
Automated Test Generation from Timed Automata

Brian Nielsen and Arne Skou

Aalborg University
Department of Computer Science

Fredrik Bajersvej 7E
DK-9220 Aalborg, Denmark

Email: fbnielsen | ask g@cs.auc.dk

Abstract

Testing is the most dominating validation activity used
by industry today, and there is an urgent need for improv-
ing its effectiveness, both with respect to the time and re-
sources for test generation and execution, and obtained test
coverage. We present a new technique for automatic gen-
eration of real-time black-box conformance tests for non-
deterministic systems from a determinizable class of timed
automata specifications with a dense time interpretation. In
contrast to other attempts, our tests are generated using a
coarse equivalence class partitioning of the specification.
To analyze the specification, to synthesize the timed tests,
and to guarantee coverage with respect to a coverage cri-
terion, we use the efficient symbolic techniques recently de-
veloped for model checking of real-time systems. Applica-
tion of our prototype tool to a realistic specification shows
promising results in terms of both the test suite size, and the
time and space used for test generation.

1 Introduction

Testingconsists of executing a program or a physical sys-
tem with the intention of finding undiscovered errors. In
typical industrial projects, as much as a third of the total de-
velopment time is spent on testing, and it therefore consti-
tutes a significant portion of the cost of the product. Since
testing is the most dominating validation activity used by
industry today, there is an urgent need for improving its ef-
fectiveness, both with respect to the time and resources for
test generation and execution, and obtained coverage.

A potential improvement that is being examined by re-
searchers is to make testing a formal method, and to pro-
vide tools that automate test case generation and execution.
This approach has experienced some level of success: For-

mal specification and automatic test generation are being
applied in practice and commercial test generations tools
are emerging. Typically, a test generation tool inputs some
kind of finite state machine description of the behavior re-
quired of the implementation. A formalizedimplementation
relation describes exactly what it means for an implemen-
tation to be correct with respect to a specification. The tool
interprets the specification or transforms it to a data struc-
ture appropriate for test generation, and then computes a set
of test sequences. Since exhaustive testing is generally in-
feasible, it must select only a subset of tests for execution.

However, these tools do not address real-time systems, or
only provide a limited support of testing the timing aspects.
They often abstract away the actual time at which events are
supplied or expected, or does not select these time instances
thoroughly and systematically. We present a new technique
for automatic generation of timed tests from a restricted (but
possibly non-deterministic) class of dense timed automata
specifications. We select test cases by partitioning the state
space into coarse grained equivalence classes which pre-
serve essential timing and deadlock information, and se-
lect a few tests for each class. To ensure coverage of the
equivalence classes and to construct the tests, we employ re-
cently developed efficient symbolic reachability techniques
based on constraint solving for model checking of timed
automata. Our techniques are implemented in a prototype
tool, RTCAT.

2 Related Work

Springintveld et al. proved in [14] thatexhaustivetest-
ing wrt. trace equivalence of deterministic timed automata
with dense timeis theoretically possible, but highly infea-
sible. Another result generating checking sequences for a
discretized deterministic timed automaton is presented by
En-Nouaary et al. in [9]. Although the required discretiza-

1

tion step size in [9] is larger than in [14], it still appears to be
too small for most practical applications because too many
tests are generated. Both of these techniques are based on
the so-calledregion graph technique due to Alur and Dill
[1]. Clock regions are very fine-grained equivalence classes
of clock valuations. We argue that coarser partitions are
needed in practice.

Clarke and Lee [6] propose domain testing for real-time
systems. Their technique appear to produce much fewer
tests than region based generation. The time requirements
are specified as directed acyclic graphs calledconstraint
graphs. Compared to timed automata this specification
language appear very restricted, e.g., since their constraint
graphs must be acyclic this only permits specification of fi-
nite behaviors. Their domains are “nice” linear intervals
which are directly available in the constraint graph. In our
work they are (convex) polyhedra of a dimension equal to
the number of clocks. Test generation fromdiscretetimed
systems is reported by [5], from timed Petri nets by [4], and
from a discrete time temporal logic by [11].

3 Hennessy Tests

In Hennessy’s testing theory [12] specificationsS are de-
fined as finite state labelled transition systems over a given
finite set of actionsAct. Also, it assumes that implementa-
tionsI (and specifications) can be observed by finite testsT
via a sequence of synchronous CCS-like communications.
Hennessy tests have the following abstract syntaxLtlts: (1)
after � must A, (2) can �, and (3)after � must ;,
where� 2 Act� andA � Act. Informally, (1) is success-
ful if at least one of the observations inA (called amust
set) can be observed whenever the trace� is observed, (2)
is successful if� is a prefix of the observed system, and (3)
is successful is this is not the case (i.e.� is not a prefix).
To facilitate and ease systematic generation of all relevant
tests, the specification can be converted to a trace equiva-
lent deterministicstate machine whose states are labelled
with the must sets for that state (similar to the acceptance
graph of [7]). We propose a simple timed generalization
of Hennessy’s tests. In a timed testafter � must A (or
after � must ;), � becomes a timed trace (a sequence
of alternating actions and time delays), after which an ac-
tion in A must be accepted immediately. A testcan �

(after � must ;) becomes a timed trace satisfied if� is
(is not) a prefix trace of the observed system. A test will
be modelled by an executable timed automaton whose loca-
tions are labelled with pass, fail, or inconclusive verdicts.

4 Event Recording Automata

Two of the surprising undecidability results from the
theoretical work on timed languages described by timed

automata is that 1) a non-deterministic timed automaton
cannot in general be converted into a deterministic (trace)
equivalent timed automaton, and 2) trace (language) inclu-
sion between two non-deterministic timed automata is un-
decidable [2]. Thus, unlike the untimed case, determinis-
tic and non-deterministic timed automata are not equally
expressive. The Event Recording Automata model (ERA)
was proposed by Alur, Fix, and Henzinger in [2] as a deter-
minizable subclass of timed automata, which enjoys both
properties.

Definition 1 Event Recording Automaton:

1. An ERAM is a tuplehAct;N; l0; Ei whereAct is
the set of actions,N is a (finite) set of locations,
l0 2 N is the initial location, and
E � N �G(X)� Act�N is the set of edges. The
term locationdenotes a node in the automaton, and
the termstatedenotes the semantic state of the
automaton also including clock values.

2. X = fxa j a 2 Actg is the set of clocks. The guards
G(X) are generated by the syntaxg ::=
 j g ^ g
where
 is a constraint of the formx1 � c or
x1 � x2 � c with �2 f�; <;=; >;�g, c a
non-negative integer constant, andx1; x2 2 X .

Like a timed automaton, an ERA has a set of clocks
which can be used in guards on actions, and which can
be reset when an action is taken. In ERAs however, each
actiona is uniquely associated with a clockxa, called the
event clockof a. Whenever an actiona is executed, the
event clockxa is automatically reset. No further clock as-
signments are permitted. The event clockxa thusrecords
the amount of time passed since the last occurrence ofa. In
addition, no internal� actions are permitted. These restric-
tions are sufficient to ensure determinizability [2].

give?give?give?give?give?give?give?give?give?give?give?give?give?give?give?give?give?
Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2Xcoin>=2
Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4Xcoin<=4

give?give?give?give?give?give?give?give?give?give?give?give?give?give?give?give?give?
Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4Xcoin>=4

coin?coin?coin?coin?coin?coin?coin?coin?coin?coin?coin?coin?coin?coin?coin?coin?coin?

cof!cof!cof!cof!cof!cof!cof!cof!cof!cof!cof!cof!cof!cof!cof!cof!cof!
Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2Xgive>=2

thinCof!thinCof!thinCof!thinCof!thinCof!thinCof!thinCof!thinCof!thinCof!thinCof!thinCof!thinCof!thinCof!thinCof!thinCof!thinCof!thinCof!
Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1Xgive>=1

s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3

s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2

s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1

s5s5s5s5s5s5s5s5s5s5s5s5s5s5s5s5s5 s6s6s6s6s6s6s6s6s6s6s6s6s6s6s6s6s6

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig
observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;observable coin, give, cof, thinCof;
system CofM;system CofM;system CofM;system CofM;system CofM;system CofM;system CofM;system CofM;system CofM;system CofM;system CofM;system CofM;system CofM;system CofM;system CofM;system CofM;system CofM;

CofMCofMCofMCofMCofMCofMCofMCofMCofMCofMCofMCofMCofMCofMCofMCofMCofM

Figure 2. ERA specification of a coffee vend-
ing machine.

2

Figure 2 shows a small ERA which models a coffee
vending machine built for impatient users such as busy re-
searchers. When the user has inserted a coin (coin), he
must press the give button (give) to indicate his eager to
get a drink. If he is very eager, he pressesgive soon af-
ter inserting the coin, and the vending machine outputs thin
coffee (thinCof); apparently, there is insufficient time to
brew good coffee. If he waits more than four time units, he
is certain to get good coffee (cof). If he pressesgive after
exactly four time units, the outcome is non-deterministic.

5 A Test Generation Algorithm

Since exhaustive testing is generally infeasible, it is
important to systematically select and generate a limited
amount of tests. A testselection criterion(or coverage cri-
terion) is a rule describing what behavior or requirements
should be tested.Coverageis a metric of completeness with
respect to a test selection criterion.

We propose a criterion based on partitioning the state
space of the specification into coarse equivalence classes,
and requiring that the test suite for each class makes a set of
required observations of the implementation when it is ex-
pected to be in a state in that class. These observations are
used to increase the confidence that the equivalence classes
are correctly implemented. The partitioning and observa-
tions can be done in numerous ways, and some options are
explored and formally defined in [13]. Given the partition-
ing stated in the following, thestable edge set criterionim-
plemented in RTCAT requires that all relevantsimple dead-
lock observations of the formsafter � must A (a must
property),after amust ; (a refusalproperty), andcan a

(amayproperty) are made at least once in each class.
From each control locationL (recall that a location in a

deterministic automaton is the set of locations of the origi-
nal automaton that the automaton can possibly occupy after
a given trace), the clock valuations are partitioned such that
two clock valuations belong to the same equivalence class
iff they enable precisely the same edges fromL, i.e. the
states are equivalent wrt. the enabled edges. This partition-
ing is based on the guards that actually occur in a specifi-
cation, and is therefore much coarser than e.g., the region
partitioning which is based on the guards that could possi-
bly occur in an automaton according to the syntax in Defini-
tion 1. It also has the nice formal property that the states in
the same equivalence class are also equivalent with respect
the previously statedsimple deadlockproperties.

The test generation procedure is outlined in Algorithm 3.
It first constructs the equivalence classes by a data struc-
ture which we refer to as theequivalence class graph. In
this process it implicitly determinizes the specification. The
equivalence class graph preserves all timed traces of the
specification, and furthermore preserves the required dead-

lock information for our timed Hennessy tests of the spec-
ification by theM , C, andR action sets stored in each
node. All timed Hennessy tests that the specification passes
can thus be generated from this graph. Reachability anal-
ysis is needed to select only states for testing that are ac-
tually reachable, and to compute a timed trace to the target
state. Densely timed automata cannot be analyzed by enu-
merative finite state techniques, but must rather be analyzed
symbolically [1]. Efficient symbolic techniques have been
developed for model checking of timed automata. Specif-
ically, we employ the so-calledzoneanddifference bound
matrix techniques [8] like those developed for the UPPAAL

tool [10].

Algorithm 3 Overall Test Case Generation Algorithm:
input: ERA specificationS.
output: A complete covering set of timed Hennessy tests.

1. ComputeSp = Equivalence Class Graph(S).

2. ComputeSr = Reachability(Sp).

3. Label every symbolic StateS 2 Sr with the setsM (the
minimized set of must sets),C (the possible actions in the
state not contained inM),R (the actions that must be
refused).

4. TraverseSr. For each reached equivalence classS in Sr:

(a) Choose a state to be testeds 2 S
(b) Compute a timed trace� from initial state tos.

(c) Make test cases to be passed:
if A 2M(S) thenafter �must A is a test.
if a 2 C(S) thencan � � a is a test.
if a 2 R(S) thenafter � � amust ; is a test.

6 Experimental Results

Figure 4 shows some examples of generated test cases
from the coffee machine specification in Figure 2. RTCAT
has been configured to select test points in the interior of
the equivalence classes, and to use breadth first state explo-
ration.

To analyze the feasibility of our techniques we have cre-
ated an ERA version of the frequently studied Philips audio
protocol [3] and a simple token passing protocol, applied
RTCAT, and measured the number and length of the gen-
erated tests, the number of reached (convex) equivalence
classes and symbolic states, and the space and time needed
to generate the tests and output them to a file. The ERA
models can be found in [13]. The platform used in the ex-
periment consists of a Sun Ultra-250 workstation running
Solaris 5.7. The machine is equipped with 1 GB RAM and
2x400 MHz CPU’s. The results for coffee machine (CofM),
the Philips audio protocol receiver component (phil(R)),
sender component (Phil(S)) with collision detection, and
7-node token passing protocol (tok 7) are shown in Table 5.

The size of the produced test suites is in all cases quite
manageable, and constitute test suites that could easily be

3

Xcoin=100
coin!

Xcoin=2
give!

XthinCof=100
Act

Xgive=101
thinCof!

Xcoin=100
coin!

Xcoin=4
give!

Xgive=1
thinCof!

Xcoin=100
coin!

Xcoin=4
give!

Xgive=102
thinCof!

Xgive=102
cof!

Figure 4. Example tests generated from the
coffee machine in Figure 2 (Æ=pass, �=fail,
�=refusal, Act is all actions.

CofM Phil(R) Phil(S) Tok7

Equiv. Classes 14 60 59 42
Symbolic States 17 71 120 15427
Time (s) 1 1 2 541
Memory (MB) 5 5 5 40
No. of Tests 22 118 116 84
Total Length 58 614 622 665

Table 5. Experimental results.

executed in practice. There is thus a large margin allowing
for more test points per equivalence class, or longer tests.
Moreover, coverage of even larger specifications can also
be obtained. For the first three specifications, the space
and time consumption is quite low, and indicates that fairly
large specifications can be handled. However, we have
also encountered a problem with our current implementa-
tion which occurs for some specifications (such as the to-
ken passing protocol that uses a large set of active clocks),
where our application of the symbolic reachability tech-
niques becomes a bottleneck. It is important to note that the
size of the produced test suite is still quite reasonable. We
believe that this problem can be alleviated by applying the
reachability analysis on the original specification automaton
rather than presently done on the equivalence class graph.
This should result in larger and fewer symbolic states.

7 Future Work

Much other work remain to be done. In particular we
are examining the possibilities for generalizing our specifi-
cation language. It will be important to allow specification
and effective test of timing uncertainty, i.e., that an event
must be produced or accepted at some (unspecified) point

in an interval. Further, it should be possible to specify envi-
ronment assumptions and to take these into account during
test generation. Finally, our techniques should be examined
with real applications, and the generated test should be ex-
ecuted against real implementations.

References

[1] R. Alur and D. L. Dill. A Theory of Timed Automata.The-
oretical Computer Science, 126(2):183–235, 25 Apr. 1994.

[2] R. Alur, L. Fix, and T. A. Henzinger. Event-Clock Au-
tomata: A Determinizable Class of Timed Automata. In6th
Conference on Computer Aided Verification, 1994. Also in
LNCS 818.

[3] D. Bosscher, I. Polak, and F. Vaandrager. Verification of
an Audio Protocol. TR CS-R9445, CWI, Amsterdam, The
Netherlands, 1994. Also in LNCS 863, 1994.

[4] V. Braberman, M. Felder, and M. Marr´e. Testing Timing Be-
haviors of Real Time Software. InQuality Week 1997. San
Francisco, USA., pages 143–155, April-May 1997 1997.

[5] R. Cardell-Oliver and T. Glover. A Practical and Com-
plete Algorithm for Testing Real-Time Systems. In5th in-
ternational Symposium on Formal Techniques in Real Time
and Fault Tolerant Systems (FTRTFT’98), pages 251–261,
September 14–18 1998. Also in LNCS 1486.

[6] D. Clarke and I. Lee. Automatic Test Generation for the
Analysis of a Real-Time System: Case Study. In3rd IEEE
Real-Time Technology and Applications Symposium, 1997.

[7] R. Cleaveland and M. Hennessy. Testing Equivalence as a
Bisimulation Equivalence.Formal Aspects of Computing,
5:1–20, 1993.

[8] D. L. Dill. Timing Assumptions and Verification of Finite-
State Concurrent Systems. InInternational Workshop on
Automatic Verification Methods for Finite State Systems,
pages 197–212, Grenoble, France, June 1989. LNCS 407.

[9] A. En-Nouaary, R. Dssouli, and F. Khendek. Timed
Test Cases Generation Based on State Characterization
Technique. In19th IEEE Real-Time Systems Symposium
(RTSS’98), pages 220–229, December 2–4 1998.

[10] K. G. Larsen, F. Larsson, P. Petterson, and W. Yi. Efficient
Verification of Real-Time Systems: Compact Data Struc-
tures and State-Space Reduction. In18th IEEE Real-Time
Systems Symposium, pages 14–24, 1997.

[11] D. Mandrioli, S. Morasca, and A. Morzenti. Generating
Test Cases for Real-Time Systems from Logic Specifica-
tions. ACM Transactions on Computer Systems, 13(4):365–
398, 1995.

[12] R. D. Nicola and M. Hennessy. Testing Equivalences for
Processes.Theoretical Computer Science, 34:83–133, 1984.

[13] B. Nielsen. Specification and Test of Real-Time Systems.
PhD thesis, Department of Computer Science, Aalborg Uni-
versity, Denmark, april 2000. Submitted.

[14] J. Springintveld, F. Vaandrager, and P. D’Argenio. Testing
Timed Automata. TR CTIT 97-17, University of Twente,
1997. To appear inTheoretical Computer Science.

4

