
The following paper was originally presented at the
Seventh System Administration Conference (LISA ’93)

Monterey, California, November, 1993

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Automated System Monitoring and
Notification With Swatch

Stephen E. Hansen & E. Todd Atkins
Stanford University

Automated System Monitoring and
Notification With Swatch

Stephen E. Hansen & E. Todd Atkins – Stanford University

ABSTRACT
This paper describes an approach to monitoring events on a large number of servers and
workstations. While modern UNIX systems are capable of logging a variety of information
concerning the health and status of their hardware and operating system software, they are
generally not configured to do so. Even when this information is logged, it is often hidden in
places that are either not monitored regularly or are susceptible to deletion or modification by
a successful intruder. Also, a system administrator must often monitor several, perhaps
dozens, of systems. To address these problems, our approach begins with the modification of
certain system programs to enhance their logging capabilities. In addition, our approach calls
for the logging facilities on each of these systems to be configured in such a way as to send
a copy of the critical system and security related information to a dependable, secure, central
logging host system. As one might expect, this central log can see a megabyte or more of
data in a single day. To keep a system administrator from being overwhelmed by a large
quantity of data we have developed an easily configurable log file filter/monitor, called
swatch. Swatch monitors log files and acts to filter out unwanted data and take one or more
user specified actions (ring bell, send mail, execute a script, etc.) based upon patterns in the
log.

The Problem

It is an unfortunate fact that most UNIX sys-
tems, as delivered, do little to ease the job of the
system administrator when it comes to keeping tabs
on the health of those systems. Often, the first
inkling of a problem occurs when keystrokes stop
being echoed or the phone rings.

What every good system administrator tries to
do is keep an eye on the health of each of the sys-
tems in his or her care. The health of a system
should be reflected in the log messages generated by
the kernel and the various daemons and utilities. In
addition, these messages should also include infor-
mation relevant to system security. However, with
most systems we have seen, the system’s log infor-
mation is not generally made available to the system
administrator in a way that is either secure or con-
venient, rather it is often hidden in places that are
either not monitored regularly or are susceptible to
corruption or destruction by system failure or a suc-
cessful intruder. The assumption seems to be that
system log files are only to be consulted after the
fact, to help with postmortem rather than prevention.
What this means is that the UNIX syslog (3) facility,
regardless of the original intent, is generally used as
more of a debugging aid than as a tool for system
management.

Improved Security Logging

For purposes of monitoring systems security,
standard UNIX logging features often prove to be
inadequate and/or inconvenient. To address this

problem, our approach begins with the modification
of certain system utilities to enhance the reporting
done, particularly with regard to possible security
related activities. Table 1 lists some of the utilities
modified and the changes made to their logging
capabilities.

Program Logging Enhancements
Reports the originating host and the
finger target(s) to syslog.

fingerd

Reports originating host to syslog.
Reports file transfers to a local log
file along with the local user name
and, if the user is "anonymous", the
password.

ftpd

Used by rshd and login when called
by rlogind. Disallows and reports to
syslog any attempts to use a
/etc/hosts.equiv or ~/.rhosts file that
contains a ‘+’.

ruserok

Reports the access status, local user,
remote user and host, and the com-
mand issued to a local log file.

rshd

Reduced number of tries to three.
Reports to syslog on ‘Incomplete
Login Attempt’, ‘Repeated Login
Attempt’, and ‘Root Login Refused’.
Includes the account names attempted
and the originating host.

login:

Table 1: List of logging enhancements made to
several system programs.

1993 LISA – November 1-5, 1993 – Monterey, CA 145

Automated System Monitoring and Notification With Swatch Hansen & Atkins

At our site we were fortunate enough to have
access to the vendor’s source code for all our utili-
ties. While this is not possible for everyone, each of
the utilities listed in Table 1 are available from vari-
ous network archive sites. In a few cases it might
be preferable to use the public version instead to
improve portability. Another source of security
related information is from the tcp wrapper code
written by Weitse Venema[1]. Besides providing
access control for those network services run out of
inetd, it generates information via syslog about the
connections it mediates.

One important utility not listed in Table 1 is
sendmail (8). Even without modification sendmail
can be configured to generate a plethora of status
information. Unfortunately, sendmail isn’t very
discriminating in what it reports, assigning every
status message the same priority.

Centralized Logging with syslog

When we have added to the logging capabilities
of the various utilities, we have, for the most part,
made use of the syslog library functions. Besides
providing a consistent and relatively standard log-
ging interface, syslog directs logging messages to
different files or hosts based upon the source of the
message and its level of importance.

The way our facility is set up, each server sys-
tem keeps its own copy of most of the syslog mes-
sages in the file /var/log/syslog. These syslog files
are rotated on a daily basis, compressed, and kept
online for about a week. Log messages that might
reflect a system’s health or potential security prob-
lems are also forwarded to a central log host, the
LOGMASTER. In practice this means that almost
everything except sendmail status messages are sent
to the LOGMASTER. Leaving the sendmail status
messages on the servers cuts down on the network
traffic due to syslog without significantly affecting
our ability to monitor. On our systems the sendmail
messages can account for as much as 90% of a
host’s log messages, although 50% is more common.
Appendix A shows the syslog configuration file
(/etc/syslog.conf) for a host being monitored. The
last three lines in the file are responsible for sending
data to the LOGMASTER.

Copying the syslog information to a central site
is done for several reasons. First, it provides redun-
dancy and security. If the log files on the originat-
ing host are destroyed or modified, either accidently
or by malicious intent, those on the more secure cen-
tral site will be left intact. Second, it simplifies the
monitoring of all the log information. By collecting
information from a number of systems in a single
time ordered file, problems may be found that would
be missed if viewed in isolation, such as network or
security related problems. For example, a single
failed log in attempt on one system might be attri-
buted to a typing error. The same failed log in

attempt occurring on several systems in sequence
could indicate an intruder trying to break in. Col-
lecting information from several different system
utilities as well as from more than one system can
provide information indicating a pattern of attack.
Several fingers followed by a failed login or rsh
command is a common pattern revealed by this type
of monitoring.

Winnowing the Chaff: An Introduction to Swatch

Our facility manages about a dozen file and
CPU servers which have over 50 client machines.
The server systems receive an enormous amount of
log information through the syslog daemon. Even
after filtering out the sendmail information messages
the LOGMASTER sees about a megabyte of syslog
messages per day. As one can imagine, sorting
through that much information on a daily basis can
be very time consuming. We also found that some
important log entries tend to get lost among all of
the less important entries when examining the log
files.

One solution to this problem would be to
search for certain types of information, which can be
done by using the egrep (1) program with some com-
plex command line arguments. Even with this solu-
tion one still has the problem of having to constantly
monitor the output so that the urgent information is
seen when it comes in. Some of this information
needs to be acted on soon after it is received. For
example, if the system on a file server machine locks
up then somebody needs to be alerted so the
machine can be brought back up as quickly as possi-
ble. For us the most desirable solution was to have
a more complex program sift through the log and do
a few simple tasks when certain types of information
were found. We decided to call this program
swatch, which stands for Simple WATCHer.
Swatch Design Goals

There were four goals that were set when
designing swatch.

1. Configure the program in such a way that it
would only take a few minutes to teach any
systems administrator how to use it.

2. Have a simple set of actions that could be
performed after receiving certain types of
information.

3. Allow swatch’s users to define their own
actions if they like, and allow them to use
parts of the input as arguments to the action.

4. Once swatch is running it should be
reconfigurable on demand or after a specified
interval without having to stop and restart the
program manually.

Using Swatch
Swatch may be run three different ways: make

a single pass through a file; look at messages that
are being appended to a file as that file is being

146 1993 LISA – November 1-5, 1993 – Monterey, CA

Hansen & Atkins Automated System Monitoring and Notification With Swatch

updated; or examine the standard output of a pro-
gram. A complete description of swatch’s command
line options can be found in Appendix B.

Swatch’s most powerful function is in examin-
ing information as it is being appended to a log file.
We use swatch to look at messages as they are being
added to the syslog file, alerting us immediately to
serious system problems as they occur. Using a
tail (1) of /var/log/syslog as input is the default
action for swatch but another file can be "tailed" by
using the -t command line option as in

swatch -t /var/log/authlog

Receiving timely notification of certain types of
probes or attacks often enables us to find out which
users are logged on to the originating system. Find-
ing out such information can help identify hackers or
compromised accounts.

By using the -f option, swatch can be made to
read in and process a file from beginning to end.
This single pass feature can be used to examine old
syslog or other text files.

swatch -f /var/log/syslog.0

This option can be used to catch up on the contents
of log files after being away from the computer for a
while (like after vacationing in Hawaii for a week).
This feature is often used to filter through several
megabytes of old syslog files to look for evidence of
suspected system and network related problems as
well as system probes and break-in attempts.

Having swatch examine the output from a pro-
gram is also useful. For example, one might want to
sort through process accounting or other audit infor-
mation that is not kept in a plain text file and
requires special processing to read.

swatch -c swatchrc.acct -p lastcomm

Implementation
Swatch relies heavily on expression matching.

For this reason the Perl[2] language was used
because of its Awk and C like characteristics, as
well as its increasing familiarity among systems
administrators.

Swatch has three basic parts: a configuration
file, a library of actions, and a controlling program.

/pattern/[,/pattern/,...] action[,action,...] [[[HH:] MM:] SS [start:length]]

Figure 1: Format of pattern action line for a Swatch configuration file.

Configuration File
Each non-comment line in a swatch

configuration file consists of four tab separated
fields: a pattern expression, a set of actions to be
done if the expression is matched, an optional time
interval, and the location of a time stamp, if any.
As shown in Figure 1, a line’s pattern field consists
of one or more comma separated expressions while

the action field may contain one or more comma
separated actions.

The patterns must be regular expressions which
Perl will accept, which are very similar to those
used by the UNIX egrep program. Each string to be
matched is compared, in order, with the expressions
in the configuration file and if a match is found the
corresponding actions are taken. A copy of the UNIX
manual page for swatch’s configuration file is listed
in Appendix C.

The time interval can be used to help eliminate
redundant messages. For example, on our systems
"file system full" messages tend to come at
the rate of several dozen per minute. We specify an
interval of five minutes which will usually eliminate
hundreds of redundant notifications.

The time stamp location information is optional
and can only be used when a time interval is
specified. Swatch uses it to strip away the time
stamp in order to compare it to other messages
which are stored in its internal history list.

Lines beginning with the ‘#’ character are
treated as comment lines and are ignored.
Actions

Swatch understands the following actions: echo,
bell, ignore, write, mail, pipe, and exec.
� The echo action causes the line to be echoed

to swatch’s controlling terminal. An optional
mode argument causes the text to be shown in
normal, bold, underscore, blinking, or inverse
mode. Normal mode is the default.

� The bell action sends a bell signal (^G) to the
controlling terminal. An optional argument
specifies the number of bell signals to send,
with one being the default.

� The ignore action causes swatch to ignore the
current line of input and proceed to the next
one. The ignore action is mainly useful early
on in the configuration file to filter out
specific unimportant information that would
otherwise match a more general expression
found later in the configuration file.

� The write and mail actions can be used to
send a copy of the line to a user list via the
write and mail commands.

� The pipe and exec actions were added to pro-
vide some flexibility. The pipe action allows
the user to use matched lines as input to a
particular command on the system. The exec
action allows the user to run a command on
the system with the option of using selected
fields from the matched line as arguments for
the command. A $N will be replaced by the

1993 LISA – November 1-5, 1993 – Monterey, CA 147

Automated System Monitoring and Notification With Swatch Hansen & Atkins

Nth field in the matched line. A $0 or a $*
will be replaced by the entire line.

See Appendix C for more details on the actions and
their arguments.
Controlling Program

The controlling program is swatch, but the real
work is done by a watcher process. Swatch’s first
task is to translate the configuration file into a Perl
script. After creating the watcher script, swatch forks
and executes it as the watcher process. The watcher
script also contains two signal handlers. Upon
receiving an alarm (SIGALRM) or hang-up (SIGHUP)
signal swatch will terminate the watcher process,
re-read the configuration file, and start a new
watcher process. If a quit (SIGQUIT) terminate
(SIGTERM) or interrupt (SIGINT) signal is received,
swatch will attempt to cleanup after itself then exit.

#
Swatch configuration file for constant system monitoring in the background
#
Test the pager every once in a while
/test pager/ exec="/etc/call_pager 5551234 123"
#
Bad login attempts
/INVALID|REPEATED|INCOMPLETE/ exec="/etc/backfinger $0"
#
EECF
/EE-CF.*(panic|halt)/ mail=action,exec="/etc/call_pager 5551212 0911"
05:00 0:16
/EE-CF.*reboot/ mail=action,exec="/etc/call_pager 5551212 0411"
05:00 0:16
/EE-CF.*SunOS Release/ mail=action,exec="/etc/call_pager 5551212 0411"
05:00 0:16
/EE-CF.*file system full/ mail=action,exec="/etc/call_pager 5551212 0611"
05:00 0:16
#
Sierra
/Sierra.*WizMON/ mail=action,exec="/etc/call_pager 5551234 1666"
05:00 0:16
/Sierra.*(panic|halt)/ mail=action,exec="/etc/call_pager 5551234 1911"
05:00 0:16
/Sierra.*reboot/ mail=action,exec="/etc/call_pager 5551234 1411"
05:00 0:16
/Sierra.*SunOS Release/ mail=action,exec="/etc/call_pager 5551234 1411"
05:00 0:16
/Sierra.*file system full/ mail=action,exec="/etc/call_pager 5551234 1611"
05:00 0:16

Figure 2: Swatch configuration file for continuous monitoring

Examples

We have previously described several ways in
which swatch can be used. In this section we will
illustrate the two most common ways in which
swatch is used at out facility. First, we have a

swatch job running continuously looking for failed
login attempts and system crashes and reboots. The
swatch configuration file we use for this purpose is
shown in Figure 2.

Second it’s common for each system adminis-
trator to have a customized swatch configuration file
in his or her home directory, ~/.swatchrc, that con-
tains pattern/action pairs that are personally interest-
ing, or that pertain to his or her system responsibili-
ties. A swatch job using this configuration file is
generally run in a window while the administrator is
logged in. The personal swatch configuration file of
one of the authors is shown in Figure 3, while Fig-
ure 4 shows six hours of output generated by this
configuration.
Example 1: Continuous Monitoring for High

Priority Events
This swatch configuration (Figure 2) runs in the

background and continuously looks for high priority
events, such as "file system full" and "panic" mes-
sages.

148 1993 LISA – November 1-5, 1993 – Monterey, CA

Hansen & Atkins Automated System Monitoring and Notification With Swatch

The first pattern/action line is used to test our
pager number periodically to ensure that swatch, our
dial out line, and our pager are all working. We run
the logger (1) program periodically via cron (1) to
send a message which contains the string "test
pager." This causes swatch to attempt to page our on
call systems administrator.

#
Personal Swatch configuration file to be run in a window on a workstation
#
These probes should be harmless, but who knows?
#
/fingerd.*(root|[Tt]ip|guest|atkins)/ echo,bell,exec="/bin/date >>
/home/atkins/tmp/finger.log",exec="/usr/local/etc/backfinger @$6 >>
/home/atkins/tmp/finger.log"

#
This should never happen
/su: atkins/ echo,bell
/su: .* failed/ echo,bell=3

/[dD]enied/||/DENIED/ echo=boldunderline,bell

Alert me of bad login attempts and find out who is on that system
/INVALID|REPEATED|INCOMPLETE/ echo=underline,bell=3

Important program errors
/LOGIN/ echo=boldunderline,bell=3
/passwd/ echo=bold,bell=3
/ruserok/ echo=bold,bell=3

Ignore this stuff
/sendmail/,/nntp/,/xntp|ntpd/,/faxspooler/ ignore

Report unusual tftp info
/tftpd.*(ncd|kfps|normal exit)/ ignore
/tftpd/ echo,bell=3

Kernel problems
/(panic|halt|SunOS Release)/ echo=blink,bell 3:00 0:16
/file system full/ echo=bold,bell=3 5:00 0:16

Try to ignore uninteresting kernel messages
/vmunix.*(at|on)/ ignore
/vmunix/ echo,bell 1:00 0:16

Figure 3: Personalized swatch configuration file

The second pattern/action line looks for a
/bin/login syslog message of the form

Jul 30 13:49:47 Sierra login:
REPEATED LOGIN FAILURES ON
ttyq0 FROM cert.cert.org:
root, anonyme, anonyme

The string REPEATED matches the pattern and
swatch executes a script to finger the host that ini-
tiated the failed login and store the information for
later examination. We are occasionally able to detect
compromised accounts with this information.

The rest of the file contains pattern/action lines
that are grouped by specific names of machines. It
watches out for kernel messages which indicate a
potentially serious problem, such as a machine crash
or an unexpected reboot. It also looks for messages
from the room temperature monitor. When these
types of messages are encountered, swatch sends a
mail message to our systems administrator mailbox
and executes a script to call a pager with a code
indicating the system and message type.
Example 2: Individualized Swatch Configuration

File
Individuals may design customized swatch

configuration files that look for patterns and take
appropriate actions depending on their personal
preferences. The configuration file shown in Figure 3
is run in a workstation window whenever the system
administrator is logged in. The output (a sample of
which is shown in Figure 4) is generally ignored or

1993 LISA – November 1-5, 1993 – Monterey, CA 149

Automated System Monitoring and Notification With Swatch Hansen & Atkins

only occasionally glanced at unless the bell alerts the
administrator to a message of interest. Note that the
tftpd pattern/action lines in Figure 3 ignore tftp
requests from valid hosts and alert the user to invalid
requests.

Sep 13 05:07:23 Sierra vmunix: ie0: no carrier
Sep 13 07:32:07 Sierra ftpd[17910]: FTP LOGIN FROM thermo-amy.Stanford.EDU [36.6__
5.0.83], eaton______________
Sep 13 07:35:58 Sierra ftpd[18015]: FTP LOGIN FROM thermo-amy.Stanford.EDU [36.6__
5.0.83], eaton______________
Sep 13 07:58:30 gloworm login: INCOMPLETE LOGIN ATTEMPT ON ttyp2 FROM deis17.cin
eca.it
Sep 13 08:15:35 loading-zone.Stanford.EDU vmunix: /loading-zone: file system ful
l
Sep 13 08:15:35 stjames vmunix: NFS write error: on host loading-zone remote fil
e system full
Sep 13 08:53:25 Sierra login: REPEATED LOGIN FAILURES ON ttypb FROM uwmfe.neep.w
isc.edu: help, newuser, d
Sep 13 09:26:59 Sierra su: ’su root’ failed for quinn on /dev/ttyp9
Sep 13 09:45:04 espresso.Stanford.EDU login: ROOT LOGIN ttyp0 FROM coffee___
Sep 13 10:04:50 Gordon-Biersch vmunix: pid 16100: killed due to swap problems in
exec: I/O error mapping pages
Sep 13 10:05:20 Sierra ftpd[21910]: FTP LOGIN FROM thermo-amy.Stanford.EDU [36.6__
5.0.83], eaton______________
Sep 13 10:06:25 Gordon-Biersch vmunix: /tmp: file system full, anon reservation
exceeded
Sep 13 10:06:43 Gordon-Biersch vmunix: pid 16118: killed due to swap problems in
exec: I/O error mapping pages
Sep 13 10:07:02 Gordon-Biersch vmunix: pid 16124: killed due to swap problems in
exec: I/O error mapping pages
Sep 13 10:09:34 Sierra ftpd[22085]: FTP LOGIN FROM thermo-amy.Stanford.EDU [36.6__
5.0.83], eaton______________
Sep 13 10:33:55 Gordon-Biersch fingerd[16484]: pudleys.Stanford.EDU (36.2.0.92.1
654) -> "atkins"
Sep 13 11:35:13 espresso.Stanford.EDU vmunix: SunOS Release 4.1.1 (ISL_CLIENT) #
1: Mon Jan 13 08:58:58 PST 1992
Sep 13 11:35:13 espresso.Stanford.EDU vmunix: Copyright (c) 1983-1990, Sun Micro
systems, Inc.
Sep 13 11:35:13 espresso.Stanford.EDU vmunix: mem = 24576K (0x1800000)
Sep 13 11:35:13 espresso.Stanford.EDU vmunix: avail mem = 22630400
Sep 13 11:35:13 espresso.Stanford.EDU vmunix: Ethernet address = 8:0:20:b:67:21
Sep 13 11:35:13 espresso.Stanford.EDU vmunix: cpu = Sun 4/40
Sep 13 11:35:13 espresso.Stanford.EDU vmunix: sd0: <SUN0207 cyl 1254 alt 2 hd 9
sec 36>
Sep 13 11:35:13 espresso.Stanford.EDU vmunix: sd2: <Fujitsu M2624F cyl 1463 alt
2 hd 11 cyl 1463 alt 2 hd 11 sec 63>
Sep 13 11:54:22 espresso.Stanford.EDU vmunix: rebooting...
Sep 13 11:56:40 espresso.Stanford.EDU vmunix: NOT BLOCK: GOTO REQUESTLOOP
Sep 13 11:56:50 espresso.Stanford.EDU vmunix: zs3: silo overflow
Sep 13 12:06:05 Sierra ftpd[28258]: FTP LOGIN FROM vali.Stanford.EDU [36.59.0.32__
], fanning__________
Sep 13 12:11:10 Sierra ftpd[29236]: FTP LOGIN FROM me-bradshaw.Stanford.EDU [36.__
65.0.71], bradshaw__________________

Figure 4: Output from swatch using the configuration file in Figure 3 over the course of 6 hours and more than
2300 lines of input

Other Useful Programs

We have written a few scripts which we have
found useful when using the swatch package.

150 1993 LISA – November 1-5, 1993 – Monterey, CA

Hansen & Atkins Automated System Monitoring and Notification With Swatch

Reswatch
Reswatch was written to run out of cron period-

ically. It finds all instances of swatch that the user is
running and sends a SIGHUP. This is useful if
swatch is getting its input from an active log file,
like syslog, that is moved and rendered inactive.
Since we want to start getting our input from the
new active log file, the old file handle needs to be
closed and the new one opened. This effect is
achieved when swatch aborts one script and starts a
new one after receiving a SIGHUP.
Backfinger

Backfinger is used to finger the host that gen-
erated an unsuccessful login attempt. Output from
this command is placed in its own log file.
Backfinger uses safe_finger to filter out potentially
dangerous output from remote finger servers. This is
most useful when culprits fail to log in to a system
using an unauthorized account, like root, guest, or
anonymous. Some administrators might be surprised
at how often this happens on their systems.
CallPager

For those who must carry a pager, this is very
useful for receiving urgent information, such as seri-
ous system failures or possible security breaches.
This is a simple script which uses the UNIX tip com-
mand to call a pager through a modem and leave a
code number to indicate the type of message
detected. Users can customize the codes so that they
can tell exactly what type of message was detected,
and the system from which it came.

Conclusions

Over the past year and a half swatch has pro-
ven to be a valuable tool for monitoring the health
of a large collection of workstations and servers. On
several occasions we have been able to detect
intruders probing our systems who would probably
have been missed without centralized logging and
swatch. On a few occasions it prevented system
meltdown when air conditioning units failed on a
weekend or late at night. Its value has increased as
we have gathered more experience in optimizing the
swatch configuration file entries.

In the near term, we see a need to improve the
logging capabilities of additional system utilities (i.e.
sendmail, ntp, ypserv, xdm, xlogin). We plan to
gather suggestion from other sites using the package
before making substantial changes to swatch itself.

Availability

Swatch source and documentation along with
its companion scripts are available via anonymous
ftp from Sierra.Stanford.EDU, [36.2.0.98], in the
pub/sources directory. Listserver access is available
from listserver@Sierra.Stanford.EDU.

Author Information

Stephen E. Hansen received the B.S. and M.S.
degrees in Electrical Engineering from Stanford
University in 1976 and 1981 respectively. In 1975
he joined the Integrated Circuits Laboratory at Stan-
ford University, first as Systems Programmer, and
since 1978 as Senior Scientific Programmer. In 1983
he organized the Electrical Engineering Computer
Facility at Stanford where he currently serves as its
Director. Mr. Hansen can be reached via U.S. Mail
at the Applied Electronics Laboratory 218, Stanford,
CA 94305-4055 or via electronic mail at
hansen@sierra.stanford.edu.

Todd Atkins received a B.S in Electrical
Engineering from Stanford University in 1988.
Since 1987 he has been with the Electrical Engineer-
ing Computer Facility as a Systems Administrator.
Mr. Atkins can be reached via U.S. Mail at the
Applied Electronics Laboratory, Room 113, Stanford,
CA 94305-4055 or via electronic mail at
Todd_Atkins@eecf.stanford.edu.

References

[1] W. Venema. "TCP WRAPPER, A Tool for
Network Monitoring, Access Control, and for
Setting Up Booby Traps", Proc. 1992 USENIX
Security Symposium, USENIX Association,
Sept. 1992.

[2] L. Wall and R. Schwatz. "Programming Perl",
O’Reilly and Associates, Sebastopol, CA. 1991.

1993 LISA – November 1-5, 1993 – Monterey, CA 151

Automated System Monitoring and Notification With Swatch Hansen & Atkins

Appendix A: A Syslog Configuration File.

syslog configuration file.
#
Master syslog configuration file.
#
This file is processed by m4 so be careful to quote (‘’) names
that match m4 reserved words. Also, within ifdef’s, arguments
containing commas must be quoted.
#
Note: Have to exclude user from most lines so that user.alert
and user.emerg are not included, because old sendmails
will generate them for debugging information. If you
have no 4.2BSD based systems doing network logging, you
can remove all the special cases for "user" logging.
#
*.err;kern.debug;auth.notice;user.none /dev/console
*.err;kern.debug;daemon,auth.notice;mail.crit;user.none /var/adm/messages
lpr.debug /var/adm/lpd-errs

You may want to add operator to the following if your operator
is a traditional Unix style operator.
*.alert;kern.err;daemon.err;user.none root
*.emerg;user.none *

ifdef(‘LOGHOST’,
for loghost machines, to have authentication messages (su, login, etc.)
logged to a file, un-comment out the following line and adjust the file
name as appropriate.
auth.notice /var/log/authlog
daemon.info;auth.notice;mail.debug;kern.debug /var/log/syslog
*.err;daemon.none;mail.none;kern.none;auth.none;user.none /var/log/syslog
)

following line for compatibility with old sendmails. they will send
messages with no facility code, which will be turned into "user" messages
by the local syslog daemon. only the "loghost" machine needs the following
line, to cause these old sendmail log messages to be logged in the
mail syslog file.
#
ifdef(‘LOGHOST’,
user.alert /var/log/syslog
)

#
non-loghost machines will use the following lines to cause "user"
log messages to be logged locally.
#
ifdef(‘LOGHOST’, ,
user.err /dev/console
user.alert root
)

Send most everything to the LogMaster. If this is the logmaster,
comment out the following two lines
*.info;kern.none;mail.none @logmaster
kern.debug;mail.err @logmaster

152 1993 LISA – November 1-5, 1993 – Monterey, CA

