can be used when the di-
rection of loading of a link is unknown, and a module’s joint and connector locations can
be chosen to lie along the major axis of a module segment.

4.5.1 Computing deflections

The first step in computing link deflection is to compute the forces applied to each
link; the computed torque method (see Section 4.4.1) is used for this. The link is treated as
a cantilevered beam, with the proximal end fixed and inertial forces and moments distrib-
uted along the length of the link. Darwin2K computes a link force context for each link;
the context contains all of the kinematic and dynamic information required to compute
deflections for the link. Each link is then split into module segments, consisting of continu-
ous segments belonging to the same module. For each module segment, the containing
module is queried for the segment’s deflection; the module, in turn, sets up the structural
parameters (cross-sectional areas, moments, and material moduli) for a deflection calcu-

Figure 4.7:  Links for which deflections are computed
Link deflection is computed only for links in the interior of serial chains, indicated by
dark shading in this figure. Links at the beginnings, ends, and bifurcations of serial
chains are not considered (unshaded links).
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lation and uses Darwin2K’s generic deflection computation procedure. Each of these cal-
culations is performed on a segment with uniform cross section and material; a module

may subdivide its module segments further if the cross-section varies discretely3.
Darwin2K then combines the deflections from each module segment to compute the total
link deflection, and combines the link deflections for all links to compute the deflection at
each of the robot’s endpoints.

Most of the process described above is essentially bookkeeping; the bulk of the de-
flection computation lies in integrating forces and moments along each segment of a link.
The forces and moments acting in the directions of a segment’s centroidal axes are inte-
grated separately along the axis of the link to determine the link’s deflection. (This is a
standard method of computing deflections of simple beams; see a text such as [Shigley89]
for the derivation.) The deflections are then superposed to yield the translational and ro-
tational deflections (in three dimensions) at the end of the segment. Figure 4.8 shows the
coordinate system used in the deflection computations. The forces and moments in mod-
ule segment m2 are integrated along the x-axis from x1 to x2. θy (the angular deflection

about the y-axis) is computed as:

(4.31)

where E is the modulus of elasticity for the module segment, Iy is moment of inertia about

the y-axis, and ny(x) is the bending moment about the y-axis. The linear deflection in the

z direction is given by:

(4.32)

The calculations of angular deflection about the z-axis and of linear deflection in the y di-
rection are similar. The shortening or lengthening of the link in the x direction, and the
twist about the x-axis, are given by:

(4.33)

(4.34)

where A is the cross-sectional area of the link, J is the polar moment of inertia of the link,
G is the shear modulus of elasticity, fx is the tensile/compressive force along the x-axis,

3. It is also possible for a module to perform its own special-purpose deflection calculations,
though this is not likely to be necessary to achieve a reasonable level of simulation accuracy.
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and nx is the twisting moment about the x-axis. Each module segment contains its own

values (computed from the module’s parameters) for A, J, Iy, Iz, G, E, x1, and x2, and calls

Darwin2K’s functions for computing the integrals above.

4.5.2 Computing internal forces and moments

The first step in evaluating these integrals is to determine the functions fx(x), nx(x),

ny(x), and nz(x). For a non-moving cantilevered beam with a point force applied at the free

end, fx(x) and nx(x) are constant and ny(x) and nz(x) are linear functions and can be com-

puted at a point z by writing the force and moment equilibrium equations. However,
when including an approximation of inertial forces (that is, forces due to the mass of the
link when the link is in motion), the order of these functions is raised by one: fx and nx are

linear, and ny and nz are quadratic. We can derive expressions for fx, nx, ny, and nz by con-

sidering the force f1 and moment n1 applied at the base of the link, as computed by the

computed torque algorithm:

(4.35)

(4.36)

is the acceleration of the link’s center of mass, I is the link’s inertia matrix, and and

are the angular velocity and acceleration, respectively. (See Figure 4.8a for definitions
of other variables). Instead of computing f1 and n1 (the force and moment at p1), we want

the force and moment at a distance x from p1. To do this, we consider the segment of the

link remaining from x to p2. First, we assume that the location of the center of mass of the

remaining portion of the link pcs(x) varies linearly: it is equal to pc at x=0 (i.e. at p1) and is

equal to p2 at x=l (i.e. at p2). The location of the center of mass of the remaining segment

of the link is thus:

(4.37)

and the mass of the remaining segment is

(4.38)

See Figures 4.8b and 4.8c for graphical depictions of pcs(x) and ms(x). The angular velocity

and acceleration of the remaining portion of the link are the same as the for link as a
whole, but the linear acceleration varies with x:

(4.39)

where is the linear acceleration at p1. By substituting ms and into the expression for
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f1 (Equation 4.35), we can compute f(x), the internal force acting at point x on the remain-

ing segment of the link:

(4.40)

n(x) can be computed by performing similar substitutions into Equation 4.36:

(4.41)

where is a unit vector along the x-axis (i.e. pointing from p1 to p2) and

x

y

z

x1 x2

Figure 4.8:  Coordinate system used for computing link deflections.
(a) The moments and forces in the beam are integrated from x1 to x2 when computing
the deflection of module segment m2. p1 is the location of the proximal joint, pc is the
location of the center of mass, and p2 is the location of the distal joint. f1 and n1 are
applied at p1 to the link, and f2 and n2 are applied at p2 to the next link. l is the distance
from p1 to p2. (b) is a graph of ms(x), the mass of the remaining portion of the link (i.e. to
the right of x), and (c) is a graph of pcs(x), the position of the center of mass of the
remaining portion.
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. While this equation looks complex, an understanding of it can be

had by realizing that the individual terms are linear in x, and that n(0) = n1 and n(l) = n2.

These two equations give the internal forces and moments in three dimensions (with the
assumptions noted above) at a point x along the axis of the link. We can use the projec-
tions of n(x) and f(x) onto the axes to compute the integrals described in the previous sec-
tion. Some observations about n(x) and f(x) can be used to simplify the computation of
these integrals:

• f(x) is a quadratic function of x;
• n(x) is a cubic function of x; and
• f(x) and n(x) are linear with respect to the forces, moments, velocities,

and accelerations.

Taken together, these facts allow Darwin2K to use closed-form solutions to the in-
tegrals. This process begins by computing f(x), n(x), and their respective derivatives f’(x)
and n’(x) at both ends of each module segment (i.e. x1 and x2 in Figure 4.8) and then pro-

jecting these vectors onto the x, y, and z axes. Next, a quadratic for fx(x) (the x component

of f(x)) is fit to the boundary conditions fx(x1), fx(x2), and fx’(x1). Similarly, cubics are fit to

each of nx(x), ny(x), and nz(x) based on their respective boundary conditions. The integrals

of the quadratic and cubic functions can then be efficiently found with closed form equa-
tions.

To demonstrate this process, consider the robot shown in Figure 4.9. The robot is

acted on by a gravitational acceleration of 9.8m/s2 and is applying a tip force of 98N in
the +z direction. We will calculate the linear and angular deflection of the hollow cylin-
drical portion of the robot’s second link (a hollowTube module). The tube is aluminum,
with an outer diameter of 8cm, a wall thickness of 2.1mm, and a length of 1.1m. The two
joints are both elbowJoint modules, and the actuator of the second joint is part of the
second link (i.e. it is attached to the hollowTube). The overall length of the link (between
the two joints) is 1.189m. The link’s angular velocity is zero, but its angular acceleration

is -π/6 rad/s2 about the y axis. The relevant quantities for this link (including those cal-
culated by the computed torque algorithm such as f2 and n2) are:

Given this information, we first need to compute the forces, moments, and their
derivatives at x1 and x2, the endpoints of the link segment corresponding to the hollow

tube. Since the forces in the x and y directions are negligible, as are the moments about x
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and z, the only significant component of deflection will be from ny. The boundary values

for ny (as computed by Equation 4.41) are:

Since ny(x) is cubic, we can fit a cubic to these conditions and be assured that it

matches ny exactly. The cubic is:

(4.42)

Figure 4.9:  Manipulator used in link deflection example.
The world coordinate system is at the base of the manipulator; the coordinate
system for deflection calculations is located at p1. Note that the second joint’s
actuator is part of the same link as the tube, so the link’s center of mass is not at the
midpoint of the tube.
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where . To compute θy(x), we must integrate n(d), multiply it by -1/EIy, and

account for the scaling introduced by converting from x to d. The tube is made from alu-
minum, and given its outer diameter of 8cm and wall thickness of 2.14mm, we have:

(4.43)

The angular deflection is thus:

(4.44)

Integrating and multiplying by l again to find linear deflection in the z direction, we have:

(4.45)

In this example, only one link segment contributed significantly to the total deflec-
tion. In more complex situations, many module segments would be involved, and deflec-
tions would not be restricted to a single dimension.

4.5.3 Limitations

As noted in the list of assumptions at the beginning of this section, Darwin2K’s
analysis of link structural adequacy is based on stiffness rather than peak stress. This as-
sumes that link deflections will become unacceptable before the maximum stress limit of
a link’s material is reached. This assumption could be eliminated by computing the peak
stress in each module segment from the force and moment functions and the cross-section
for the segment. A metric could then record the ratio of the peak stress to the material’s
stress limit, so that links could be optimized to have a desired safety factor with respect
to stress.

In the example, the only source of deflection was bending of a beam. It is not un-
reasonable to assume that the robot’s base can be made stiff enough to prevent significant
deflection; however, compliance in the robot’s actuators, bearings, and fittings are usual-
ly significant. If stiffness measurements are available for actuators and bearings, they can
easily be incorporated: when a module computes the deflections for a segment containing
an actuator, the deflection due to actuator and bearing compliance can be added. Unfor-
tunately, this information is not always readily available, in which case allowances must
be made in the acceptability criteria of the optimizer.

Darwin2K’s analysis of link deflections is quasi-static: although the effects of iner-
tial forces are approximated, the deflection computations assume that a steady-state de-
flection has been reached. That is, at every time step, deflection is computed as if the link
had been subjected to constant force and moment for a long period of time. Oscillation
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due to flexure of links is not computed, so the peak deflection measured by Darwin2K
may be an underestimate. However, increased deflection due to oscillation will occur
mainly when the robot undergoes high acceleration or deceleration; in many cases, high
positional accuracy is not required during these period so the transients in link deflection
may not be significant in terms of task performance.

Another source of error is the assumption of linearly-varying inertial forces along
the module segment. For this assumption to be true, the link’s cross section would have
to be constant for the entire length between joint axes. In the example above, this was not
true since the joint modules at either end of the link also contributed mass. However, in
this example and in typical manipulator scenarios, the error in deflection due to the ap-
proximation of inertial forces of the link itself will be small compared to the deflections
caused by forces applied by the link to a tool’s endpoint or to the next link in the robot.

4.6 Path Planning

Because the Jacobian cannot fully express the mobility of a nonholonomic base,
planning is required to move the base between poses. Additionally, the Jacobian control-
ler does not perform any obstacle avoidance, so a motion planner is also needed for mov-
ing holonomic bases between base poses in the presence of obstacles. While Jacobian-
based controllers that deal with obstacles do exist [Khatib86], Jacobian control is a local
method and can get trapped by local optima. In contrast, deliberative planning approach-
es can avoid local optima and generate globally-optimal shortest paths that avoid obsta-
cles. Currently, the motionPlanner only generates plans for bases maneuvering in the
plane. and obstacles only restrict the motion of the base (not any attached serial chains).

The motion planner utilizes a best-first search of configuration space and uses nu-
merical potential fields to guide the search, as detailed in [Barraquand89]. The robot
base’s configuration space is discretized (with resolution selected by the user), and a nu-
merical potential field is computed for each cell (C-space state) that is explored by the
planner. This C-space potential field is computed from several workspace potentials, each
of which is computed for a specific control point. A workspace potential guides its corre-
sponding control point towards a goal position and away from obstacles. For planar
bases, two control points (defined by each type of base module) are needed to uniquely
determine pose.

The workspace potential field for each control point is computed as follows: First,
a repulsive potential field is generated by propagating waves from the obstacles (and
workspace boundary) through free space. This process starts by labelling all obstacle and
boundary cells with a value of one, then assigning a value of 2 to all of the unlabeled
neighbors of these cells, then assigning a value of 3 to all of new cells’ neighbors, and so
on. When two or more of these “waves” from different obstacles meet, the resulting ridge
in the potential field forms part of a generalized Voronoi diagram (see e.g. [Preparata88]
for more information on Voronoi diagrams), as shown in Figure 4.10. This Voronoi dia-
gram is recorded in a separate grid and contains paths which are a maximum distance
away from all obstacles; it provides a skeleton of the workspace along which the safest
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paths exist.
After computing the skeleton, the goal location of the control point is connected to

it by following the gradient from the goal to the nearest point of the skeleton. Next, a po-
tential is computed for points on the skeleton by starting at the goal and again propagat-
ing a wave, this time along the skeleton. Finally, the skeleton is expanded in a similar
manner to the way obstacles were expanded earlier, with each empty cell receiving a label
that is one greater than the smallest label of its neighbors.

The resulting potential field contains a single minima at the goal; for a point robot,
following the gradient of the potential will always lead to the goal. To plan a path for a
robot with multiple control points, the potential fields for all of the control points must
somehow be combined. [Barraquand89] suggests using the minimum of the control
points’ potential fields for a given state, plus a small fraction (say, one-tenth) of the max-
imum potential field over all control points. This results in a single C-space potential field
(as opposed to the numerous workspace potential fields for the control points) with few
local minima.

These local minima can be avoided in the final path by using a best-first search.
The search starts at the initial state of the robot and generates all successor states (neigh-
boring cells in the C-space grid). The successors are placed in a priority queue, and the
best state in the queue is then expanded as the initial state was. Each base module spec-
ifies a list of commands and a function which integrates these commands to move from
one state to the next. Using this approach, holonomic and non-holonomic bases can be
treated in the same manner. The difference is that holonomic bases can generate com-
mands which move from one state to all neighboring states, while nonholonomic bases
are restricted to moving to a subset of the neighboring states.

It is important to note that the paths generated by this algorithm may not exactly
reach the goal configuration; the amount of error is bounded by the resolution of the C-

Figure 4.10:  Repulsive potential field and workspace skeleton
(a) shows a numerical potential field grown from obstacle boundaries, and (b) shows the
generalized Voronoi diagram, or workspace skeleton
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space grid. When the robot reaches the end of the path, its pose is set to the desired base
pose at the beginning of the next tool trajectory. While a more exact method (or much fin-
er resolution) could be used, there is little useful performance information to be gained
by doing so; the end result of the simulation will not be significantly different, but simu-
lation time could increase substantially.

4.7 Other Capabilities and Components

4.7.1 The pathEvaluator

Following Cartesian trajectories with one or more end effectors is common task for
robots. To accomodate this task, Darwin2K includes the pathEvaluator, which repre-
sents tasks as a series of end-effector trajectories, optionally with obstacles in the work-
space and payloads to be moved along the trajectories. Figure 4.11 shows two sample
tasks that can be simulated by the pathEvaluator. In the simplest case, a fixed-base ma-
nipulator might follow a single trajectory; a more complex task might require a mobile
robot with multiple end-effectors to move between base poses and follow paths with one
or both manipulators at each pose. To account for this variation, the trajectories (repre-
sented as path or relativePath objects) are organized in path groups: each path group
can contain a trajectory for each of the robot’s end-effectors, and can have a different pose
for the robot’s base. If multiple paths are specified in a path group, the corresponding ma-
nipulators follow them simultaneously and all paths must be completed before moving
on to the next path group. The pathEvaluator requires several evComponents to be
specified in the initialization files: a DEsolver for integrating robot state, an sriCon-
troller for controlling the robot, and one or more paths. Additionally, the
pathEvaluator can use a motionPlanner to plan paths between path groups for the
robot’s base, and a collisionDetector (discussed in Section 4.7.4) to check for colli-
sions during simulation.

The initial position and orientation of the robot’s base can be specified in the ini-
tialization file, or can be included as task parameters so that the base position of a manip-
ulator can be optimized. However, when using a mobile base a different base location
may be required for each path group, and different mobile robots may require different
base poses in order to reach the same path since they may have different manipulator ki-
nematics. The pathEvaluator uses the sriController in a two-stage process to de-
termine the base pose of mobile robots for each path group: at first, the robot’s base is
allowed to move freely (i.e. without nonholonomic constraints), and then all of the robot’s
degrees of freedom (including the base) are moved. If we were to initially use all of the
robot’s degrees of freedom, then the serial chains might end up at the edge of their work-
spaces. Instead, the pathEvaluator first allows the base to move freely in 3 dimensions
(or in the plane for a planar base) while holding all serial chains fixed. Once the robot can-
not move any closer to the start of the paths in the path group, serial chain motions are

enabled but with a high cost4, forcing the robot to move the base instead of the serial
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chains if possible. During this second stage, the robot base is still able to move freely. If
the robot still cannot reach the initial points in the paths, we know it cannot complete the
task. If it does find a successful starting pose, the base motion mode is returned to normal
(i.e. non-holonomic constraints are enforced, for example) and the serial chain cost is re-
turned to normal; this is the normal operating mode for the robot.

If the task requires the robot to move between several base poses, the aforemen-
tioned method is used to compute each initial base pose before the actual evaluation takes
place. During evaluation, the sriController can be used to move holonomic robots
between base poses if there are no obstacles present. When a robot with a nonholonomic
base moves between base poses, or if there are obstacles in the workspace, the robot can
be controlled using the motionPlanner described in Section 4.6.

4. The “high cost” of moving serial chains is implemented by scaling the elements of the Jacobian.
The elements for each serial chain are multiplied by a scale factor s < 1; SVD will compute a mini-
mum-norm solution, thus using the base’s DOFs in preference to those of the serial chains. The
elements of dθ for the serial chain must then also be multiplied by s before being used, since SVD
will give values too small by a factor of s.

base motion planned by motionPlanner

obstacle

obstacle

path group 1

path group 2

Figure 4.11:  Schematic of pathEvaluator task representation
The pathEvaluator is a general-purpose evaluator for tasks involving moving
one or more end effectors along one or more trajectories. Shown here are two
example tasks that can be simulated by the pathEvaluator: (a) shows a simple
task, with a fixed-base robot following a single trajectory, and (b) shows a more
complex task, with two groups of paths and a base motion between the path groups
planned by a motionPlanner.

(b)(a)
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4.7.2 PID controller

The pidController can be used when it is desirable for the robot to follow joint-
space (rather than Cartesian) trajectories. If inverse kinematic equations for a robot are
known, they can be used to compute joint positions corresponding to specific endpoint
locations; if not, then the sriController (or another method) can be used to compute
the corresponding joint positions. The pidController implements a PID control loop
for each joint; position, derivative, and integral gains and position and velocity goals can
be independently set for each joints. The pidController has different sets of gains for
acceleration and torque commands, since the DEsolver will ask for acceleration com-
mands when kinematic simulation is being used and torque commands when dynamic
simulation is being used. In the future it may be desirable to add another mode that uses
the robot’s dynamic model to compute torque commands based on the desired accelera-
tion of each joint, which itself could be computed with the PID control model; however,
the pidControllerwas not required for any of the experiments in Chapter 5 so this was
not explored.

4.7.3 Payloads

The payload class is an evComponent which represents the geometric and iner-
tial properties of unarticulated (rigid body) payloads. The payload class contains code
for reading geometric data from a file, including one or more polyhedra and an arbitrary
number of connectors (coordinate frames defined relative to the payload’s origin). The
payload uses Coriolis ([Baraff96]) to compute its inertial properties from the polyhedra
(each of which has a specified density); the payload’s connectors can be used to align the
payload with other coordinate frames such as an end effector’s TCP. Classes derived
from the payload can also provide methods to create customized or parameterized ge-
ometry, rather than reading geometric data from a file.

4.7.4 Collision detection

Collision detection is an important capability, as it enables the synthesizer to pe-
nalize robots that collide with obstacles in the environment or with parts of themselves.

The collisionDetector uses the University of North Carolina’s RAPID5 collision de-
tection package [Gottschalk96] to detect intersections between polyhedra representing
the geometry of the robot and any obstacles. The collisionDetector computes the
number of intersections between polyhedra belonging to different bodies (links, obsta-
cles, or payloads), which can then be recorded by an appropriate metric. To decrease the
computational complexity of collision detection, each module can define a low-detail
polyhedral model of its geometry and can indicate that collisions between specific poly-
hedral should be ignored. For example, the prismaticTube shown in Figure 4.12 has a

5. At the time of writing, the RAPID source code is available on the World Wide Web at
http://www.cs.unc.edu/~geom/OBB/OBBT.html
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normal polyhedral model with 28 polyhedra (8 for each tube section, one for the motor,
one for the gearbox, and two for the lead screws) and a low-detail model with only 3 poly-
hedra (1 for each tube section). Since the three low-detail polyhedra would intersect as the
joints move, the prismaticTube specifies that collisions between the three polyhedra
should be ignored. The use of the low-detail model thus drastically reduces the number
of pairs of polyhedra that must be checked for intersections.

4.7.5 Stability and tipover for mobile robots

Tipover can be a major concern for many mobile robots, usually due to either ex-
treme terrain or large payloads. To measure how closely a planar mobile base approaches
tipover, the configuration class contains code for computing the robot’s energy sta-
bility [Messuri85]. Each planar (i.e. non-free-flying) mobile base module can define a
number of support points relative to its geometry, and the robot’s support polygon is
computed from the world-space locations of the support points. The configuration then
computes the robot’s center of mass and determines the minimum amount of energy re-
quired to rotate the robot about any leg of the support polygon so that its center of mass
is outside the polygon. When the energy is less than zero, the robot is in a tipover config-
uration. The pathEvaluator will abort the simulation if the energy stability is less than
zero at any point; however, the energy stability margin can also distinguish between con-
figurations with varying degrees of stability, making it suitable for use as a metric.

4.7.6 Actuator models: power and torque

Every module derived from the dofModule (e.g. any jointModule or base-
Module) can define a member function that computes the maximum actuator torque or
force for a degree of freedom based on the DOF’s velocity, and another member function
that computes the power used by a DOF for a given velocity and torque or force. Some of
Darwin2K’s older joints modules do not include actuator models; these do not have
torque limits, and compute power as the product of force and velocity. Darwin2K’s newer
joint modules include actuator models and use equations based on the motor and gear-
head properties to compute power and maximum torque. The properties specified in the
component database for each motor and gearbox are listed in Tables 4.3 and 4.4, respec-

Figure 4.12:  High- and low-detail models
The prismaticTube module includes both a high-detail model for computing inertial
properties and a low-detail model for collision detection. The high-detail model
contains 28 polyhedra, while the low-detail model contains only 3.
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tively. Each jointModulewith a motor and gearhead computes a power function P(τ,ω)
and maximum torque function Tmax(ω) from the motor and gearhead parameters:

(4.46)

where ω and τ are the angular velocity and torque, respectively, at the actuator’s output
(i.e. at the output shaft of the gearhead), and I(τ) and V(τ,ω) are defined as:

(4.47)

, (4.48)

where the friction torque and the combined torque . (These equa-

tions are based on motor documentation in [Maxon98].) Note that since τ and ω are the
torque and velocity at the actuator’s output rather than the motor’s output, the equations
for I and V include appropriate factors of r to reflect the gear ratio of the gearhead. Sub-

Table 4.3:  Motor properties

Table 4.4:  Gearhead properties

Actuator models in Darwin2K contain data for motors and gearheads. For
geometric purposes, both are modeled as cylinders with specified length, diameter,
and mass. The other properties are used to compute an actuator’s maximum
velocity, maximum torque for a given velocity, and power consumption for a given
velocity and torque.

Property symbol Property symbol

mass m no-load current i0

length l resistance R

diameter d rotor inertia Iroto

stall torque τs torque constant kt

continuous torque τc,motor speed constant ks

maximum velocity ωmotor speed/torque gradient g

Property symbol Property symbol

length l maximum torque τmax

diameter d continuous torque τc,gearhead

mass m efficiency η

ratio r maximum output velocity ωmax
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stituting Equations 4.47 and 4.48 in to Equation 4.46, we have:

. (4.49)

The formula for Tmax(ω) is more straightforward:

. (4.50)

In addition to these two formula, the maximum velocity is used to

limit joint velocities, and the actuator inertia Iact = rIrotor is included in the computed

torque model. Finally, the continuous torque rating for an actuator is

. (4.51)

These equations can be applied at each simulation time step to limit the torque applied,
and power consumed, by each actuator. Since Equations 4.49 and 4.50 account for varying
actuator efficiency and maximum torque throughout the actuator’s operational ranges,
allowing the synthesizer to optimize motor and gearbox selection based on the conditions
encountered during task execution.

4.8 Metrics

Metrics provide an interface between Darwin2K’s simulation code and the optimi-
zation engine by recording aspects of a robot’s performance as specified by a task’s re-
quirements. Most metrics measure quantities such as power consumption during
simulation, though some may directly measure properties of the robot, such as mass.
Darwin2K has two broad types of metrics, both of which ultimately produce a single sca-
lar called the raw fitness. State-dependent metrics measure quantities that are dependent
on the robot’s state, which varies with time: thus, they record data at each simulation time
step before converting the data to a scalar. State-independent metrics do not depend on
the robot’s state over time, and thus measure performance at the end of simulation. State-
dependent metrics can condense a time series of data into a scalar in several ways: finding
the minimum or maximum value, calculating the mean, the integral, or the root-mean-
square value. For example, a metric that measures power consumption can compute the
peak power by finding the maximum in its series of data, or the total energy consumption
by computing the integral.

Each metric converts the raw fitness into a form usable by the optimizer, called the
standardized fitness. Standardized fitness is simply a number greater than zero, with zero
indicating the best possible value. Since the minimum and maximum values that are
meaningful for each metric can vary with the task requirements, the designer can specify
the bounds to which raw fitness values will be constrained. Each metric also specifies the
sense of fitness values--a metric is said to have positive sense if a larger raw fitness value
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is better, and negative sense if smaller raw fitness is better. The metric’s sense, bounds on
raw fitness, and a scale factor are used to compute standardized fitness:

(4.52)

This provides a uniform interface between metrics and the optimizer and allows mean-
ingful raw fitness values to be mapped to a roughly consistent range. Both the standard-
ized and raw fitness (along with the metric’s sense) are reported to the optimizer for each
metric. The standardized fitness is used for selecting configurations for reproduction,
while the raw fitness (and sense) for each metric determine whether or not a configura-
tion is feasible. Since some metrics may require costly evaluation (e.g. dynamicPath-
CompletionMetric requires dynamic simulation), the optimizer indicates which
metrics are currently being used each time a configuration is evaluated. This allows costly
simulation methods to be used only when necessary. For example, the early stages of op-
timization may require only a few kinematic metrics, while later stages may need dynam-
ic simulation to evaluate some metrics.

Darwin2K contains a set of core metrics that are likely to be useful for many syn-
thesis problems. They are described in the following two sections, and summarized in Ta-
ble 4.5. These metrics interface with most of Darwin2K’s existing simulation capabilities
such as dynamic simulation and link deflection computation.

4.8.1 State-Independent metrics

State-independent metrics measure performance at the end of simulation. While
some state-independent metrics (such as the mass metric) can make their measurements
before simulation, others depend on the final simulation result (but not on the robot’s
state at intermediate time steps). Currently, Darwin2K include five state-independent
metrics. The timeMetric records the time required to complete a task. The massMet-
ric computes the mass of the robot. The pathCompletionMetric and dynamic-
PathCompletionMetric both measure the fraction of trajectory waypoints reached by
the robot. The two are functionally identical, though the dynamicPathCompletion-
Metric indicates that dynamic simulation should be used. This allows dynamic simula-
tion to be used only in the later stages of optimization, when the system has generated
robots that meet the kinematic task requirements. Finally, the taskCompletionMetric
is similar to the other two completion metrics but is more general and is not tied to
Darwin2K’s trajectory representation; it can be used by any evaluation method to indicate
the degree of task completion.

4.8.2 State-Dependent metrics

State-dependent metrics measure physical quantities that depend on the robot’s
state over time. Quantities such as joint velocity can be copied directly from the robot’s
state, while others (such as link deflection) must be computed explicitly as they are not

standard fitness scale
max raw fitness– positive sense

raw fitness min– negative sense



×=



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

102    Robot Evaluation

normally calculated during simulation.
The powerMetric records the power used by the robot at each time step. Power

for a degree of freedom is computed by the DOF’s corresponding module, and power for
all DOFs is summed at each time step. The most useful measurements for this metric are
the maximum (maximum instantaneous power) and integral (total energy consumption).
The peakVelocityMetric records the maximum joint velocity over all joints at each
time step, and is useful when actuator models are not available to limit joint velocities.

There are three metrics for quantifying actuator forces: the actuatorSatura-
tionMetric, the continuousSaturationMetric, and the peakTorqueMetric.
The peakTorqueMetric should be used only when joint modules do not include actu-
ator models; it assesses actuator requirements by recording the maximum joint torque
(over all of the robot’s degrees of freedom) at each time step. The actuatorSatura-
tionMetric and continuousSaturationMetric are used to evaluate the adequacy
of a robot’s actuators by measuring how closely each actuator approaches its torque or
force rating during simulation. The former considers both peak and continuous torque
ratings, while the latter considers only continuous torque ratings and is used in conjunc-
tion with dynamic simulation (when each actuator’s applied torque is already limited to
its peak rating). The general idea for both metrics is that they should be less than or equal

Table 4.5:  Summary of core metrics

Metric State
Dep?

Description

timeMetric no Measures task completion time

massMetric no Measures robot mass

pathCompletionMetric no Measures fraction of path waypoints reached

dynamicPathCompletionMetric no Same as pathCompletionMetric, but implies that
dynamic simulation should be used

taskCompletionMetric no Measures fraction of task completed (general-purpose)

actuatorSaturationMetric yes Measures peak and continuous actuator saturation

continuousSaturationMetric yes Measures continuous actuator saturation

peakTorqueMetric yes Measures peak joint torque over all joints

peakVelocityMetric yes Measures peak joint velocity over all joints

powerMetric yes Measures power

positionErrorMetric yes Measures cross-track error of end effector

rotationErrorMetric yes Measures rotation error of end effector

stabilityMetric yes Measures energy stability (closeness to tipover)

collisionMetric yes Measures self-collisions and collisions with obstacles

linkDeflectionMetric yes Measures linear link deflection at robot’s endpoint(s)
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to 1 if all of the robot’s actuators are operated within their torque limit during the entire
simulation, and greater than 1 if any actuator exceeds it peak or continuous torque rating.
The continuousSaturationMetric’s value is computed as follows: At each time
step, the saturation (ratio of applied torque to continuous torque rating) is computed for
each actuator, and a running average of saturation for each actuator is computed. At the
end of simulation, the running average for actuator i contains the continuous saturation
Ci: if it is less than one, the continuous torque was less than the actuator’s continuous

torque rating, and if it was greater than one the continuous torque rating was exceeded.
For the continuousSaturationMetric, the maximum value (computed as the maxi-
mum over all Ci) is normally used as the standard fitness.

The actuatorSaturationMetric is more complicated, as it must determine
whether (and how much) any actuator’s peak or continuous torque ratings are exceeded.
It records the continuous saturation for each actuator in the same manner as the contin-
uousSaturationMetric, and also computes the peak saturation Pi(t) for actuator i at

every time step:

(4.53)

where τi(t) is the torque applied by actuator i at time t, τi,max is the maximum torque rating

for actuator i, and m is the metric’s minimum value (as specified by the designer). The
maximum Pmax(t) over all Pi(t) is recorded for each time step; if Pmax(t) is greater than zero

(that is, if any actuator had saturation greater than the minimum m), then m is added to
Pmax(t). This may seem like a complicated way to compute saturation, but it has the fol-

lowing convenient properties:

• if all actuators have saturation < m, then Pmax(t) is 0;

• if any actuator has saturation m but all have acceptable saturation,

then m Pmax(t) 1; and

• if any actuator has saturation > 1, then Pmax(t) is > 1

This allows differentiation between very low saturation (i.e. less than m), acceptable sat-
uration (between m and 1), and unacceptable saturation (greater than one). After simula-
tion is complete, the continuous and peak saturations are combined by adding a total
continuous saturation Ctotal to every recorded value of Pmax:

(4.54)

where offset is 0 if all Ci were 0, and m otherwise. After adjusting Pmax in this manner, the

statistics (minimum, average, etc.) are computed as normal over Pmax. This formulation

was successfully used for the experiments presented in the next chapter; however, in ret-
rospect it has the unfortunate property that even if all actuators have continuous satura-
tion less than one but a sufficient number have continuous saturation greater than m, then
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Ctotal can be greater than one and thus make the configuration’s actuators appear exceed

their continuous torque ratings.
Two metrics measure how closely a robot follows a trajectory: the positionEr-

rorMetric and rotationErrorMetric. Both of these metrics work with Darwin2K’s
path representation, and measure deviation from the commanded trajectory. Specifically,
the positionErrorMetric measures the end-effector’s cross-track error as it moves
between waypoints, and the rotationErrorMetric measures the angle between the
end-effector’s orientation and the commanded orientation.

Several other metrics remain; these record robot performance as computed by
methods described earlier in this chapter. The stabilityMetricmeasures how closely
a mobile robot approaches tipover by recording the robot’s energy stability, as computed
by the method described in Section 4.7.5. The collisionMetric measures the robot’s
self-collisions and collisions with obstacles during task execution, as described in Section
4.7.4. At each time step, the collisionMetric queries the collisionDetector for
the number of intersecting polyhedra. Either the maximum or integral should be used for
the collisionMetric. Finally, the linkDeflectionMetric records the sum of the
linear deflections at each of the robot’s end effectors, as computed by the method de-
scribed in Section 4.5.

4.9 Summary

This chapter detailed Darwin2K’s simulation architecture and capabilities. A
method for deriving a symbolic model of a robot’s dynamics, which can then be used for
forward and inverse dynamic calculations, was presented, as was a method for estimat-
ing link deflections based on actuator and applied forces and torque. Three controllers
(the sriController, ffController, and pidController) were described, and
methods for evaluating a robot’s stability, detecting collisions, and modeling actuator be-
havior were presented. This chapter also described the pathEvaluator, which can be
used for evaluating fixed-base and mobile manipulators for trajectory-following tasks.
Finally, this chapter described the metrics used by Darwin2K to measure robot perfor-
mance. In the next chapter, we will see how these capabilities are combined with those
of the synthesizer to create robots for a variety of tasks.
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5 Experiments and Demonstration

The preceding chapters described the details of Darwin2K’s principle components:
robot representations, system architecture, the synthesis algorithm, and simulation and
analysis methods for evaluating robot configurations. This chapter puts those pieces to-
gether to demonstrate Darwin2K’s capabilities, describe its usage, support claims about
the synthesizer, and provide insight into key issues and limitations. Results are presented
for six synthesis tasks; some demonstrate the breadth and depth of Darwin2K’s scope,
while others characterize the synthesizer’s performance. The first experiment is synthesis
of a free-flying, dual-armed robot for satellite servicing, and should give the reader an un-
derstanding of how tasks are specified in Darwin2K while demonstrating synthesis of a
complex robot. The second experiment synthesizes fixed-base manipulators for a trajec-
tory-following task, and includes results for five different sets of initial conditions which
vary the modules and starting configurations used by the synthesizer. The third experi-
ment uses a simplified version of the second task, and characterizes the performance of
the Commonality-Preserving Crossover operator and subgraph preservation through
over eighty runs of the synthesizer. The third experiment also compares performance of
the selection algorithms described in Chapter 3 through another series of synthesizer tri-
als.

The fourth experiment synthesizes a mobile manipulator for a material-handling
task. Chronologically, this was the first synthesis task addressed by Darwin2K and it re-
vealed several shortcomings which motivated the development of some of Darwin2K’s
features. The fifth experiment performs kinematic synthesis of an antenna-pointing
mechanism, resulting in several designs whose optimality is easily understood and which
are similar to manually-designed mechanisms. Finally, the sixth experiment synthesizes
walking machines for a zero-gravity truss inspection task. This synthesis task makes use
of dynamic simulation and includes a number of task and control parameters in the syn-
thesis process. The synthesized configurations are novel and are at first surprising,
though analysis reveals a well-optimized kinematic structure with inherent minimization
of self-collisions. This experiment also synthesizes robots for only one portion of the en-
tire task, demonstrating the importance of the task description in determining the final
form of the synthesized robots.

The experiments in this chapter demonstrate and characterize Darwin2K’s simu-
lation and synthesis capabilities, including dynamic simulation, inclusion of task-specific
simulation components, synthesis of robot actuator selection and structural properties,
optimization of task parameters, and optimization methods for multiple metrics. The syn-
thesis experiments should give the reader a grasp of Darwin2K’s abilities and limitations
as well as provide motivation for future extensions. The chapter concludes with a sum-
mary and discussion of important issues raised by the experiments.
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5.1 Task 1: A free-flying robot for orbital maintenance

The Ranger Telerobotic Flight Experiment [SSL99] was designed to evaluate on-or-
bit telerobotic operation of a highly capable robot for maintenance and assembly. The
Ranger vehicle has a torso to which four arms -- one for grappling with a satellite or other
payload, two for dextrous manipulation, and one for sensor positioning -- are attached.
The torso is also attached to a housing containing power, computing, and control elec-
tronics. Originally, Ranger was to also have a free-flying base with solar panels, a reaction
control system, and positioning sensors. Due to programmatic issues, the flight experi-
ment was scaled back to take place on board the Space Shuttle payload bay, with the grap-
pling arm fixed to a pallet in the Shuttle’s payload bay. However, the Ranger Neutral
Buoyancy Vehicle (NBV) has been successfully used for teleoperation experiments in an
underwater simulated space environment. The synthesis task presented in this section is
loosely based on the tasks for which Ranger was designed. An earlier version of this ex-
periment was presented in [Leger99].

We will use Darwin2K to synthesize a robot similar to Ranger in terms of its capa-
bilities, and to generate kinematic, dynamic, actuator, structural, and controller proper-
ties for the robot. Since the robot is free-flying and will interact with large, freely-moving
payloads, reaction forces from manipulator motions will cause motion of the robot’s base;
thus we will need dynamic simulation to evaluate each robot. To limit the complexity of
the synthesis problem, we will limit the synthesis process to symmetric two-armed de-
signs with one arm acting as the grappler, rather than four-armed configurations like
Ranger. A free-flying robot with two dextrous manipulators will have 18 or more degrees
of freedom; dynamic simulation of robots of this complexity is fairly costly, and simula-
tion of a four-armed robot would be even more expensive (though within the capabilities
of Darwin2K). The restriction to a two-armed design reduces evaluation time and the size
of the design space, making the synthesis problem more tractable given available com-
puting power.

5.1.1 Task specification

The first step in the synthesis process is to enumerate the capabilities that are de-
sired in the robot. At the highest level, some key operational abilities and features for on-
orbit maintenance are:

• grappling with target payload and performing relative body position-
ing;

• adequate workspace for manipulators without mechanical interference
(collisions); and

• ability to remove and insert Orbit-Replaceable Units (ORUs).

These capabilities will drive the task description used for evaluating configurations.
Clearly, we cannot hope to simulate every possible task during evaluation; instead, we
must create a representative task that exercises candidate designs in the operations that will
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be typical of normal usage. The representative task should require motions and forces
that are characteristic of those that will be encountered during orbital servicing.

During the chosen task, one manipulator will be used for grasping the satellite and
repositioning the robot’s base, while the other will be used for manipulating the ORU.
The satellite and ORU are shown in Figure 5.1. The robot’s base will be unactuated during
this task: the grapple manipulator will be used for all base motions, as the robot will start
within reach of the satellite and will not have to maneuver to it. The first step of the task
is to move both of the robot’s end effectors to neutral positions in front of the robot (Figure
5.2a). Since the robot’s joints may start in arbitrary positions, collision detection is not per-
formed as the robot moves to the initial neutral position. Next, the work manipulator trac-
es a rectangular path (Figure 5.2b). All of the trajectories in the task are relative to either
the robot or satellite, so their world-space positions move as the robot and satellite move.
The next step is for the grappling manipulator to move to the grasp point on the satellite
(Figure 5.2c). After grabbing the satellite, the robot uses the grapple manipulator to move
the robot base to a known location relative to the satellite (Figure 5.2d). The work manip-
ulator then approaches the ORU and grasps it (Figure 5.2e). Removing the ORU (again
Figure 5.2e) consists of using a special tool (the Microconical End Effector or MEE
([SSL99])) to rotate a fixture on the ORU through 90 degrees (requiring 10 ft-lbs (or
13.6Nm) of torque), then pulling the ORU out of its docking bay (requiring 10 lbs (44.5N)

of force)1. Once the ORU has been extracted, the end effector is moved further away from
the satellite so that the ORU does not collide with the satellite during the base reposition-
ing that follows (Figure 5.2f). Finally, the work manipulator moves the ORU to an ap-
proach position before re-inserting it (Figure 5.2g); the insertion motions, torques, and
forces are opposite of those used for removal.

It is hard to predict the optimal values for some of the task and controller proper-
ties: where should the base be located relative to the satellite at the beginning of the ORU
removal phase of the task? How fast should the robot accelerate and move when moving
between base positions? These factors can influence the robot’s task completion, number
of collisions, and the time and energy required to executes the task, and it would be useful

1. These figures are based on the description of the Ranger Telerobotic Shuttle Experiment, one
part of which consists of removing an ORU and re-inserting it.

Figure 5.1:  Satellite and ORU payloads for free-flyer
The satellite (left) is 3m tall, 2m in diameter, has two 5m by 1.5m solar panels, and
has a mass of 9081kg. The ORU is 10cm wide, 18cm tall, 18cm deep, and has a
mass of 4.86 kg. During execution of the task, the robot removes the ORU from the
satellite and re-inserts it at another location.

18cm

12.6m
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The task consists of a number of trajectories for each end effector. Paths for the work and
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for the synthesizer to optimize these parameters. Fortunately, these variables can be in-
cluded as task parameters and can thus be optimized by the synthesizer. We will include
the maximum velocity and acceleration for each base motion as task parameters, as well
as the Y and Z components of the initial base pose (the X component will be zero so that
the robot is aligned with the satellite’s centerline). These 6 task parameters (detailed in Ta-
ble 5.1) will be included with each configuration sent by the synthesizer for evaluation.

5.1.2 Constructing a task-relevant simulator

Based on the task description, the next step in the synthesis is to create the simula-
tor that will be used for evaluation. This includes the selection of appropriate evCompo-
nents for simulation and control, and also includes a task-specific evaluator, the
ffEvaluator. For this task we will need two payload components: one for the satellite,
and one for the ORU. Some of the endpoint trajectories for the robot will be defined rela-
tive to the satellite, since the robot will be performing actions on it (grappling with it, re-
moving the ORU, and re-inserting it) and reaction forces will cause the satellite to move.
We will also need the collisionDetector, rungeKutta4, and ffController com-
ponents for the simulation to measure collisions, perform numerical integration of the ro-
bot’s state, and provide torque commands for the robot, respectively. The trajectories for
this tasks are specified as relativePaths. The initial kinematic trajectories and the tra-
jectories for base motions are specified relative to the robot’s base, and the remaining tra-
jectories are specified relative to the satellite.

The simulated task needs to exercise the robot’s capabilities as mentioned above:
grappling with the satellite, removing and inserting ORUs, and performing manipulation
within a reasonable workspace. Most of these capabilities could be simulated with a
pathEvaluator (and the evComponents outline above), but two specific assumptions
that simplify the simulation of this task require the use of a task-specific evaluator.
First, we will be using kinematic simulation for part of the task (when evaluating the ad-
equacy of the robot’s workspace), and dynamic simulation for the rest of it. Second, we
will be locking the joints of the grappling arm when it is not actively moving the robot

Table 5.1:  Task parameters to be optimized
The first two task parameters are for the pathEvaluator; the remainder are for
the two relativePaths that describe the base repositioning motions.

class component label task parameter min max # bits

pathEvaluator (none) originPosY 2.0m 2.5m 4

originPosZ 1.0m 2.0m 4

relativePath basePath vel 0.1m/s 1.0m/s 4

maxAcc 0.3m/s2 2.0 m/s2 5

relativePath basePath2 vel 0.1m/s 1.0m/s 4

maxAcc 0.3m/s2 2.0 m/s2 5
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relative to the satellite. While this assumes that the brakes on the robot’s grappling arm
are adequate, it also greatly improves the numerical stability and computational efficien-
cy of the dynamic simulation. When the grappling arm’s joints are locked, the dynamic
equations are simplified reflecting the removal of the equations and variables corre-
sponding to the grappling arm’s joints. Another simplification is that the satellite’s geom-
etry does not contain ports for inserting the ORU, so we must disable collision detection
between the ORU and satellite. This may seem like a bad idea, but as long as we require
the robot to follow trajectories with reasonable precision and the specified trajectories
would not cause the ORU to collide with the satellite in reality, then this does not signif-
icantly affect the outcome of the simulation. Apart from these changes, the ffEvaluator
behaves like the pathEvaluator: the robot’s end effectors follow a series of trajectories.
All told, the ffEvaluator requires 5 member functions to be specified:

• a constructor to set initial values (4 lines of C++)
• readParams - reads parameter values from the initialization file (17

lines)
• postComponentInit - a function to disable collision detection

between the ORU and satellite (17 lines)
• init - initializes paths at beginning of each simulation(19 lines)
• evaluateConfiguration - the main simulation loop (217 lines;

largely copied from pathEvaluator::evaluateConfiguration)

While 300 lines is not a trivial amount of code, it is not a large amount considering that it
creates an efficient, task-specific dynamic simulation of a free-flying robot with multiple
manipulators. It is important to note that the code does not contain any “simulation guts”;
rather, it initializes, controls, and monitors various evComponents to customize their be-
havior.

During the insertion and removal portions of the task, a reactionForceCalcu-
lator is used to compute the reaction forces and torques that are felt at the grapple ma-
nipulator’s endpoint due to the forces and torques applied by the work manipulator.
Since the robot and satellite are a closed system (i.e. there are no external forces or mo-
ments acting), any forces exerted by one end effector are felt by the other, transmitted
through the satellite’s structure. Darwin2K’s dynamic simulator does not model forces
arising from contact or friction, which could be used to simulate the insertion and remov-
al forces and moments; thus, the reactionForceCalculator is needed to account for
the fact that the forces applied by the end effector must be also applied to something. Note
that if the reactionForceCalculator were not used, then the entire system (robot,
satellite, and ORU) would accelerate during the insertion and removal phases since an
unbalanced (or, equivalently, external) force would be applied.

While constructing the simulation (i.e. writing the code, specifying trajectories,
and setting control and simulation variables) it is useful to have a manually-designed ro-
bot to use for debugging purposes. This robot does not need to be able to complete the
entire task or meet all performance requirements, but it is helpful if the robot can at least
kinematically perform most of the task so that the designer can make sure the simulator
is properly set up. Fortunately, it is easy to for the designer assemble a robot from param-
eterized modules, and changes to the test robot and evComponent and evaluator vari-
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ables can be quickly iterated since they are specified in text files. In addition to debugging
the simulation, this process gives insight into robot topologies or parameter values that
may be useful to include in the kernel configurations for the task. It also gives the designer
an idea of the expected range of values for performance metrics and for evComponent
variables that will be included as task parameters. For this task, initial simulations with a
manually-specified robot indicated that task completion time would be in the neighbor-
hood of 50 seconds, energy usage would be about 1 to 2 kJ, and robot mass would be at
least 300kg. These values will be used in setting the ranges for performance metrics, as
described in the next section.

5.1.3 Performance metrics

We have just detailed the task specification and the simulator that will be used to
evaluate robots; the next step is to specify how each robot’s performance will be mea-
sured by selecting a relevant set of performance metrics and acceptance thresholds. The
synthesizer will be using Requirement Prioritization to select configurations for repro-
duction and deletion, so we must specify priorities and acceptance thresholds for the met-
rics based on their significance to the task. First and foremost, there is task completion:
the robot should be able to complete the entire task we assign it. Secondly, there should
be no collisions between either robot and satellite, or between different links of the robot.
Thirdly, the robot should be able to follow end-effector trajectories with some degree of
accuracy since precise positioning of the end-effector will be necessary when removing
and inserting ORUs. These three requirements will comprise the first requirement group:

• pathCompletionMetric = 100%
• collisionMetric: integral = 0
• positionErrorMetric: maximum <= 3mm

Additionally, we can give some constraints to ensure appropriate actuator selec-
tion and sizing of structural geometry. To ensure that the robot’s actuators can provide
necessary torque during operation, we can require that the continuous (average) torque
of each actuator is less than its continuous torque rating. Since we will be using dynamic
simulation and since the torques commanded by the robot’s controller will be clipped to
the actuator’s peak limits, any effects of peak saturation (i.e. demanding more torque than
an actuator is capable of) will directly show up in the robot’s behavior as deviations in
trajectory. Thus, we will only monitor continuous saturation, and allow brief periods of
peak saturation as long as they do not adversely affect performance with respect to the
other metrics such as path tracking error. We will also use link deflection as a metric to
ensure that link cross-sections are adequate for the forces and moments applied during
the task; a maximum allowable link deflection of 1mm over the length of the robot’s arm
seems reasonable. Thus, for the second requirement group we have:

• continuousSaturationMetric < 80%
• linkDeflectionMetric: maximum <= 1mm
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Two other factors that are particularly important for space applications are mass
and energy; a robot should ideally minimize both of these. While we could specify accept-
ability thresholds for these, it is generally preferable to reduce them as much as possible
as they allow for additional capabilities to be added and provide a margin for growth in
case any subsystems require more mass or energy than anticipated. Finally, we would
like to minimize task completion time as well to make efficient use of the robot. These
three metrics constitute the third, and final, requirement group:

• massMetric: minimize
• powerMetric: minimize integral
• timeMetric: minimize

One observation is that the first requirement group consists of kinematic metrics,
although path tracking error may also have components due to actuator saturation. To re-
duce total runtime for the synthesis process, we can use kinematic simulation for the en-
tire task while optimizing the first requirement group, and then use dynamic simulation
only for later metrics. This can be accomplished by adding the dynamicPathComple-
tion metric to the second requirement group, which indicates to the evaluator that dy-
namic simulation should be used for simulating part of the task (as described in Section
5.1.2) when the dynamicPathCompletion metric is being considered by the synthesiz-
er. This will speed the early stages of synthesis, when few robots are able to meet the ki-
nematic requirements. While the effects of actuator saturation on accuracy will be ignored
during the first requirement group, the effects of kinematic singularities and controller
parameters will be accounted for and actuator saturation will be addressed during the
second requirement group. (Note that if accuracy of the robots does not meet the 3mm
acceptance threshold when using dynamic simulation, then Requirement Prioritization
will increase the weight for position error to lead the synthesizer to improve accuracy.)

Based on these values, the minimum and maximum values were set outside the
expected range of values, since there is no particular reason to clip metric values for mass,
energy, and time. For position error and link deflection, however, it makes sense to set
lower bounds: a maximum link deflection of 0.5mm is not effectively any better than a
maximum link deflection of 1mm, and maximum position error of 1mm is not any better
(for the task at hand) than 3mm. Thus, we set a minimum of 1mm for link deflection, and
3mm for position error because there is no significant operational difference between val-
ues below these thresholds.

Table 5.2 summarizes the metrics used for this task. The minimum and maximum
values listed for each metric specify the range of values that are meaningful for this task;
all metric values greater than the maximum are to be considered equivalent in terms of
suitability for the task, and all values less than the minimum are equivalent to each other
as well. The scale values were computed using Equation 3.3; for convenience, we can de-
fine the adjusted fitness doubling increment (AFDI) as the improvement in the raw value
of the metric that leads to a doubling in adjusted fitness:

(5.1)

The AFDI gives a feeling for how changes in performance affect selection probability, and

AFDI
2( )ln

scale
-------------

0.693
scale
-------------= =
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was used as a guide when selecting scale values.
Some of the values for scale (or, equivalently, AFDI) and for minimum and maxi-

mum were set based on previous experience in applying Darwin2K to other synthesis
tasks; others were based on the initial simulations with manually-generated designs. The
ranges for pathCompletion and dynamicPathCompletion are effectively fixed; it is
impossible to have a path completion of less than zero or greater than one. An AFDI of
0.1 (or scale of 6.93) for path completion (and dynamic path completion) has worked well
in the past; similarly, a scale of 0.4 (AFDI = 1.73) works well for the collision metric, and
an AFDI of 0.1 (scale of 6.9) is adequate for actuator saturation. These values are not par-
ticular task-dependent and are reasonable default values. They provide very strong selec-
tion pressure towards early configurations that perform well, and still provide sufficient
selection pressure when approaching the acceptability thresholds for their respective
metrics. The other values, however, are task-specific: position error, link deflection, mass,
time, and energy can vary substantially between different tasks, and so the scale, mini-
mum, and maximum values should be set after running initial simulations to obtain ball-
park estimates (e.g. will a typical robot weigh 5kg or 500kg? Will it require 200J or 20kJ of
energy?) of the range for each metric. The synthesizer can tolerate a large amount of vari-
ation in scale values and still provide effective optimization; the effect of the scale value
is to determine how much the synthesizer focuses on good configurations, which in turn
affects the rate of improvement. When in doubt, it is better to choose a larger scale value
rather than a smaller one so that there is sufficient selection pressure when metrics are
well-optimized; the initial optimization of a metric is often fairly rapid, and most of the
optimization time is spent on the last 10 percent or so of improvement. Thus, the AFDI
values for mass, energy, and time were set to provide reasonable selection pressure for
well-optimized configurations: a mass reduction of 20kg can be a significant improve-
ment for a 400kg robot; 350J is a significant reduction in energy consumption, and 2 sec-
onds is a moderate improvement over a 50s task. For link deflection, the AFDI is 1mm;

Table 5.2:   Metrics for free-flying robot

Metric name Acceptance
threshold

Min Max Scale AFDI

pathCompletion = 1.0 (100%) 0 1 6.93 0.1 (10%)

collisionMetric integral = 0 0 100 0.4 1.73

positionErrorMetric max < 0.003m 0.0029m 0.1m 100 7mm

dynamicPathCompletionMetric = 1.0 (100%) 0 1 6.93 0.1 (10%)

linkDeflectionMetric max < 0.001m 0.0009m 0.01m 693 1mm

continuousSaturationMetric max < 0.8 (80%) 0.3 100.0 6.9 0.1 (10%)

massMetric none 350kg 700kg 0.035 20kg

powerMetric none 400J 20kJ 0.002 350J

timeMetric none 30s 60s 0.34 2s
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for position error, it is 7mm. These values are not very critical, but again were set so that
there would be significant selection pressure as configurations approached the minimum
values. As mentioned previously, the scale, minimum, and maximum values for the re-
maining metrics (pathCompletionMetric, collisionMetric, dynamicPathCom-
pletionMetric, and continuousSaturationMetric) are not task-specific and
were set based on experience with previous synthesis tasks. These values are reasonable
defaults, and there is no immediate reason to suspect they will be inadequate for any oth-
er synthesis task.

5.1.4 Selecting synthesizer primitives and parameters

After composing the simulation and selecting appropriate performance metrics,
the next step is to specify the module database and kernel configuration used by the syn-
thesizer. The kernel configuration (see Section 3.4.1) provides a starting point for creating
configurations, and determines the overall topology of the robot--in this case, a free-fly-
ing base with two symmetric arms. The module database contains modules that the ge-
netic operators will insert into configurations, or replace other modules with (Figure 5.3).
Based on the task outlined above, two task-specific (as opposed to general purpose) mod-
ules will be required: a free-flying base module, and a tool module representing the MEE
(Figure 5.3). The specifications for the MEE module, called the MEETool, were based on
the on-line Ranger documentation. The MEETool is cylindrical in shape with a length of
30cm and a diameter of 7cm; its mass is 4.6kg. The MEETool has no parameters. The ff-
Base (free-flyer base) is also based on Ranger. It consists of a 30cm cube to which the arms
are attached via two connectors, and a truncated prism 60cm by 60cm at the bottom, 30cm
by 30cm at the top, and 90cm tall; it has a mass of 260kg. The ffBase has one parameter,
the front-to-back location of the coordinate system. Since some paths for the end effectors
are specified relative to the base’s coordinates, this parameter allows the synthesizer to
alter task properties such as the location of the neutral position of the manipulators and

Figure 5.3:  Modules for the free-flyer task
The ffBase and MEETool are task-specific modules for the free-flyer task; the others
are general-purpose joint modules. The inlineRevolute2 and rightAngleJoint
have parameters for overall length, so no link modules are necessary.

ffBase

MEETool
inlineRevolute2 offsetElbow

rightAngleJoint
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the desired distance between the robot base and satellite during manipulation tasks.
In addition to the ffBase and MEETool modules, three of Darwin2K’s general-

purpose joint modules are included: the inlineRevolute2, the offsetElbow, and the
rightAngleJoint. The inlineRevolute2 and rightAngleJoint each include a
parameter for overall length, so no link modules will be needed for this task. Table 5.3
shows the range and number of bits for the parameters of each module in the module da-
tabase, and the components for the modules are listed in Tables 5.4 and 5.5. While a pris-
matic joint could also be included, revolute joints are typically preferred for space
applications as they present fewer difficulties for cabling and environmental protection.

As mentioned earlier, we want the robot to have two symmetric arms, and we also
want an MEETool module at the end of each arm. The kernel configuration shown in Fig-
ure 5.4 encodes these preferences so that any robot generated by the synthesizer will have
two symmetric arms with MEETools at their ends. The kernel consists of an ffBase
module with each connector attached (via a const connection) to a single

Table 5.3:  Parameter ranges for free-flyer modules
This table shows the range and number of bits for the modules in the module
database. The three joint modules (inlineRevolute2, rightAngleJoint, and
offsetElbow) have selection parameters for motors and gearboxes; the
components for these parameters are listed in Table 5.4 and Table 5.5,
respectively. The ‘total # module combinations’ column gives the number of
different parameter settings for each module.

Module Parameter Range # bits total # module
combinations

ffBase origin location -0.5m to 1.0m 4 16

MEETool (none) n/a n/a 1

inlineRevolute2 motor selection
gearbox selection
material selection
diameter
wall thickness
overall length

from list “motors”
from list “gearboxes”
aluminum (const)
10cm to 20cm
3mm to 1cm
5cm to 1m

n/a
n/a
n/a
3
3
4

135,168
(10 bits for
parameters x
132 component
combinations)

rightAngleJoint motor selection
gearbox selection
material selection
diameter
wall thickness
overall length

from list “motors”
from list “gearboxes”
aluminum (const)
10cm to 20cm
3mm to 1cm
5cm to 1m

n/a
n/a
n/a
3
3
4

135,168
(10 bits for
parameters x
132 component
combinations)

offsetElbow motor selection
gearbox selection
material selection
initial joint angle
wall thickness
bracket clearance

from list “motors”
from list “gearboxes”
aluminum (const)
(not used)
5mm to 3cm

n/a
n/a
n/a
n/a
n/a
2

528
(2 bits for
parameters x
132 component
combinations)
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inlineRevolute2 module, which is in turn connected to an MEETool. Since the
inlineRevolute2 is referenced twice by the ffBase, it and the MEETool are duplicat-
ed thus producing symmetric arms. The inlineRevolute2 was specified for the first
link of the robot’s arms because, during initial simulations with manually-generated ro-
bots, it was much less prone to self-collision than the other two joint modules and because
it allows for a spherical shoulder joint. The two const connections to the
inlineRevolute2module are necessary to enforce symmetry -- if the connections were
var, they could be altered by the synthesizer thus resulting in asymmetric arms. We also
specify some configuration filters to eliminate configurations with undesirable proper-
ties: To ensure that the manipulators are kinematically redundant to enhance obstacle
avoidance capabilities, we will use the dofFilter to cull any configurations with less
than 20 or more than 22 total degrees of freedom including the base’s 6 unactuated de-
grees of freedom (i.e. only 7- or 8-DOF arms will be allowed). We will also use the mod-
uleRedundancyFilter to eliminate configurations with certain module topologies.
For example, attaching two inlineRevolute2 joints to each other does not provide any
extra degrees of freedom since the axes of both joints are colinear. This is also the case for
connecting two rightAngleJoints via connector 1 on each of them (at the center of the
circular surface at the top of the rightAngleJoint in Figure 5.3) and for connecting a

Table 5.4:  List of motors

Maxon RE25.118755

Maxon 2260.815

Maxon 2260.889

Maxon RE35.118778

Maxon RE36.118800

Maxon RE75.118825

Table 5.5:  List of gearheads

Maxon 62.110502 HD Systems CSF-32-50

Maxon 62.110504 HD Systems CSF-32-80

Maxon 62.110506 HD Systems CSF-32-120

Maxon 62.110508 HD Systems CSF-32-160

Maxon 81.110410 HD Systems CSF-40-50

Maxon 81.110411 HD Systems CSF-40-80

Maxon 81.110412 HD Systems CSF-40-120

Maxon 81.110413 HD Systems CSF-40-160

HD Systems CSF-20-50 HD Systems CSF-45-120

HD Systems CSF-20-80 HD Systems CSF-45-160

HD Systems CSF-20-120 HD Systems CSF-50-120

HD Systems CSF-20-160 HD Systems CSF-50-160

HD Systems CSF-25-50 HD Systems CSF-58-120

HD Systems CSF-25-80 HD Systems CSF-58-160

HD Systems CSF-25-120 HD Systems CSF-65-120

HD Systems CSF-25-160 HD Systems CSF-65-160
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rightAngleJoint via connector 1 to an inlineRevolute2.2 These filters will prevent
configurations with known undesirable properties from being evaluated, thus reducing
synthesis time. Given the set of modules, the kernel configuration, the filters, and the task

parameters, the size of the search space is approximately 3x1058; that is, there are 3x1058

unique configurations (including variation in task parameters) that can be made from the
given modules and kernel which meet the constraints imposed by the configuration fil-
ters.

We have now described everything necessary for the specification and evaluation
of robots for the task; the only thing that remains to be done before starting synthesis is
to give values for the synthesizer’s parameters, such as probabilities of application for
each genetic operator, population size, and any configuration filters. We will use a pop-
ulation size of 200, with an initial population of 5000. The rates for commonality-preserv-
ing, module, and parameter crossover are 0.3, 0.2, and 0.1, respectively; the base mutation
rate for parameter mutation is 0.02, and is 0.01 for all other mutation operators. We will
use adaptive mutation, with a time constant of 1000 (5 times the population size). These

2. These settings for the moduleRedundancyFilter are reasonable defaults
given the module database and can readily be used for other synthesis tasks that
use the same joint modules.

((ffBase ((var -0.5 0.5 4 7))
  ((const 0 (1 0 left (const 0 270 2 1)))
  (const 1 (1 0 right (const 0 270 2 1)))))
 (inlineRevolute2 revoluteJoint

    ((var 0 0 3 4)
     (var 0 0 5 23)
     (const 0 1 2 0)
     (var 0.1 0.2 3 7)
     (const 0.003 0.01 3 3)
     (var 0.05 0.8 4 0))
  ((var 1 (2 0 inherit (var 0 270 2 3)))))
 (MEETool nil nil))

Figure 5.4:  Kernel configuration for free-flyer
The ffBase has two const connections to the inlineRevolute2, resulting in
two symmetric arms each consisting of an inlineRevolute2 and MEETool. All
configurations generated from the kernel will thus have two symmetric arms
beginning and ending in MEETools. (See Section 2.1.1 and Figure 2.3 for a
description of the text format)

twist parameter (270o in this case)

handedness - inherit from parent

connector on child module
child module’s index (MEETool)

connector to attach to child module

component context

parameters

ffBase

inlineRevolute2 (2)

MEETool (2)
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values were chosen based on previous synthesis runs on other tasks; I do not believe they
are very task dependent, and are reasonable default values. In general, the synthesizer
responds gracefully to changes in parameter settings; a difference of 25 or even 50% in
most parameters will normally cause a change in the rate of improvement but will not
drastically affect the outcome of the synthesis process. In later experiments we will inves-
tigate the relative importance of module and commonality-preserving crossover, but de-
tailed investigation of other parameter settings is not warranted as reasonable default
values are known and the system is not particularly sensitive to changes in them.

5.1.5 Synthesis results

Approximately 30 workstations (SGI R5000 and R10000 machines) were used to
run Darwin2K for the free-flyer synthesis problem. Typically, 20 to 25 of these were avail-
able and used by Darwin2K. A time limit of 15 hours was used, and during that time the
ESE generated 60,153 configurations, 46,564 of which were evaluated in simulation with
the remainder discarded by the filters. The process began with the generation of an initial
population of 5000 configurations from the kernel configuration. After evaluating these
initial configurations, the population was culled to 200 configurations. Subsequently, ap-
proximately 100 configurations were evaluated before generating the first configuration
that satisfied the first requirement group (path completion, number of collisions, and po-
sition error). The number of feasible configurations continued to increase before stabiliz-
ing at approximately 140 configurations; Figure 5.5 shows the size of the population and
number of feasible and optimal configurations over the course of the synthesis run, in-
cluding the initial 5000 evaluations. Given that the first feasible configuration was gener-
ated after 5,100 evaluations and the minimum number of evaluations between generating
a feasible configuration and advancing to the next requirement group was set to 4000, the
synthesizer advanced to the second requirement group after a total of 9,100 evaluations.
After re-seeding the population from the feasible configurations, the metrics for the sec-
ond requirement group (dynamic path completion, link deflection, and actuator satura-
tion) were added. Actuator saturation is often the most difficult requirement to satisfy;
this observation is reflected here by the fact that after 10,600 only a single feasible config-
uration was generated. During optimization of the second requirement group, at most
28% of the population had acceptable actuator saturation, compared with 53% having ac-
ceptable dynamic path completion and 77% having acceptable link deflection. The maxi-
mum limit was reached at 20,600 (10,000 evaluations after generating the first feasible
configuration; see Section 3.4.2 for details); at this point the synthesizer essentially gives
up on trying to generate more feasible configurations and moves on to the next group.
Again, the population was re-seeded from the feasible set -- a single configuration in this
case -- before continuing with the optimization. The benefit of re-seeding from a feasible
configuration is quite evident in Figure 5.5: after re-seeding, numerous feasible configu-
rations were quickly produced, and the synthesizer repeatedly increased the population
size to provide room for the ever-growing set of feasibly optimal solutions. Figure 5.6
shows the best mass, energy, and task completion time of feasible configurations (that is,
the extreme values in the feasibly-optimal set) during optimization of the final require-
ment group, while Figure 5.7 shows the feasible configurations from the final population
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with the lowest mass, energy, and time (cfgm, cfge, and cfgt, respectively). (Note that the

high mass of the robots -- over 400kg -- is due to the ffBase, which weighs approximately
260kg.) The robots can be seen to have properties that are common among manually-de-
signed robots: their shoulder joints have three degrees of freedom whose rotation axes in-
tersect at a point, and the lengths of the upper arm and forearm are similar so that
workspace is maximized. The final degree-of-freedom in each robot’s wrist rotates the
tool about its axis; this is well-suited for the task, which requires exactly this rotation
when removing the ORUs from their mounting points. cfge and cfgt have similar manipu-

lator topologies, with 3-DOF shoulders, 2-DOF elbows, and 3-DOF wrists. cfge has low

power consumption primarily due to the fact that it moves very slowly between base pos-
es. Because of its initial pose and the location of the ffBase’s origin, cfge does not move

much during the first base repositioning. The second base repositioning is a significantly
longer motion, and for this motion (basePath2) the relevant task parameter specifies a
velocity of 0.1m/s--the minimum value for the parameter. In contrast, cfgt moves at a

speed of 0.27m/s between the second and third base poses, thus saving significant time
at the expense of higher energy consumption. cfgm is less massive than the other configu-

rations: it only has one degree of freedom instead of two at its elbow, but its topology is
otherwise identical to that of cfge and only a few parameter values differ. The lack of the

extra actuator at the elbow makes this configuration lighter, though its energy consump-

Figure 5.5:  Population size vs. number of evaluations for free-flyer
The transitions between requirement groups can be seen on this graph as dips in
the total population size, since the population was re-seeded at the beginning of
each requirement group. The number of feasibly-optimal configurations
approached the population size during the final requirement group (at about 30,000
configurations), so population size was steadily increased to match the growth of
the feasibly-optimal set.
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tion is significantly higher than that of either cfge and cfgt. Its task parameters specify a

velocity of 0.16m/s during the second base motion causing inefficiency and saturation
from many of its actuators, which are significantly less powerful than those of cfgt. cfgm

has a continuous actuator saturation of 0.62, significantly higher than cfge’s saturation of

0.38 and cfgt’s 0.41. These numbers indicate that cfgm’s actuators are not as over-designed

as those of the other two configurations. Figure 5.8 shows cfgm executing the task in sim-

ulation; see Appendix C.1 for a detailed description of this configuration.
These three configurations are the ones with best (lowest) mass, energy, and time;

however, there are 347 other feasible Pareto-optimal configurations that make trade-offs
between these extremes. If we can accept a slight degradation in one metric from one of
the best configurations, significant improvements can be had in the other two metrics
(e.g. a slightly heavier robot than cfgm may have significantly lower task completion time

or energy consumption). Figure 5.9 shows scatter plots for the feasibly-optimal configu-
rations that have a 5% or less degradation in performance in time, energy, and mass when
compared to cfgt, cfge, and cfgm, respectively, e.g. every data point in Figure 5.9a shows

the energy and time for a configuration with mass less than 421kg (5% more than cfgm).

For example, the configuration closest to the origin in Figure 5.9a has a mass of 416kg,
power consumption of 2087J, and task completion time of 42.3s -- a 3.7% increase in mass
yields a 70% decrease in energy and a 7.5% decrease in completion time. However, trade-
offs against energy are not as useful -- there are only two feasible configurations with en-
ergy within 5% of cfge, and neither offer much improvement in mass or time. There are
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Figure 5.6:  Optimization of mass, energy, and time for free-flyer
This graph shows (from top to bottom) mass, energy, and time for the best feasible
configuration during optimization of the last requirement group.



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

Experiments and Demonstration    121

Configuration cfge
• 59,861st configuration
• mass: 421 kg
• energy: 1.5 kJ
• time: 49.9 s
• 8-DOF arms; 3-DOF wrist and

shoulder, 2-DOF elbow
• minimal base motion and low

velocity during base motions
lead to reduced energy

• actuator saturation: 0.38

Figure 5.7:  Best feasible free-flyers
From top to bottom, the free-flyer configurations with best mass, energy, and task
completion time, respectively. It is interesting to note that all three configuration have
upper- and fore-arms of similar length as well as 3-DOF shoulders and elbows --
features commonly found in manually-designed manipulators.

Configuration cfgm
• 58,952nd configuration
• mass: 401 kg
• energy: 7.1 kJ
• time: 45.9 s
• 7-DOF arms; 3-DOF wrist and

shoulder, 1-DOF elbow
• having only 7 DOF leads to re-

duced mass
• actuator saturation: 0.62

Configuration cfgt
• 59,172nd configuration
• mass: 473 kg
• energy: 4.3 kJ
• time: 37.5 s
• 8-DOF arms; 3-DOF wrist and

shoulder, 2-DOF elbow
• large actuators and fast base

motion reduce time but in-
crease mass and energy

• same topology as cfge
• actuator saturation: 0.41
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.8:  Sequence showing free-flyer performing task
This sequence of images depicts a free-flyer synthesized by Darwin2K as it performs
the ORU replacement task:
(a) end effectors are moved to their neutral positions
(b) the work manipulator traces a path (white lines) in kinematic simulation
(c) the grapple manipulator approaches the grasp point on the satellite
(d) the robot repositions itself relative to the satellite using the grapple manipulator
(e) the work manipulator removes the ORU
(f) the ORU is moved away from the satellite to avoid collisions
(g) the grapple manipulator again repositions the base
(h) the work manipulator re-inserts the ORU

A detailed description of this configuration is given in Appendix C.1.
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numerous trade-off configurations with respect to cfgt; one has a mass of 441kg (6.7% de-

crease), energy consumption of 2759J (35% decrease), and completion time of 39.1s (4.2%
increase). In general, it will be up to the designer to decide which trade-off is best in terms
of the task’s requirements; in this case, it may make sense to choose a configuration with
low mass and reasonable energy and time because of launch costs. After looking at some
of the optimal configurations, the designer might also decide to manually modify one of
them to see if further improvement is possible--in this case, perhaps the designer would
change cfgm’s task parameter for base motion velocity to see if lower power consumption

is possible. The synthesizer does not attempt to extract or exploit any causal relations be-
tween robot properties and performance; doing so would reduce its independence of task
and might introduce biases in the way configurations are generated which would de-
crease its ability to explore the design space. However, it is easy for the designer to set
many of the parameters and connections in a well-optimized configuration to const and
then run the synthesizer starting from this configuration so that a focused parametric op-
timization can be performed.

5.1.6 Summary and discussion

In this experiment, we applied Darwin2K to a complex synthesis problem. The
synthesized robots were able to complete the task while meeting several performance
constraints, and exhibited some properties that are common in manually-designed robots
as well as other properties that are particularly well-suited for the task. After generating
the first feasible configurations, the synthesizer was able to produce significant perfor-
mance improvements in the population and generate configurations spanning a range of
trade-offs between objective functions.

This synthesis example demonstrates several new capabilities in automated con-
figuration synthesis: the use of dynamic simulation for evaluation, synthesis of link struc-
tural properties, synthesis of motor and gearbox selection for a non-modular robot, and

(c) mass vs. energy(b) mass vs. time(a) energy vs. time

Figure 5.9:  Scatter-plots of feasibly optimal configurations
These three figures show the feasible configurations with performance degradations
of five percent or less compared to the optimal configurations with best mass,
energy, and time, respectively.

(mass < 421kg) (energy < 1529J) (time < 39.4s)
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creation of a range of designs which meet multiple performance constraints while provid-
ing different trade-offs between several objective functions. These capabilities represent
significant advances over previous synthesis systems, which were restricted to kinematic
simulation and either performed purely-kinematic or purely-modular synthesis.

The reader should now have a good understanding of the process of specifying a
task for Darwin2K: choosing metrics, modules, and evaluation components; coding task-
specific simulation methods; and specifying a kernel configuration. However, there may
be some remaining questions about the impact of these choices: How does the selection
of modules in the module database affect the synthesis results? What effect does changing
the selection probabilities have? How repeatable are the synthesis results? These ques-
tions and others are important in characterizing the robustness and limitations of
Darwin2K, and will be addressed in the other experiments presented in this chapter.

5.2 Task 2: A fixed-base manipulator

An example of automated task-based kinematic synthesis from the literature is the
design of a manipulator for waterproofing the tiles on the underside of the Space Shuttle
[Kim93], based on the requirements of the Tesselator project [Dowling92]. The underside
of the Space Shuttle is tessellated into a number of rectangular regions that will be ser-
viced sequentially by a manipulator mounted on a mobile base. Each region measures 3m
across its diagonal (2.14m on a side) and contains approximately 180 tiles, each of which
must be individually waterproofed by the robot’s manipulator after the mobile base is re-
positioned beneath the region. Using Darwin2K to synthesize manipulators for this task
will allow us to compare its results to those of Kim’s system (which also only addressed
synthesis of the robot’s manipulator), and the moderate complexity of this task makes it
useful for examining the impact of different starting conditions such as modules and ker-
nel configuration on synthesis results. The synthesis problem for this task is complex
enough to observe interesting behavior in the synthesizer, yet simple enough to make re-
peated runs under different conditions feasible.

Simulating the robot as it moves to each tile in a region, and over all regions on the
Space Shuttle, is currently too computationally expensive for use in an automated synthe-
sis method. For this reason, both Kim’s work and this experiment simulate the robot over
a single representative region that contains the range of heights and orientations that will
be encountered on the underside of the Shuttle. The representative region is 2.14m on a
side, and ranges from a horizontal surface 3m above the ground to a 45 degree surface 4m
above the ground (Figure 5.10) The number of tiles reached by the manipulator during
simulation is also reduced from 180 to 7 (in Kim’s work) and 16 (in this experiment) tiles
which span the representative region so that the entire necessary workspace is covered.
The waterproofing mechanism at the robot’s end effector is modeled as a 1.5kg payload,
and to ensure accurate placement of the payload a position error tolerance of 2mm is used
at each via point in the trajectory -- that is, the end effector must stop within 2mm of each
via point before moving to the next one.

Many of the metrics used for this synthesis problem (listed in Table 5.6) were also
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used in the free-flyer, though their ranges, scales, and acceptability thresholds are differ-
ent here. The first requirement group is composed of the pathCompletionMetric,
collisionMetric, and positionErrorMetric, which together ensure that the en-

Figure 5.10:  Trajectory and obstacles for Space Shuttle waterproofing
manipulator

(a) shows a schematic view of the obstacles and trajectory with normals denoting
orientation at each via point. (b) shows a simulation view of a synthesized
manipulator executing the task.

trajectory

obstacles

(a) (b)

4m

3m

2.14m2.14m

Table 5.6:  Metrics for Space Shuttle waterproofing manipulator
The scale values for this task were set before the AFDI was formulated, resulting
in less-intuitive values.

Metric name Acceptance
threshold

Min Max Scale AFDI

pathCompletionMetric = 1.0 (100%) 0 1 4 0.17 (17%)

collisionMetric integral = 0 0 10 1 0.693

positionErrorMetric max < 0.03m 0.005m 0.3m 200 3.4mm

linkDeflectionMetric max < 0.002m 0.0019m 0.01m 1000 0.7mm

actuatorSaturationMetric max < 1.0 (100%) 0.3 50 0.2 3.4

massMetric none 0 kg 100kg 0.1 6.9kg

timeMetric none 18s 60s 0.5 1.4s
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tire trajectory is accurately followed with no collisions. The second requirement group
contains the linkDeflectionMetric and actuatorSaturationMetric so that link
structure and joint actuators may be appropriately sized, and finally the third require-
ment group consists of the massMetric and timeMetric so that an efficient, light-
weight robot can be created.

Since the manipulator’s base is not free-flying and we are requiring actuator satu-
ration to be less than one, we can use kinematic rather than dynamic simulation for this
task. (On the other hand, if we allowed actuator saturation we would have to use dynam-
ic simulation to determine if saturation prevented a robot from completing the task.) No
task-specific modules or components are needed for this task; we can use the pathEval-
uator for overall simulation control, the SRIController to generate joint commands
that follow the trajectory (represented by a path object), the collisionDetector to
monitor collisions as needed by the collisionMetric, the rungeKutta4 method to
provide numerical integration of robot state, and a payload to model the waterproofing
payload. We will include the velocity, acceleration, angular velocity, and angular accel-
eration variables of the path as task parameters so that they may be optimized to im-
prove performance.

To investigate the impact of module and kernel choice on the synthesizer’s perfor-
mance, five different sets of experiments (with five runs each) were performed: Baseline,
Prismatic, SCARA, Const, and High-Level. The same task and simulator were used for all
five sets of experiments; the differences were in the modules contained in the module da-
tabase, and in the topologies supplied in the kernel configuration. A unique initial popu-
lation was generated for each run of the synthesizer by using different seed values to
initialize the random number generator. Table 5.7 summarizes the different module and
kernel properties for each of the experiments, while Figure 5.11 depicts the kernel config-
urations used in each of the experiments. The Baseline, Prismatic, and SCARA experi-

Table 5.7:  Modules and kernels for manipulator experiments
The simple kernel (Figure 5.11a) was used in all experiments except the Const
trials, which duplicated the constraints in Kim’s experiment (Figure 5.11b). The
High-Level trials used two additional kernels, one with a 2-DOF shoulder and the
other with a 3-DOF wrist (Figures 5.11a and 5.11b).

1-DOF
revolute
joints

prismatic-
Tube

scaraElbow # kernels kernels

Baseline ● 1 - simple

Prismatic ● ● 1 - simple

SCARA ● ● ● 1 - simple

Const ● 1 - first joint axis vertical;
final 3 axes intersect

High-Level ● ● ● 3 - simple
- 2-DOF shoulder
- 3-DOF wrist
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ments all used a single simple kernel consisting of a simpleTool mounted directly on a
fixedBase. The Const experiment used a kernel duplicating the constraints used in
Kim’s experiment: the first joint axis was vertical, and the last three (wrist) axes intersect-
ed in a point. These constraints were enforced by setting the const flags for the attach-
ments between the base and first joint, and between the last three joints. The High-Level
experiment used the same simple kernel as in the Baseline, Prismatic, and SCARA exper-
iments and also included two other kernels: one had two elbowJoints forming a shoul-
der, and the other had a wrist assembly identical to that in the Const experiment. While
the joint modules in these kernels were attached with const attachments, the fact that
there were multiple kernels (including the simple kernel) in the High-Level experiment
meant that these features were optional and could be combined or eliminated when cre-
ating configurations.

The dofFilter was used to limit the number of degrees of freedom for the Const
experiment to 7 (as was used in Kim’s experiment), and between 5 and 7 for the other ex-
periments. The moduleRedundancyFilter had not yet been implemented at the time
these experiments were run, so there was no filtering of redundantly-connected modules.
The terminating conditions for each experiment were a maximum run time of 6 hours and
a minimum of 80,000 configurations; between 80,000 (for most of the High-Level experi-
ments) and 140,000 configurations (for the unsuccessful runs in other experiments) were
evaluated during each run.

A summary of the best time and mass of any feasible configuration synthesized
during each five-run experiment is shown in Figure 5.12. The High-Level experiments
consistently produced the best results -- the average of the best mass and time over the
five trials is significantly lower than for the other experiments, and the standard devia-
tions of mass and time are lower than for the other experiments indicating more consis-
tent performance. A rough ordering of the other experiments in terms of the average of

Figure 5.11:  Kernels used in the manipulator experiments
(a) shows the simple kernel used in all experiments except for Const, which used
(b) instead. The High-Level experiment also included one kernel with a shoulder
assembly (c) and another with a wrist assembly (d).

(a) (b) (c) (d)
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best mass and time over the successful trials is Prismatic, Const, Baseline, and finally
SCARA. As we will see, these results can be understood by considering the how the prim-
itives available for each experiment influence the synthesizer’s ability to find feasible con-
figurations, and how well-optimized the first feasible configurations are.

Figure 5.13 shows a number of robots synthesized in the five sets of experiments.
The topology of the High-Level and Prismatic results are generally similar: the basic form
is a 2-DOF shoulder followed by a prismatic joint and ending in a 2- or 3-DOF wrist. In
terms of mass, the solutions generated in the High-Level experiments are superior to all
other experiments, with the Prismatic results close behind. (See Appendix C.2 for a de-
tailed description of one of the High-Level robots.) Based on the similarity of the topolo-
gies from the Prismatic and High-Level experiments, one can surmise that the use of a
prismatic joint is necessary for creating lightweight manipulators for this task. The results
for task completion time are similar though not as one-sided, primarily because task com-
pletion time is heavily influenced by the task parameters for maximum acceleration and
velocity along the path. Task completion time is thus less dependent on topology (and
therefore on available modules) than on task parameters, though a configuration’s actu-
ators must be able to supply the joint velocities necessary to follow the trajectory at the

mass (kg)

time (s)

Figure 5.12:  Mass and time for varying starting conditions
In the upper graph, each dot indicates the mass of the lightest configuration
generated for each successful run of the five different sets of experiments. The
vertical line shows the mean mass over the successful experiments, and the
horizontal line indicates +/- one standard deviation. The lower graph is similar, but
for task completion time. The experiments with an asterisk next to their label
(SCARA, Prismatic, and Baseline) only had four successful runs out of five; one of
each of their runs failed to produce any feasible configurations.

Baseline*

High-level

Const

Prismatic*

SCARA*

Baseline*

High-level

Const

Prismatic*

SCARA*
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Figure 5.13:  Best manipulators for varying synthesizer starting conditions
Each column above shows robots from the final optimal sets of repeated trials of each
experiment. The top two images in each column show the lightest robots from two
different trials; the bottom two show the fastest robots. Overall, the High-Level and
Prismatic experiments generated the best-optimized robots, and also showed less
variation between trials than the other experiments in terms of robot topology and
performance. See Appendix C.2 for a description of the robot in the upper right corner.

Baseline Prismatic SCARA Const High-level
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speed dictated by the task parameters if maximum performance is to be achieved.
The lack of a prismatic joint can be seen as the major reason that the Const and

Baseline experiments were not able to produce configurations as light as those in the
High-Level and Prismatic experiments. However, the SCARA experiments also included
a prismaticTube in the module database and yet the best configurations generated in
the SCARA experiments were substantially inferior to those in the High-Level and Pris-
matic experiments. None of the configurations in the SCARA feasibly-optimal sets con-
tain a prismatic joint, which is at first surprising given that the High-Level and Prismatic
experiments made effective use of the prismaticTube module. The SCARA experi-
ments did make heavy use of the scaraElbowmodule, though: all of the optimal config-
urations in four of the runs contained two scaraElbow modules, and in the remaining
experiment all optimal configurations had one scaraElbow module. Figure 5.14, which
shows the number of evaluations required to synthesize configurations that satisfy the

Baseline

Prismatic

SCARA

Const

High-Level

Baseline

Prismatic

SCARA

Const

High-Level

(a) number of evaluations - 1st requirement group

(b) number of evaluations - 2nd requirement group

Figure 5.14:  Number of evaluations required to generate first feasible
configuration

(a) shows the number of evaluations required in each experiment to generate the
first configuration meeting the feasibility criteria for the first requirement group. (b)
shows the number of evaluations required to create a feasible configuration after
advancing to the second requirement group.



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

Experiments and Demonstration    131

first and second requirement groups, provides some insight into how the scaraElbow in-
fluences the synthesis process for this task. (Note that for the Baseline, Prismatic, and
SCARA experiments, only four out of five runs were successful; for the unsuccessful runs,
the number used in the graph is the number of evaluations during optimization of the sec-
ond requirement group although the second requirement was never satisfied). In the
SCARA experiments, the synthesizer was able to quickly generate configurations which
satisfied the first set of requirements; the synthesizer quickly focused on these configura-
tions and became trapped in a local minimum. The high complexity (3 joints and two
links) of the SCARA module makes it easy for the synthesizer to create feasible configu-
rations: many feasible configurations simply consist of the fixed base, two scaraElbow
modules, and the tool (Figure 5.15). When feasible configurations can be created very
quickly from complex modules, they can quickly dominate the selection of configurations
for reproduction. Any major changes to these configurations -- such as those necessary to
create configurations using a prismatic joint as in the High-Level experiments -- will like-
ly result in poorly-performing configurations that have little chance of reproduction and
will quickly be culled from the population. It is thus easy for the synthesizer to become
trapped in a local minimum when promising designs can be quickly synthesized from
complex modules that are not actually useful for well-optimized configurations. On the
other hand, when well-suited for a task complex modules with many parameters will
likely require less synthesis time compared to simpler modules with few parameters. The
designer should thus be willing to use complex modules if there is good reason to believe

Figure 5.15:  Typical configurations from the SCARA experiments
Most of the robots from the SCARA trials consisted of two scaraElbow modules
mounted in series, with the first one horizontal and the second vertical. The
scaraElbow’s high complexity made it easy for the synthesizer to generate feasible
configurations, thus leading the synthesizer to focus on these initial topologies
rather than explore others that would ultimately lead to better-optimized robots.
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they will be useful for a particular task.
Complex topological features can likewise improve synthesis speed and quality

when appropriate for the task. A closer examination of the best configurations from the
High-Level experiments reveals that the subgraphs specified in the kernel configurations
were highly useful: the fastest and lightest configurations in every High-Level trial con-
tain both the wrist and shoulder subgraphs, which are easily identified by their const
attachments. The High-Level experiments were quickly able to generate configurations
satisfying the first and second sets of requirements (recall that the third set of require-
ments had no feasibility thresholds) -- substantially faster than the Prismatic experiments,
though the results were similar. The reduced synthesis time and improved performance
of the resulting configurations clearly indicate the utility of supplying human knowledge
to the synthesis process in the form of useful subgraphs in the kernel configurations.

The Const experiments lie somewhere between the High-Level and SCARA exper-
iments, in terms of both the quality and the phenomena responsible for the results. The
Const experiments contained complex primitives (in this case, the kernel configurations)
which, like the scaraElbow module, turn out to be detrimental to performance. The Const
experiments were constrained to use only revolute joints, have 7 degrees of freedom, and
use the vertically-oriented shoulder axis and 3-DOF wrist specified in the kernel config-
uration. These constraints prevent solutions similar to those in the High-Level and Pris-
matic experiments from being discovered, though they do seem to be somewhat helpful
in that the task completion times of the best configurations are better for the Const exper-
iments than for the Baseline experiments even though both used the same set of modules.
The number of evaluations required to generate configurations satisfying the first and
second requirement groups is also lower for the Const experiment than for the Baseline
experiment, indicating that the subgraphs (wrist and shoulder) in the Const kernel re-
duced the amount of exploration required by the synthesizer when generating feasible
configurations. Similarly, the High-Level experiments required less search than the Pris-
matic experiments, even though they arrived at similar results.

One factor that was not investigated in these experiments is how synthesis results
are affected by the range and resolution of parameters. It seems likely that increasing the
number of bits for the parameters would have little affect on convergence time or quality,
as the additional bits would have a relatively small impact on robot features. Increasing
the range of parameter values (e.g. 0.01-10m instead of 0.01-1m for a link length) would
probably have a more significant affect on synthesis quality and convergence, since many
parameter settings would lead to poor performance. In general, it is probably best for the
designer to set the range for parameter values such that obviously nonsensical parameter
values are avoided.

5.2.1 Summary

These experiments demonstrated synthesis of a manipulator’s kinematics, dynam-
ics, actuator selection, structural dimensions, and controller parameters using kinematic
simulation for evaluation. Repeated trials with a range of starting conditions give some
insight into the repeatability of synthesis results and the impact of module and kernel
choices on the properties of the synthesized robots. Including human knowledge in the



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

Experiments and Demonstration    133

form of specific modules or kernels is a double-edged sword: it can be quite effective if
that knowledge is accurate, as in the High-Level experiments, or it can be detrimental if
that knowledge is not useful for well-optimized solutions, as in the Const and SCARA ex-
periments. In addition to potentially improving the quality of synthesis results, incorpo-
rating human knowledge significantly reduces the time required to synthesize feasible
configurations -- the High-Level, Const, and SCARA experiments were significantly fast-
er than the Prismatic and Baseline experiments in synthesizing feasible configurations for
the first requirement group, and the High-Level and Const experiments were faster than
the others in synthesizing feasible configurations for the second requirement group. Re-
peatability varied significantly between different experiments and seemed correlated
with the optimality of the results: the High-Level and Prismatic experiments generated
the best-optimized configurations and had less variation in robot topology and perfor-
mance than other experiments. The fraction of runs resulting in feasible configurations
(22 out of 25, or 88%) was similar to the only other figure reported in the literature, which
was 15 out of 20 (75%) in [Paredis96]. Throughout these experiments, the synthesizer’s
parameters were held constant - the same selection method, genetic operators, and oper-
ator probabilities were used in all experiments. The next set of experiments, which use a
simplified version of the task addressed in the five experiments we have just seen, inves-
tigate the effectiveness of the synthesizer’s different selection algorithms and genetic op-
erators.

5.3 Task 3: Simplified manipulation task for

characterizing synthesizer performance

Chapter 3 presented several methods for enhancing the synthesizer’s perfor-
mance. Some of these methods, specifically requirement prioritization and configuration
decision functions, are ways of selecting configurations for reproduction and deletion;
others such as the commonality-preserving crossover operator and subgraph preserva-
tion are methods of generating new configurations from those that were selected for re-
production. To assess the impact of these methods, they are applied to the synthesis of a
manipulator for a simplified version of the Space Shuttle waterproofing task used in the
previous set of experiments. The first set of experiments involves commonality-preserv-
ing crossover and subgraph preservation, and involves multiple complete runs of the
synthesizer and additional runs on the final requirement group. The second set of exper-
iments compares the performance of three different selection methods: the weighted sum,
the Configuration Decision Function, and Requirement Prioritization.

To decrease evaluation time and synthesis complexity, several changes were made
to the previous experiment’s task description. Instead of 16 via points (tile locations) in
the manipulator’s trajectory, there are only four; this greatly reduces task execution time
(and thus the time required for each evaluation) since the robot does not have to deceler-
ate and stop at as many points as in the previous task. The four points are at the corners
of the representative region and the surface representing the Shuttle’s underside is now
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flat, since the manipulator will follow a straight-line trajectory between via points (Figure
5.16). Some minor changes were also made to the scale values for the task’s metrics (see
Table 5.8) since the AFDI interpretation of scale values had not yet been formulated at the
time the previous experiment was run. The minimum values for mass and time were
changed to zero, since no clipping of mass or time is necessary. The minimum for the ac-
tuatorSaturationMetric was increased from 0.3 to 0.7, indicating that actuator sat-

Figure 5.16:  Simplified Space Shuttle waterproofing task
The simplified Space Shuttle waterproofing task uses a trajectory with only four via
points (rather than 16), and the surface representing the Shuttle’s underside is flat
since the trajectories between via points are straight lines.

Table 5.8:  Metrics for simplified Space Shuttle waterproofing task
The shaded values are those that were changed from the previous Space Shuttle
waterproofing experiment to give more intuitive AFDI values and to reflect the fact that
the previous minimum values for mass and time were not necessary.

Metric name Acceptance
threshold

Min Max Scale AFDI

pathCompletionMetric = 1.0 (100%) 0 1 6.93 0.1 (10%)

collisionMetric integral = 0 0 200 1

positionErrorMetric max < 0.03m 0.005m 0.3m 200

linkDeflectionMetric max < 0.002m 0.0019m 0.01m 693 1mm

actuatorSaturationMetric max < 1.0 (100%) 0.7 200 0.69 1 (100%)

massMetric none 0 kg 100kg 0.139 5kg

timeMetric none 0s 60s 0.34 2s



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

Experiments and Demonstration    135

uration values less than 0.7 should be considered equivalent by the synthesizer. The
simple kernel configuration and module database with 1-DOF revolute joints and pris-
maticTube module duplicate the Prismatic conditions in the previous experiment.

5.3.1 Commonality-preserving crossover and subgraph preservation

In Chapter 3, the Commonality-Preserving Crossover Operator (CPCO) and the
concept of subgraph preservation were presented and were expected to have beneficial
impact on the synthesis process. To test this assertion, we can compare the performance
of the robots generated by the synthesizer for several cases: Baseline (no CPCO or sub-
graph preservation), CPCO (no subgraph preservation), SUBP (using CPCO and sub-
graph preservation) and SUBP-2 (as SUBP but with higher frequencies of CPCO and
subgraph preservation). For each of the tests the mutation, duplication, and parameter
crossover rates were identical, and the CPCO and module crossover probabilities
summed to 0.65 as shown in Table 5.9. Requirement Prioritization was used as the selec-
tion method for the two groups of experiments: the first group compared the perfor-
mance of the crossover operators over an entire synthesis run, while the second group
was limited to optimizing the final requirement group (mass and time) starting from a set
of feasible configurations.

For the first set of experiments, an initial population was randomly generated and
then decimated to 100 configurations; this decimated population was used as a common
starting point for each of the thirty-six trials (nine each for Baseline, CPCO, SUBP, and
SUBP-2) so that the effects of a varying initial population were eliminated. Even so, there
was still considerable variation in the best time and mass of the synthesized robots, in the
improvement in mass and time achieved during optimization of the final requirement
group, and in the number of evaluations required to synthesize configurations meeting
the acceptance criteria for each group. Each experiment was run for 30,000 evaluations,

Table 5.9:  Crossover rates for CPCO and subgraph preservation
experiments

This table shows the rates for each type of crossover operator used in the
crossover experiments. The far right column (titled “Subgraph preservation”)
indicates whether or not the common subgraphs of two feasible parents was fixed
(as described in Section 3.4.4) in their offspring. Note that the probabilities for
module crossover and CPCO sum to 0.65 in all experiments, and the probability
for parameter crossover is 0.25 in all experiments.

Module
crossover

Commonality-
Preserving
Crossover

Parameter
Crossover

Subgraph
preservation

Baseline 0.65 0 0.25 no

CPCO 0.4 0.25 0.25 no

SUBP 0.4 0.25 0.25 yes

SUBP-2 0 0.65 0.25 yes



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

136    Experiments and Demonstration

requiring approximately 1 to 2 hours depending on workstation availability.
Figure 5.17 shows number of evaluations required to generate configurations that

satisfied the first and second requirement groups for each trial. There was a wide varia-
tion in the number of evaluations required to generate feasible configurations for the sec-
ond requirement group, with the SUBP-2 being slightly better than the Baseline and SUBP
experiments. Examining the performance of the best configurations generated in each run
(Figure 5.18) there is also a large amount of variation, though the SUBP-2 trials showed
less variation than the others. On average, the SUBP-2 trials generated the lightest config-

Figure 5.17:  Number of evaluations before generating first feasible
configuration

The graph on the left shows the number of evaluations required before generating
the first configuration satisfying the first requirement group’s criteria, while the
graph on the right shows the number of evaluations to generate a feasible
configuration after starting the second requirement group.

second requirement group

Baseline

CPCO

SUBP

SUBP-2

first requirement group

Baseline

CPCO

SUBP

SUBP-2

(a) best mass (kg) (b) best time (s)

Figure 5.18:  Mass and time for full synthesis runs with varying crossover
probabilities

The left graph shows the mass of the lightest feasible configuration for each trial of
the four experiments; the graph on the right is similar but for task completion time.
Each trial began with the same initial population and proceeded through
optimization of all three requirement groups until a total of 30,000 configurations
had been evaluated.
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urations while the Baseline trials generated the fastest configurations; however, the SUBP
trials were close behind in terms of both mass and time and may indicate better general-
purpose performance. The Baseline and SUBP-2 experiments were fairly consistent (and
close to each other) in terms of the mass of the lightest configuration, but the SUBP-2 trials
generated configurations with slightly better task completion times than the Baseline and
other experiments. The SUBP trial generated robots with mass about 50% higher than the
Baseline and SUBP-2 trials; time for the SUBP robots was about 40% higher than for
SUBP-2. CPCO performed the worst out of all the methods.

Though the SUBP-2 trials generated the best results overall, they were only slightly
better than the Baseline trials. This seems surprising, since the SUBP-2 and Baseline trials
represent the extreme cases, as it were: the Baseline experiments used no commonality-
preserving crossover or subgraph preservation, while the SUBP-2 trials used no module
crossover and performed subgraph preservation. The CPCO and SUBP trials were in be-
tween the two other methods, and did significantly worse.

To try to understand the reasons for these outcomes, another series of experiments
was conducted in which the synthesizer started with an initial population of feasible con-
figurations and optimized only the final requirement group (mass and time) over 20,000
evaluations. This eliminates much of the variation between different trials, as the feasible
and less diverse initial population focuses the search in a much smaller region of the
search space and the synthesizer can sharply limit exploration based on feasibility of so-
lutions (infeasible solutions cannot be in the elite set and are therefore likely to be quickly
deleted from the population). Additionally, the time spent optimizing the final require-
ment group is constant in these experiments, whereas in the previous set of experiments
it depended on how much time was spent optimizing the first two requirement groups.

As shown in Figure 5.19, the best mass and time of robots generated in each trial
vary much less and than in the previous experiment, indicating that the optimization of
the first two requirement groups can have a significant effect on the final outcome of the
synthesizer. The Baseline experiments were fairly consistent in terms of the mass of the
lightest configuration, and also had the best (lowest) average mass over the twelve trials.
SUBP-2, while occasionally able to generate very well-optimized configurations, had av-
erage mass and time higher than each of the other three methods. SUBP had average mass
and time slightly better than CPCO and was more repeatable with respect to time, but the
difference in average performance was a small fraction of the standard deviation of both
mass and time and for both experiments, so a conclusive judgement on the basis of these
numbers cannot be made. The Baseline trials had average time slightly worse than CPCO,
but again the difference was a small fraction of the standard deviation of either method.

Based on these results, we might conclude that the Baseline method -- without sub-
graph preservation or the commonality-preserving crossover operator -- should be used,
as it generated the single best result in terms of both mass or time, had the lowest average
mass, and was not conclusively better or worse than the CPCO or SUBP trials with respect
to task execution time. However, when we look at the average over the twelve trials of the
best (lightest and fastest) configurations versus number of evaluations, a slightly different
picture emerges (Figure 5.20). In the figure, it can be seen that the SUBP trials are able to
consistently optimize mass and time more quickly than the Baseline method; for example,
had the experiments been stopped at 10,000 evaluations the SUBP method would have
appeared significantly better with average mass about 2.5kg less than that of the Baseline
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trials and average time about 0.5s faster. Ultimately, the SUBP, CPCO, and SUBP-2 reach
their respective local optima sooner than the Baseline method, and in this case the Base-
line method generated the lightest configurations in the steady state. In retrospect, this is
not surprising: the CPCO, SUBP, and SUBP-2 methods all try to exploit solutions that are
known to perform well by restricting the form of the solutions’ offspring so that they con-
tain the largest subgraph common to the two parents, while the Baseline method has no
such restrictions and thus performs more exploration of the design space. It is worth not-
ing that there is not as much variation between trials in task completion time as there is
in robot mass. This makes sense since task completion time is largely determined by task
parameters which are independent of robot topology, and the only difference between
the different experiments is in how they change robot topology. (Note that the probabili-
ties for parameter crossover and for all mutation operators are the same in all experi-
ments.)

What recommendations can be made on the basis of these results? The most con-

mass (kg)

time (s)

Figure 5.19:  Best mass and time for final requirement group with varying
crossover operators

These graphs show the best mass and best time over 12 trials of each experiment.
All of the trials started from the same set of configurations, which satisfied the first
two requirement groups. The Baseline experiments were significantly better than
the others with respect to robot mass, while the SUPB generated slightly better
robots with significantly less deviation in performance between trials. The SUBP-2
results were slightly worse than the others in terms of both time and mass, and had
a higher standard deviation as well.

Baseline

CPCO

SUBP-2

SUBP

Baseline

CPCO

SUBP-2

SUBP
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servative is that if computation time is not an important limitation, then the Baseline
method should be used. On the other hand, if rapid optimization is desired, then sub-
graph preservation and the Commonality-Preserving Crossover should be used. Exclu-
sive use of the CPCO and subgraph preservation (as in the SUBP-2 trials) was useful in
the full synthesis runs but was detrimental in the trials that optimized only the final re-
quirement group. It is not clear where the “sweet spot” is with respect to the relative fre-
quency of the CPCO and normal module crossover operators; a small (0.05-0.1) frequency
for the CPCO and much larger (0.6-0.7) frequency for module crossover may harness
some of the benefits of subgraph preservation while retaining the ability to make signifi-
cant changes to robot topology. Currently, Darwin2K will preserve the largest common
subgraph in two parent configurations whenever all of the following four conditions are
true:

(b) best time(a) best mass

(d) best time relative to baseline(c) best mass relative to baseline

Figure 5.20: Best mass and time versus number of evaluations (average of
12 trials)

The SUBP trials exhibited faster improvement in mass and time than the other
trials, though given time the Baseline trials generated robots that performed
slightly better than those from the other methods.
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• subgraph preservation is enabled by the user; and
• the probability for the CPCO operator is non-zero; and
• both parent configurations are feasible; and
• either CPCO was selected in the normal manner (i.e. based on the spec-

ified weight), or at least one of the parents was in the feasibly-optimal
set.

Enabling subgraph preservation but specifying a very low probability of CPCO applica-
tion would allow subgraph preservation to be performed when two feasibly optimal par-
ents are selected for reproduction, while still retaining a large degree of exploration
capability by not applying the CPCO too often. It may also be useful to change
Darwin2K’s behavior so that subgraph preservation and CPCO are performed only until
a steady state is reached with respect to robot performance, at which point subgraph pres-
ervation and CPCO are disabled so that more exploration of configuration topology can
be performed to aid in escaping a local minima.

5.3.2 Comparison of selection methods

All of the experiments presented thus far have used Requirement Prioritization
(RP) to select configurations for reproduction and deletion. In addition to RP, Chapter 3
presented several other methods for selection: the weighted sum, which was used in ini-
tial experiments with moderate success; the Metric Decision Function (MDF), which RP
is based on; and the Configuration Decision Function (CDF), which uses tournament se-
lection rather than fitness-proportionate selection and which requires the designer to
specify a simple function for deciding which of two configurations is better. It was stated
in Chapter 3 that the MDF, CDF, and RP were all significant improvements over the
weighted sum, but backing of this claim has been deferred until now. One major problem
with the weighted sum was that it did not account for the dependencies between metrics,
e.g. comparing two configurations on the basis of power consumption is not useful unless
both configurations can complete the task. Another problem was that since multiple met-
rics are combined into a single number, the weights must be carefully chosen by the de-
signer based on both the perceived relative importance of the metrics, and the expected
range of value in the metrics. The desire to avoid making a scalar value from multiple
metrics with vastly different ranges (which caused some metrics to get “lost in the noise”)
and the need to account for task-specific dependencies between metrics led to the devel-
opment of the CDF and MDF. While both of these methods were promising, it became ap-
parent that it was possible to formulate a much simpler yet still effective version of the
MDF (which was fairly unintuitive for the designer to specify), which led to Requirement
Prioritization. In this section, we compare the quality of synthesis results for the weighted
sum, CDF, and RP methods. The MDF is not tested as Requirement Prioritization is inter-
nally similar to the MDF yet is much simpler for the designer to specify.

In each of the experiments, the synthesizer used a population size of 100 and was
limited to 50,000 evaluations. All synthesizer parameters except those specific to the se-
lection method (weighted sum, CDF, or RP) were identical in all trials. Subgraph preser-
vation was enabled and the CPCO, module, and parameter crossover rates were 0.05,
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0.65, and 0.25, respectively. (These rates were set based on the experiments detailed in the
previous section.) Mutation probabilities were the same as in previous experiments. Sev-
en trials were conducted for each selection method, each of which succeeded in generat-
ing feasible configurations. Figure 5.21 shows the decision function used for the CDF
trials, while Table 5.10 lists the priorities used for Requirement Prioritization and the
weights used for the weighted sum. All other values for each metric (scale, minimum,
maximum, and acceptance threshold) are the same as in the previous experiments (see
Table 5.8).

In the case of the weighted sum, the weights for the first five metrics were chosen
purely based on relative importance since the acceptance thresholds dictated that the op-
timal value must be achieved (or very nearly so) for a configuration to be considered fea-
sible. Thus, for these metrics it could be expected that an adjusted fitness of 1 would be
achieved. The weights for mass and time were more problematic since the best achievable
values have to be guessed. For example, if we simply assign a weight of 1 to mass and it
turns out that the best possible mass for a feasible configuration is 15kg, then given the

scale value for mass of 0.139 the best adjusted fitness for mass is e-(10*0.139) = 0.124. Recall

that the adjusted fitness is computed as , where

(5.2)

Thus, if we decide that mass should have an importance of 1 relative to an importance of
10 for path completion, we need to assign a weight of 1/0.124 = 8 to mass to account for
the fact that the adjusted fitness for mass will never reach 1. Alternatively, we could set
the minimum value for mass to 10kg so that an adjusted fitness of 1 could be achieved,

Table 5.10:  Parameters for Requirement Prioritization and Weighted Sum
experiments

The priorities used for RP are integer-valued and do not depend on the relative
dynamic ranges of metrics since multiple metric values are never combined. On the
other hand, the weights used for the weighted sum must account for the difference
in magnitude between the best achievable values in different metrics, as well as the
relative importance of metrics.

Metric Priority for RP Weight for Weighted Sum

pathCompletionMetric 0 10

collisionMetric 0 10

positionErrorMetric 0 10

actuatorSaturationMetric 1 5

linkDeflectionMetric 1 5

massMetric 2 2.6

timeMetric 2 7.7
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s i( )–
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max raw fitness– positive sense

raw fitness min– negative sense



×=



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

142    Experiments and Demonstration

// first, decide on percentage of task completed (metric 0)
if (cfg1->metric[0] > cfg2->metric[0]) return cfg1;
else if (cfg2->metric[0] > cfg1->metric[0]) return cfg2;

// choose cfg w/ fewer collisions (metric 1)
if (cfg1->metric[1] < cfg2->metric[1]) return cfg1;
else if (cfg2->metric[1] < cfg1->metric[1]) return cfg2;

// decide on error (metric 2) only if > 3cm
if (cfg1->metric[2] > 0.03 || cfg2->metric[2] > 0.03) {
  if (cfg1->metric[2] < cfg2->metric[2]) return cfg1;
  else if (cfg2->metric[2] < cfg1->metric[2]) return cfg2;
}

// decide on actuator saturation (metric 3) only if > 1.0
if (cfg1->metric[3] > 1.0 || cfg2->metric[3] > 1.0) {
  if (cfg1->metric[3] < cfg2->metric[3]) return cfg1;
  else if (cfg2->metric[3] < cfg1->metric[3]) return cfg2;
}

// decide on link deflection (metric 4) only if > 2mm
if (cfg1->metric[4] > 0.002 || cfg2->metric[4] > 0.002) {
  if (cfg1->metric[4] < cfg2->metric[4]) return cfg1;
  else if (cfg2->metric[4] < cfg1->metric[4]) return cfg2;
}

// decide on time (metric 5) and mass (metric 6)
if (cfg1->metric[5] < cfg2->metric[5] &&
    cfg1->metric[6] < cfg2->metric[6]) return cfg1;
else if (cfg2->metric[5] < cfg1->metric[5] &&
         cfg2->metric[6] < cfg1->metric[6]) return cfg2;
// cfg1 & cfg2 are in a non-dominating relationship
else if (cfg1->metric[5] > cfg2->metric[5]) {
  if (cfg1->metric[5]/cfg2->metric[5] >
      cfg2->metric[6]/cfg1->metric[6]) {
    // cfg1’s mass is proportionally better than cfg2’s time
    return cfg1;
  }
} else {
  if (cfg1->metric[6]/cfg2->metric[6] >
      cfg2->metric[5]/cfg1->metric[5]) {
    // cfg1’s time is proportionally better than cfg2’s mass
    return cfg1;
  }
}
return cfg2;

Figure 5.21:  Configuration Decision Function
The CDF used in experiments comparing selection methods sequentially compared
different metrics until a meaningful (in terms of the task) difference in performance was
discerned.
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but this approach is flawed since that we don’t actually know a priori what the best value
is. In contrast, neither Requirement Prioritization or CDF ever have to combine metrics
and thus do not require the minimum value to be accurately chosen. In this case, the RP
and CDF experiments were run before the weighted sum trials, so reasonably accurate
values for the best achievable mass (7kg) and time (6s) were available and were used to
give the weighted sum trials a better chance of success. When accounting for these lower
bounds, weights of 2.6 and 7.7 give effective weights of 1 to mass and time, respectively.

The initial comparison experiments did not use the prismaticTube module, re-
sulting in a more difficult synthesis task. In these experiments the synthesizer was unable
to produce any feasible configurations using the weighted sum within the specified time
limit of 12 hours, during which 46,000 configurations were evaluated. In contrast, when
using the CDF only 10,420 evaluations were required to produce the first feasible config-
urations, and only 7,262 evaluations were required when using RP. Based on these initial
results, the prismaticTube was added to the module database to make the synthesis
problem easier, thus allowing comparison of the performance of feasible robots generated
using all three methods.

Figure 5.22 shows the number of evaluations necessary to generate the first feasi-
ble configuration for each trial. To generate the first feasible configuration, on average the
CDF trials required about 25% fewer evaluations than the RP trials and about 50% fewer
evaluations than the weighted sum, and was also more consistent in the number of eval-
uations required. Both the Requirement Prioritization and the Configuration Decision
Function trials consistently generated better-optimized configurations than the weighted
sum trials (Figure 5.23). While the CDF trials generally resulted in lighter robots than the
RP trials, RP was able to produce slightly faster robots than the CDF. Given the small
number of trials conducted and the possibility that the results are somewhat dependent
on the synthesis task, it is difficult to make statistically-significant conclusions comparing
the three methods; however, from a designer’s perspective, CDF and RP are easier and
more intuitive to use than the weighted sum, and seem to produce better results. The im-
proved performance of the CDF and RP methods over the weighted sum can be attributed
to the fact that they enable the synthesizer to make better choices about which configura-

number of evaluations

Figure 5.22:  Number of evaluations required to generate first feasible
configuration using different selection algorithms

Using the Configuration Decision Function (CDF) for selection, the synthesizer was
able to generate feasible configurations slightly faster than when using Requirement
Prioritization (RP). Both methods were faster than using a weighted sum of metrics.

Sum

CDF

RP
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tions should be selected for optimization. The CDF concretely encodes the designer’s
thought process for deciding which of two configurations is best, so the synthesizer es-
sentially asks the designer to do the comparisons for every decision it makes. Require-
ment Prioritization improves the synthesizer’s ability to make task-relevant choices by
focusing on those metrics that are not well-optimized with respect to the task’s require-
ments, and by optimizing metrics in order of their relative importance.

One advantage of Requirement Prioritization relates to the fact that only a subset
of the metrics are used to determine membership in the feasibly-optimal set: the feasibly-
optimal set is typically much smaller with Requirement Prioritization than with the
weighted sum or CDF since fewer metrics are used (Figure 5.24). Since Darwin2K increas-
es the population size to make room for all configurations in the feasibly-optimal set, tri-
als using the weighted sum and CDF frequently required many increases in population
size resulting in drastically increased memory use by the synthesizer. In some cases this
caused many evaluator processes to idle (thus increasing synthesis time), as the synthe-

Sum

CDF

RP

best mass (kg) best time (s)

Figure 5.23:  Best mass and time of synthesized robots using different
selection algorithms

Both Requirement Prioritization and the Configuration Decision Function
generated robots with markedly better performance than those generated using
the Weighted Sum. Though the performance of robots generated using RP and
CDF are generally competitive, RP’s parameters are significantly easier for the
designer to specify than a Configuration Decision Function.

Figure 5.24:  Peak population size for weighted sum, CDF, and RP
When determining membership in the feasibly-optimal set, Requirement
Prioritization uses fewer metrics than the CDF and the weighted sum methods thus
greatly limiting the size of the set. In contrast, the CDF and weighted sum must
frequently increase the population size to keep pace with the ever-growing optimal
set.
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sizer required more time to select configurations for reproduction and deletion and to
sort the feasibly-optimal population for data logging purposes.

It should also be emphasized that Requirement Prioritization is much simpler for
the designer to specify than the CDF: contrast the 7 integers given in Table 5.10 for RP to
the non-trivial configuration decision function in Figure 5.21. Both of these methods,
however, are much more intuitive than the weighted sum: Requirement Prioritization
simply indicates a ranking for metrics and the CDF compares the performance of two ro-
bots in a predictable and meaningful way. With the weighted sum, on the other hand, the
meaning -- in terms of significance to the task-- is not clear and it is hard to get a feeling
for how changing the weights will affect the synthesizer’s selections.

In summary, the Configuration Decision Function and Requirement Prioritization
methods are both easier to specify (requiring less guessing of “magic numbers”) and are
more effective at optimizing multiple metrics than the weighted sum, though the expense
of gathering test results makes it difficult to make statistically significant conclusions. The
ability to encode non-linear, task-specific dependencies between metrics as well as avoid
numerical problems based on differing (and initially unknown) dynamic ranges between
metrics make these methods more effective than the weighted sum. Though not relevant
for this task, Requirement Prioritization’s successive use of metrics allows computation-
ally-intensive evaluation methods (such as dynamic simulation) to be avoided until re-
quired by an active metric, as was done in the free-flyer experiment. Because of this,
overall synthesizer runtime can be less for Requirement Prioritization than for the CDF
or weighted sum methods. There is no clear winner between Requirement Prioritization
and the Configuration Decision Function: Requirement Prioritization is used with fitness-
proportionate selection, while the CDF is used with tournament or rank selection. Select-
ing parameters for Requirement Prioritization is much easier than specifying a CDF, al-
though the CDF exhibits slightly better performance (at least on this task). Both methods
are effective at multi-objective optimization and are likely to be applicable to other syn-
thesis domains.

5.4 Task 4: A Material-handling robot

Many heavy equipment manufacturers produce material handling vehicles that
lift and carry heavy loads over uneven terrain. The smallest have maximum payloads of
about 2500kg, and a vertical reach of 6m; larger versions can lift substantially more, and
to a greater height. Most material handlers have a similar configuration: a telescoping
boom with pallet forks is mounted on a four-wheel steer chassis suited for uneven terrain.
chassis. Figure 5.25a shows a typical material handler in operation.

Applying Darwin2K to a material handling task characteristic of those addressed
by real material handlers allows us to compare Darwin2K’s results with manually-de-
signed configurations, and demonstrates the synthesis of a mobile manipulator. As this
was the first synthesis problem performed by Darwin2K, many of the synthesis and sim-
ulation capabilities now available in the system had not yet been implemented, specifical-
ly dynamic simulation, component selection, measurement of actuator saturation,
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requirement prioritization, commonality-preserving crossover, elitism, link deflection es-
timation, and collision detection. The task used for the synthesis problem (Figure 5.8b)
contains two endpoint trajectories and two rectangular obstacles. The first trajectory rep-
resents approaching and lifting the payload (a 2500kg mass), and the second trajectory
represents raising the payload to a height of 6 meters and then moving forward to place
it.  The velocity along each path was specified to be 1 meter per second.

Configurations were evaluated in kinematic simulation, with the SRI controller
generating joint velocity commands. The simulator for this task later served as the basis
for the pathEvaluator: the first step was to determine the initial base pose for each path
by allowing the base to move freely in the plane as the end effector moved towards the
start of each path, and using the bases’s degrees of freedom in preference to the manipu-
lator’s. The robot then followed the first trajectory, and then drove along a path (generat-
ed by the motion planner) to the second base pose that avoided the two obstacles in the
workspace. Finally, the robot followed the second trajectory. Stability is a primary con-
cern for material handlers; to emphasize this, the simulation was terminated if the robot’s
energy stability margin (see Section 4.7.5) fell below zero at any point. Path completion,
energy stability, peak actuator torque, and task completion time were used as the metrics
for this task. Since velocity is constant along each path, differences in task completion
time were mainly due to the time required for the base motion.

The constraints and modules used for this problem were based on a rough knowl-
edge of the task. Each trajectory only requires 3 degrees of freedom, so the number of de-
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Figure 5.25:  Actual material handler and experimental task
(a) shows an actual material handler placing a load, while (b) shows the task used
in simulation. The robot first picks up a 2500kg payload (the first path), then drives
to the second path via a trajectory planned by the motion planner, and then raises
the payload to a height of 6m.
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grees of freedom allowed in the manipulator was constrained (via the dofFilter) to be
either 3 or 4 (the extra DOF was allowed to see if the synthesis program could take advan-
tage of it). The permissible modules consisted of three base modules, four joints, one link,
and one tool. The bases were an Ackerman-steer base, a four-wheel steer base, and a
Mecanum-wheeled base [Muir88]. Each of the bases have the same parameters: wheel-
base, wheel separation, wheel diameter, height, and front-to-back location of the connec-
tor. Since the simulation does not account for the effects terrain on the motion of the
bases, wheel diameter and base height were set to reasonable values (based on estimated
requirements for clearance, traversability, chassis stiffness, and the need for adequate vol-
ume for an engine, and hydraulic pumps); in this case, human expertise must be substi-
tuted for simulation capability. Since none of these factors were modeled by the
simulator, the synthesizer cannot meaningfully optimize them.

The link and joint modules also had some constant parameters: the cross-sectional
dimensions of the link (a simple box beam) and joints (an elbow joint, an inline revolute
joint, and two prismatic joints) were set to 0.4 by 0.4 because the simulator did not yet es-
timate link deflections. Given the opportunity to modify these parameters, the synthesiz-
er would eventually settle upon designs with minimal cross sections since this would
minimize link mass and therefore joint torque--there is no trade-off to be made against
link strength or stiffness. This limitation later led to the addition of link deflection calcu-
lations (as detailed in Section 4.5) and the linkDeflectionMetric.

The kernel configuration consisted of a set of pallet forks mounted on the center of
the top surface of an Ackerman-steer base, with random parameter settings. The initial
population, generated randomly from the kernel, was quite diverse, and quite unsuited
for the task as can be seen from the examples in Figure 5.26. There is significant variation
between the robots: some have only prismatic joints, while others have only revolute
joints. The type and size of the base modules vary, as does the position of the attachment

Figure 5.26:  Sample material handlers from initial population
The initial population was quite diverse, and poorly-suited for the material handling
task: the two leftmost robots above could reach only the first point on the first
trajectory, though they were not stable, while the others could not reach the first
point at all.
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of the manipulator to the base. This diversity is important to the genetic optimization pro-
cess; without such diversity in the initial population, the design space would not be well
represented and the process would be especially susceptible to getting stuck in a local
minimum.

In early experiments, a randomly-selected metric was used each time a configu-
ration was selected for reproduction or deletion; later, the average of the metrics was
used. It quickly became obvious that path completion was more important than the other
metrics: many robots could not even reach the first point on the path, but had good values
for most metrics. These robots quickly dominated the population. To avoid this, a simple
modification was made to the computation of adjusted fitness for each metric: the adjust-
ed fitness was scaled by the square of path completion. This modification emphasizes
configurations which complete most or all of the task. Configurations that can only com-
plete a small part of the task are rarely selected for reproduction. Using this modification,
the synthesis process generated many configurations which could complete the task.
(This problem was an early example of the non-linear dependencies between metrics
which later resulted in the development of the Configuration Decision Function and Re-
quirement Prioritization methods for selection.)

In the first trial to incorporate the fitness scaling mentioned above, evaluators were
run on approximately 15 Silicon Graphics workstations. Over the course of 9 hours, ap-
proximately 70,000 configurations were generated. The initial population was 5,000 and
was decimated to 500. Progress was very slow; after more than 50,000 evaluations, a robot
that could successfully follow the trajectories without tipover was created (Figure 5.27).
Significantly, it was one of the few robots in the population with a prismatic beam. After
another 12,000 evaluations, topologies that include the prismatic beam were widespread
among the best robots. 28 out of 500 configurations could complete the task, and all had
the same general topology of a mobile base followed by an elbow joint, a prismatic beam
(2 or 3 piece), 1 or 2 elbow joints, and the pallet forks. The Pareto-optimal set (manually
extracted from the population file, as the synthesizer did not yet compute the set) is
shown in Figure 5.28. Several differences are noticeable between the three configurations:
the first configuration has a 3-piece telescoping boom, which is shorter and slightly light-
er than the 2-piece boom used in the other configurations, thus decreasing peak joint
torque. The other two configurations differ only in that the lower configuration has a wid-

Configuration:
Path Completion:
Minimum Stability:
Peak Torque:
Execution time:
Evolved features: 3-piece telescoping boom,

Base dimensions: 4.5m x 1.7m

56019
1.0
4308 J
119828 Nm
19.04 sec

redundant elbow joint
Ackerman-steer base

Figure 5.27:  First feasible material handler configuration
After over 50,000 evaluations, this configuration was the first that could follow both
trajectories without reaching tipover. Significantly, it was one of the few
configurations in the population that had a telescoping boom.



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

Experiments and Demonstration    149

er base, and so is more stable. These two robots have a Mecanum base, giving them sig-
nificantly better task completion time; the Ackerman-steer base must do much more
maneuvering when moving between base poses.

After another 3,300 evaluations, the population had nearly converged on an opti-
mum. The average adjusted fitness for path completion, energy stability, and execution
time had all approached 1. There were many pareto-optimal configurations, all of which
are very similar or identical (duplicate configurations were not eliminated when this ex-
periment was run). The most stable of the Pareto-optimal configurations is shown in Fig-
ure 5.29. The subtle differences between the configurations in Figure 5.28 have been
resolved, as the robot in Figure 5.29 incorporates the best features of the three: a large
Mecanum base; a three-piece telescoping boom; and the rearmost possible manipulator
mounting. In fact, the best 24 configurations all have this configuration (Mecanum base
and three-piece boom), but with slightly varying base dimensions. Except for 2 of the 3
robots that did not complete the task, all of the robots in the population had prismatic
beams. Some had an extra elbow joint, and only 4 configurations did not have the
Mecanum base.

To test the repeatability of these results, 5 additional synthesis runs were per-
formed. Figure 5.30 shows the average path completion for each of the six runs. Two of
the six experiments (corresponding to the two lowest graphs in the figure) failed to pro-
duce feasible results. While one of the unsuccessful experiments was terminated after
only 25,000 evaluations, it did not appear very likely that further runtime would have
produced a feasible result. There is substantial variation between the time required to

Figure 5.28:  Pareto-optimal material handlers after 62,000 evaluations

Path completion 1.0 1.0 1.0

Min. stability 4937 J 1698 J 7077 J

Peak torque 111443 Nm 126259 Nm 126259 Nm

Time 18.7 sec 12.7 sec 12.6

Features 3-piece telescoping
  boom
Ackerman base
Base dimensions:
  4.14m x 1.7m

2-piece telescoping
  boom
Mecanum-wheeled base
Base dimensions:
  4.14m x 2.5m

2-piece telescoping
  boom
Mecanum-wheeled base
Base dimensions:
  4.5m x 2.5m
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produce feasible configurations in the four successful runs, though the resulting configu-
rations (Figure 5.31) are all quite similar.

5.4.1 Summary and discussion

These initial experiments were useful in confirming Darwin2K’s feasibility and in

Configuration:
Path Completion:
Minimum Stability:
Peak Torque:
Execution time:
Features: 3-piece telescoping boom

Mecanum-wheeled base
Base dimensions: 4.5m x 2.4m

Figure 5.29:  Most stable material handler
After approximately 3,300 more configurations, many configurations have been
produced which have the 3 piece boom (reducing joint torque) and large, Mecanum
base (reducing execution time and increasing stability)
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Figure 5.30:  Path completion for six synthesis runs
The number of evaluation required to generate successful material handlers varied
widely across the six runs, and two did not succeed in producing feasible
configurations at all. These results were early indications that the weighted sum
was limited in its ability to optimize multiple metrics.
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identifying areas for further work. The configurations from four of the experiments meet
the design specifications: approaching and lifting a 2500kg payload, carrying it to another
location, and raising it to a height of 6 meters. The synthesis process was able to simulta-
neously synthesize the robots’ type and dimensions, including the selection of an appro-
priate base module. Furthermore, the final configurations are well-optimized in terms of
peak joint torque and task execution time, and three out of the four are highly stable as
well. The similarity of the results from the four successful runs are an indication that re-
peatability can be achieved.

The experiment also illustrates several limitations of the current system. The
Mecanum base is not suited for natural terrain; a human designer would know this, but

Completion: 100 %

Stability:15917 J

Torque: 111207 Nm

Time: 12.6 s

Iterations: 73618

Completion: 100 %

Stability: 6470 J

Torque: 123624 Nm

Time: 12.7 s

Iterations: 20470

Completion: 52.9 %

Stability:11882 J

Torque: 75922 Nm

Time: -

Iterations: 15450

Completion: 52.9 %

Stability: 10612 J

Torque: 79013 Nm

Execution Time: -

Iterations: 47876

Completion: 100 %

Stability:13498 J

Torque: 111215 Nm

Time: 12.7 s

Iterations: 54085

Completion: 100 %

Stability: 15876 J

Torque: 111214 Nm

Time: 12.8 s

Iterations: 66262

Figure 5.31:  Results for six material handler synthesis runs
Out of six runs, four resulted in material handler configurations that could
successfully complete the task. The four successful configurations all had three-
piece booms and large Mecanum bases.
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since the simulation does not model terrain interaction there is no way for the synthesizer
to properly judge the suitability of configurations with the Mecanum base. In the simu-
lation, the Mecanum base was more maneuverable than the other two bases due to its ho-
lonomic nature, and was repeatedly chosen as it reduces task execution time. This points
to the need for some human expertise when choosing the modules to be used in the syn-
thesis process, as some modules may have limitations that are not exposed by the simu-
lation.

One difference between the synthesized material handlers and the real one shown
in Figure 5.25a is that the real one has a bend in the boom near the forks to allow the boom
to clear the chassis when the forks are on the ground. At the time these experiments were
performed, the simulator did not check robots for self-intersection, so nearly all configu-
rations had self intersections while following the first path. Additionally, the modules
used in the experiment cannot be connected to create a bent boom without including an
extra joint. It is easy enough to create a new link module that would allow the bent boom
to be synthesized, but it is doubtful that the bent boom would be found optimal unless
collision detection was included as a metric. While a human could view the results, attach
a new link to the pallet forks with a non-variable attachment, and re-run or continue the
synthesis process, this experiment pointed to the need for using collision detection as a
metric for evaluation. An alternative would be to extend the motion planner to avoid self-
intersecting poses, but the added computational complexity of motion planning for the
entire robot (rather than just the base) would likely increase evaluation time to unaccept-
able levels.

While the material handler synthesis experiments had several limitations, they
were important in validating the general synthesis approach used in Darwin2K and in
helping guide further improvements to the system. Perhaps most importantly, they mo-
tivated the inclusion of collision detection, actuator modeling, and estimation of link de-
flections in the evaluation process, and motivated further work in optimizing multiple
metrics. Finally, the demonstration of synthesis and optimization of type and kinematics
via the PMCG was a key contribution of these experiments.

5.5 Task 5: An antenna-pointing mechanism

Another early application of Darwin2K was the kinematic synthesis of a rover with
an antenna pointing mechanism, motivated by [Bapna98]. Though many of the details of
the synthesizer and simulation have since changed, the synthesis results for this task are
illuminating in that they can be intuitively seen to be well-suited for the task while simul-
taneously indicating some pitfalls of automated synthesis. The goal for this task is to syn-
thesize a configuration consisting of a pointing mechanism mounted on a wheeled base
that is able to keep an antenna pointed at a distant target as the robot drives over terrain
for a variety of headings. In keeping with [Bapna98], terrain was modeled as a pair of si-
nusoidal elevation functions (one for the wheels on the robot’s left side and one for the
wheels on the right), with different amplitudes and phases. The rover’s pitch and roll are
computed from this terrain model by way of a simple kinematic suspension model, and
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the rover’s heading rate is constant so that after 30 seconds the rover has completed a cir-
cle. The antennaEvaluator was written to encapsulate this task-specific simulation
code, and interfaces with a task-specific mobile base module, the antennaChassis. The
source code for vehicle pose computations based on the sinusoidal terrain model was
supplied by Bapna and incorporated into the antennaEvaluator. An antennaPath
object generates velocity commands for the endpoint of a serial chain mounted on the
chassis, trying to keep the endpoint (which is the antenna) at a constant azimuth and el-
evation as the chassis changes orientation; these velocity commands are then translated
to joint velocity commands by the SRIcontroller.

Five metrics captured the requirements of the task: path completion (the ability to
achieve the desired pointing direction), peak joint velocity (rad/s), peak joint torque
(Nm), maximum pointing error (rad), and power consumption (W) for the pointing
mechanism. Since this experiment was conducted before component selection and link
deflection capabilities existed in Darwin2K, the measurements computed for peak joint
torque and power consumption were not very meaningful; their main impact was to re-
duce link lengths to the minimum. The other metrics (peak joint velocity, error, and path
completion) are purely kinematic, and were more relevant to the robot’s performance and
configuration.

Darwin2K synthesized robots for several different cases: one target at a low eleva-
tion, one target at a high elevation, and two subsequent targets at differing elevations.
Aside from the antennaChassis mentioned above, elbowJoint, inlineRevolute,
and simpleToolmodules were included in the module database. The synthesis runs for
the first two cases used a weighted sum for selection, and required some experimentation
to determine the best set of weights to use to ensure convergence. For the first two tasks
the pointing mechanism was restricted to 2 degrees of freedom and the search space con-
tained about 17 million configurations, many of which were functionally identical. Each
experiment ran until 20,000 configurations had been evaluated (approximately 0.1% of
the search space) and run time was approximately 15 minutes on 20 SGI workstations,
considerably shorter than previous experiments due to the limited size of the search
space, simplicity of simulation (control and simulation for only 2 degrees of freedom is
significantly faster than for 6 or more), and the fact that this was an inherently easier syn-
thesis problem than those requiring optimization of actuator selection and structural ge-
ometry to satisfy actuator saturation and link deflection constraints.

For higher receiver elevations (45 through 90 degrees), the x-y pointing mecha-
nism shown in Figure 5.32a consistently had the best performance. In this case, the geom-
etry of the pointing mechanism is intuitively well-suited for tracking targets at high
elevations as the mechanism’s singularities only come into play at low elevation angles.
For a lower elevation (20 degrees), the azimuth-elevation pointing mechanism shown in
Figure 5.32b was consistently best. The azimuth-elevation mechanism’s singularity only
comes into play for high elevation angles, so it is well-optimized for tracking targets at
low elevations. When either of these mechanisms is used for tracking targets near singu-
larities (i.e. at low elevations for the x-y mechanism and at high elevations for the azi-
muth-elevation mechanism), very high joint velocities are required as the robot’s
changing heading brings the mechanisms close to their singularities.

For the third synthesis task, the robot was required to track targets at both high
and low elevation angles. Based on the results of the previous runs it seemed unlikely that
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any 2-DOF mechanism would be sufficient for tracking targets at high and low elevation
angles with high accuracy and low joint velocities, so we allowed up to 4 degrees of free-
dom for this task. As might be expected, the synthesizer settled on a hybrid design, con-
sisting of an x-y mechanism on top of an azimuthal mechanism. In this case, the azimuth
pointing mechanism consisted of two inlineRevolute joints with coincident joint ax-
es. This design, while not one that a human would create, performed well with respect to
the peak joint velocity metric since any azimuthal velocity was split equally between the
two inlineRevolute joints. The moduleRedundancyFilter had not yet been imple-
mented at this point, so the synthesizer had no reason to rule out designs with coincident
joint axes.

5.5.1 Summary and discussion

This synthesis example demonstrates that Darwin2K can generate intuitively un-
derstandable, well-optimized configurations for tasks that a human designer can easily
grasp and design for. It is easy for a human designer to see that the three pointing mech-
anisms generated by Darwin2K are well-suited for their assigned tasks, and a human de-
signer would likely choose similar kinematic structures when manually designing the
antenna pointing mechanism for each of the tasks. For the Nomad robot [Wettergreen99],
which was required to keep its antenna pointed at a low-elevation base station, the de-
signers chose an azimuth-elevation configuration [Bapna98], validating Darwin2K’s so-
lution for low-elevation pointing.

Though the pointing mechanisms created by Darwin2K were well-optimized, this
task also demonstrates a potential pitfalls of Darwin2K and of genetically-based synthesis
in general: evolutionary methods will frequently find unanticipated loopholes in the
problem specification. This is illustrated by the redundant azimuthal joints of the azi-
muth-x-y pointing mechanism: the synthesizer was not prevented from using subsequent
joint modules with coincident axes -- which a human designer would probably not con-

Figure 5.32:  Antenna pointing mechanisms
The x-y pointing mechanism (a) has better performance at high target elevation
angles, while the azimuth-elevation mechanism (b) has better performance at low
target elevations. The redundant azimuth-x-y mechanism (c) performs equally well
at high and low elevations, since it is free of singularities throughout its range of
motion.

(c)(a) (b)
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sider using in the first place -- and discovered that this configuration reduced peak joint
velocity. These lessons are important to keep in mind when specifying the synthesizer’s
parameters (particularly the configuration filters and metrics), and when developing a
task-specific simulator.

5.6 Task 6: A walking robot for space trusses

Recently, there has been a renewed interest in Space Solar Power (SSP)-- orbiting
solar power satellites that beam back energy in the form of microwaves, to which the
earth’s atmosphere is largely transparent. This technology holds the promise of sustained
zero-emission power generation (neglecting the impact of numerous rocket launches)
while providing more continuous power output than ground-based solar due to its inde-
pendence from weather conditions and the limited time spent in darkness each day. The
geosynchronous orbits in which the satellites would lie are far beyond the Space Shuttle’s
range, thus greatly restricting human access. Automated assembly and servicing are
therefore important enabling technologies for SSP and are currently being investigated;
one example is the Skyworker project at CMU. (No references for Skyworker are available
at this time, as the project is in its early stages.)

The task we will address is the synthesis of a lightweight walker for visual inspec-
tion of the satellite’s components. Robotic walkers are preferred over free-flyers for oper-
ations on the power satellites, since electrical power for walkers can be drawn from the
satellite itself via inductive pickups or mechanical connections whereas free-flyers rely on
expendable fuel, implying either extra mass for a large fuel supply, occasional re-supply
from Earth, or limited robot lifespan. While an assembly or servicing task (rather than vi-
sual inspection) would be a more challenging synthesis problem, it would require dy-
namic simulation of closed kinematic chains which has not yet been addressed by
Darwin2K. We will thus address the synthesis of an inspection robot while retaining as
many of the task constraints and properties (such as satellite geometry) as possible.

By current thinking, each power satellite will have a modular construction and will
be quite large, on the order of kilometers. Much of the satellite’s structure will be com-
posed of trusses, upon which the antenna array (for transmitting power) and solar collec-
tors will be mounted. According to one model, the antenna array will be assembled from
triangular sections each consisting of a panel backed by a truss to provide rigidity (Figure
5.33). The inspection robot should be able to move to any point on the truss: it should be
able to walk along truss rods, transition between them, and change its orientation with
respect to a truss rod so that it can move from one side of the truss to the other. The robot
should also be able to position its end effectors so that it can aim a camera at the object
being inspected (we will assume there is a camera mounted on each effector, though the
cameras will not be modeled in the simulation).

The representative task for the inspection robot is shown in Figure 5.34 and encom-
passes the capabilities listed above. The robot first walks along a truss segment 5.1m in



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

156    Experiments and Demonstration

length, moves to a perpendicular segment (gripping the segment 1.0m from the truss
joint), moves to a third segment, rotates around to the back side of the truss, and then
moves one end effector to an inspection location under the truss joint. This task ensures
that the robot can reasonably maneuver about the truss in addition to being able to walk

30.5m

6.1m

Figure 5.33:  SSP satellite panel section
The space solar power satellite’s transmitter array is composed of a number of
panels, each in the shape of an equilateral triangle and backed by a truss to provide
rigidity. During the inspection task, the robot will walk along one of the truss
segments, transition to several other segments, and inspect the junction between
them.

11
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Figure 5.34:  Phases representative task for  SSP inspection robot
The robot first walks along one of the truss rods (1), transitions to another rod
perpendicular to the first (2), move again to another rod (3), moves around to the
back side of the truss (4), and positions one end-effector near the truss joint for
inspection (5).

(6.5m)
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along truss segments. The metrics for this task (see Table 5.11) are a subset of those used
for the free-flyer, the differences being the absence of the pathCompletionMetric and
the positionErrorMetric. A dynamic simulation will always be used for this task, so
the pathCompletionMetric is not needed. The positionErrorMetric is not used
for this task because accurate trajectory following is not required: as long as the robot can
accurately reach the via points of the task without collisions (as measured by the colli-
sionMetric), it is not important if the robot deviates significantly from the straight-line
trajectory between via points. The linkDeflectionMetric and continuousSatu-
rationMetric allow synthesis of link structure and actuator selection, while the mass-
Metric, powerMetric, and timeMetric guide the optimizer in producing
lightweight, efficient robots.

While the simulator for this task makes use of many of the general-purpose evalu-
ation components (including the rungeKutta4, collisionDetector, relative-
Path, and ffController), some task-specific objects are required for simulation and
control. The panelSection is derived from the payload class and creates the truss ge-
ometry shown in Figure 5.33 based on parameters for the length, height, and number of
truss segments for each side of the panel. The panelSection also provides coordinate
information for several classes which aid in trajectory generation for the walker. The
walkerEvaluator performs high-level simulation control such as querying the trajec-
tory generation object for the next part of the robot’s gait, passing the trajectory informa-
tion (as a relativePath) to the ffController, and using the rungeKutta4 object to
compute the robot’s behavior. There is also a task-specific module, the walkerGripper,
which is appropriately sized for the diameter of the truss segments. All told, there are ap-
proximately 1500 lines of C++ code for this task (including source and header files).

The task-specific simulation and control code assumes a two-limbed robot, as this
is the minimum number of limbs to provide continuous contact with the truss during lo-

Table 5.11:  Metrics for SSP inspection robot

Metric name Req.
Group

Acceptance
threshold

Min Max Scale AFDI

dynamicPathCompletion 0 = 1.0 (100%) 0 1 6.93 0.1 (10%)

collisionMetric 0 integral = 0 0 100 0.4 1.73

linkDeflectionMetric 1 max < 0.001m 0.0009m 0.01m 693 1mm

continuousSaturationMetric 1 max < 0.8 (80%) 0.3 10.0 6.9 0.1 (10%)

massMetric 2 none 5kg 50kg 0.139 5kg

powerMetric 2 none 0J 20kJ 0.002 100J

timeMetric 2 none 20s 100s 0.34 2s

Themetricsused for theSSPinspection taskaresimilar to thoseused in the free-flyer
task, though without the pathCompletionMetric (since dynamic simulation is
always used in this task) or positionErrorMetric (since accurate trajectory
following is not required).
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comotion and the robot will not need more limbs for manipulation or other tasks. The ro-
bot must have at least six degrees of freedom between its two end effectors so that it can
grasp truss segments in arbitrary orientations and in three dimensions; however, it does
not need six degrees of freedom in each limb as there is no need for body positioning in
this task. When moving along a truss segment, the control code uses a hand-over-hand
gait, since this has a longer stride and few accelerations and decelerations than an inch-
worm-like gait. The gait trajectory generator has 6 parameters (shown in Figure 5.35) all
of which will be included in the set of task parameters (Table 5.12) to be optimized. The
basic form of each stride in the gait is to release the gripper that is farther back, move it
towards a via point specified by horizontal and vertical offsets (vh and vv respectively)

from the fixed gripper until within a specified distance vtol from the via point. The gripper

continues motion until it reaches (and stops at) the approach position at a distance d and
angle θ above the next grasp location, which is located on the truss segment a distance s
from the gripper’s previous position. The trajectories for gait, for transitioning between
truss segments, and for positioning an end effector for inspection are all represented as a
relativePaths, allowing the ffController to be used to for trajectory following.
However, there is one difficulty with this approach: the ffController controls the mo-
tion of one or more end-effectors relative to the robot’s base link (which is usually deter-

sstride
s

vh

vv

θ
dFigure 5.35:  Gait parameters

These two images illustrate the parameters for each
stride of the walker’s gait:
• s - distance between successive grasp points for an

end-effector
• d - distance from segment center to approach point
• θ - angle from normal to approach point
• vv - offset of via point (white circle) in direction of the normal (the dotted line in

the right image)
• vh - offset of via point perpendicular to the normal
• vtol (not shown here) is an additional gait parameter for how close the end effec-

tor must come to the via point.
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mined by the robot’s base module), but in this case we want to control the motion of one
endpoint relative to another. From a control point of view, it is much simpler to consider
the robot to be a single serial chain from one end effector to the other than to think of it as
two shorter serial chains from a common base since the latter approach requires comput-
ing two trajectories (one for each end effector) relative to the robot’s base that are con-
strained to produce the desired relative end effector motion. Treating the robot as a single
serial chain rooted at the gripper that is grasping the truss is simple enough, but requires
an additional step since each gripper is alternately fixed or moving. One way would be
to re-number the links and joints with the stationary gripper as the robot’s base, though
this requires recomputing the robot’s dynamic equations and re-building all of the data
structures based on the robot’s kinematic description. Alternatively, we can keep the
same kinematic and dynamic description of the robot no matter which gripper is moving
and simply change the coordinate system of the trajectory so that the desired relative end
effector motion is produced regardless of which gripper is moving. For these experiments
I took the latter approach due to its simplicity.

Locating the robot’s base link at one of the robot’s grippers presents a difficulty if
we want the robot to be symmetric: the configuration graph can only preserve symmetry

Table 5.12:  Task parameters for SSP inspection robot
The first seven parameters are for the walkerEvaluator, which passes the
parameters’ values to the gait trajectory generator. The next four parameters are
for the linear and angular velocity and acceleration used when following
trajectories, and the last two determine when and how much the robot’s redundant
degrees of freedom are used for joint limit avoidance. The last two parameters
have significant impact on the robot’s ability to accurately stop at via points.

class component label variable name min max # bits

walkerEvaluator (none) firstGraspPoint 0 1 1

hOffset 0.1 m 0.6 m 4

vOffset 0.1 m 0.6 m 4

approachAngle 0 π/2 4

approachDist 0.1 m 0.5 m 4

inspectionStandoff 0.2 m 0.8 m 4

stride 1.0 m 2.0 m 4

relativePath gaitPath vel 0.2 m/s 2.0 m/s 5

maxAcc 0.5 m/s2 4.0 m/s2 5

omega π/6 s-1 π/2 s-1 5

maxOmegaDot π/6 s-2 2πs-2 5

ffController ffController ignoreLimitThresh 0  0.5 5

gradientStepSize 0 0.05 5
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when two subgraphs share a common parent module, which will not be the case if the ro-
bot’s base module is located at one end of the serial chain. The virtualBase module
eliminates this problem: it has no geometric description other than two coincident con-
nectors, and has one parameter which selects the link to be designated as the robot’s base
link. This allows the base link that is used for kinematic, dynamic, and control purposes
to be located at one of the grippers rather than at the root of the configuration graph. The
robot can thus be symmetric (since the base module has two references to a single limb
subgraph) while having the base link located at the end of the robot’s single serial chain.
Figure 5.36 shows a schematic depiction of how the virtualBase affects the representation
of the robot’s links and joints. (Note that for clarity, (c) in the figure is similar to (b) al-
though in general the graph describing the links and joints of the robot is different from
the configuration graph.)

At this point it is also useful to introduce the virtualLink module which, like
the virtualBase, aids in preserving symmetry and has no geometric representation other
than a pair of coincident connectors. In the free-flyer experiments the kernel configura-
tion had a base module with two references to an inlineRevolute2 module, which re-
sulted in two symmetric arms beginning with the inlineRevolute2. If we want two
symmetric arms but do not want to specify what the first module in the arms should be,
we can use the virtualLink: const incoming connections to the virtualLink will
not be changed, but the single outgoing connection from the virtualLink can be mod-
ified by the genetic operators. The virtualLink simply acts as a constant reference

T

V V

T T T

Figure 5.36:  Effects of the virtualBase module
In (a), the virtualBase module V has two references to module m, resulting in
duplication of m in the instantiated configuration graph (b). V’s single parameter
selects one of the configuration’s endpoints as the robot’s base link (dotted arrow
in (b)), which in (c) becomes the base link of the robot’s kinematic and dynamic
descriptions. This allows the robot to have two symmetric limbs while being
represented as a single serial chain (including both limbs) for simulation and control
purposes.

(a) (b) (c)

m m m m m
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point for the arm subgraphs without contributing to the physical description of the arms
(Figure 5.37). The kernel used for the experiments (shown in Figure 5.38) specified a joint
structure to which the two symmetric limbs should be attached, and used the virtual-
Link as the reference point for the subgraph shared by the two limbs.

As with previous experiments, the possible configuration topologies were influ-
enced by the module database and configuration filters used by the synthesizer. The
moduleRedundancyFilter use the same settings as in the previous experiments, dis-
allowing successive joints whose axes were colinear. The dofFilter eliminated any
configuration with less than 13 or more than 14 DOFs--6 base DOFs and 7 or 8 for the se-
rial chain--though given that the kernels each had 1 DOF and symmetric arms, this re-
stricted the solutions to 7-DOF serial chains. The module database contained the same
three revolute joints as in the free-flyer task--the inlineRevolute2, offsetElbow,
and rightAngleJoint modules--and also included the hollowTube link module.
Again, prismatic joints were not used due to the preference for revolute joints in space ap-
plications. Given that the walker will not need to manipulate massive payloads, the com-

B vl

Figure 5.37:  virtualLink usage
The virtualLink module (vl above) is used to allow const connections to be
made to a varying subgraph. In this example, m1 and m2 are free to be replaced;
in contrast, if the const connections had been to m1 then the synthesizer could not
change m1. The virtualLink has no geometry, so while the connections to vl
cannot be changed, vl has no influence on the physical form of the robot.

m1 m2

const connections

Figure 5.38:  Kernel configuration for the SSP inspection robot
The kernel configuration makes use of the virtualLink to yield configurations
with symmetric limbs ending in walkerGrippers, but without specifying any
physical characteristics for the first module in each limb. The arrows overlaid on the
symbolic descriptions of the kernel show the connections in the two different
subgraphs rooted at the base module.

((virtualBase ((const 0 1 3 0))
      ((const 0 (1 0 left (var 0 270 2 0)))
       (const 1 (2 0 right (var 0 270 2 0)))))
 (offsetElbow revoluteJoint ((var 0 1 2 2)
                             (var 0 1 2 8)
                             (var 0 1 2 0)

(var -3.14 3.14 4 7)
                             (const 0.003 0.01 3 0)
                             (var 0.005 0.05 2 1))
              ((const 1 (2 0 inherit (var 0 270 2 1)))))
 (virtualLink nil ((var 1 (3 0 inherit (var 0 270 2 1)))))
 (walkerGripper ((const 0.01 0.1 3 1)) nil))
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ponent database for the walker’s modules (Table 5.13 and Table 5.14) contains fewer and
less-powerful gearboxes and motors than the database for the free-flyer. Limiting the
component database to those that will be most relevant to the task will reduce the search
space for the synthesizer, which in turn should lead to decreased synthesis time and im-
proved performance of the synthesized robots.

The first experiment used the kernel shown in Figure 5.38a. A population size of
200 (decimated from an initial population of 5000) was used, with a maximum of 80,000
evaluations per stage and a time limit of 13 hours. The first configuration satisfying the
first requirement group was generated after performing only 100 evaluations after the ini-
tial population was decimated, and after another 4000 evaluations (the minimum per re-
quirement group) 152 out of 200 satisfied the first requirement group. The first
configurations satisfying the second requirement group were generated after 1,500 fur-
ther evaluations (a total of 10,600), and after another 4000 the synthesizer advanced to the
third and final requirement group with a total of 70 feasible configurations. At this point,
the lightest configuration had a mass of 22.9kg; the most energy-efficient configuration
consumed 955J to complete the task, and the fastest configuration completed the task in
85 seconds. The time limit was reached after a total of 52,500 evaluations, including the
5000 for the initial population. At this point the lightest, most energy-efficient, and fastest
configurations (cfgm, cfge, and cfgt, respectively in Figure 5.39) had significantly better per-

formance: the lightest configuration had a mass of 12.2kg, the most efficient used 221J,
and the fastest required only 55 seconds to complete the task. Figure 5.40 shows cfgm at

Table 5.13:  List of motors

Maxon RE25.118722

Maxon RE25.118748

Maxon RE25.118755

Maxon RE35.118800

Maxon RE36.118778

Table 5.14:  List of gearheads

Maxon 16.134782 Maxon 81.110410

Maxon 16.110325 Maxon 81.110411

Maxon 16.134783 Maxon 81.110412

Maxon 16.118188 Maxon 81.110413

Maxon 26.110396 HD Systems CSF-20-50

Maxon 26.110397 HD Systems CSF-20-80

Maxon 26.110398 HD Systems CSF-20-120

Maxon 32.114489 HD Systems CSF-20-160

Maxon 32.114499 HD Systems CSF-25-50

Maxon 32.114507 HD Systems CSF-25-80

Maxon 32.114513 HD Systems CSF-25-120

Maxon 32.114516 HD Systems CSF-25-160

The component database for the SSP inspection robot is similar to that used for the
free-flyer, but contains lighter-duty components since the inspection robot will not
manipulating massive payload.
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several stages while executing the task. Examining the performance trade-offs of the Pare-
to-optimal feasible configurations, if we are willing to accept a decrease of up to 5% rela-
tive to the best mass, energy, and time, we can have configurations with:

Table 5.15:  Trade-off configurations for SSP inspection task

Note that negative percentages are better here, since they indicate a decrease in mass, en-
ergy, or time. In this experiment, there were few configurations that represented reason-
able trade-offs against cfgm or cfge: for example, a configuration which consumed 5% more

energy than cfge might only have a task completion time of 1% less, and could have great-

er mass. There were numerous useful trade-offs against cfgt, however, as evidenced by

the last configuration in the Table 5.15.
The robots in Figure 5.39 seem to have an odd configuration: the three degrees of

freedom for each “wrist” are distributed along the length of the arm, rather than being
closely-grouped at the end of the arm. The first module of each arm is an
inlineRevolute2, and the last two are rightAngleJoints. 197 of the robots in the
final population shared the same configuration graph topology; the remaining three were
similar to the majority except that an inlineRevolute2module was oriented different-
ly, resulting in slightly different inertial properties. The main drawback of this configura-
tion is that changing the orientation of the end-effector in three dimensions requires large
motions, since each of the wrist joints (and corresponding links) must be moved; howev-
er, such motions are not required in this task. Are there any benefits to this configuration?
After examining the kinematics of the arm, it becomes apparent that this configuration is
excellent for avoiding self-collisions: in fact, when considering each half of the arm sepa-
rately, each of the three wrist joints can be moved through a full revolution without caus-
ing any self-collisions (Figure 5.41). This is not generally the case for 3-DOF wrists with
multiple intersecting axes, as are commonly found in dextrous manipulators. The robot’s
inherent lack of self-collisions due to wrist motion make the control problem easier,
which is particularly important given that the controller used in the experiment does not
try to avoid self-collisions. There has been recent work in identifying ([Full99]) and ex-
ploiting ([Zeglin99] and [McGeer90]) “mechanical intelligence” to perform roles normal-
ly reserved for active control, specifically for dynamic stability in mechanisms; the
kinematic configuration evolved in this experiment has a similar type of mechanical in-
telligence for avoiding self collisions. This kinematic configuration is also an example of
generating novel, unintuitive designs: it seems likely that a human designer would not
give high priority to inherent collision avoidance the design process, and would instead

relative to configuration mass energy time

cfgm 12.25 kg (+0.5%) 311J (+21.9%) 73.8 s (-4.4%)

cfge 12.3 kg (0%) 231J (+5%) 83.9 s (-1%)

cfgt 14.8 kg (-20%) 794J (-28%) 57.7 s (+4.7%)
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Figure 5.39: Walkers with best mass, energy consumption, and task completion
time

The three feasible configurations with lowest mass, energy consumption, and task
completion time are shown from top to bottom, respectively. All three configurations
share the same kinematic structure (7 DOFs total) than inherently minimizes self-
collisions. For each configuration, its mass, energy, time and the features leading to high
performance are shown. The key difference between cfgm and cfge (which are generally
very similar) is that cfge has a significantly lower angular acceleration parameter and
slightly lower linear velocity and acceleration parameters. cfgt has significantly higher
velocity and acceleration parameters which lead to lower task completion time, but it
pays a price for this performance by having heavier actuators and links as well as much
higher energy consumption.

cfgm - lowest mass
mass - 12.2 kg
energy - 255 J
time - 77.2 s
key differences:
• small-diameter links are light-

weight

cfgt - lowest completion time
mass - 18.6 kg
energy - 1112 J
time - 55.2 s
key differences:
• high velocity and acceleration pa-

rameters
• powerful wrist actuators enable

higher accelerations
• larger-diameter links provide

stiffness for high accelerations

cfge - lowest energy consumption
mass - 12.3 kg
energy - 221 J
time - 84.7 s
key differences:
• lower velocity and acceleration

parameters than cfgm (and cfgt)
lead to lower energy use
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(a) (b)

(c) (d)

(e) (f)

(g)
Figure 5.40:  Synthesized walker executing inspection task

(a), (b) - walking along the first truss segment (e) starting the rotation about the truss segment

(c) - transitioning to the second segment (f) completing the rotation

(d) - transitioning to the third segment (g) moving the end effector to inspection location
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plan to use an appropriate controller to perform collision avoidance.
To see if these results were repeatable, or if any other unanticipated configurations

could be synthesized, a second trial was conducted. As can be seen from the configuration
in Figure 5.42, the robots synthesized in the second trial are similar to those from the first.
While the second set of robots have the same collision-minimizing kinematic configura-
tion as the first, it is worth noting that the configuration graphs are in fact different:
whereas in the first experiment each limb consisted of an inlineRevolute2 followed
by two rightAngleJoints, the configurations in this experiment reversed the order of
the arm modules with the two rightAngleJoints coming first followed by the

Figure 5.41:  Close-up of walker wrist
The wrist structure present in the evolved walkers allows full rotation about each of
the three wrist axes without any self-collisions. The joint axes are indicated by the
arrows.

Figure 5.42:  Most efficient walker from second trial
The robots generated in the second trial share the same kinematic structure as
those from the first, but have a different ordering of joint modules in the configuration
graph.
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inlineRevolute2. The performance measurements for the best feasible configurations
are:

As in the first trial, the synthesizer ran for 13 hours; however only 35,000 evaluations,
rather than 52,000, were performed (due to fewer available computers for evaluation) and
thus slightly lower robot performance in terms of mass and energy is not surprising.
Note that the fastest configuration (at 54.9s) was slightly faster than in the first trial (55.2s)
and is both lighter and more energy efficient.

It seems likely that a more efficient walker can be synthesized if the only require-
ment is to be able to walk along truss segments and not transition to the back side of the
truss. We can expect the robots synthesized only for walking to be better at walking than
the robots we have seen so far, but perhaps be unable to perform transitions. To test this
hypothesis, the synthesizer was re-run with a modified task specification that did not in-
clude any transitions between segments. The robots synthesized for this task, shown in
Figure 5.43, have a markedly different structure than those evolved for the full inspection
task. The three joints at the intersection of the two limbs are similar to human hips, though
they have one less degree of freedom and cannot independently lift a leg without chang-
ing its orientation, while the wrists each have two intersecting joint axes. As detailed in
Table 5.17, the lightest, most energy-efficient, and fastest robots have significantly better
performance in at least one metric each than their counterparts evolved for the full inspec-
tion task. (The robots evolved for the full inspection task were re-evaluated on the walk-
ing-only task to produce the performance measurements in the table.) When the robots
evolved only for walking are evaluated on the full task, they all have self-collision prob-

Table 5.16:  Performance of best walkers from second trial

mass energy time

best mass 13.7 kg 482 J 69.4 s

best energy 15.6 kg 263 J 87.3 s

best time 15.3 kg 917 J 54.9 s

Table 5.17:  Comparison of robots for walking-only task
The robots evolved for the walking-only task performed significantly better in one
metric (shaded table cells) when compared to those evolved for the full inspection
task.

Metric Task Mass Energy Time

Lowest mass complete inspection task 12.18 kg 98 J 30.5 s

walking only 6.3 kg 78 J 40.5 s

Lowest energy complete inspection task 12.3 kg 82 J 33.7 s

walking only 12.3 kg 38 J 46.3 s

Lowest time complete inspection task 18.6 kg 468 J 19.8 s

walking only 14 kg 479 J 19.6 s
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lems at the wrist when rotating about the truss segment (Figure 5.44). This demonstrates
a property of task-specific synthesis that can be both a strength and a weakness: by defi-
nition, the robots are specialized for the task and, while they may perform quite well at

Lowest energy
Mass: 12.3 kg
Energy: 38 J
Time: 46.3 s

Lowest time
Mass: 14 kg

Energy: 479 J
Time: 19.6 s

Lowest mass
Mass: 6.3 kg
Energy: 78 J
Time: 40.5 s

Figure 5.43:  Best robots evolved for walking-only task
The robots that were evolved only for walking (without the transition or inspection
motions) do not have the collision-minimizing wrist assembly synthesized in earlier
runs

Figure 5.44:  Link interference with walking-only robot
When evaluated on the full inspection task, the robots evolved for the walking-only
task had self-collisions at the wrist when rotating about the truss segment.
(Compare to the configuration in Figure 5.40e, which has the wrist assembly that
avoids self-collisions)
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the desired task, slightly different tasks may present substantial problems for the robots.
For this reason, it is crucial to ensure that the representative task used during the evalua-
tion process is in fact representative of the operations that will be encountered in the ac-
tual application.

In the experiments presented thus far (both in this and previous sections), we have
examined the impact of many factors on the synthesis process, including the module da-
tabase, kernel configurations, crossover operator probabilities, selection algorithms, and
task description. One other factor that influences the results of the synthesis process is
the set of metrics used to measure performance. In all of the experiments presented ear-
lier that used requirement prioritization, there were multiple competing metrics in the fi-
nal requirement group. Do these work against each other, resulting in configurations that
are a compromise between the different metrics? Or do they have a beneficial effect on
robot performance by pulling the synthesizer in different directions so that local minima
in a single metric can be avoided? To answer these questions, the synthesizer was run
three times, once for each metric in the final requirement group (mass, energy, and time).
Each trial began with the population from the beginning of the final requirement group
of the first experiment and only performed optimization of the final requirement group;
however, instead of three metrics, the final requirement group contained only a single
metric in each of the three trials (mass, energy, or time).

Even though the single-metric experiments were run for 40,000 evaluations, the ro-
bots with lowest mass, energy, and time performed significantly worse than the best from
the original, three-metric experiment (Table 5.18). It thus appears that multiple metrics
may improve the synthesizer’s performance rather than degrading it. One potential rea-
son for this surprising result is that multiple metrics lead the synthesizer in different di-
rections, thus improving the synthesizer’s ability to escaping local optima with respect to
any single metric. When optimizing multiple metrics, the feasibly-optimal set usually
contains many configurations with diverse properties, which prevents many good con-
figurations from being deleted from the population and which provides a broad range of
genetic material for creating new configurations. In contrast, when optimizing a single

Table 5.18:  Comparison of walkers optimized for single vs. multiple metrics
Starting from the same set of feasible configurations, the synthesizer produced
better-performing robots when simultaneously optimizing mass, energy, and time,
than when optimizing each metric independently.

Metric Metrics used Mass Energy Time

Lowest mass all 12.18 kg 255 J 77.2 s

mass only 14.4 kg 569 J 73.6 s

Lowest energy all 12.3 kg 221 J 84.7 s

energy only 19.6 kg 537 J 87.6 s

Lowest time all 18.6 kg 1112 J 55.2 s

time only 24.5 kg 1506 J 60.5 s
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metric the feasibly-optimal set will contain configurations that have equal performance
in the single metric and are thus not likely to be very diverse. This restricts the diversity
of genetic material in the population, and when coupled with the fact that the synthesizer
is always trying to move the search in the same direction (towards better values in the sole
metric) this may lead to an increased likelihood of becoming trapped in a local minima.
While it would be difficult to experimentally verify whether this hypothesis is correct, it
seems to be the most likely mechanism that would produce the substantial and repeated
performance differences between the single- and multiple-metric experiments.

5.6.1 Summary and discussion

The synthesis experiments presented in this section demonstrated synthesis of ki-
nematic, dynamic, actuator, structural, and controller properties for a mobile robot tasked
with walking and maneuvering on a truss structure in zero-gravity. The robots synthe-
sized for this task possessed an unexpected kinematic structure that inherently mini-
mized self-collisions and allowed each wrist degree of freedom to move through a full
revolution. This inherent minimization of self-collisions make the control problem easier
and allowed a controller with no explicit collision-avoidance capabilities to control the ro-
bots as they executed the task.

When the task was restricted to contain only the walking phase and no other ma-
neuvering, the synthesizer was able to produce robots that were significantly better-opti-
mized for walking than the robots evolved for the full task; however, the walking-only
robots had problems with self-collisions when later evaluated on the full task. While this
underscored the utility of the robots that had inherent self-collision minimization, it also
demonstrated the importance of ensuring that the task used for evaluating configurations
is actually representative of the end application, as factors that are not addressed in eval-
uation may present problems in practice. Additionally, this experiment demonstrated the
importance of the controller in determining robot performance: while the collision-mini-
mizing robots were able to complete the full task without collisions, it is likely that with
a better controller the walking-only robots could also successfully complete the task. The
expected continuation of increasing computing power should make it possible to include
better controllers (possibly including deliberative planning and re-planning to account
for errors in plan execution) in the synthesis process, giving better predictions of a robot’s
optimum performance. (Potential improvements in control and planning for use in auto-
mated synthesis are discussed in the next chapter.)

Finally, the experiments that compared optimization of metrics independently
versus simultaneously indicate that the synthesizer’s performance is improved by includ-
ing multiple competing metrics. Multiple metrics may actually improve the synthesizer’s
robustness by preserving a greater diversity of genetic material in the population and by
guiding the search process to a new region of the design space when a local minima in
one metric is reached. This mechanism has not been experimentally verified to be the true
cause for better performance when optimizing multiple metrics than when optimizing a
single metric, but in any case there seems to be a significant improvement in the quality
of synthesis results when multiple competing metrics are used.
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5.7 Discussion

5.7.1 Experiment summary and perspective

In this chapter, Darwin2K was applied to the design of six robots: the free-flyer, the
Space Shuttle waterproofing manipulator (for two versions of the task), the material han-
dler, the antenna-pointing mechanism, and the truss walker. These experiments demon-
strated the breadth of Darwin2K’s applicability, showing how task-specific simulation
needs can be integrated with the system’s existing capabilities to produce relevant evalu-
ation methods for each task. The experiment descriptions also documented the process of
task specification including selecting of metrics, constructing a representative task for
evaluation, and incorporating human knowledge through the module database and ker-
nel configurations. Several experiments explored the sensitivity of the synthesizer to
changes in the module database, kernel configuration, crossover operators, selection al-
gorithms, and evaluation metrics.

The free-flyer and walker experiments used dynamic simulation for the evaluation
process, a significant improvement in simulation capability for robotic synthesis. Many
of the tasks included independent optimization and synthesis of kinematics, actuator se-
lection, and structural properties as well as optimization of some control parameters. In
some experiments, the robots had evolved to include properties that are familiar to a ro-
bot designer: the free-flyer had manipulators whose upper- and fore-arms were similar
in length, and whose shoulders had three intersecting joint axes; the material handlers
were similar to those created by human designers; and the antenna-pointing mechanism
evolved for tracking low-elevation targets was kinematically similar to a manually-gen-
erated mechanism designed for the same purpose. However, the walker experiments
demonstrated synthesis of unexpected yet well-optimized and potentially novel configu-
rations, demonstrating the utility of automated synthesis for tasks that are not well-un-
derstood on the basis of previous experience within the design team. Significantly, the
same robot representation -- the parameterized module configuration graph -- was used
for all experiments despite the varying robot topologies and requirements for different
tasks.

Some rules of thumb for applying Darwin2K to future synthesis problems can be
learned from the experiments in this chapter. Human knowledge can play an important
role in determining the quality of synthesis results. Including useful topologies and mod-
ules can greatly improve the performance of the synthesized robots, while including sub-
optimal modules or topological features can lead to poor performance. The use of the
commonality-preserving crossover operator with subgraph preservation can speed con-
vergence towards good solutions by exploiting features that have been beneficial in the
past; however, these methods necessarily restrict the search space and increase the syn-
thesizer’s susceptibility to local optima. These methods should be used in moderation un-
less computer time is at a premium, in which case quality of results can be sacrificed to
improve synthesis speed by increasing the rate of CPCO and subgraph preservation. The
Configuration Decision Function and Requirement Prioritization are both significantly
better than the weighted sum for selecting configurations for reproduction and deletion
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on the basis of multiple performance metrics, in terms of synthesizer performance, qual-
ity of the synthesized result, and relevance to the task at hand. Finally, the synthesizer
was able to generate a wide range of feasible configurations that make different trade-offs
between multiple metrics; the designer must choose among these based on the require-
ments of the task.

The experiments suggest several areas for future improvement. Changes that
could be made to the synthesizer include automatically setting the probabilities for sub-
graph preservation and for the commonality-preserving crossover operator, and the use
of multiple sub-populations to improve repeatability by performing more exploration
early in the synthesis process. The synthesis process would also benefit from the use of
optimal, or at least deliberative, planning and control, as local controllers inevitably in-
troduce biases into the synthesis process by not making best use of each robot. Improved
dynamic simulation that included closed kinematic chains and simple terrain interaction
models would extend Darwin2K’s utility for mobile robot synthesis problems. Finally, a
high-level task scripting language would allow task-specific simulators to be more easily
constructed, and could lead the way for including the high-level task specification in the
synthesis process.

5.7.2 The role of Darwin2K in the design process

In the experiments presented in this chapter, Darwin2K performed a significant
portion of the design process: configuration design. However, there are other phases of
design that occur both before and after configuration design: conceptual design, and de-
tailed design. Conceptual design decides the general form of the machine (or machines)
that will address a task: Will a mobile robot or fixed-base manipulator be used? Will there
be one robot, or several? Should the mobile robot walk, roll, or fly? For each of the exper-
iments, conceptual design was implicitly performed in the process of describing the task,
kernel configurations, and configuration filters: in the free-flyer experiments, we limited
the search to two-armed, free-flying robots; the truss inspection walker experiments as-
sumed symmetric walkers with 7 degrees of freedom; the material handler experiments
assumed a wheeled base; and so on. In each of these cases, the highest-level designs de-
cisions had already been made, thus limiting the design space. For example, the material
handler could have used a legged base, and the truss inspection task could have been ac-
complished by a free-flying camera or some sort of articulated, wheeled robot.

The effort required to specify tasks and implement task-specific planning or con-
trol algorithms is the main reason Darwin2K did not address high-level conceptual de-
sign. The addition of flexible planners, or of motion plan synthesis performed
simultaneously with configuration synthesis, would allow Darwin2K to perform concep-
tual design, most likely at a substantial increase in computational cost. Improved plan-
ning capabilities would also reduce the work required to specify a detailed task
description. Even with these proposed improvements, it may not make sense to give
Darwin2K an unrestricted (or very loosely-restricted) design space; rather, it would prob-
ably be more useful to apply Darwin2K to each conceptual design sequentially. For ex-
ample, wheeled, flying, and walking robots for the truss inspection task would have
drastically different topological and parametric features, and it is not likely that exchang-
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ing information between them would prove useful. Furthermore, simultaneous explora-
tion of all three schemes for mobility would likely result in convergence upon a single
modality and would not allow each method to be explored and optimized to the fullest
extent. In contrast, using Darwin2K to explore, detail, and optimize each modality inde-
pendently would provide the designer with a realistic assessment of the performance and
trade-offs possible with each design. This approach simultaneously allows a more in-
formed conceptual design decision to be made, and results in a complete configuration
description that is ready for detailed design.

Partitioning of the design space is also useful at a finer level: for example, the ex-
periments that explored the impact of module and kernel choice indicated that manipu-
lators with prismatic joints were better-suited for the task than manipulators with only
revolute joints. Using Darwin2K in a sequential fashion starting from different configu-
ration alternatives allows each alternative to be explored in-depth and optimized. In con-
trast, manual design methods often make mid-level configuration decisions (e.g. revolute
or prismatic joints, number of degrees of freedom, etc.) before each alternative can be ex-
tensively evaluated. When a robot is being designed manually, the mid-level configura-
tion decisions may often be made when each alternative is at the “stick figure” level of
detail. Darwin2K provides much more information about the pros and cons of each alter-
native and provides a significantly more detailed description of the configuration, allow-
ing the designer to make more appropriate mid-level configuration decisions and thus
avoid surprises down the road as the chosen configuration is fleshed out. This difference
between manual and automated design is partially due to an interesting and fundamental
difference in design methodology: manual design starts with vague design concepts and
proceeds to refine and detail each concept, discarding alternatives before they are fully
specified, while automated approaches such as Darwin2K use the same level of detail for
every design and seek to improve performance by changing attributes of the design.

The development, testing, and characterization of Darwin2K focused on a highly-
automated manner of use that did not take advantage of human interaction during the
synthesis process. While this resulted in a capable synthesis system, it is likely that the
computational resources required for synthesis can be substantially reduced by including
more human interaction during synthesis. One mode of interaction is to use Darwin2K in
an iterative manner: the best few configurations from one run of the synthesizer can be
used as the kernel configurations for another run. The designer can set the const-flags
for some of the parameters and attachments of the new kernel configurations in order to
limit the search space, thus allowing Darwin2K to be used in a coarse-to-fine manner. An-
other mode of interaction would be the “Hand of God”, which requires some modifica-
tion to Darwin2K: the designer could interactively view robots during the synthesis
process and modify them, so that easily-remedied design flaws could be quickly correct-
ed. This method would likely entail another process that queries the Synthesis Engine for
the best configurations in the population (perhaps showing the designer a scatter plot of
the feasibly-optimal set, similar to Figure 5.9), then shows the designer a simulation of the
chosen robot as it executes the task. The designer could then modify the robot (either by
editing the text representation of the PMCG or through an interactive tool) and then re-
turn the robot to the Synthesis Engine, which would queue the robot for evaluation and
then introduce the configuration into the population. This would allow the designer to in-
fluence the exploration of the design space and would probably be most useful in helping
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the synthesizer escape local minima.

5.7.3 Conclusion

The results presented in this chapter encompass 146 trials of the synthesizer and
entailed generating and simulating over five million robot configurations. The range of
experiments underscores Darwin2K’s applicability, and demonstrates the system’s abili-
ty to synthesize many key properties including kinematics, dynamics, actuator selection,
structural features, and control parameters. While the experiments were predominantly
successful, they revealed some limitations and areas for caution and motivated ideas for
future work. The next chapter concludes this dissertation and steps back to assess the les-
sons learned and contributions made during the course of this work, and enumerates key
challenges for future work in automated synthesis for robotics.
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6 Conclusion

This thesis presented Darwin2K, a practical, widely-applicable, and extensible sys-
tem for automated robot configuration synthesis. This thesis makes numerous contribu-
tions to robot synthesis, including improved methods for multi-objective optimization,
an extensible architecture for robot synthesis systems, new simulation and synthesis ca-
pabilities, a new representation for robot synthesis, and demonstration of synthesis for a
wide range of realistic robot tasks.

Several features of Darwin2K contribute to its wide applicability. Darwin2K’s syn-
thesis algorithm is independent of the task and the type of robot, allowing the system to
be extended to address a wide range of synthesis tasks. The Parametrized Module Con-
figuration Graph allows representation of a wide range of robots, including modular and
monolithic robots, mobile robots, and robots with multiple or bifurcated manipulators.
Finally, Darwin2K’s extensible system architecture enables novel synthesis tasks to be ad-
dressed while maximizing use of existing simulation and synthesis capabilities.

Darwin2K includes a toolkit of simulation and analysis algorithms which are use-
ful for many synthesis tasks including dynamic simulation, estimation of link deflection,
PID and Jacobian-based controllers, collision detection, and representations for trajecto-
ries and payloads. A method for automatically generating dynamic models of robots is
presented, allowing dynamic simulation to be incorporated into the synthesis process.
When combined with Darwin2K’s synthesis algorithm, these capabilities allow synthesis
and optimization of robot kinematics, dynamics, structural properties, actuators, and task
parameters. The system’s evolutionary algorithm can effectively optimize multiple objec-
tive functions in a task-relevant manner, and can generate a range of solutions that make
different trade-offs between metrics. Two new selection methods for multi-objective op-
timization were presented: the Configuration Decision Function and Requirement Prior-
itization. These methods fill different niches (rank or tournament selection, and fitness-
proportionate selection, respectively) and are applicable to other evolutionary optimiza-
tion domains.

Finally, the capabilities of Darwin2K were demonstrated and characterized
through nearly one-hundred and fifty experiments synthesizing fixed-base and mobile
robots, with single and multiple manipulators, for a range of tasks. The breadth of exper-
iments and the detail of synthesized results demonstrate a substantial improvement over
previous systems for automated robot configuration synthesis.

6.1 Contributions

A new representation for robot configurations

The Parameterized Module Configuration Graph (PMCG) combines the advan-
tages of parametric and modular representations while eliminating their drawbacks. The
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PMCG can represent robots that have fixed or mobile bases, that are modular or mono-
lithic in nature, and which have single, multiple, or branching serial chains. The PMCG
easily allows human knowledge about robot topology to be incorporated (which can sig-
nificantly improve synthesis quality while reducing computation time) and allows for
preservation of symmetry in configurations.

The use of parameterized rather than fixed modules allows a single representation
to be used to efficiently synthesize both modular and non-modular robots. While it is pos-
sible to use fixed modules to synthesize robots that will be constructed in a monolithic
(rather than modular) manner, the inclusion of parameters in the module representation
has several significant advantages over fixed modules:

• Parameters can be varied independently, allowing a wide range of
module properties. A single parameterized module with five 3-bit
parameters can represent the same space of variations as 32,768 fixed
modules.

• When using a parameterized representation, the optimization process
can change a specific property of a configuration by changing a single
parameter. In contrast, when using fixed modules, useful information
will be lost as the optimizer attempts to make a change to a single prop-
erty by replacing a module with a different one (which may have drasti-
cally different properties and may be of a different type entirely).

A modular representation has important advantages over purely parametric rep-
resentations, as well. More detailed geometric and component information can be encap-
sulated within each module, enabling more accurate simulation and detailed
specification of the final design. Since modules are self-contained software objects and
present a consistent interface to the system, a module’s parameters can represent arbi-
trary properties and new modules types can be added to the system without any impact
on the synthesis algorithm. Finally modules can represent subsystems of arbitrary com-
plexity, from a link with no moving parts to an entire mobile robot, and provide a simpler
means of varying robot topology than purely parametric representations.

An Extensible Architecture for Configuration Synthesis

The software architecture used in Darwin2K employs a rigorous application of ob-
ject-oriented programming to enable new capabilities to be added while maximizing re-
use of existing software components. The architecture allows task-specific modules,
metrics, simulation algorithms, controllers, and other evaluation methods to be added
without requiring any modification of the synthesis algorithm while encouraging re-use
of Darwin2K’s toolkit of software components. The result is a synthesis system that is sig-
nificantly more extensible and widely-applicable than previous approaches.

Task-Relevant Optimization of Multiple Objective Functions

A significant part of this thesis concentrated on developing an effective optimiza-
tion algorithm for constrained, multi-objective synthesis problems. A driving factor was
the realization that the synthesizer should account for the significance of different metrics
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in a manner that is relevant to the task at hand. This led to the development of two new
selection algorithms: the Configuration Decision Function (CDF) and Requirement Prior-
itization (RP). Both methods consider the significance of each metric in a task-relevant
way, e.g. selecting configurations on the basis of power consumption is only meaningful
if the configurations can complete the task at hand. Setting synthesizer parameters for
these methods is significantly more intuitive than selecting weights for scalarization-
based methods such as the weighted sum, and these methods are effective at satisfying a
number of competing performance requirements while simultaneously generating a
range of trade-off configurations for multiple open-ended objective functions. Both meth-
ods are applicable to other evolutionary optimization domains, and address different
niches: the CDF can be used with algorithms based on tournament or rank selection,
while RP is formulated for fitness-proportionate selection.

Two other important aspects of the synthesis algorithm are elitism and diversity
preservation. The elitist algorithm for multiple metrics augments the traditional notion
of the Pareto-optimal set with a task-specific feasibility criteria, resulting in an elitist
method that accounts for the task-relevance of different metrics. This algorithm prevents
good solutions from being lost due to the probabilistic nature of evolutionary algorithms
while limiting the elite set to include only those configurations that are non-inferior with
respect to a subset of the metrics and that differ in ways that are significant with respect
to the task. The algorithm for diversity preservation ensures that every solution in the
population is unique, and is particularly useful for steady-state evolutionary algorithms.
Evolutionary approaches require a diverse population in order to avoid local optima in
the search space; however, they also necessarily converge on a solution as optimization
proceeds. Darwin2K’s diversity preservation algorithm eliminates premature conver-
gence of the population while also eliminating wasted computation time spent on redun-
dant evaluations.

Commonality-Preservation for Configuration Graphs

Recent research suggests that it is beneficial to preserve common features when
performing crossover between two parent solutions that have been selected for their high
fitness. While the crossover operators used for in fixed-length genetic algorithms inher-
ently preserve diversity, those for trees and graphs do not. Two related methods of com-
monality-preservation used in Darwin2K are the commonality-preserving crossover
operator, which preserves the largest common subgraph of two parent configurations in
their offspring, and the subgraph-preservation operation, which prevents the common
subgraph from being disturbed in future recombinations. These methods trade off ex-
ploitation of topological features known to perform well against exploration of potential-
ly better topologies, providing a means of adjusting the synthesizer’s behavior to favor
rapid generation of feasible configurations or slower but more robust generation of high-
er-quality configurations.

Forward Dynamic Simulation for Configuration Synthesis

Darwin2K can optionally use a dynamic (rather than kinematic) simulation when
evaluating configurations. This is the first time dynamic simulation has been included in
the synthesis process of an automated configuration tool. Kinematic simulation is accept-
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able for applications in which actuators will not be operated at their torque limits, and (in
the case of robots with non-fixed bases) when manipulation forces are not large enough
to generate significant reaction forces. Dynamic simulation is required for free-flying ro-
bots, for robots whose inertial forces are significant enough to cause base motion, and for
robots (such as hydraulic machines used in construction) that are controlled in joint-space
with actuators operated at their torque limits for large portions of the task -- in short,
when the robot’s motion can not be computed on the basis of kinematics and controller
commands. Forward dynamic simulation of a robot gives the capability of modeling the
behavioral effects of actuator saturation and reaction forces due to manipulation.
Darwin2K can automatically derive the equations of motion for a robot -- including mul-
tiple or branching manipulators and free-flying bases -- and use them to compute the mo-
tions a robot due to applied forces from actuators, payloads, and tool reactions. This
extends Darwin2K’s applicability to include tasks requiring free-flying bases, frequent or
constant actuator saturation, and force-based (rather than position- or velocity-based)
control.

Synthesis and Optimization of Dynamic, and Structural Parameters

Kinematic parameters are only one aspect of a robot’s configuration; structural
properties and dynamics are also key properties that define a robot and determine its per-
formance. Both of these properties are included in Darwin2K’s robot representation and
since Darwin2K’s simulation algorithms account for their impact on robot performance,
these parameters can be optimized by the synthesis algorithm. Previous synthesis ap-
proaches have ignored the effects of link material and cross-section on stiffness, and thus
cannot meaningfully optimize the dynamic properties of links (which are also dependent
on material and cross-section). Using links with fixed cross-sections without regard to
their stiffness implies either that all link and joint modules are overdesigned and thus
more massive than necessary, or leads to underestimates of robot mass and actuator
torques since some links may require additional mass to increase strength and stiffness to
adequate levels. Including the impact of link cross-section and material on both dynamics
and stiffness yields more accurate estimation (and better optimization) of total system
mass and actuator requirements.

Independent Synthesis and Optimization of Actuators and Components

Darwin2K can vary motor, gearbox, and other component selections independent-
ly of other module properties due to the parameterized module representation. Previous
approaches have relied on fixed modules; if an actuator was undersized, it could be
changed only by replacing the entire module. This is disruptive, since replacement of a
module may change many properties of the robot that are already well-optimized (such
as joint type and orientation, link length, and module type). Since actuator selection for
a module can be an independent parameter in Darwin2K, a joint’s actuator can be
changed without making disruptive modifications to a configuration. Combined with
Darwin2K’s dynamic simulation and metrics for actuator saturation and power, this
leads to actuators that are well-optimized with respect to a task’s mass, power, force, and
speed requirements.



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

Conclusion    179

Demonstration

This thesis has demonstrated automated synthesis over a significantly broader
range of application than previous synthesis systems. This provides a validation of the
system’s novel aspects, including the parameterized module configuration graph repre-
sentation, extensible framework, optimization algorithm, dynamic simulation, and eval-
uation methods. The experiments demonstrated synthesis of fixed-base and mobile
manipulators, multiple manipulators, and a walking robot, and included generation of
robot kinematics, dynamics, structural properties, actuator selection, and control and task
parameters. The breadth and depth of these examples demonstrate a significant advance
in the state of the art in automated synthesis of robots.

6.2 Lessons Learned

Many useful and important pieces of knowledge became apparent during the de-
velopment and application of the system presented in this thesis. These lessons may
prove useful to future researchers pursuing automated synthesis.

Task Specification

It is crucial to capture task-specific requirements in a meaningful way. The better
a designer can communicate the constraints and needs of a task to the synthesizer, the
more relevant the synthesized robots will be. For example, using the weighted sum for
selection resulted in many non-feasible configurations being selected for reproduction in
preference to feasible configurations because the weighted sum failed to encode the fact
that meeting the task constraints (such as task completion or lack of collisions) was more
important than task completion time or energy usage. Additionally, it is useful to capture
the task objectives as directly as possible: metrics such as peak joint torque or velocity do
not actually measure a robot’s performance on the task, and are inferior to metrics like
task completion time or actuator saturation which have more direct bearing on the robot’s
performance. Evolutionary algorithms are notorious for their ability to find loopholes in
the problem specification; the likelihood of this is reduced when the key requirements of
the task are encoded in the synthesizer’s goals, constraints, and evaluation methods. One
question the designer should ask when selecting metrics or properties to optimize is
“What trade-offs do these metrics/properties affect?” The material handler synthesis task
in Section 5.4 is a good example: since link deflection was not accounted for, there was no
trade-off against minimizing link cross section and thus the synthesizer had no way of
meaningfully optimizing link cross section. Fortunately, loopholes in the task description
quickly become obvious after several synthesis runs, as the synthesized robots inevitably
exploit them.
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Evaluation

The controller used during simulation has a substantial impact on robot perfor-
mance and can induce biases in the synthesis process. For example, the robots evolved for
truss walking evolved to include a kinematic structure that inherently minimized self-col-
lisions, but it is unlikely that this feature would have evolved if the robots’ controller in-
tentionally avoided collisions. Ideally, a globally-optimal controller would be used in the
evaluation process, thus revealing a robot’s best possible performance; currently, this is
not yet within the reach of most organizations due to the computational resources re-
quired. While making individual evaluations more expensive, it is likely that the use of
optimal controllers will significantly reduce the number of evaluations required to gen-
erate feasible configurations. Until it becomes tractable to use globally-optimal control-
lers during the synthesis process, it is useful to let the synthesizer optimize any controller
parameters (such as velocity, acceleration, or other gains) that are not dictated by the task
requirements since different robots are likely to require different values for these param-
eters. Additionally, the synthesizer can often find useful performance trade-offs (such as
speed versus energy) if it is allowed to vary controller parameters.

Evaluation comprehensiveness and accuracy play important roles in determining
how much confidence a designer has in the synthesized robot’s performance. For exam-
ple, if a mobile robot’s interactions with terrain are not modeled very accurately, it is un-
likely that the real robot will perform similarly to the simulated robot, and it is not clear
that the synthesized robot will be better in reality than other designs that perform worse
in simulation. This is a compelling reason for using simulation rather than heuristics to
measure performance, for using dynamic simulation when evaluating free-flying robots,
and for further improvements in simulation quality.

An important practical aspect of constructing a task-specific simulation is the cost
of iteration when changing simulator or task properties. Darwin2K allows all evaluation
parameters (such as trajectories, controller parameters, simulator time steps and error tol-
erances, payload geometry, and even the choice of controller and other evaluation com-
ponents) to be specified in text files, thus making iterative changes to the simulator very
easy. This is also very useful for robot properties: the text format for robots enables the
designer to quickly construct and modify robots after viewing their performance in sim-
ulation. These two factors make Darwin2K’s simulator valuable as a stand-alone design
tool since design iterations can be performed quickly to give the designer a feel for the
impact of robot properties on performance.

Finally, the use of flexible algorithms can greatly reduce the effort required to cre-
ate a simulation while increasing the system’s applicability. For example, the SRI control-
ler can work with single, multiple, and branching serial chains of arbitrary degrees of
freedom, and with free-flying or planar bases. This allowed the controller to be used for
all of the tasks requiring kinematic simulation (since tasks were formulated as trajectory
following) and, when augmented with the robot’s dynamic model (see Section 4.4.4), to
also be used for the free-flyer and truss walker tasks. No specialized controllers were
needed for any of these tasks, thus reducing the effort required to construct a task-specific
simulator.
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System Characteristics

Though not initially a focus of this research, it quickly became apparent that exten-
sibility is a factor that limits the applicability of a synthesis tool. No single task represen-
tation short of a well-featured language is adequate for all robot tasks; this realization led
to the development Darwin2K’s extensible architecture, which isolates task details from
the synthesizer and allows new tasks to be simulated while taking advantage of existing
software components (e.g. the collision detector, SRI controller, or numerical integrator).
This also allows new capabilities to be incorporated into Darwin2K’s library of software
components in a regular way.

Based on experience with Darwin2K, it seems important for a synthesis system to
easily allow the incorporation of human knowledge about potentially beneficial proper-
ties of the artifact being designed. In Darwin2K, this is accomplished by specifying partial
or complete topologies in the kernel configurations, and selecting appropriate modules
(and parameter ranges) for inclusion in the module database. Additionally, the properties
of synthesized robots can be manually changed quite easily since each robot can be stored
as a human-readable text file. Incorporating human knowledge into the design process
by way of both constraints (such as the configuration filters and kernels with const-flags
set for topologies) and primitives (module selections) can reduce synthesis time and im-
prove the quality of synthesis results. Human guidance can, however, be a two-edged
sword: if user-specified design constraints are unnecessary or harmful, the synthesizer
will generate poorly-optimized configurations. The inclusion of complex modules (as in
the manipulator synthesis trials in Section 5.2 that used the SCARA module) can also
make the synthesizer more susceptible to local optima, since feasible but poorly-opti-
mized topologies can be quickly discovered and focused upon. Complex modules should
thus be included only when there is a good reason to suspect they will be useful or re-
quired for the task being addressed.

6.3 Future Directions

Simulating contact, terrain interaction, and closed chains

Darwin2K’s applicability could be expanded by including simulation of contact,
terrain interaction, and closed kinematic chains. The simulation of terrain interactions for
wheeled vehicles with rigid and non-rigid suspensions is crucial in enabling complete
synthesis of wheeled mobile robots. Synthesis of multi-legged walkers or climbers would
be improved by the ability to simulate kinematic chains that are closed through contact
with external bodies; the related ability to simulate chains that are closed through the ro-
bot mechanism itself would expand the types of mechanisms that Darwin2K could syn-
thesize. Simulating contact is a more difficult but still tractable problem and would allow
evaluation of running machines, grippers, and other mechanisms that interact with their
environment in ways that are not always easily predictable.
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Planning and control

The incorporation of optimal or deliberative planning and control will provide bet-
ter estimates of performance when evaluating configurations in simulation. When using
local control, measured robot performance depends heavily on initial conditions such as
initial joint angles; more capable control methods would not be as sensitive to these con-
ditions and could yield performance measurements that are closer to a robot’s best capa-
bilities. The biases in solution form introduced by local methods would also be greatly
reduced by the use of deliberative or non-local planning and control. Another approach
is to include plan generation in the synthesis process, probably combining elements of
modular plan generation (as in [Farritor98]) and parametric optimization of task and con-
trol values (as was done in Darwin2K for controller parameters, and in [Kim93] and
[Chocron97] for joint angles). Such an approach would eliminate the need for complex,
globally optimal planning and would measure plan optimality according to the task’s
metrics, but would increase the size and complexity of the search space. This approach
would also increase the flexibility of the synthesizer in deciding high-level task and con-
figuration issues since details of task description could be varied. For example, the syn-
thesizer might be able to vary controllers and trajectories, and choose a mobile robot,
manipulator or even multiple cooperating robots based on the detailed task description.
Both approaches -- better planning algorithms, and including plan generation in the syn-
thesis process -- seem to have unique advantages and costs and warrant further investi-
gation.

Task specification

While Darwin2K provides many useful components for building a relevant, task-
specific simulator which can be used for automated and manual synthesis, creating the
simulation can take anywhere from an hour to a week depending on how much task-spe-
cific coding is required. Much of this time could be eliminated by the development of a
task scripting language for specifying how the simulation components interact. In addi-
tion to creating the language itself, this would require the interfaces of simulation com-
ponents to be expanded to provide a regular way of querying states and accessing
internal variables. A language for specifying the geometry of parameterized modules
would completely eliminate the coding required for most task-specific modules, and the
ability to import CAD descriptions for payloads and fixed modules would reduce task-
specific coding time as well.

Expanded component modeling

Adding component models beyond motors, gearboxes, and materials will increase
the level of detail of synthesized robots and will more accurately model their properties
and performance. For mobile robots, power storage and generation subsystems such as
batteries, solar panels, and generators can be a significant component of total system
mass. With models for these components and appropriate metrics, Darwin2K could in-
clude optimization of major power system components in the synthesis process to reduce
system mass or improve range and operating time. Another important capability is sen-
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sor configuration, which would be enabled by the inclusion of perception sensor models
such as cameras and rangefinders. While the human designer would likely know the best
type of vision sensor, sensor parameter selection (e.g. field of view) and placement could
be optimized by modeling a sensor’s visible field and including a metric for measuring
sensor coverage of a desired area.

Richer representation for robots

As with expanding the types of components modeled by the synthesizer, improve-
ments to the Parameterized Module Configuration Graph would increase the level of de-
tail of synthesized configurations. For example, the detailed geometry at the junctions
between modules could be synthesized if modules could query each other about their ge-
ometry; if one module knew that a module it was attached to had a circular connection
surface of a certain diameter, the first module could create its geometric representation
such that a smooth junction was produced. This could result in more accurate estimates
of structural and inertial properties. Additionally, it would be useful to have parameters
that were shared by modules, e.g. two different link modules in a manipulator that shared
the same length or diameter parameter, or joint modules that shared actuator parameters
to simplify the manufacturing process. Labelling the task parameters and allowing the
number of task parameters to vary would enable simulation components to perform op-
erations such as constructing joint-space trajectories (with differing numbers of via
points) that are optimized along with each configuration.

Improving synthesis repeatability

The probabilistic nature of evolutionary algorithms can make it difficult to achieve
repeatable results for some problems. While fairly repeatable results can be had for some
problems (such as the material handler, truss walker, and high-level and prismatic Space
Shuttle waterproofing manipulator experiments), other problems apparently have many
more, or much deeper, local optima in the search space and results differed substantially
in topology between different trials. The multi-stage nature of Requirement Prioritization
may make multi-population or multiple-restart approaches effective at improving repeat-
ability by exploring many different options early in the search process, before committing
to optimization of a limited number of topologies.

Practical issues

Several practical improvements to Darwin2K will help bring it into more general
use. A graphical configuration editor would make it easier to assemble configurations for
simulator debugging, manual synthesis, or for use as kernels. Similarly, a graphical de-
signer for interactively specifying task properties such as trajectories would reduce task
specification time.

Finally, it is important to address the packaging, documentation, porting, and dis-
tribution of Darwin2K as a software system. Darwin2K comprises a significant amount of
software, on the order of 60,000 lines of C++; it is important to make this publicly-avail-
able so that Darwin2K can be put into use, and so that future research in robot synthesis
that advances beyond Darwin2K’s abilities does not first require duplication of this effort.
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These actions should help bring automated synthesis capabilities into the hands of robot-
ics researchers and designers alike.

Future applications

The synthesis tasks addressed in this thesis represent only a small portion of the
types of tasks for which robots can be automatically synthesized. The potential improve-
ments and extensions to Darwin2K listed above will provide new opportunities for syn-
thesis such as workcell configuration, cooperative multi-robot systems (including their
behaviors), running machines, swimming robots and other submersibles, and multi-
legged walkers. These exciting and challenging opportunities will be enabled by im-
provements to Darwin2K and will themselves provide motivation for new capabilities
and directions.
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Appendix A: OOP and Class Hierarchy

Darwin2K makes extensive use of object-oriented programming (OOP) to allow
new software components to be added and interact with existing system components.
Briefly, OOP is a programming methodology that relies heavily on abstraction and inter-
faces. Abstraction is the process of making a single atomic unit or concept out of numer-
ous properties, so that the entire set of properties can be referred to and used as a unit.
This is also the “black box” approach: the internals of each unit are hidden, and all inter-
action between units is through interfaces. Abstraction is also similar to naming: for ex-
ample, instead of saying “animal with four legs, whiskers, a tail, and which eats mice and
birds, and which has a specific weight and color”, we can call the same object “cat” and
thus avoid describing the details each time we wish to refer to it. In OOP, the notion of a
description of an object (e.g. cat) is called a class. While cat describes a particular kind
of animal, it is also a generalization: there are many sub-categories of cat, such as Per-
sian or Siamese or Tabby. In C++, these are said to be derived classes of the base class
cat, since they are specific types of cat. Similarly, the cat class might be derived from
mammal, which might in turn be derived from animal, and so on. Each C++ class can
contain a description (i.e. data, such as the cat’s weight or color) as well as procedures
(such as eat or nap). The descriptions are called members or data members; the procedures
are called member functions or methods. When referring to a specific example of a class,
such as your own pet cat named “Grouchy”, you are referring to an instance of the class,
or an object. Each instance contains specific values for the data members: the cat class
description contains a member for weight, and the instance of cat named Grouchy has a
weight of 9 lbs.

The “black box” nature OOP allows objects of various types to interact with each
other, without having to know about the internals of all objects involved. In Darwin2K,
there are classes for modules, for simulation components, for metrics, for evaluators, and
for configuration filters, and so on. Each of these base classes defines a specific interface,
though which all interactions take place. For example, when creating the physical repre-
sentation of a robot, the configuration calls each module’s createGeometry method.
The configuration does not need to know what the specific class of each module is or how
each module’s geometry is created. This allows the configuration to work with any type
derived from the module base class. Similarly, the metric class defines a standard inter-
face so that the synthesizer can work with any metric while remaining independent of the
metric’s internals.

To make it possible to specify which modules, metrics, evaluators, and other sim-
ulation components should be used for a particular synthesis run, all of these objects are
derived from the synObject class. synObject is the base class for objects that are in-
cluded in Darwin2K’s object database, which allows objects of specific classes to be dy-
namically created by their name. Normally, when an object of a specific class is required,
the class is specified in the source code and is thus fixed compile time:

massMetric *m = new massMetric;

This statement creates an object of type massMetric that will be referenced by m. How-
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ever, in practice it is inconvenient to require all objects to be specified at compile time: in
this case, if the designer decided that a different metric was required then the source code
would have to be changed, and the libraries and executables would have to be rebuilt. To
make it easier for the designer to select which objects are used and initialize them, classes
derived from the synObject class can be instantiated and initialized through text files:

char objectType[80] = “massMetric”;
float min = 10.0;
float max = 20.0;

These statements, while similar in syntax to C, are included in the synthesizer’s ini-
tialization file and indicate that a massMetric object should be created, and that the met-
ric’s minimum value should be 10.0 and its maximum value should be 20.0. The modules
in the module database are specified similarly: the modules desired for a given synthesis
run are listed and values for their properties are given. Simulation components, evalua-
tors, and other classes can similarly by instantiated and initialized. The main method
(member function) defined by the synObject class is className, which returns a
string containing the name of the class. The object database contains a list of all classes,
and by comparing the string returned by each class’s className function to the string
specified by the user, objects of appropriate type can be dynamically created. Figure A.1
shows the class hierarchy for base classes that can be used with Darwin2K’s object data-
base; all are derived from the synObject class and some will be briefly described in the
following sections.

The module class is used to represent parameterized modules. Some of the impor-
tant methods for modules are:

• createGeometry - creates polyhedral description of module
• numParams - returns the number of parameters
• numConnectors - returns the number of connectors
• requiresContext - returns 1 if the module requires a component

context
• computeDeflections - computes the deflection of the module’s

synObject

evaluator
metric

component

evComponent

module

cdObject

obstacle3

dofModule
linkModule
toolModule

baseModule
jointModule componentJoint

DEsolver
controller
genericPath
stateDependentMetric

pmComponent cfgFilter

Figure A.1: Hierarchy of base classes for database objects
Shown above are the base classes for objects that can be added to Darwin2K’s
object database. Any objects (including task-specific objects) that are derived from
these objects can be included and configured at runtime through Darwin2K’s
initialization files. Note that all of these classes only serve as templates, and
cannot be instantiated as objects.

nonComponentBase

nonComponentJoint
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parts given applied forces and moments

Each specific module type can define its own replacements for these functions; these re-
placements will be called instead of the generic version. Figure A.2 shows the class hier-
archy for Darwin2K’s modules. Appendix B gives the parameters and brief descriptions
of the modules that were used in the experiments. The component class is used by mod-
ules which require descriptions of motors, gearboxes, or materials.

The evComponent class is used to encapsulate modular simulation capabilities;
the class hierarchy is shown in Figure A.3. The class’s main functions include:

baseModule

jointModule

componentJoint

linkModule

toolModule

nonComponentBase fixedBase

virtualBase

offroadChassis

testBase

stackerBase

ffBase

offroadChassis4WS

mecanumBase

oclChassis

antennaChassis

elbowJoint2

offsetElbow

rightAngleJoint

inlineRevolute2

prismaticBeam2M

prismaticBeam3M

prismaticTube

scaraElbow

nonComponentJoint

oclBoom

scaraElbow2

stackerGantry

stackerTranslator

stackerVTranslator

elbowJoint

offsetRevolute

inlineRevolute

dualArmBase

prismaticBeam2

prismaticBeam3
virtualLink

squarePrism

elbowLink

counterWeight

hollowTube

elbowLink2

simpleTool

palletFork

oclBucket

walkerGripper

stackerGripper

MEETool

Figure A.2: module class hierarchy
Modules listed in bold can be instantiated, while those in plain type are only base
classes. Not all of the modules were used in the experiments presented.
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• readParams - initializes variables from a parsed text file
• setVariables - sets the value of one or more variables from task

parameters included in a configuration
• evInit - one-time initialization function
• init - initialization function called every time a new configuration is

evaluated
• cleanup - deallocates any data structures allocated by init
• update - called every simulation time step

evComponents can thus be created and initialized through text files, and provide a reg-
ular interface for including variables such as controller gains or trajectory via point loca-
tions as task parameters to be optimized.

The evaluator class provides high-level, task-specific simulation control. De-
rived evaluators typically do not contain much, if any, simulation details; these are left
to the evComponents. The primary methods are:

• evaluateConfiguration - the main simulation loop
• readParams - parses initialization file, sets variables, and passes

parsed information to evComponents
• init - initializes a configuration before simulation, and calls each
evComponent’s init method

• cleanup - deletes configuration after simulation, and calls each
evComponent’s cleanup method

• setVariables - sets the value of one or more variables from a config-
uration’s task parameters, and passes the remaining task parameters to
the appropriate evComponents

The evaluator class handles parsing of initialization files and passes the parsed infor-

evComponent collisionDetector

motionPlanner

payload

controller

genericPath

DEsolver

reactionForceCalculator

panelSection

sriController

pidController

ffController

euler

midpoint

rungeKutta4

path relativePath

antennaPath

stackerPath

Figure A.3: evComponent class hierarchy
evComponents encapsulate simulation capabilities so that they may be used as
needed for a task-specific simulation. Objects of each of these types can be created
and initialized through text files, and objects derived from the same type can be
used interchangeably with other evComponents.
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mation to the appropriate evComponents. Figure A.4 shows the class hierarchy for eval-
uators.

The metric class measures the performance of configurations in simulation. Fig-
ure A.5 shows the class hierarchy; descriptions of each metric are given in Section 4.8. The
most important methods for metrics are:

• evaluate - records the fitness of a configuration at the current simula-
tion time step

• biggerIsBetter - returns 1 if larger values of the metric indicate bet-
ter performance, or 0 otherwise

• getVal - returns the raw fitness measured for the configuration
• getStdVal - returns the standardized fitness computed from the raw

fitness
• setToWorst - sets the raw fitness to the worst possible value; useful

when a configuration fails catastrophically (e.g. tipover for a mobile
robot)

• isStateDependent - returns 1 if the metric is state-dependent (i.e.
should be measured at every time step.)

evaluator pathEvaluator

oclEvaluator

antennaEvaluator

walkerEvaluator
ffEvaluator

Figure A.4: evaluator class hierarchy
The pathEvaluator is a general-purpose evaluator; the others are application-
specific. All except for the oclEvaluator were used in the experiments.

metric

stateDependentMetric

massMetric

timeMetric

taskCompletionMetric

pathCompletionMetric dynamicPathCompletionMetric
actuatorSaturationMetric

continuousSaturationMetric

linkDeflectionMetric

peakTorqueMetric

peakVelocityMetric

positionErrorMetric

rotationErrorMetric

powerMetric

stabilityMetric

collisionMetric

Figure A.5: metric class hierarchy
By default, metrics are state-independent--they measure a property of the robot
or aspect of performance at the end of simulation. The stateDependentMetric
and derived classes are state-dependent, and measure the robot’s performance at
each simulation time step.
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Each metric class also contains variables for scale and range. In addition, the stateDe-
pendentMetric class contains the computeStats method, which computes the mini-
mum, maximum, average, integral, and root-mean-square values from a time series of
recorded performance data.

The remaining class that is likely to be useful to the designer is the cfgFilter,
shown in Figure A.6 and described in Section 3.4.1. This class filters configurations that
are determined to be unfavorable before they are evaluated. The cfgFilter has only two
methods:

• acceptable - returns 1 if the configuration is acceptable according to
the filter, or 0 if not

• readParams - reads variables from initialization file

cfgFilter dofFilter

endPointFilter

moduleRedundancyFilter

Figure A.6: cfgFilter class hierarchy
The configuration filters are used by the synthesizer to cull configurations that are
known to be unfavorable before they are evaluated.
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Appendix B: Module descriptions

This section lists the modules used in the experiments and gives a brief description
and list of parameters for each.

Class Description Parameters

offroadChassis Ackerman-steer mobile base length
width
height
connector position
wheel diameter

offroadChassis4WS Four-wheel steer mobile base same as offroadChassis

mecanumBase Mecanum base same as offroadChassis

ffBase Base used for the free-flyer task Front-to-back location of
 the base’s origin

virtualBase No geometric representation; al-
lows root link of mechanism to be
part of a module other than the
base (see Section 5.6).

index of the serial chain
   whose distal link should

be designated the root link
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fixedBase Fixed base for manipulators x location
y location
z location
x rotation (not used)
y rotation (not used)
z rotation (not used)
x size
y size
z size

scaraElbow A 3-DOF module for planar posi-
tioning and orientation, with struc-
tural and actuator properties.

motor selection (joint 0)
gearbox selection (joint 0)
motor selection (joint 1)
gearbox selection (joint 1)
motor selection (joint 2)
gearbox selection (joint 2)
material selection
distance between joint
 axes
link 0 outer diameter
link 0 wall thickness
link 1 outer diameter
link 1 wall thickness
final joint orientation
 (can be up or down)

rightAngleJoint A joint module with a 90o angle be-
tween connectors, with actuator
and structural properties.

motor selection
gearbox selection
material selection
outer diameter
wall thickness
overall length

offsetElbow An elbow joint with actuator, but
not structural, models. The actua-
tor housing is sized to contain the
motor and gearhead. More realistic
geometry than the elbowJoint2
below.

motor selection
gearbox selection
material selection
initial joint angle
wall thickness
clearance

Class Description Parameters
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elbowJoint2 An elbow joint with actuator, but
not structural, models. The actua-
tor housing is sized to contain the
motor and gearhead.

motor selection
gearbox selection
material selection
initial joint angle

elbowJoint An elbow joint without structural
or actuator properties.

cross-section width
cross-section height
length

inlineRevolute2 An inline joint with actuator and
structural models. The inner diam-
eter of the tube section containing
the motor and gearhead is auto-
matically enlarged if too small to
house the actuator.

motor selection
gearbox selection
material selection
outer diameter
wall thickness
overall length

inlineRevolute An inline joint module without
structural or actuator properties.

cross-section width
cross-section height
length

prismaticTube A three-segment prismatic (tele-
scoping) tube with actuator and
structural properties. Actuated by
a motor, gearhead, and lead
screws.

motor selection
gearbox selection
lead screw selection
material selection
outer diameter
wall thickness
segment length

Class Description Parameters
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prismaticBeam2 A two-segment prismatic beam
with square cross-section. No actu-
ator or structural properties

length
cross-section width/height

prismaticBeam3 A three-segment prismatic beam
with square cross-section. No actu-
ator or structural properties

length
cross-section width/height

hollowTube A hollow link with circular cross
section. Includes structural proper-
ties.

material selection
length
outer diameter
wall thickness

squarePrism A link module with no structural
description; suitable only for pure-
ly kinematic synthesis.

cross-section width/height
length

virtualLink No geometric representation. Ef-
fectively allows multiple const at-
tachments to a subgraph that can
vary arbitrarily (see Section 5.6).

none

walkerGripper Gripper for the truss-walker exper-
iment

1 parameter, not currently
used

Class Description Parameters
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MEETool Represents Ranger’s Microconical
End Effector (MEE); used in the
Free-Flyer experiment.

none

palletFork Pallet forks for the material han-
dler experiment.

none

Class Description Parameters
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Appendix C: Detailed robot descriptions

C.1 Free-flyer

This section presents all of the information generated by the synthesizer for the
free-flyer with lowest mass from the experiment in Section 5.1. Figure C.1 shows hidden-
line and shaded renderings of the robot, while the text description is given in Figure C.2.
The values for module and task parameters are given in Tables C.1 and C.2, respectively.
Finally, this configuration’s performance is summarized in Table C.3

1 inlineRevolute2

3 rightAngleJoint

2 offsetElbow

4 offsetElbow

5 inlineRevolute2

6 offsetElbow

8 offsetElbow

7 MEETool

0 ffBase (~260kg)

Figure C.1: Detailed view of free-flyer with lowest mass
Shown here is the free-flyer with lightest mass from the experiment in Section 5.1. The
hidden-line rendering is annotated with the index and type of each module. The text
description for the robot is given in Figure C.2

~1m

70kg/arm
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((ffBase ((var -0.5 0.5 4 6))
         ((const 0 (1 0 right (const 0 270 2 2)))
          (const 1 (1 0 left (const 0 270 2 3)))))
 (inlineRevolute2 revoluteJoint ((var 0 1 3 5)
                                 (var 0 1 5 9)
                                 (const 0 1 2 0)
                                 (var 0.1 0.2 3 7)
                                 (const 0.003 0.01 3 3)
                                 (var 0.05 0.8 4 0))
                                ((var 1 (2 1 inherit (var 0 270 2 1)))))
 (offsetElbow revoluteJoint ((var 0 1 3 6)
                             (var 0 1 5 21)
                             (const 0 1 2 0)
                             (var -90 90 4 10)
                             (const 0.003 0.01 3 3)
                             (var 0.005 0.03 2 2))
                            ((var 0 (3 1 inherit (var 0 270 2 1)))))
 (rightAngleJoint revoluteJoint ((var 0 1 3 2)
                                 (var 0 1 5 11)
                                 (const 0 1 2 0)
                                 (var 0.1 0.2 3 7)
                                 (var 0.003 0.01 3 0)
                                 (var 0.05 1 4 14))
                                ((var 0 (4 1 inherit (var 0 270 2 1)))))
 (rightAngleJoint revoluteJoint ((var 0 1 3 7)
                                 (var 0 1 5 18)
                                 (const 0 1 2 0)
                                 (var 0.1 0.2 3 7)
                                 (var 0.003 0.01 3 0)
                                 (var 0.05 1 4 2))
                                ((var 0 (5 1 inherit (var 0 270 2 2)))))
(inlineRevolute2 revoluteJoint ((var 0 1 3 7)
                                 (var 0 1 5 21)
                                 (const 0 1 2 0)
                                 (var 0.1 0.2 3 4)
                                 (var 0.003 0.01 3 0)
                                 (var 0.05 1 4 11))
                                ((var 0 (6 0 inherit (var 0 270 2 3)))))
(offsetElbow revoluteJoint ((var 0 1 3 6)
                             (var 0 1 5 18)
                             (const 0 1 2 0)
                             (var -90 90 4 7)
                             (const 0.003 0.01 3 3)
                             (var 0.005 0.03 2 3))
                            ((var 1 (7 0 inherit (var 0 270 2 3)))))
 (rightAngleJoint revoluteJoint ((var 0 1 3 5)
                                 (var 0 1 5 13)
                                 (const 0 1 2 0)
                                 (var 0.1 0.2 3 0)
                                 (var 0.003 0.01 3 1)
                                 (var 0.05 1 4 0))
                                ((var 1 (8 0 inherit (var 0 270 2 1)))))
 (MEETool () ()))

Figure C.2: Free-flyer text description



Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach

198

Table C.1: Parameter values for free-flyer modules
All motors are from Maxon; gearboxes are actually harmonic drives from HD Systems.
Connections are listed as (connector -> child ID, child connector, handedness, twist).

ID Module/parameter/
attachments

value ID Module/parameter/
attachments

value

0 ffBase
   origin location -0.1m along Z

5 inlineRevolute2
 motor
 gearbox
 material (const)
 tube diameter
 tube wall thickness
 tube length

Maxon RE75.118825
HDS CSF-45-160
aluminum
15 cm
3 mm
75 cm

0 -> 1,0 right
1 -> 1,0 left

180o

270o
0 -> 6,0 inherit 270o

1 inlineRevolute2
 motor
 gearbox
 material (const)
 tube diameter
 tube wall thickness
 tube length

Maxon RE75.118825
HDS CSF-25-80
aluminum
20 cm
6mm
5 cm

6 offsetElbow
 motor
 gearbox
 material (const)
 initial angle (unused)
 wall thickness
 clearance

Maxon RE75.118825
HDS CSF-40-120
aluminum
-6
6 mm
3 cm

1 -> 2,1 inherit 90o 1 -> 7,0 inherit 270o

2 offsetElbow
 motor
 gearbox
 material (const)
 initial angle (unused)
 wall thickness
 clearance

MaxonRE75.118825
HDS CSF-45-160
aluminum
30o

6 mm
2.2 cm

7 rightAngleJoint
 motor
 gearbox
 material (const)
 tube diameter
 tube wall thickness
 tube length

Maxon RE75.118825
HDS CSF-32-80
aluminum
10 cm
4 mm
5 cm

0 -> 3,1 inherit 90o 1 -> 8,0 inherit 90o

3 rightAngleJoint
 motor
 gearbox
 material (const)
 tube diameter
 tube wall thickness
 tube length

Maxon2260.889
HDS CSF-25-160
aluminum
20 cm
3 mm
94 cm

8 MEETool

0 -> 4,1 inherit 90o

4 rightAngleJoint
 motor
 gearbox
 material (const)
 tube diameter
 tube wall thickness
 tube length

MaxonRE75.118825
HDS CSF-40-120
aluminum
20 cm
3 mm
18 cm

0 -> 5,1 inherit 180o
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C.2 Space-Shuttle Waterproofing Manipulator

This section gives details on the properties of the lightest manipulator from the
High-Level experiments in Section 5.2. Figure C.3 shows two renderings of the manipu-
lator with labels indicating modules. (This manipulator is also shown in the upper right
corner of Figure 5.13.) Figure C.4 gives the text description for the manipulator, while Ta-
ble C.4 lists its module properties and connections in a more easily readable format. Table
C.5 lists the task parameters for this robot, and Table C.6 summarizes the robot’s perfor-
mance.

Table C.2: Task parameters for lightest free-flyer

Object Variable Value

ffEvaluator originPosY 2.4 m

originPosZ 1.0 m

basePath1 vel 0.64 m/s

maxAcc 1.23 m/s2

basePath2 vel 0.16 m/s

maxAcc 1.18 m/s2

Table C.3: Performance measurements for lightest free-flyer

Priority Metric Value

0 pathCompletionMetric 1.0

collisionMetric 0.0

positionErrorMetric 0.8 mm

1 dynamicPathCompletionMetric 1.0

linkDeflectionMetric 0.5 mm

continuousSaturationMetric 62 %

2 massMetric 401.7 kg

powerMetric 7.1 kJ

timeMetric 45.9 s
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Figure C.3: Space shuttle servicing manipulator
This figure shows the lightest manipulator synthesized for the High-Level experiments
in Section 5.2. Note that the prismatic joint is almost fully contracted and the length
shown next to the prismaticTube is for the length of a single segment.

0 fixedBase

1 elbowJoint2

4 inlineRevolute2

7 simpleTool

2 elbowJoint2

3 prismaticTube

6 inlineRevolute2

5 elbowJoint2

0.67m

1.27m
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((fixedBase ((var -1.5 1.5 5 12)
(var -1.5 1.5 5 16)
(const 0 1 1 0)
(const 0 1 1 0)
(const 0 1 1 0)
(const 0 1 1 0)
(const 0.1 0.8 3 2)
(const 0.1 0.8 3 2)
(var 0.01 2.5 4 4))
 ((const 0 (1 1 left (subp 0 270 2 3)))))
(elbowJoint2 revoluteJoint ((var 0 1 3 7)
(var 0 1 5 29)
(const 0 1 2 0)
(var -180 135 3 2))
 ((const 0 (2 0 left (const 0 270 2 1)))))
(elbowJoint2 revoluteJoint ((var 0 1 3 3)
(var 0 1 5 13)
(const 0 1 2 0)
(var -180 135 3 5))
 ((subp 1 (3 0 left (subp 0 270 2 1)))))
(prismaticTube prismaticTube ((var 0 1 3 1)
(var 0 1 5 4)
(var 0 1 1 1)
(const 0 1 2 0)
(var 0.05 0.15 3 0)
(var 0.0015 0.005 3 0)
(var 0.3 2 3 4))
 ((subp 1 (4 0 left (subp 0 270 2 3)))))
(inlineRevolute2 smallRevoluteJoint ((var 0 1 2 1)
(var 0 1 2 2)
(const 0 1 2 0)
(var 0.05 0.15 3 1)
(var 0.0015 0.005 3 0)
(var 0.05 0.3 3 1))
 ((const 1 (5 0 left (var 0 270 2 2)))))
(elbowJoint2 smallRevoluteJoint ((var 0 1 3 2)
(var 0 1 5 8)
(const 0 1 2 0)
(var -180 135 3 6))
 ((const 1 (6 0 left (subp 0 270 2 2)))))
(inlineRevolute2 smallRevoluteJoint ((var 0 1 2 1)
(var 0 1 2 0)
(const 0 1 2 0)
(var 0.05 0.15 3 0)
(var 0.0015 0.005 3 0)
(var 0.05 0.3 3 0))
 ((const 1 (7 0 left (subp 0 270 2 0)))))
(simpleTool ((const 0.05 0.1 3 0)) ()))

Figure C.4: Text description for Space Shuttle servicing manipulator
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Table C.4: Manipulator properties
This table lists the parameter values for the manipulator shown in Figure C.3.
Connections are described as (parent connector ID -> child module ID, child connector
ID, handedness, twist). Bold connections are const connections that were specified in
a kernel configuration. In each of the High-Level manipulator trials, the best
configurations contained both of the const subgraphs shown above, although they were
optional since some kernels did not contain the subgraphs. Only the variable parameters
of the fixedBase are shown. The lead screw used in the prismaticTube (screw2)
has a 1cm diameter, a pitch of 45 degrees, and mass of 600g per meter length.

ID Module/parameter/
attachments

value ID Module/parameter/
attachments

value

0 fixedBase
 x origin
 y origin
 height

-0.33871
0.0483871
0.674

4 inlineRevolute2
 motor
 gearbox
 material (const)
 tube diameter
 tube wall thickness
 tube length

maxonRE25.118748
maxon26.110398
aluminum
0.0642857
0.0015
0.0857143

0 -> 1,1 left 270o 1 -> 5,0 left 180o

1 elbowJoint2
 motor
 gearbox
 material (const)
 initial angle (unused)

maxonRE75.118825
maxon81.110413
aluminum
-90

5 elbowJoint2
 motor
 gearbox
 material (const)
 initial angle (unused)

maxonRE25.118755
hds.csf-14-50
aluminum
90

0 -> 2,0 left 90o 1 -> 6,0 left 180o

2 elbowJoint2
 motor
 gearbox
 material (const)
 initial angle (unused)

maxon2260.889
hds.csf-20-160
aluminum
45

6 inlineRevolute2
 motor
 gearbox
 material (const)
 tube diameter
 tube wall thickness
 tube length

maxonRE25.118748
maxon26.110396
aluminum
0.05
0.0015
0.05

1 -> 3,0 left 90o 1 -> 7,0 left 0o

3 prismaticTube
 motor
 gearbox
 lead screw
 material (const)
 diameter
 wall thickness
 segment length

maxon2260.815
hds.csf-14-50
screw2
aluminum
5 cm
1.5mm
1.27m

7 simpleTool
 size (const) 5cm

1 -> 4,0 left 270o
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Table C.5: Manipulator task parameter values
Listed here are the values of the task parameters for the manipulator shown in Figure
C.3. The parameters describe the linear and angular velocity and acceleration to be
used to when following the task’s trajectory.

Object Variable Value

path vel 1.03 m/s

maxAcc 4.57 m/s2

omega 2.24 rad/s

maxOmegaDot 6.47 rad/s2

Table C.6: Manipulator performance summary

Priority Metric name value

0 pathCompletionMetric 1.0

collisionMetric 0.0

positionErrorMetric 1.2 cm

1 linkDeflectionMetric 1.7 mm

actuatorSaturationMetric 96 %

2 massMetric 12.5 kg

timeMetric 26.4 s
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Glossary

actuator saturation - the ratio of applied torque (or force) to an actuator’s maximum
available torque (or force). An actuator saturation greater than one indicates that
the controller commanded a torque beyond the actuator’s capability.

class - in object-oriented programming, a class is a description of a data type and a set of
related functions.

component context - a set of component lists, with one list for each of a module’s
component-selection parameters. Each component list contains one or more
components of similar type, e.g. motors or actuators.

configuration - the general form of the robot, including kinematics and other geometry
at the bare minimum and usually including descriptions of inertial properties,
actuator and material selection, and structural geometry.

configuration graph - see Parameterized Module Configuration Graph (PMCG)

configuration optimization - the process of improving the performance of a robot
configuration (or small number of configurations) through parametric variation

configuration synthesis - the process of generating a high-level description of a robot and
improving its performance through parametric and topological variation.

const flag - a flag associated with parameters and attachments in the Parameterized
Module Configuration Graph that can be set by the designer to indicate that the
parameter or attachment should not be changed by the synthesizer.

degree of freedom (DOF) - an independent variable describing part of the state of a robot.
The state of an n-DOF robot can be uniquely and completely described by n
variables.

Denavit-Hartenburg (D-H) parameters - a commonly-used set of parameters describing
the kinematics of a robot, in which each pair of successive joints is characterized
by a distance between joint axes a, a twist between joint axes α, an offset d, and a
joint angle θ. See e.g. [Denavit55] for details.

directed acyclic graph (DAG) - a graph in which each edge has a direction and in which
no path along the edges passes through a node more than once.

dynamic simulation - computing the motion of a mechanical system (e.g. a robot) based
on the forces and torques applied to the system. (Compare to kinematic
simulation.)

elitism - in an evolutionary algorithm, elitism refers to explicitly preserving or
reproducing a subset of the population that are considered to be ’best’.

elite set - in an evolutionary algorithm, the subset of the population that is considered to
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be ’best’. In a single-objective EA, the elite set might contain the n-best solutions;
in a multi-objective EA, it might contain the Pareto-optimal set. In Darwin2K, it is
defined to be the feasibly-optimal set.

evolutionary algorithm (EA) - an optimization algorithm (often probabilistic in nature)
based on biological theories of evolution. Typical features include the use of a
population of solutions, selection of solutions based on fitness (analogous to
“survival of the fittest”), and creating new solutions by combining or modifying
existing solutions.

evolutionary synthesis engine (ESE) - in Darwin2K, the program that maintains a
population of configurations, creates new configurations, and sends them to one
or more evaluation processes which measure their performance.

feasibly-optimal set - in Darwin2K, the subset of the population that is considered ‘best’.
If any configurations are feasible, then the feasibly-optimal set is the Pareto-
optimal set taken over all feasible configurations in the population. If no
configurations are feasible, then the feasibly-optimal set is the Pareto-optimal set
taken over the entire population.

fitness - a figure of merit reflecting the performance of a solution in an evolutionary
algorithm

fitness-proportionate selection - in an evolutionary algorithm, a method of selecting
solutions for reproduction in which a solution is selected with probability directly
proportional to its fitness

generational genetic algorithm - a genetic algorithm that creates an entire new
population of solutions at once and then evaluates them all. This is the standard
method for creating new solutions in a GA.

genetic algorithm (GA) - an evolutionary algorithm that represents solutions as a string
of symbols (usually a fixed-length string of bits), uses crossover, duplication, and
mutation to create new solutions, and selects solutions for reproduction on the
basis of their performance.

genetic programming (GP) - an evolutionary algorithm that represents solutions as
programs. The fitness of a program is determined by executing it, rather than by
measuring some property of the program.

globally optimal planner - a planner that is guaranteed to find the globally-optimal
motion with respect to a cost metric (usually either time or distance) down to the
level of discretization used.

graph - a data structure or mathematical object consisting of nodes connected by edges.
Each edge has two endpoints and may have a direction associated with it.

kernel - an initial configuration specified by the designer from which all other
configurations are generated through the application of genetic operators.
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kinematic simulation - computing the motion of a mechanical system (e.g. a robot) by
considering only position variables and their derivatives, rather than forces and
torques.

kinematics - the study of a mechanism’s motions without regard to forces, torques, or
inertia.

locally optimal planner - a planner that is not guaranteed to find the optimal motion.
Typically much less computationally expensive than globally-optimal planners.

member - in OOP, part of the description of a class. A data member describes a property
of objects that belong to the class, while a member function (or method) describes
the behavior of objects belonging to the class.

method - see member

module - a self-contained software object representing part of a robot. In Darwin2K, a
module contains data describing the its properties, and functions describing its
behavior.

object - in Object-Oriented Programming, a self-contained set of properties and
associated procedures.

parameter - in Darwin2K, a value that may be varied by the synthesis algorithm.
Parameters are described by several features: the minimum and maximum values
of the parameter, the resolution, an integer value, a real value, and a const-flag.
Modules can have parameters, and configurations can have parameters associated
with them that describe aspects of the task.

parameterized module - an object representing part of a robot, including both data and
function members. Parameterized modules may have zero or more parameters
describing arbitrary properties, and can specify connectors that indicate how the
module can be connected to other modules.

parameterized module configuration graph (PMCG) - the representation for robot
configurations used in Darwin2K. The PMCG consists of a list of modules and
connections between them and allows both parametric and topological variation
of robot properties.

Pareto-optimal set - given a set of multi-dimensional measurements (e.g. robot
configurations with performance measurements), the Pareto-optimal set is those
measurements that are better than or equivalent to every other measurement along
at least one dimension. Also called the non-inferior set, as every member of the set
is not inferior (i.e. worse than another element in all dimensions) to any other
element of the set.

simple genetic algorithm (SGA) - the basic genetic algorithm, using a single population
and representing solutions as fixed-length bit strings.
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steady-state genetic algorithm (SSGA) - a genetic algorithm that continuously adds
solutions to, and removes solutions from, a population. Contrast to a generational
genetic algorithm.

task parameter - a variable or property that does not belong to a configuration but which
can be optimized by the synthesizer. Examples include via point location and
controller gains.

tool control point (TCP) - a position and orientation defined relative to an end effector
(tool) that is used to specify the motion of the effector. For example, the TCP for a
gripper might be the point midway between the gripper’s fingers.
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