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ABSTRACT Chromosome analysis is an essential task in a cytogenetics lab, where cytogeneticists can

diagnose whether there are abnormalities or not. Karyotyping is a standard technique in chromosome

analysis that classifies metaphase image to 24 chromosome classes. The main two categories of chromosome

abnormalities are structural abnormalities that are changing in the structure of chromosomes and numerical

abnormalities which include either monosomy (missing one chromosome) or trisomy (extra copy of the

chromosome). Manual karyotyping is complex and requires high domain expertise, as it takes an amount of

time.With thesemotivations, in this research, we used deep learning to automate karyotyping to recognize the

common numerical abnormalities on a dataset containing 147 non-overlapped metaphase images collected

from the Center of Excellence in Genomic Medicine Research at King Abdulaziz University. The metaphase

images went through three stages. The first one is individual chromosomes detection using YOLOv2 Convo-

lutional Neural Network followed by some chromosome post-processing. This step achieved 0.84 mean IoU,

0.9923 AP, and 100% individual chromosomes detection accuracy. The second stage is feature extraction and

classification where we fine-tune VGG19 network using two different approaches, one by adding extra fully

connected layer(s) and another by replacing fully connected layers with the global average pooling layer.

The best accuracy obtained is 95.04%. The final step is detecting abnormality and this step obtained 96.67%

abnormality detection accuracy. To further validate the proposed classification method, we examined the

Biomedical Imaging Laboratory dataset which is publicly available online and achieved 94.11% accuracy.

INDEX TERMS Convolutional neural network, deep learning, chromosomes classification, data augmenta-

tion, transfer learning, object detection.

I. INTRODUCTION

Chromosomes are organized structures that contain the

genetic information of the human body. Cytogenetic interests

focusing on studying cell activity and chromosome analysis

for diagnosing genetic diseases at an early stage [1].

Chromosomes karyotyping become an important clini-

cal process in screening and diagnosing genetic disorders

like Edwards syndrome, Turner syndrome, and Down syn-

drome [1], [2]. It obtained from stained metaphase chromo-

somes by using staining techniques. It involved two stages:

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwei Gao .

segmentation and classification of individual chromosomes.

Cytogeneticists classified and arranged these chromosomes

into 22 pairs for autosomes and 1 pair for sex chromosomes

(XY or XX) [3] (Fig. 1). Cytogeneticists label the individual

chromosomes to one of the 24 chromosome classes depends

on different chromosome features.

Traditional ways for the chromosome classification pro-

cedure in most cytogenetic labs are performed manually by

experts. This process consumes time and needs efforts from

expert operators, therefore expensive.

To make this process easier, many automated karyotyping

systems have been developed. These systems mainly fol-

low four steps: image enhancement, segmentation, feature
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FIGURE 1. (a) Metaphase image, (b) chromosomes karyotype.

extraction, and classification. Chromosomes are classified

according to their features and their features can be extracted

based on two approaches: handcrafted based features (like

chromosomes length, centromere index, and density pro-

file) or learning-based features. Different classification tech-

niques have been used like machine learning and deep learn-

ing techniques. Deep learning is considered as the most used

technique in the medical image filed due to its capabilities

of extraction and dealing with complicated features automat-

ically [4], [5].

Recent researches replaced traditional ways of feature

extraction based on handcrafted features and classification

with a deep learning technique with encouraging results.

Convolutional Neural Network (CNN) is one of the public

models of deep learning. It is an essential tool for image

classification [6] and object detection [7] tasks. It is like the

human brain in visually perceiving the world. It consists of

neurons that are basic computation units and activated by

specific signals. Layers are stacked of neurons and a series

layers are forming CNN [8]–[10]. CNN primary consist of the

following types of layers: convolutional layer is responsible

about feature extraction, activation layer is a function that

decided if the neuron will fire or not, pooling layer reduce

the dimensions (parameters and computations) to avoid over-

fitting, fully connected layer connects each neuron in the

current layer to each neuron in the next layer, and finally,

classification layer selects the most probable class [11], [12].

There are two approaches used in deep learning: training

a model from scratch and transfer learning. Training a model

from scratch needs a huge amount of data to learn a specific

task. If the data samples are not large, then the transfer learn-

ing can be used in this case especially if there is no available

model in this specific domain. It leverages knowledge from

previously trained models for training newer models and it

also speeds up the training process and improves the overall

performance. That’s means we repurpose a pre-trained model

for our own needs by replacing the original classifier with

a new classifier that fits our purposes, and finally tuning

the model [13]–[15]. ResNet50 and VGG19 are examples

of pre-trained models that have been trained on more than

a million of images and can classify them into 1000 objects

(such as coffee mug, pencil, keyboard, and many animals).

FIGURE 2. Transfer learning concept.

They have been learned huge feature representations from

these images [16].

Fig. 2 depicts the concept of transfer learning. It starts by

loading the pre-trained model where the convolutional layers

(earlier layers) extract features. Then, the last fully connected

layer and the final classification layer use to classify the

input image. The fully connected layer has the number of

classes and it is replaced with a new one that has number of

outputs equal to the number of classes in the new dataset. The

classification layer specifies the output classes of the network

and it is replaced with a new classification layer without

class labels. When training the new dataset, automatically the

output classes of the classification layer will be sets [17], [18].

We attempt in this article to automate karyotyping steps

(segmentation and classification) by detecting and extracting

chromosome objects from the metaphase then feeding the

chromosome images into CNN for feature extraction and

classification. The main contributions are summarized as

follows:

1. Provide a categorized review and reporting a compar-

ative summary of the published research on automated

karyotyping. the categorization is according to the scope:

chromosomes segmentation, chromosome classification,

and complete karyotyping systems.

2. Inspired by transfer learning, we fine-tuned YOLO v2 for

individual chromosomes detection on a metaphase image

with ResNet50 backbone for feature extraction.

3. Fine-tuning the VGG19 by combining the Global Average

Pooling (GAP) layer with Fully Connected (FC) layers

and by adding Batch Normalization (BN) layer for chro-

mosomes feature extraction and classification.

4. Recognizing the most common numerical abnormalities

by determining if there is an extra copy of (13, 18, 21, and

X) classes or missing one pair of X chromosomes.

The rest of this article is structured as follows: vari-

ous segmentation & classification systems are summarized

and reported in Section II. Proposed individual chromo-

somes detection and classification models based on CNN

are explained in Section III. Then, experiments and eval-

uating the performance of the models are discussed in

Section IV. Finally, conclusion and future work are presented

in Section V.

II. RELATED WORK

The computer-aided systems are required to automate the

chromosome analysis and help lab operators to classify
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chromosomes and recognize chromosome abnormality. Seg-

mentation and classification of chromosomes are considered

the most important and challenging issues in karyotyping and

different researches in the literature have been made to auto-

mate the karyotyping. Some of these researches focused on

chromosome segmentation and they reported in Section II.A,

some of them focused on chromosome classification and

reviewed in Section II.B, and others focused on whole kary-

otype system (segmentation and classification) as they sum-

marized in Section II.C.

A. CHROMOSOMES SEGMENTATION

High-quality segmentation is necessary and primarily crucial

in developing a computer-aided system because it will affect

the accuracy of the classification stage. Various segmentation

algorithms are carried out to separate individual chromo-

somes from the metaphase images.

Minaee et al. proposed [19] a geometric-based method

for partially overlapping and touching chromosomes which

proceeded in two phases. The first one detects chromosome

clusters that contain touching or partially overlapping chro-

mosomes depending on three geometric criteria that deal with

the chromosome’s geometry. These criteria are surrounding

ellipse, convex hull, and skeleton and end points methods.

Next, in the second phase, a cut point is used to separate each

chromosome in the clusters and achieved 91.9% accuracy on

62 partially overlapping and touching chromosomes. In the

future, they plan to separate a complete overlapping chromo-

some.

Yilmaz et al. [20] started their work by preprocessing

and removing unwanted objects then deployed Gaussian-

weighted adaptive thresholding to get rid of some dark

background parts between chromosomes. Next, they applied

binary watershed transform on the binary mask of the image

to detect and separate clusters. Geometrical features and

skeleton were utilized in examining all connected objects to

check it is a single chromosome or a cluster. For separat-

ing touched chromosomes, they found appropriate cut points

then they calculated a grayscale geodesic distance transform.

Whereas for overlapping chromosomes, they created dif-

ferent combinations of possible chromosomes by detecting

overlapped regions of clusters and its center then divided the

cluster into regions in which each of them has a true cut point.

They achieved 97.8% of correctly extracted chromosomes

from 145 metaphase images.

The difference of Gaussian (DoG) was used as a sharp-

ing filter in Bashmail et al. [21] on 130 non-overlapped

metaphase images collected from Diagnostic Genomic

Medicine Unit (DGMU) at King Abdulaziz University. Then,

they normalized the intensity values to a (0, 1) distribution

and finally increased and inversed intensity values for every

pixel. For segmentation, they thresholded image using Otsu’s

method then applied morphological operations like erosion,

dilation and hole filling and achieved 99.8% accuracy.

Recently, researches replace traditional segmentation algo-

rithms with deep learning techniques where the network

includes several layers to learn and extract features while

training. The number of created features can be practically

infinite and without any human bias.

Hu et al. [22] applied deep learning and customized U-Net

semantic segmentation to distinguish between overlapping

chromosomes. They built 13000 grayscale images dataset

from raw images available on kaggle and dip4fish blog. They

obtained 88-94% intersection over union (IoU) on the non-

overlapping chromosome regions and 94.7% for the overlap-

ping region.

The research study done by Saleh et al. [23] added an

appropriate number of layers to U-Net architecture semantic

segmentation which was demonstrated on medical images of

cells to help extract more features. Besides, they implemented

a Test Time Augmentation (TTA). The dataset is collected

from raw images available in Kaggle and Github and it used

to build 13,434 greyscale images of overlapping chromosome

pairs. The obtained accuracy was 99.68% and IOU for over-

lapping pixels was 90.63% – 99.94%.

Altinsoy et al. [24] used U-net architecture with some

modifications: decreasing the feature maps to the half to

train the model, changing the input and output image sizes,

adding dropout layer after 4th and 5th convolutional blocks,

and using adam optimizer instead of SGD. They constructed

the dataset that contains 40 metaphase images collected from

Renji Hospital. To avoid overfitting, they implemented data

augmentation. Before augmentation, the dataset images were

divided into 25 for training, 5 for the validation, and 10 for the

testing. After augmentation, the number of images increased

to 3500 for training and 700 for validation. Elapsed time in

segmenting one metaphase image is around 0.25s and they

obtained 96.97% Dice similarity coefficient (DSC).

B. CHROMOSOMES CLASSIFICATION

Extensive researches focused on extraction handcrafted

features where it based on manually designed features and

feature selection methods, like chromosome length and cen-

tromere positions features. With the advent of deep learning,

other researches applied deep learning in feature extraction.

Moradi and Setarehdan [25] acquired the dataset from

Cytogenetic Laboratory of Cancer Institute, Imam Hospital,

Tehran, Iran and it contained 303 curved chromosome images

of classes 16, 17 and 18 collected and segmented by an

expert. They defined new features (width, position) of the two

most eye-catching regions of each chromosome and included

chromosome length and centromeric index to produce a six-

dimensional feature. They feed these features into three-layer

artificial neural networks and achieved 98.6% accuracy in

classifying these three classes (16, 17, and 18) in group E.

Whereas Mashadi and Seyedin [26] didn’t extract features

from chromosome images, they instead applied two types

of chromosome normalization (intensity and length normal-

ization) and then used image pixels as the input pattern

to the Support Vector Machine (SVM) classifier to clas-

sify 24 classes. They acquired their dataset from Royan

Institute which includes 42000 chromosome images isolated
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manually. By experiment, they found using length normaliza-

tion achieved a better classification accuracy of 95.9%.

As well, Roshtkhari and Setarehdan [27] used the same

dataset used in [25] and applied handcrafted features where

features have been extracted from the density profile of the

chromosome by the discrete wavelet transform. Then for

feature reduction, they utilized Linear Discriminant Analysis.

They also extracted the centromeric index and the relative

length. To classify chromosomes to (16, 17, and 18) classes

in group E, they applied a three-layer feed-forward percep-

tron neural network to classify these classes in group E and

obtained 99.3% average correct classification rate.

Chromosome global features (relative length, relative

area, and centromeric index) and textural features from

GLCM (contrast, inverse difference moment, angular sec-

ond moment, correlation, variance, and homogeneity) have

been extracted by Vanitha and Venmathi [28] from dataset

contained 4600 chromosome images segmented manually.

The system was divided into two steps. Chromosomes were

classified in the first step into seven groups (A-G) using

Self Organising Map Neural Network. The correctly clas-

sified chromosomes from the first step went to the second

step where the seven groups classified into 24 classes using

a hybrid neural network approach that combines K-Mean,

LVQ, and Naïve Bayes in conjunction with a serial fusion.

They achieved 98% classification accuracy and can detect the

numerical abnormalities in the metaphase sample, but they

didn’t mention the exact procedure applied in abnormality

detection.

Markou et al. [29] constructed the feature vector by fol-

lowing four steps. In the first step, they visited each pixel

in the medial axis of the chromosome. Secondly, in each

pixel, they calculated the line segment that begins from that

particular point and is oriented perpendicularly to the deriva-

tive vector at that point. Then, calculating the gray value

intensities of the pixels falling under the line segment. Finally,

the median of those values has been computed. The dataset

employed in this study is from Laboratory of Molecular

Biology, General Regional Hospital Papageorgiou, Thessa-

loniki (Greece) and contains 4554 chromosome images from

healthy people and segmented by an expert. They employed a

hybrid 2-level classification method in classifying 24 classes.

A context-independent SVM classification process took

place at the first level followed by a context-aware post-

classification stage. They got an overall 6.65% classification

errors.

Poletti et al. [30] employed Biomedical Imaging Lab-

oratory (BioImLab) dataset containing 5474 chromosome

images which is publicly available. They created the feature

vector based on the chromosome length, perimeter, area,

and 64 samples each for the density and contour profile.

These features were fed into ANN for the classification step

followed by reassignment to rearrange the 24 classes assigned

by the ANN classifier using a greedy approach. The average

accuracy of their proposed work was 94% and the average

run time was 3s.

Gagula-Palalic and Can [31] proposed a Competitive Neu-

ral Network Teams (CNNTs) that ensemble of ANN and near-

est neighbor classifiers. This method consists of 462 simple

perceptrons. Each perceptron has been trained to distinguish

between two classes to form 22 x 21 learning machines.

They used Sarajevo dataset containing chromosome features

for 3300 chromosomes obtained from the Clinical Center of

the University of Sarajevo. The dataset contains chromosome

length, length of short p-arm, and ten principal components

obtained from band pattern vectors. They were able to clas-

sify chromosomes to 22 classes with 1.73% error rate.

The proposed work done by Kusakci et al. [32] applied
Copenhagen dataset containing features for 4400 chro-

mosomes. The dataset provides chromosome identifier,

metaphase index, chromosome type, chromosome length,

length of the short arm (p-arm), and the band pattern features.

Principal Component Analysis (PCA) was applied to reduce

the number of input features. They utilized SVMs where a

single SVM was trained to separate a pair of chromosomes.

Pattern Search method was used to find optimal parameters

for that SVM. The outcome clusters were called Competitive

SVM Teams (CSVMTs) and the final output was determined

by majority voting. The proposed method achieved correct

classification rates of 97.84% in classification 22 chromo-

somes.

In recent years, deep learning techniques showing very

promising results in image classification especially in the

medical image filed to deal with complicated features. Some

of the researches are tending to this filed because it facilitates

classifying chromosomes to 24 classes.

Chromosomes are segmented manually by an expert and

straightening by Swati et al. [33] via medial axis extrac-

tion and crowdsourcing and via projection vectors methods.

They collected the chromosome images from a hospital with

1740 images. They proposed a Siamese Network comprised

of twin neural networks and utilized CNN as the base net-

work. The CNN consists of two convolutional layers followed

by a maxpooling layer. The result of the final maxpooling is

flattened into a vector and fed into a fully connected dense

layer followed by the computation of an energy function

over the feature representations of the highest level. They

applied Multi-layer Perceptron (MLP) as the second training

stage and it was trained on the embeddings obtained from

Siamese Network. After several experiments, they achieved

the highest accuracy (84.6%) when using projection vectors

as a straightening method for the chromosomes. They have

been classified chromosomes to 24 classes.

Sharma and Vig [8] extracted features from convolutional

layers of Residual Neural Networks (ResNet-50). Then, fed

into Long Short Term Networks (LSTM - a variant of Recur-

rent Neural Networks RNN) followed by an attention block.

The final layer is the fully connected softmax layer which

classifies chromosomes to one of 24 classes. They demon-

strated their work on the Biomedical Imaging Laboratory

dataset containing 5474 chromosome images which is pub-

licly available. They obtained 90.42% classification accuracy.
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Swati et al. [34] integrated two networks: convolutional

super-resolution and Xception networks. First, they per-

formed length normalization as a preprocessing step. Then,

they applied a convolutional super-resolution network to

improve the resolution of images by converting them from

low to high resolution images. These images were passed to

Xception convolutional neural network for the classification

task. They validated their system on the Biomedical Imaging

Laboratory dataset containing 5474 low resolution chromo-

some images. They achieved 92.36% classification accuracy.

In the future, they plan to detect chromosome structural

abnormalities like inversions, translocations, deletions, etc.

The proposed system by Qin et al. [4] followed three steps.
First, global features like chromosome’s length, shape, and

size were extracted via the G-Net then local features like

texture patterns of local parts were extracted via the L-Net.

For the second step, they built two MLP classifiers that uti-

lized the fused features. In the third step, they assigned each

chromosome to its type by a dispatch strategy. Their dataset

contained 87831 separated chromosomes collected from the

Xiangya Hospital of Central South University, China. Two

kinds of data augmentation were occurred on the dataset:

rotation and flipping. They evaluated their system based on

different performance metrics: accuracy, F1-score, the aver-

age accuracy of the complete karyotyping per patient case

(Acc. per Case), and the average accuracy of the complete

karyotyping per patient case using the dispatch strategy (Acc.

per Case-D). The conducted work obtained 98.9% accuracy,

98.7% F1, 98.9% Acc. per Case, 99.2% Acc. per Case-D.

C. WHOLE KARYOTYPE SYSTEM

In this section, we summarized the recent studies that

include both karyotype stages: segmentation and classifica-

tion. As well, the studies divided into two types hand-crafted

based and deep learning-based feature extraction studies.

Rungruangbaiyok and Phukpattaranont [35] started their

work by image preprocessing which includes removing

noises and improving contrast and image quality. They seg-

mented 60 metaphase pictures by thresholding and Otsu’s

algorithm. Dilation and erosion processing algorithms were

performed to enhance the images. Measuring the perfor-

mance of the segmentation process is not mentioned in the

paper. After segmentation, they extracted area, band’s area,

perimeter, band profile, and singular value decomposition

features. They adopted the Probabilistic Neural Network

(PNN) and divided their system into two steps. The one was

classified chromosomes into six groups based on extracted

features. The next step classified the six groups into 24

classes. They got 68.18% accuracy result for female and

61.30% for male.

Saranya et al. [36] preprocessed image by the median filter

then segmented this image by Fuzzy c mean algorithm but

neither they mentioned the dataset size nor the result of seg-

mentation. Texture features were extracted based on a GLCM

algorithm. They generated a symmetrical normalized GLCM

and make features "rotation" invariant by using the isotropic

GLCM. They utilized SVM as a classifier in classifying

chromosomes to 24 classes and obtained 95.89% accuracy

result.

Also, Neethu et al. [37] preprocessed the metaphase pic-

ture by thresholding and noise removal. Segmentation was

occurred based on a 4-connectivity labelling algorithm and

bounding box and they able to segment 1628 chromosome

images. Even this article didn’t measure the segmentation

process performance. They extracted different groups of fea-

tures like chromosome global features (area, medial axis

length, average gray value of each chromosome, and contour

length), chromosome centromeric features (contour length

p/q ratio and medial axis length ratio of p/q), and textural

features from Gray Level Co-occurrence Matrix GLCM (cor-

relation, contrast, homogeneity, entropy, and energy). Two

feed-forward Artificial Neural Network (ANN) took place for

firstly classifying chromosomes to the Denver group based

on global and chromosome centromeric features then, from

the Denver group, recognize each chromosome based on

its textural features. They obtained 75% accuracy and they

claimed the accuracywill improve if they increase the number

of samples.

Somasundaram [38] utilized dataset contained 1000 touch-

ing chromosomes, 1000 overlapping, and 500 multiple over-

lapping chromosomes with normal and abnormal cases. They

preprocessed the metaphase picture by applying a median fil-

ter to reduce the noise and applyingmorphological operations

(dilation, erosion, opening, and closing). Two segmentation

methods are carried out, the first one was MOGAC method,

but it could not separate overlapping and touching chromo-

somes, so they employed Hypothesis analysis for isolating

these overlapped chromosomes. Furthermore, no segmenta-

tion performance was evaluated in this research. PNN and

SVM were carried out for classifying chromosomes into

24 classes. For classification by SVM, chromosome length,

centromere index, and similarity index are considered input

features to the classifier and obtained 97% accuracy.Whereas

for PNN, they used chromosome length, centromere posi-

tion, and perimeter features and obtained 96% accuracy. The

research showed that PNN performed better than SVM.

Zhang et al. [39] collected the dataset from a local com-

pany consisting of 224 karyotyping images and preprocessed

these images by utilizing the area filter to remove noises.

They isolated each chromosome by using regionprop on the

Matlab to generate bounding boxes on these chromosomes

and they didn’t evaluate segmentation performance. CNN

has been constructed for feature extraction and classification.

It consisted of five types of layers: convolution, pooling,

dropout, flatten, and dense layers. They achieved 92.5%

accuracy and 91.3% proportion of well-classified karyotype

(PWCK). They trained this network on vertical chromosomes

and in the future, they will consider the different orientations

of chromosomes.

Wu et al. [40] utilized Extremal Regions (ER) with

some filters used geometric properties and intensity distri-

bution to segment out individual chromosomes. Whereas
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for overlapping and touching chromosomes they segmented

them by approximating chromosome shapes with eclipses.

In some cases, they failed in segment overlapped and touch-

ing chromosomes, so they developed a modification tool to

enable clicking on segment chromosomes to form an indi-

vidual chromosome. Although they still failed in other cases,

so they let the technicians segment these chromosomes man-

ually. Their proposed segmentation method obtained 95.9%

accuracy and 94.8% recall on 120 metaphase images col-

lected from a private company. Multiple Distribution Gen-

erative Advertising Network (MD-GAN) for augmentation

has been proposed by them to divers and increase training

samples after segmentation. Next, they applied a pre-trained

CNNmodel (VGG16) for classifying metaphase to 24 classes

by freezing earlier layers and fine-tuning the higher- layers.

They got 63.5% precision.

Segmentation by Somasundaram [41] is done based on

cut points and multilevel object-based algorithm on more

than 500 normal and 500 abnormal images. For touching

chromosomes, they adjusted the level sets to separate each

chromosome whereas overlapped chromosomes were sepa-

rated by the B-spline method. No segmentation results were

shown in the paper. For feature extraction and classification,

CNN has been constructed and consisted of five types of

layers: convolution, pooling, flatten, dense, and dropout lay-

ers. Three kinds of data augmentation were occurred on the

dataset: rotation, flipping, and scaling. They obtained 98.9%

accuracy for normal and abnormal classification.

Sharma et al. [42] collected their dataset from a hospital

containing 400 healthy patient metaphases where non-expert

crowd from CrowdFlower was utilized to isolate chromo-

somes. They performed some preprocessing steps on the

chromosomes before classification including straightening of

chromosomes, finding bending orientation, finding the bend-

ing center of curved chromosomes, stitching of the two arms

of the chromosome, and reconstruction, normalizing chro-

mosome length. They constructed CNN for feature extrac-

tion and classification consisted of four blocks where every

block contains two convolutional layers, one dropout, and one

maxpooling layer. Followed by two fully connected layers

and a softmax layer with 24 units. Without preprocessing

steps, they obtained 68.5% classification accuracy and by

preprocessing steps, they improved the accuracy to 86.7%.

Dataset used by Xie et al. [43] for segmentation contains

original and synthetic images. They improved the ‘cut and

paste’ image synthesis method to synthesize the annotated

images. They followed these steps: collecting 5000 chro-

mosome images from hospital with 20 backgrounds, and

50 kinds of distractors, then generating masks for chromo-

somes by binarization and morphological transformations.

Finally, they combined 48 chromosomes and 2 to 6 distrac-

tors with the background. Segmentation was occurred using

Mask R-CNNwhich includes object detection and pixel-level

segmentation. They applied geometric algorithms like crop-

ping, rotating, and straightening for highly curved chromo-

somes. After conducting several experiments, they achieved

95.644% average precision (AP) on IoU threshold 0.5. They

proposed a multi-input CNN which takes three inputs at

a time: original, cropped, and straightened chromosome

images. They applied ResNet-50 as a backbone. The original

and straighten images are passed through max-polling layer

followed by a convolution layer whereas cropped images

fed directly to the ResNet. To combine these features, they

created a concatenation layer with 4096 nodes followed by a

MLP which includes two FC layers with 1024 nodes and one

softmax layer. The network has been trained on data contains

480000, 90000, and 90000 training, validation, and testing

respectively and achieved 95.70% accuracy.

Further contributions are required to automate abnormal-

ity detection. In this article, we propose to automatically

detect the individual chromosomes on the metaphase image

and classify the chromosomes based on CNN deep learning.

It eliminates manually selection and extraction features and

therefore guaranteeing the accuracy of the selected chromo-

some features to ensure the accurate detection of abnormality.

III. THE PROPOSED SYSTEM

The proposed system mainly consists of three major stages.

The first stage is individual chromosomes detection via object

detection using YouOnly LookOnce (YOLO) v2 followed by

chromosomes post-processing. The input to this stage is the

non-overlapped metaphase and the output is the detected and

separated chromosomes. The second stage is chromosome

classification via VGG19 whereas the input is the detected

and separated chromosomes coming from previous stage and

the output is the classified chromosomes. The final stage is

abnormality detection based on the result of the classification

stage and the input to this stage is the classified chromosomes

for single metaphase and the output is the diagnosis. The

details of the stages are shown in the sections below. The

overall proposed system is shown in Fig. 3.

A. FIRST STAGE: INDIVIDUAL CHROMOSOMES

DETECTION

In our study we used non-overlapped metaphase images

therefore, we utilized deep learning object detection to locate

the presence of chromosomes and surround each one by a

bounding box.

YOLO is a kind of object detection and is addressed as a

regression problem to spatially separate bounding boxes and

associated class probabilities. It is much faster than R-CNN

therefore, it designed for speed and real-time use. R-CNN

approaches like Faster RCNN predict detections based on a

specific region, whereas YOLO uses features from the whole

image in predicting boundaries. It involved classification and

localization tasks and it can be trained on different pre-trained

CNN. The input image is divided into a grid of cells each of

them is responsible for predicting class probabilities, bound-

ing box locations, and box confidence scores (objectness).

Pre-defined bounding boxes (anchor boxes) with suitable

shapes and sizes are determined during training [44], [45].
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FIGURE 3. Framework of our proposed system.

1) YOLO v2 ARCHITECTURE

YOLO v2 composes of two subnetworks: network for feature

extraction and a detection network. The network for feature

extraction is a pre-trained CNN model while the detection

network consists of a few convolutional layers and specific

layers for YOLO v2 [45].

Image input size, the number of anchor boxes, and the base

of the pre-trained CNN model for feature extraction have

been specified to create YOLO v2 network.

Choosing the number of anchor boxes is considered as

training parameters that should be selected carefully.We used

mean IoU distance metric with k-means clustering algorithm

to identify the top-k boundary boxes that have the best fit

of the training data. If the mean IoU is greater than 0.5,

this means the anchor boxes overlap well with boxes in the

training data [45], [46].

We used ResNet50 as the feature extractor. It includes

50 residual layers and introduces an ‘‘identity shortcut con-

nection’’ that skips blocks of convolutional layers to form

blocks named residual blocks. These residual blocks solve the

degradation of training accuracy presented in deep networks

[47], [48]. Fig. 4 illustrated the architecture of ResNet50.

We extracted features from ‘activation_40_relu’ layer and

removed all layers after ‘activation_40_relu’ then added the

detection subnetwork. The detection subnetwork consists

of groups of connected convolutions, batch normalization,

and ReLU layers. The final part of the detection subnet-

work includes convolution, YOLO v2 transform, and YOLO

v2 output layers as seen in Table 1. The main goal of the

convolution layer is to predict object class probabilities, x and

y location offset, width, and height offset for each anchor box.

The feature map of this layer is (57, 57, 54) where 57 × 57

is the grid of cells. Each prediction includes 4 parameters

for the boundary box, 1 box confidence score, and 1 class

probabilities (we just have one class which is a chromosome).

After the experiment, we found the best boundary boxes are

9 with (4+1+1) parameters so the total number of parameters

per grid cell are 54 parameters. Transform Layer extracts

activations of the last convolutional layer and transforms the

bounding box predictions to be within the bounds of the

ground truth. It improves the stability of the network by

constraining the location predictions [49].Whereas the output

layer provides the refined bounding box locations of the target

chromosome objects [50].

The first row in Fig. 5 presents samples of original

metaphases and the second row presents YOLOv2 results

where each chromosome is surrounding by a bounding box.

2) CHROMOSOME POST-PROCESSING

Every chromosome is cropped from the original image

according to its bounding box. After cropping, some chro-

mosome images contain another chromosome especially the

short chromosomes as seen in Fig. 6. Fig. 6 (a) is showing the

original metaphase image, Fig. 6 (b) is showing the detected

boxes where every chromosome is surrounded by a bounding

box and according to bounding boxes, all chromosomes are

cropped. Fig. 6 (c) is showing one of the chromosomes after

cropping where it contains another short chromosome object.
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FIGURE 4. ResNet50 architecture [47].

FIGURE 5. Samples of YOLOv2 results: (a) original metaphases (b)
detected chromosomes on metaphases.

FIGURE 6. Chromosomes post-processing after object detection.

The problem here is not from the detected bounding box,

the bounding box fit correctly on the chromosome object,

the problem is from the short chromosome where it can

be in the bounding box of the tall and bended chromo-

some. Although the short chromosome is detected correctly.

According to this situation, we did some post-processing

on the chromosome images that contain this case as seen

in Fig. 6 (d).

TABLE 1. Detection subnetwork architecture of YOLO v2.

The post-processing step starts by creating a binary image,

then counting the number of objects in the image by labelling

connected components [51]. If the number of objects is more

than one, then the process continues to the next step which

determines the largest object in the image. Specifying the

largest object is done by counting the number of pixels belong

each object using connected components analysis that search

for the next unlabeled pixel p, then use a flood-fill algorithm

to label all the pixels in the connected component containing

p. The analysis repeats this process until all the pixels are

labeled. Finally, filling the image regions and holes based

on morphological reconstruction [52] and making outside the

image the mean of what’s above the threshold. Since we need

the white area around the chromosome, without affecting the

light bands of the chromosome, but this area is not a clear

white (255) so after different experiments, we found the best

threshold is between 235-245 that will not affect the light

bands. In our case, we choose the threshold to be 240 which

is the mid-point between 235-245.

B. SECOND STAGE: CHROMOSOME CLASSIFICATION

The input to this stage is the separated chromosomes. In this

research, the feature extraction and classification are based

on fine-tuning VGG19. VGG19 includes 19 layers divided
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into 16 convolutional layers with a very small receptive

field 3 × 3 convolution filters and 3 fully connected (FC)

layers. The width of the convolutional layers starts from

64 in the first layer and increases by a factor of two after

each max-pooling layer, until it reaches 512. The first two

layers of FC have 4096 neurons and the final FC layer

has 1000 neurons (one neuron for each class) followed by

the softmax layer. All hidden layers are equipped with the

Rectified Linear Unit (ReLU). It accepts RGB images in size

224-by-224 pixels [16], [47]. The architecture of VGG19 is

illustrated in Fig. 7 [47]).

One important thing in a deep learning network is the

generalization ability that reduces the overfitting. Different

regularization techniques were proposed, and they proved

their efficiency in avoiding overfitting and make the model

more stable.

• Batch Normalization (BN): speed up the convergence,

increase the stability, and regularize the model. It can be

added after a convolutional layer and it performs some

operations on the output of the preceding activation

layer. These operations include standardization, normal-

ization, scaling, and shifting operations [53], [54].

• Dropout: during training, neurons’ weights are tuned

for specific features providing some specialization then

the neighbors’ neurons rely on this specialization which

will result in a model that fits on the training data.

Dropout randomly ignored (dropped) selected neurons

along with their connections from the network. This

prevents neurons from complex co-adaptations on train-

ing data and forces them to learn features on their own

[54], [55].

• Global Average Pooling (GAP): the proposed work on

Network in Network (NIN) [56] is followingwhere GAP

partially or fully replaces the traditional fully connected

layers and it reduces the dimension of each tensor by

taking the average output of each feature map in the

previous layer then, feeding the result vector directly to

a softmax layer. If a tensor has a dimension (h×w×d),

GAP reduces the dimension to (1× 1×d) by calculating

the average of each feature map (h×w). GAP idea is

generating one feature map for each corresponding cat-

egory of the classification task. The advantage of GAP is

avoiding overfitting because there is no parameter needs

to optimize.

We use the above techniques in modifying the feature extrac-

tion & classification parts of the base model. Also, freezing

the weights of some earlier layers by setting the learning rates

to zero to speed up the training because the gradients of these

layers do not need to be computed and because our dataset

is small and different from the pre-trained model’s dataset

[14], [17]. We also, modify the last fully connected and

classification layers of the model according to our number of

classes (24 classes). The modifications are done with varying

model depth and varying feature size in two approaches [57]:

Approach 1: Adding FC layer(s) with different number of

neurons after ‘fc8’ layer. Fig. 8 demonstrates the concept of

this approach.

Approach 2: Removing the top classification layers then,

combining the GAP layer with FC layer(s) followed by the

softmax layer. More precisely we remove layers from ‘fc6’ to

‘fc8’, then we add the new layers. Fig. 9 shown the concept

of this approach of fine-tuning the VGG19.

We examined different schemes with the above approaches

to modify the pre-trained VGG19 model with varying model

depth (hidden layers) and varying feature size (number of

neurons) and these schemes are listed below:

1. No additional FC layers are added. In approach 1, we kept

the base model as it is whereas in approach 2, we con-

nected the GAP layer to the softmax layer.

2. We examined varying feature size by adding FC layer

with a different number of neurons: 2048, 4096, 5000, and

6000.

3. Moreover, we examined varying model depth by adding

regularization technique layers that reduce over-fitting to

investigate their efficiency and effectiveness on the net-

work.We combined dropout layer and FC layer with ReLu

activation layer in this order: FC + ReLu + dropout +

FC + ReLu + dropout. As well we examined the effect

of BN layer in two ways. The first one is examining it in

classification part by combining it with FC layer followed

by ReLu in this order: FC + BN + ReLu + FC + BN

+ ReLu. The second way is to examine it in the feature

extraction part by adding BN after each convolutional

layer without adding any extra layer in the classification

part.

Table 2 presents the examined approaches with differ-

ent schemes and Fig. 10 visualizes these combinations of

approaches and schemes. The output of this stage is the

classified chromosomes.

C. THIRD STAGE: ABNORMALITY DETECTION

The next step after classification is detecting and diagnosing

the abnormality. The input to this stage is the classified chro-

mosomes for single metaphase. Collected testing metaphases

contain different normal and numerical abnormal cases as

shown in Table 3.

The decision is made according to the chromosomes count

and is based on a traditional conditional statement. It starts

by counting the total number of the detected chromosomes

for the single metaphase and the number of chromosomes on

each target class (13, 18, 21, X, Y). If the total number of

chromosomes is 47 and the number of chromosomes in class

13 is three, then this case is diagnosing as Trisomy 13 (Patau

Syndrome). If it is not, then it will check the number of chro-

mosomes in class 18. If it has three copies of chromosomes

18 then it considered as Trisomy 18 (Edwards Syndrome).

The same thing is done for Trisomy 21. Whereas for Trisomy

XXY (Klinefelter Syndrome), it detected if the above con-

ditions are not met and the total number of chromosomes
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FIGURE 7. VGG19 architecture [47].

FIGURE 8. Approach 1 of fine-tuning VGG19.

FIGURE 9. Approach 2 of fine-tuning VGG19.

is 47, and the number of chromosomes in classes 23 (X

class) and 24 (Y class) is two and one respectively. If the

total number of chromosomes is 45 and there is only one

chromosome in class 23 and nothing in class 24, then this

case is Monosomy X. Otherwise the case is predicted as a

normal case. Algorithm 1 summarizes this stage procedure.

IV. EXPERIMENTS AND RESULTS DISCUSSION

A. TOOLS

We implemented the proposed system in MATLAB version

R2019b with Deep Learning Toolbox on a computer with

Intel(R) Core (MT) i7-6700K CPU @ 4.00GHz processor,

NVIDIA GTX 1070 graphics card, 2T HDD, and 16GB

RAM.

B. DATASET

To evaluate our system and approaches, we perform experi-

ments on two different datasets:

FIGURE 10. Framework of fine-tuning VGG19 with a combination of
proposed approaches and schemes.

Cytogenetic Service Unit dataset: from Center of Excel-

lence in Genomic Medicine Research (CEGMR) at King

Abdulaziz University (KAU) [58]. We collected 147 jpg

file format metaphase images contain normal and abnormal
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TABLE 2. Examined proposed approaches with different schemes.

TABLE 3. Distribution of testing cases.

numerical cases with 910 × 910 pixels quality resolution.

The selected images are free overlap, sever some bending,

and have different band resolutions between 550 to 650. The

difference in the band resolutions depends on the sample type

and quality. This dataset used for individual chromosomes

detection, classification, and abnormality detection stages.

The individual chromosomes detection process produces sep-

arated 6807 chromosomes with different sizes like 31 × 62,

51×67, 100×200, 69×82, and 43×62. Fig. 11 shows sample

of metaphase images. The distribution of chromosomes over

classes is shown in Table 4.

Biomedical Imaging Laboratory (BioImLab): which

is publicly available online [59]. The dataset contains

5474 grayscale separated chromosome images and the dis-

tribution of these chromosomes over classes is tabulated

in Table 5. The images are in bmp file format with also

different sizes. We use this dataset to validate our proposed

Algorithm 1 Decision Making and Diagnosis

//Input: Detected and classified chromosome images for

single metaphase

//Output: Case diagnosis

1. TotalChro: count total no. of individual chromosomes

for the single metaphase

2. ch13, ch18, ch21, ch23, ch24: count no. of chromo-

somes in class 13, 18, 21, 23, and 24 respectively

3. if TotalChro==47 & ch13>=3

4. ‘Trisomy 13’

5. else if TotalChro==47 & ch18>=3

6. ‘Trisomy 18’

7. else if TotalChro==47 & ch21>=3

8. ‘Trisomy 21’

9. else if TotalChro==47 & ch23>=2 & ch24>=1

10. ‘Trisomy XXY’

11. else if TotalChro==45 & ch23 == 1 & ch24 == 0

12. ‘Monosomy X’

13. else

14. ‘Normal’

15. End

TABLE 4. Chromosome distribution over classes for CEGMR dataset.

classification stage. Fig. 12 shows sample of images from

different classes.

TABLE 5. Chromosome distribution over classes for BioImLab dataset.

C. FIRST STAGE: INDIVIDUAL CHROMOSOMES

DETECTION EXPERIMENTS & RESULTS

1) DATASET PREPARATION

The CEGMR dataset is used to train the YOLO v2. It contains

147 metaphase images and the ground truth for these images

are generated using image labeler app provided byMATLAB.

This app enables to mark a rectangular region of interest

(ROI) labels on each metaphase image. Out of these images

we utilized 80% as training (118 metaphase images) and 20%

as testing (29 metaphase images).

2) FINE-TUNING YOLO v2

YOLO v2 object detection is used to localize every chro-

mosome on metaphase image and after conducting differ-

ent experiments, we found the best training parameters are
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FIGURE 11. Sample of CEGMR metaphase images.

FIGURE 12. Sample images for different classes in BioImLab dataset.

stochastic gradient descent (SGD) optimizer, 10−3 learning

rate, 0.9 momentum. We trained the model for 60 epochs on

4 mini-batch size. We found the best number of anchors is

9 which produces IoU=0.8 on the training samples as seen

in Fig. 13.

FIGURE 13. Number of anchors vs mean IoU.

To improve the accuracy and boost the performance of the

deep learning network, the dataset should have a large amount

of training data but unfortunately, most of the applications

domain do not have access to a large amount of data espe-

cially the medical domain.

Data augmentation is a regularization technique used to

increase the diversity of training data, without having to

increase the number of labeled training samples. It used to

help preventing the network from overfitting caused by using

small datasets and preventing the network from memorizing

the exact details of the training samples therefore, it improves

network accuracy. In our study, we used online data aug-

mentation (also, called augmentation on the fly) where no

need to save the results on disk as in offline augmentation.

Fig. 14 depicts online data augmentation for the individual

chromosomes detection stage. At each epoch during training,

the augmented image dataset has a random combination of

transformations for images in the mini-batch of the training

sample. So, each epoch uses a slightly different dataset and

at the same time in each epoch the actual number of training

images does not change [60], [61].

FIGURE 14. Online augmentation for individual chromosomes detection.

The augmentation occurred by randomly flipping the orig-

inal data image and associated box labels horizontally, ran-

domly scaling by a scale factor that is between [1, 1.1], and

randomly jittering images color for brightness, hue, satura-

tion, and contrast during training.

3) FIRST STAGE RESULTS & DISCUSSION

The most widely used and common metric for object detec-

tion is the IoU (Jaccard’s index). It computes the similarity

between the ground truth box and the predicted box. It is

defined as the intersection between boxes divided by the

union of these boxes and a returned value is between 0 and

1 where 1 means the perfect fit between boxes. The metric is

defined in (1).

Intersection over union (IoU) =
area of intersection

area of union
(1)

AP (Average precision) is another common metric in mea-

suring the performance of object detection. To compute this

metric, we first compute recall and precision values. Recall

defined in (2) is a ratio of correctly detected positive objects

to the total number of objects in the dataset.

Recall =
TP

TP+ FN
(2)

where TP is the True Positive and FN is the False Negative.

Equation 3 represents the precision that is the ratio of cor-

rectly detected positive objects to the total detected positive

objects.

Precision =
TP

TP+ FP
(3)

where FP is False Positive. After computing recall and pre-

cision, AP is calculating by taking the average value of the

precision at the set of 11 equally spaced recall values as in

(4).

AP =
1

11

∑

Recalli

Precision(Recalli) (4)
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Accuracy in (5) is the ratio between the number of correctly

separated chromosomes to the total number of chromosomes.

Also, we compute the individual chromosomes detection time

for each metaphase.

Accuracy =
correctly segmented chromosmes

total number of chromosomes
× 100 (5)

For some metaphases, YOLO v2 may be produced more than

one box for the same detected chromosome object as seen

in Fig. 15. To solve this, Non-maximum Suppression (NMS)

comes up. It keeps the box that has the highest confidence

score and removes the other [44], [46].

FIGURE 15. Applying Non-maximum Suppression on predicted
metaphase bounding boxes. (a) shows the original metaphase, (b) shows
the predicted bounding boxes, (c) shows predicted bounding boxes after
applying NMS.

The experimental results on CEGMR testing dataset get the

mean IoU=0.84. To compute AP, we define a prediction of

chromosome object to be a TP if the IoU for that object >=

0.5, and a FP if the IoU < 0.5. If the model missed detect-

ing the object, then it considered as FN. After calculating

recall and precision, precision/recall (PR) curve is plotted as

in Fig. 16 to calculate AP and as we see our model achieved

AP=0.9923. We measure the total individual chromosomes

detection time for each metaphase and we find the individual

chromosomes detection time is between 1.2990 s - 1.6138 s.

FIGURE 16. PR curve.

Fig. 17 visualizes the original metaphase images, ground

truth, predicted bounding boxes, and the overlapping between

the ground truth and the predicted. The predicted boxes

acceptably fit the chromosome objects. Some parts of some

chromosomes go outside the boxes especially the tall chro-

mosomes but the number of chromosomes that fall in this

case is rare. Fig. 18 presents one of this case where the

left image is the ground truth and the right image is the

FIGURE 17. Samples of detected boxes where blue color represents the
ground truth and the green color represents the predicted: (a) original
metaphase images (b) ground truth images (c) predicted (d) overlapped
regions.

FIGURE 18. Segmentation result for chromosome which its predicted box
is not fit the whole chromosome.

seprated. However, the classifier classifies this chromosome

correctly. Although, the proposed individual chromosomes

detection stage successfully seprated all 1350 chromosomes

on 29metaphases and as a result, the individual chromosomes

detection achieves 100% accuracy. All 1350 seprated chro-

mosomes from this stage are used as it is in the second stage

even if it has some missing parts as seen in Fig. 18 (b).
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4) COMPARISON WITH THE STATE-OF-THE-ART

SEGMENTATION METHOD

Since [21] is the only research used the same dataset collected

from CEGMR [58] except it used 130 metaphases and we

increased the metaphases to be 147. Table 6 summarizes

the differences between the two studies that used CEGMR

dataset and as seen our individual chromosomes detection

technique obtained better result, whereas Table 7 compares

our proposed method with the state-of-the-art methods that

used deep learning for chromosome segmentation. The com-

parison is relative because the used techniques and datasets

are different. We notice that three papers [22], [32], and

[33] used U-Net semantic segmentation and paper [43] used

another type of segmentation which is instance segmenta-

tion (Mask R-CNN). Each pixel in segmentation is labeled

with the its class while in our research we applied object

detection technique (YOLO v2) where each chromosome is

distinguished by a bounding box. As we see our proposed

method achieved comparable result with the state of the art.

TABLE 6. Comparing the proposed individual chromosomes detection
stage with a state-of-the-art method on CEGMR dataset.

D. SECOND STAGE: CHROMOSOME CLASSIFICATION

EXPERIMENTS & RESULTS

1) DATASETS

Two different datasets used in this stage. The first one is

coming from the previous stage and contains 6807 separated

chromosomes. Out of these, we used 5457 chromosomes for

training VGG19 and 1350 for testing. The testing images

are belonging to the 29 metaphases used in the testing pre-

vious stage. The second dataset is BioImLab and contains

5474 chromosome images. We converted these images to

RGB format and utilized 4370 for training and 1104 for test-

ing. Besides the two datasets, we combined them to increase

the number of chromosomes in each class. To ensure the bal-

ance splitting among the datasets, we first split each dataset

separately to training and testing then merge the training

from each dataset to make a new training dataset contains

9827 chromosomes and a new testing dataset contains 2454

chromosomes. Table 8 summarizes the size of training and

testing for each dataset. Different experiments are performed

on the three datasets to get the highest performance model.

TABLE 7. Relative comparison with state-of-the-art methods that
addressed chromosomes separation using deep learning (segmentation/
object detection).

All images are resized to 224-by-224 to match the required

input size for the first layer of the VGG19.

TABLE 8. Size of training and testing datasets used in the classification
stage.

2) FINE-TUNING VGG19

For the three datasets, we train the network using the com-

bination of the proposed approaches and schemes listed

in Table 2 with a learning rate of 10−3, stochastic gradient

descent (SGD) optimizer, and other parameters are set to the

default values. We conducted a different number of experi-

ments and found the best results found at 10 mini-batch size

and 60 epochs. Freezing some earlier layers and online data

augmentations were taken place. The augmentation occurred

by randomly translating images up to 30 pixels and randomly

flipping them along the vertical axis and scaling them hori-

zontally and vertically up to 10% (Fig. 18).

3) SECOND STAGE RESULTS & DISCUSSION

The pre-trained VGG19 model was evaluated based on var-

ious performance metrics (accuracy, recall, precision, and
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F1 score) also, we computed the model training time and

needed time for predicting one chromosome image. To com-

pute these metrics, we first define the following criteria:

• True positive (TP): image classified correctly as a posi-

tive class.

• False positive (FP): image classified incorrectly as a

positive class.

• False negatives (FN): image classified incorrectly as a

negative class.

• True negatives (TN): image classified correctly as a

negative class.

Accuracy is calculated in (6) as the ratio between the number

of correctly classified images and the total number of images.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(6)

Recall and precision are computed according to Equation 2,

3 respectively. F1 score in (7) is the harmonic mean between

precision and recall.

F1score =
2 ∗ (Recall ∗ Precision)

(Recall + Precision)
(7)

The sections below display the results of the proposed two

approaches with different schemes presented in Table 2 on

the three datasets.

4) CEGMR DATASET RESULT

Table 9 tabulated the CEGMR dataset classification results

and we notice the best results of accuracy equals to 95.04%,

recall is 94.84%, precision is 94.90%, and F1 score is 94.87%

found on scheme 16 that adds a BN layer after each Conv.

layer in the feature extraction part and replaces all FC layers

in the classification part with GAP layer. Scheme 9 achieved

the best training time 2.48h but in general, all schemes in

the second approach except the last scheme achieve better

training time comparing with the first approach even for pre-

dicting time per chromosome image. Adding BN with GAP

layers boost the performance of base VGG19 around 1.11%

but it increases training time comparingwith other schemes in

approach 2. Dropout and BN are techniques of regularization

and we examined their effect on VGG19 performance on

schemes 6, 7, 14, and 15. BN outperforms dropout in this

dataset experiments.

5) BioImLab DATASET RESULT

From Table 10 it is clear that scheme 3 provides the best

results for accuracy which is 94.11%, recall of 93.86%, pre-

cision of 94.51%, and F1 score of 94.18%. Scheme 3 adds FC

layer with 4096 neurons after ‘f8’ layer in the classification

part of VGG19. The smallest training time 2.21h obtained

using scheme 14which replaces the FC layers with GAP layer

followed by theses layers FC(4096) + ReLu + dropout +

FC(4096) + ReLu + dropout. In general approach 2 (adding

GAP) produces the smallest prediction time per chromosome

image but it didn’t reduce training time for this dataset as it

reduces in the CEGMR dataset. Dropout outperforms BN in

approach 1 whereas in approach 2, BN outperforms dropout.

a: COMBINED DATASET RESULT

As seen from Table 11 the best accuracy result is 94.70%,

precision is 94.75%, and F1 score is 94.68% found on scheme

16 that adds a BN layer after each Conv. layer in the feature

extraction part and replaces all FC layers in the classification

part with GAP layer. Furthermore, scheme 13, which adds

extra FC layer with 6000 neurons after ‘fc8’, accomplished

the best recall which is 94.69%. The smallest training time

5.07h has been produced by scheme 10 where extra FC layer

with 2048 neurons is added after ‘fc8’ layer. GAP layer

reduces training time for this dataset as it reduces in the

CEGMR dataset, but the training time was increased when

BN was added in the feature extraction part. Dropout outper-

forms BN in this dataset experiments.

FIGURE 19. Online augmentation for classification.

FIGURE 20. Best Classification result on each dataset (CEGMR, BioImLab,
combined).

From the above experiments conducted on the three

datasets, we observe the proposed two approaches improve

the performance over the VGG19 baseline. Fig. 20 visualizes

the best result found on each dataset and as we see the

best result is obtained on the CEGMR dataset using scheme

16. We use this trained model in chromosomes classifica-

tion for the third stage. In general, adding GAP layer to

VGG19 decreases the training time. Moreover, connecting

each convolutional layer in the feature extraction part of

VGG19 with BN layer lead to enhance the performance.

However, batch normalization and dropout should be used in

the network only with caution and experimentation [54].
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TABLE 9. Classification results on CEGMR dataset.

TABLE 10. Classification results on BioImLab dataset.

TABLE 11. Classification results on the combined dataset (CEGMR and BioImLab).
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TABLE 12. Relative comparison with state-of-the-art methods that addressed chromosomes classification using deep learning.

6) COMPARISON WITH THE STATE-OF-THE-ART

CLASSIFICATION METHODS

Table 12 compares the proposed classification method with

other classification systems that extract features using deep

learning. The comparison is relative because they used dif-

ferent classification methods and different datasets. Paper [8]

used different networks for feature extraction and classifi-

cation while paper [34] and our proposed method applied

the same network for feature extraction and classification on

BioImLab dataset. The performance of our proposed method

is 94.11% using scheme no. 3 and as we notice we achieved

better performance than [8] and [34]. Papers [4], [33], and

[43] used different deep learning networks for feature extrac-

tion and classification on their own collected dataset whereas

paper [39], [41], and [42] built their own CNN and used it for

both feature extraction and classification on their own col-

lected dataset. As obvious from Table 12, our classification

method on the CEGMR dataset using scheme no. 16 achieved

accuracy of 95.04% which is comparable when compared

with the state of the art that used private dataset.

E. THIRD STAGE: ABNORMALITY DETECTION AND

INTEGRATED SYSTEM TEST

The model achieved the best result in the above sections,

which is scheme 16 trained on CEGMR dataset, is used in

classifying chromosomes to recognize the abnormalities. The
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FIGURE 21. GUI for testing the proposed system, (a) main interface (b) uploading metaphase image (c) chromosomes individual chromosomes detection
result (d) chromosomes classification result (e) diagnosis result (f) showing all classified chromosomes.

TABLE 13. Successful cases tested by our system.
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TABLE 14. Failed case tested by our system.

input to this stage is the classified chromosomes and the out-

put is the diagnosis. For detecting abnormality, we measured

the abnormality detection accuracy in (8) as the ratio of the

correctly diagnosed cases to the total number of cases.

Abnormality detection accuracy

=
Correctly diagnosed cases

Total numberofcases
× 100 (8)

To test the whole system, we diagnosed 29 metaphases

through the system and it can detect the abnormality on all

cases with 100% detection accuracy except Trisomy XXY it

detects 80% of its cases. Table 13 shows the results of some

of the successful test cases and Table 14 shows example result

of the failed Trisomy XXY case.

Simulations GUI for the Three Stages: We provide a

graphical user interface (GUI) for testing the proposed system

as shown in Fig. 21 (a). The interface contains four main

operations: upload image, individual chromosomes detec-

tion, classify chromosomes, and diagnosis buttons. Initially,

the metaphase image that needs to be diagnosed is uploaded

using upload image button (Fig. 21 (b)). Clicking individual

chromosomes detection button will call YOLOv2 model to

localize each chromosome then cropping and post-processing

are performed on all chromosomes as seen in Fig. 21 (c).

Classify chromosomes button fed all the separated chro-

mosomes into the classifier to classify them to 23/24 classes

and as a result, the confusion matrix and the performance

metrics are displayed in Fig. 21 (d). Diagnosing the abnor-

mality based on the number of chromosomes on each of the

target classes is seen after pressing Diagnosis button (Fig. 21

(e)). Pressing To view all classified chromosomes button will

showing all classified chromosomes as clear in Fig. 21 (f).

V. CONCLUSION AND FUTURE WORK

Recently, the need for automating karyotyping system to

recognize abnormalities increased to assist cytogenetics lab

technicians and to save their valuable time. In this article,

we propose a system to detect individual chromosomes and

classify them using deep learning techniques. YOLO v2 has

been investigated with some chromosome post-processing

to separate each chromosome from the metaphase image.

In the classification stage, we utilized transfer learning in

VGG19 pre-trained model for feature extraction and classi-

fication which compares well with the state-of-the-art meth-

ods that used the Biomedical Imaging Laboratory dataset.

We observed via experimentation that the classification accu-

racy on CEGMR dataset from all experiments give the best

accuracy of 95.04%. The fine-tuning VGG19 done by con-

necting each convolutional layer with the batch normalization

layer in the feature extraction part and replacing the top

classification layers (fully connected layers) with the global

average pooling layer. The final step is abnormality detection

and it obtained 96.67% detection accuracy.

For the future work, we will increase the number of

metaphase images in the dataset, as, if the training size

increases, the accuracy can be improved. Moreover, we will

try to work on segment out the overlapped and touched chro-

mosomes as well, we will work to detect structural abnormal-

ities. We plan to use a newer version of YOLO and semantic

segmentation using U-Net.
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