
Automated System for Arabic Optical Character

Recognition with Lookup Dictionary
Inad Aljarrah∗, Osama Al-Khaleel∗, Khaldoon Mhaidat∗,

Mu’ath Alrefai¶, Abdullah Alzu’bi§, and Mohammad Rabab’ah§

Department of Computer Engineering

Jordan University of Science and Technology,

Irbid, Jordan 22110

Email∗:{inad,oda,mhaidat}@just.edu.jo

Email¶:mmalrefai07@eng.just.edu.jo

Email§:{akalzubi07,mbalrbai07}@cit.just.edu.jo

Abstract— In this paper an Arabic Optical Character Recog-
nition system is implemented. The system takes a scanned
image of an Arabic text as an input and generates an
editable text out of it. The system starts by segmenting
the document which is presented as an image into lines,
then each line is also segmented into separate words, after
that each word is further segmented to sub-words. Each
word or sub-word is segmented into separate characters,
and then a features extraction process is applied on each
character to calculate its features vector. The feature vector
is then compared with templates of feature vectors for
each of the Arabic alphabet with their variations. The
minimum distance classifier is used in the classification stage.
A recognition rate of 93.5% is attained. To improve the
accuracy of the system, a lookup dictionary is employed to
correct some of the misclassified characters. This resulted
in improving the accuracy to 96.1%. The results achieved
are promising regardless that Arabic Optical Character
Recognition is considered many times harder to handle than
its counterparts in other languages like English due to the
continuity between the letters in the same word.

Index Terms— Arabic OCR, Arabic characters, Segmenta-
tion, Recognition, Image processing

I. INTRODUCTION

Optical Character Recognition (OCR) is the process of

recognizing a typewritten or handwritten scanned image

and converting it to an editable text. Arabic Optical

Character Recognition (AOCR) is a special case of OCR

which deals with Arabic language. OCR is used in many

applications such as those that include processing of filled

forms like healthcare or in banking where checks are

preferred to be automatically processed without human

association. It also made searching documents stored as

images viable through converting them into text that is

easily handled and processed by computers. Any OCR

system consists of many stages, in each stage a specific

task is performed and the output of each step is provided

as an input to the next stage. Usually the main stages

that any OCR system consists of include preprocess-

ing, segmentation, feature extraction and classification.

In this work, an Arabic Optical Character Recognition

system is implemented. The system uses a novel character

recognition-based segmentation method to segment and

recognize Arabic characters. The input to the system is

firstly preprocessed by converting the gray-level image

to a binary image, this step is justified because the

information in the gray-level value of the pixel is useless

and gives no extra meaning and also binary images

are much easier to handle than gray-level images since

each pixel is represented by only one bit. The next step

in the preprocessing stage involves applying a median

filter on the binary image to eliminate noise such as

isolated pixels. The last step in the preprocessing stage

is to invert the image so that the pixels that represent

characters have values of ones while the background has

values of zeros. The second stage is segmentation which

includes line segmentation, word segmentation, sub-word

segmentation, and character segmentation. It is worth

mentioning that the segmentation stage in AOCR is not as

easy as OCR for other languages like English due to two

main reasons, the first is the continuity of characters in

Arabic which makes finding the borders of the given letter

hard, and the second is that many of the Arabic letters

have many forms that change according to the position of

the letter whether it is in the beginning, the middle, or the

in end of the word. The feature extraction phase includes

calculating the features vector, which consists of seven

features: area of the letter, length of the letter, width of

the letter, difference between the upper and lower portions

of the letter, first moment, second moment, and number

of objects in the letter. The last phase is the classification

stage in which the resultant feature vector is matched to a

database of feature vectors that includes samples of each

of the twenty nine alphabetical Arabic letters in all of their

forms. The minimum distance classifier is used in this

phase, where a value is calculated to represent the distance

between the extracted feature vector and the stored feature

vectors. Obviously the letter is matched with the sample

that has the lowest value. To improve the accuracy of

the system, a lookup dictionary is employed to correct

some of the misclassified characters. After calculating

the distance between the extracted feature vector and the

stored templates, a penalty value is added to the distance

of each template that results in a word that does not

exist in the dictionary. The idea behind this method stems

362 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jetwi.4.4.362-370

from the fact that the probability of having a word in the

recognized text that does not exist in the dictionary is

much lower than a word that exists in the dictionary. By

adding the penalty value, the classification process moves

from the simple minimum distance classifier that assumes

the classified classes probabilities to be equally likely to

the optimal classifier which takes in account that some

classes are more probable and so the simple minimum

distance classifier is not the best option.

The rest of this paper is organized as follows: Section

II presents the related work. Section III discusses the

proposed methodology. Section V talks about the exper-

iments and gives some experimental results. Section IV

presents the employment of lookup dictionary in order to

improve the recognition rate. Finally, the conclusion and

the future work are presented in Section VI

II. RELATED WORK

Most of the work conducted on Arabic OCR (AOCR)

concentrated on tackling the main problem of AOCR

which is the segmentation of characters; this is mostly due

to the cursive nature of Arabic language. In [1], [2], and

[3], the authors used a morphological operations approach

to segment lines into characters . Authors in [4] applied

the contour representation to spot segmentation points.

In [5], an Arabic OCR system that uses a recognition-

based segmentation technique is proposed. The goal was

to avoid the segmentation problems intrinsic to AOCR. In

their approach they separate the horizontally overlapping

Arabic words/subwords. However, their work is not a

character based segmentation. [6] tackled the problem

of overlapping characters using a contour-following algo-

rithm which labels the detected contours. The joint frag-

ments connecting the characters are spotted by measuring

the line thickness. Another part of AOCR that attracted

a lot of research is feature selection and classification.

[7] employed measurements of moments and relationships

among them as features and used a Bayesian classifier

for classification is presented in. On the other hand, the

work in [8], [9], [10], and [11] used neural networks to

classify features.In [12] the authors implemented a system

that uses a set of language independent features. though,

these features are baseline dependent, which means that

any slight error in locating the baseline will result in

a feature extraction problem. In order to improve the

recognition rate of the OCR systems, [13] suggested using

a dictionary based error correction method . A context

based error correction method is implemented in [14]

for finding and correcting OCR non-word and real word

errors. They claim increasing the error correction rate

by 4 folds, but the main concern about the results is

the small sample that the system was tested against . In

our approach, we use a novel character recognition-based

segmentation method to segment and recognize Arabic

characters. Up to the knowledge of authors, this tech-

nique has not been reported in literature. The approach

combines the segmentation and recognition stages. This

idea improves the ability of detecting the borders of the

connected characters.

III. METHODOLOGY

As shown in Figure 1 the input of the system is a gray

level scanned image of an Arabic text document and the

output is an Arabic text file.

Image
of an
Arabic
text

Arabic
text
fileSystem

Arabic OCR

Figure 1: General view of the system

A detailed view of the system is illustrated in Figure 2

where the image goes through seven steps in its way to

be converted into a text file. Each of these steps will be

discussed independently later on.

Preprocessing

Line segmentation

Word segmentation

Sub word segmentation

and sub word combination
Character combination

Character segmentation
and recognition

Words combination
and line combination

Image of Arabic text

Arabic text file

Figure 2: proposed OCR system

A. Preprocessing

The OCR System starts by applying a preprocessing

phase as shown in Figure 2. Usually OCR systems deal

with two-color image documents: The color of the text

and the color of the background. Since dealing with

black and white images is much simpler than dealing

with other image color scales (gray and colored), the

scanned document is converted into binary image as a

preprocessing step. This of course would simplify the

features extraction process. Moreover it would greatly

help in the lines, words, and sub words splitting during

the processing phase.

Converting an image into its binary scale is simply done

in MATLAB using the built in function im2bw (Image,

level). In image processing, noise in images is one of the

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012 363

© 2012 ACADEMY PUBLISHER

major sources for errors. One possible way to overcome

the effect of the noise is to apply noise filter on the image.

In the proposed system, the median filter is adopted for

noise filtering. The median filter sets the pixel to the

median value in the window that is applied on it. As a

result, the small objects with size less than a given size

(the size of the dot that appears in some arabic characters)

will be filtered out.

Since the OCR here deals with binary scale images, a

pixel with value 1 surrounded by many pixels of value 0

is an example of a noise. This is illustrated in Figure 3.

Applying a median filter of a 3x3 window on this part

of the image would definitely remove this noise and the

pixel with 1 value would be assigned 0 value.

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

Figure 3: Noise example

In binary scale images, 0 represents black and 1 repre-

sents white. Text document usually has the text written in

black and the background is white. This means that in the

scanned image of a text document if the image converted

into black and white, the 0 pixel values are the text and

the 1 pixel values are the background. The OCR system

does the processing on the text and this involves different

arithmetic operations like summation and scaling and so

on. Also, there may be a need for comparisons. Doing

these operations on zero values would give invaluable

results. Therefore, as a very important preprocessing step,

the black and white image is inverted such that the

background is black and the text is white.

B. Line segmentation

The first step in the recognition process is to segment

the text image into lines. This step can be done by two

ways:

1. Take horizontal projection.

2. Remove dots then take the horizontal projection.

In the horizontal projection scheme, the sum of all pixels

in each row is calculated. If the sum is zero then start

new line and end the current line. The problem here is

that the dots in a line may be recognized as a separate

line. For example consider the single line:

بيت

This line will be recognized as three different lines: an

upper line that contains the two dots of the ,ت a second

line that contains the skeleton of the letters, and a third

line contains the three dots under that line. The distance

between the last pixel in any line and the first pixel in the

next line is greater than the maximum distance between

any two pixels in the same line. For example consider the

two lines:

بيت

خالد

In the first line, the distance between the lowest pixel

in the ي and its dots or the upper pixel in the ت and

its dots is smaller than the distance between the lowest

pixel in the first line and the upper pixel in the second

line. This fact is employed to overcome the problem of

splitting a single line into two or three lines by looking

for more than one row of zeros after a none-zero row. The

detection of a sequence of zero rows guarantees capturing

the whole line. The number of sequential zero rows or

threshold to be detected before splitting the line depends

on the distance between the rows which depends on the

font size. The pseudo code for the line splitting is given

in Algorithm 1.

Algorithm 1: Line Splitting

Input: Threshold

Output: Starts and ends of lines

/* HP:Horizontal Projection */

/* Th:Thresold */

begin
Counter←− 0
while HP=0 do

Read new row

Calculate HP

repeat
Get HP of next line

if HP=0 then
Counter++

if Counter≥ Th /* # of zero

rows */

then
Store row number

Counter←−0

else
Counter←−0

until Until End

end

In the second way, dots and hamza and other small

objects that are placed above or under letters are removed.

The line is then split based on the horizontal projection

without the need for detecting a number of zero rows

after the line. However, this method is computationally

intensive because it requires a segmentation procedure to

detect the mentioned small objects in order to remove

them.

C. Word segmentation

The next step after splitting the lines is the word

splitting or segmentation within each line. There are two

possible ways for this process:

1. Take the vertical projection of the line.

2. Eight bits connectivity.

In the first methods, if the sum of vertical line of pixels

is zero then a gap occurred and a guess of having the

364 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

0 0 1

1 x 0

1 1 1

Figure 4: 8 bits neighbors of a pixel

word is made. However, this gap may occur between two

unconnected letters within the same word. For example,

considering the line:

بالله الا قوة ولا حول لا

The vertical projection with just looking for a zero column

will split the word قوة into two words قو and ة which is a

problem. To solve this problem same approach like in the

case of the line segmentation of waiting to a consecutive

rows of zero is adopted. The only difference is this time

looking for consecutive columns of zeros with the fact

that the distance between two words is greater than the

distance between the sub words within the same word.

After splitting each word into different segment, the word

is then split into sub word segments for further processing.

Assume having threshold 2 (number of zero columns

to wait) greater than the maximum distance between

sub words. The pseudo code for word segmentation is

illustrated in Algorithm 2.

Algorithm 2: Word Splitting

/* Th2:Threshold 2 */

Input: Line of Arabic text,Th2

Output: Words of the line

begin
Trim the zero columns from left and right

index1 ←− index of first column in line

index2 ←− index1+1

repeat

if sum6=0 and Counter ≥ Th2 then
Store Line from index1 to index2

index1 ←− index of current column

index2 ←− index of next column

Counter ←− 0

else if sum=0 then
Counter++

until Until End

end

In the second method of word segmentation, the 8-bit

connectivity, each pixel like X has 8 bits neighbors as

illustrated in Figure 4. If the coordinates of X are (u,m),
then the coordinates of the 8 bit neighbors are given by:

(u+ 1,m),(u− 1,m),(u,m+ 1),(u,m− 1),(u+ 1,m+
1),(u− 1,m− 1),(u− 1,m+1),(u+1,m− 1). Two bits

are considered connected if they are both have the same

value. Before applying this method the dots and hamza

are removed. Therefore this method requires intensive

computation time.

After having each word in a different segment, sub

word segmentation is applied to make the letter segmenta-

Figure 5: An example of an Arabic word with dots

tion (which is the next step) easier. The sub words pseudo

code is illustrated in Algorithm 3.

Algorithm 3: Sub Word Splitting

Input: Word of Arabic text

Output: Sub Words of the word

begin
Trim the zero columns from left and right

index1 ←− 1

while True do
Get sum of next column

if sum=0 then
index2 ←− current column index

store sub word from inndex1-index2

break

else
continue

while True do
Get sum of next column

if sum=0 then
index1 ←− current column index

break

end

D. Characters splitting and Recognition

For character splitting, a deep study for the Arabic char-

acters features is considered. Considering the following

Arabic text line:

بسلاحه حوضه عن يذد لم ومن

يشتم الشتم يتقي لا ومن يهدم

The individual letters are contained by separate rectangle

given that لا which is two characters is considered as a

single character. As a second observation, in the word

يتقي there is a straight segment that goes through all

letters in the word as shown by Figure 5.

This segment is detected by taking the horizontal

projection of the sub words which have the maximum

sum of ones. All characters are connected by this segment

and if removed, characters are separated. If the dots in the

words are removed as illustrated by Figure 6, the vertical

projection of the number of ones going from right to left

is constant at the base line between the characters and

varies when traveling through letters. However, letters like

س and ض suffer from over segmentation. Also the ر
may split into two parts or even three depending on the

font size and scanner resolution. The problem that arises

is that removing all dots requires lots of computations.

There is no accurate algorithm to split the sub word. They

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012 365

© 2012 ACADEMY PUBLISHER

Figure 6: The Arabic word after removing the dots

are left combined. Splitting sub words into characters then

recognize the characters in one step. Each letter in Arabic

has special features that make it recognizable. Having

features of all letters, one can decide if a given text is a

letter or not. These features may include Area, Size, First

moment, Number of objects in the letter, EulerNumber,

Centroid, and Orientation. There are about 29 letters

in Arabic that come in different formats based on the

location of the character in the word: beginning, middle,

end, and isolated.

E. Features Description
• Area of the character: which is estimated by the

number of ones in the binary matrix of the character.

• Size of the character: which is a function of the

length and the width of the character:

– Length of the character is the number of rows

in the binary matrix of the character.

– Width of the character is represented by num-

ber of columns in the binary matrix of the

character.

• First moment: which is calculated by firstly finding

the centroid of the character then calculating the sum

of the distances between the centroid and all the

character pixels (with value equals to 1).

• Number of objects in the letter: which include the

skeleton of the character, the dots above or under

the character, and the other objects like the ء and so

on.

• EulerNumber: It is given by the (number of objects

– numbers of holes). Therefore, number of holes=

number of objects – EulerNumber

• Centroid: Return the center of the input image x and

y coordinate (mass center).

• Orientation: Put the input letter in ellipse then take

the angle between the main diameter and the x axes.

It gets a value between −90 and 90 (90 is added for

normalization).

It should be pointed out that the given features are

selected because they have the ability to distinguish

among different characters as different Arabic characters

have different size, area, centroid, etc. More details on

these features can be found in [15].

A database that contains all letters in all shapes and

their feature vector has been generated. It has been taken

into consideration that the ’saad’ is the widest letter and

’alef’ is thinnest one. As an example to recognize the

word illustrated in Figure 7 which is ,بعض the system

starts from widest character to the thinnest one in the

Arabic characters. It then finds the feature vector and

compares it with the letters vectors. Finally, it stores

the character in an array to find the best match. This is

repeated till the end of the sub word.

The example in Figure 8 demonstrates the whole sys-

tem functionality.

IV. EMPLOYING LOOKUP DICTIONARY TO IMPROVE

RECOGNITION RATE

To improve the accuracy of the system, a lookup dic-

tionary is employed to correct some of the misclassified

characters. The idea is simple, if the detected character

will result in a word that does not appear in the dictionary

of Arabic language then give a penalty to that character

matching value. This penalty will tend to move the rank-

ing of that character down the list of potential characters.

So if the character that got the second lowest matching

value (minimum distance) results in a word that exist in

the dictionary then it is possible that this character will

end up with lower matching value after the penalty on the

first character.

Algorithm 4: Dictionary based character matching

Input: Penalty value,Characters matching values

Output: Matching character

/* PV:Penalty value */

/* CMV:Character matching value */

begin

while True do
getChar(CMV);

getWord(Char);

if Word exist in Dictionary then
Break;

else
CMV←−CMV+PV;

Continue;

getWord(Char(Min CMV));
end

The suggested approach tends to work well for AOCR,

and the reason for that is due to the fact that Arabic

language has many similar characters like (ح) and ,(خ)

(ف) and (ق) and so on. A big portion of the errors

that the system commits results from classifying one of

those characters as being its similar character. Obviously

this is due to the fact that similar characters tend to

have similar feature vector values, and this results in a

very close matching values, and hence a misclassification.

The pseudo code for applying the lookup dictionary is

illustrated in Algorithm 4.

It should be noted that not every non-dictionary word

will be corrected to be a dictionary word. This is due to

the fact that the predefined penalty value is finite and if

the matching value difference between the first and the

second potential characters is greater than this threshold

then the character will not be modified even though the

word does not appear in the dictionary.

In order to demonstrate the employment of the dictio-

nary in the system, three different examples are presented

366 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Start here

’baa’ is recognized
Start for next character

’Ayen’ is recognized
Start for next character

’Dad’ is recognized
Start over with new charctr or sub word

Figure 7: An example to illustrate the character splitting and matching process

Figure 8: Demonstration of the whole system steps

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012 367

© 2012 ACADEMY PUBLISHER

CorrectIncorrect

Add 0.5 to

are not in
dictionary

cases that

0.3117

0.4453

0.8327

0.8758C
h
a
rc

te
rs

 w
it
h
 t

h
e
 l
e
a
s
t

m
a
tc

h
in

g
 v

a
lu

e
s

0.8117

0.4453

0.8327

1.3758C
h
a
rc

te
rs

 w
it
h
 t

h
e
 l
e
a
s
t

m
a
tc

h
in

g
 v

a
lu

e
s

Before applying

the dictionarythe dictionary

After applying

Figure 9: Dictionary employment in recognizing the word

حركة

in Figures 9, 10, and 11. These examples were extracted

for the samples that have been used to test the system.

Two of these examples shown how the dictionary helps

in improving the recognition rate. On the other hand, the

third example shows a case where dictionary does not fix

the incorrectly recognized character. In Figure 9, the word

to be recognized is .حركة At the time of recognizing

the last character in the word which is ,ة the character

ق has the least matching value if the dictionary is not

considered. Therefore, the word حركة is recognized

incorrectly as .حركق By applying dictionary for this

case, the system adds the penalty value (0.5) to the cases

that are not part of the dictionary. For example, حركق
is not part of the dictionary and the matching value for

the character ق is increased by 0.5. On the other hand, the

word حركة is part of the dictionary and the matching

value of the character ة is not changed. This would

reorder the matching values of all characters such that

the character ة has the least matching value. As a result,

the word حركة is correctly recognized as .حركة

In Figure 10, the word البحرية is to be recognized.

If the dictionary is not considered, the fifth character is

recognized incorrectly as ب which has the least matching

value. After applying the dictionary two matching values

are adjusted because they are not part of the dictionary.

These are البحب and .البحن The other two cases البحر
and البحي are part of the dictionary and the matching

values are not affected. Hence, the least matching value

after applying the dictionary is the one for the character

ر which is the correct character.

In the third example presented in Figure 11, all cases

are part of the dictionary. Therefore the matching values

are not changed and in both cases the third character

which is ر is incorrectly recognized as .ن

V. EXPERIMENTAL RESULTS

The proposed approach has been implemented and

tested using Matlab. Different Arabic text samples have

C
h
a
rc

te
rs

 w
it
h
 t

h
e
 l
e
a
s
t

m
a
tc

h
in

g
 v

a
lu

e
s

Correct

0.7597

0.8372

0.4421

0.4609

0.2597

0.3372

0.4421

0.4609C
h
a
rc

te
rs

 w
it
h
 t

h
e
 l
e
a
s
t

m
a
tc

h
in

g
 v

a
lu

e
s

Add 0.5 to

are not in
dictionary

cases that

Before applying

the dictionarythe dictionary

After applying

Incorrect

Figure 10: Dictionary employment in recognizing the

 word البحرية

Incorrect

0.3219

0.3321

0.5873

0.6328C
h

a
rc

te
rs

 w
it
h

 t
h

e
 l
e

a
s
t

m
a

tc
h

in
g

 v
a

lu
e

s

0.3219

0.3321

0.5873

0.6328C
h

a
rc

te
rs

 w
it
h

 t
h

e
 l
e

a
s
t

m
a

tc
h

in
g

 v
a

lu
e

s

Add 0.5 to

are not in
dictionary

cases that

Before applying

the dictionarythe dictionary

After applying

Incorrect

Figure 11: Dictionary employment in recognizing the

 word تجريها

been scanned and saved as images for testing purposes.

For each sample, the number of correctly recognized

character are counted and the the recognition rate is

computed.

Table I reports the results for some of these samples.

As can be figured out from Table I, the estimated overall

recognition rate for these samples is 93.5%. This recogni-

tion rate outperforms the accuracy of 90% that is reported

in [5].

The same samples that has been used to obtain the

results of Table I were tested using the system after

applying the dictionary. The new results are reported

in Table II. It is clear from these results that applying

the dictionary improves the recognition rate for different

samples in the table. Therefore, the overall recognition

rate is improved from 93.5% to 96.1% as shown in the

table. It should be pointed out that a thorough study of the

results shows that the majority of the errors are cases of

368 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Table I: Results for a scanned arabic text document

samples using the proposed system

Sample No. of characters No. of correctly
No. per sample recognized characters

1 54 46

2 57 52

3 60 59

4 57 54

5 60 51

6 29 29

7 60 59

8 49 47

9 55 52

10 54 49

11 62 58

12 48 47

13 55 52

14 15 12

15 51 47

16 47 42

17 49 43

18 51 49

19 40 37

20 61 61

21 52 51

Total 1066 997

Recognition ratio=93.5%

either miss-segmentation or due to the similarity between

some of the Arabic language characters.

VI. CONCLUSION AND FUTURE WORK

An Arabic Optical Character Recognition system is

implemented. The system takes a scanned image of an

Arabic text as an input and generates an editable text

out of it. Promising results are achieved regardless that

Arabic Optical Character Recognition is considered many

times harder to handle than its counterparts in other

languages like English due to the continuity between

the letters in the same word. Challenges that have been

faced during the implementation of the AOCR system

comprises connectivity between letters, position depen-

dency of letters shape, variable length of letters based

on their neighbors from the left and right, and similarity

between some Arabic letters like غ and .ع To improve the

accuracy of the system, a lookup dictionary is employed

to correct some of the misclassified characters. This step

helped improve the recognition rate from 93.5% to 96.1%.

As a future work, different aspects can be considered

as an improvement or extension to this work. These

may include: Using size invariant features and Arabic

handwritten text recognition.

REFERENCES

[1] D. Motawa, A. Amin, and R. Sabourin, “Segmentation
of arabic cursive script,” in Proceedings of the
4th International Conference on Document Analysis
and Recognition, ser. ICDAR ’97. Washington,
DC, USA: IEEE Computer Society, 1997, pp. 625–
628. [Online]. Available: http://dl.acm.org/citation.cfm?
id=646270.685484

Table II: Results for the samples in Table I after applying

the dictionary

Sample No. of characters No. of correctly
No. per sample recognized characters

1 54 47

2 57 53

3 60 60

4 57 55

5 60 53

6 29 29

7 60 60

8 49 49

9 55 54

10 54 51

11 62 59

12 48 48

13 55 52

14 15 14

15 51 48

16 47 44

17 49 45

18 51 51

19 40 39

20 61 61

21 52 52

Total 1066 1024

Recognition ratio=96.1%

[2] B. H. Al-Badr, “A segmentation-free approach to text
recognition with application to arabic text,” Ph.D. disser-
tation, Seattle, WA, USA, 1995, uMI Order No. GAX95-
37297.

[3] B. Al-badr and R. M. Haralick, “A segmentation-free
approach to text recognition with application to arabic
text,” International Journal on Document Analysis and
Recognition, pp. 147–166, 1998.

[4] T. Sari, L. Souici, and M. Sellami, “Off-line handwritten
arabic character segmentation algorithm: Acsa,” in
Proceedings of the Eighth International Workshop on
Frontiers in Handwriting Recognition (IWFHR’02), ser.
IWFHR ’02. Washington, DC, USA: IEEE Computer
Society, 2002, pp. 452–457. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=851040.856901

[5] A. Cheung, M. Bennamoun, and N. Bergmann, “An arabic
optical character recognition system using recognition-
based segmentation,” Pattern Recognition, vol. 34, no. 2,
pp. 215 – 233, 2001. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0031320399002277

[6] K. Romeo-Pakker, H. Miled, and Y. Lecourtier, “A new
approach for latin/arabic character segmentation,” in Doc-
ument Analysis and Recognition, 1995., Proceedings of the
Third International Conference on, vol. 2, aug 1995, pp.
874 –877 vol.2.

[7] H. Al-Yousefi and S. S. Udpa, “Recognition of arabic
characters,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 14, no. 8, pp. 853–857, Aug. 1992. [Online].
Available: http://dx.doi.org/10.1109/34.149585

[8] M. M. Fahmy and S. Al Ali, “Automatic recognition
of handwritten arabic characters using their geometrical
features,” Studies in Informatics and Control, vol. 10,
no. 2, 2001.

[9] O. Al-Jarrah, S. Al-Kiswany, B. Al-Gharaibeh,
M. Fraiwan, and H. Khasawneh, “A new algorithm
for arabic optical character recognition,” in Proceedings
of the 5th WSEAS International Conference on Artificial
Intelligence, Knowledge Engineering and Data Bases, ser.
AIKED’06. Stevens Point, Wisconsin, USA: World
Scientific and Engineering Academy and Society

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012 369

© 2012 ACADEMY PUBLISHER

(WSEAS), 2006, pp. 211–224. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1364262.1364299

[10] R. Haraty and C. Ghaddar, “Neuro-classification for hand-
written arabic text,” in ACSIEEE International Conference
on Computer Systems and Applications, july 2003, p. 109.

[11] R. A. Haraty and C. Ghaddar, “Arabic text recognition,”
International Arab Journal of Information Technology,
vol. 1, no. 2, pp. 156–163, 2004.

[12] R. El-Hajj, L. Likforman-Sulem, and C. Mokbel, “Arabic
handwriting recognition using baseline dependant features
and hidden markov modeling,” in Document Analysis
and Recognition, 2005. Proceedings. Eighth International

Conference on, aug.-1 sept. 2005, pp. 893 – 897 Vol. 2.
[13] M. Bokser, “Omnidocument technologies,” Proceedings of

the IEEE, vol. 80, no. 7, pp. 1066 –1078, jul 1992.
[14] Y. Bassil and M. Alwani, “Ocr post-processing error cor-

rection algorithm using google online spelling suggestion,”
CoRR, vol. abs/1204.0191, 2012.

[15] R. C. Gonzalez and R. E. Woods, Digital Image Process-
ing, 3rd ed. New Jersey, USA: Prentice Hall, 2007.

370 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO. 4, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

