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ABSTRACT

All engineering disciplines are founded and rely on models, al-
though they may differ on purposes and usages of modeling. Inter-
disciplinary domains such as Cyber Physical Systems (CPSs) seek
approaches that incorporate different modeling needs and usages.
Specifically, the Simulink modeling platform greatly appeals to
CPS engineers due to its seamless support for simulation and code
generation. In this paper, we propose a test generation approach
that is applicable to Simulink models built for both purposes of
simulation and code generation. We define test inputs and outputs
as signals that capture evolution of values over time. Our test gener-
ation approach is implemented as a meta-heuristic search algorithm
and is guided to produce test outputs with diverse shapes according
to our proposed notion of diversity. Our evaluation, performed on
industrial and public domain models, demonstrates that: (1) In con-
trast to the existing tools for testing Simulink models that are only
applicable to a subset of code generation models, our approach is
applicable to both code generation and simulation Simulink mod-
els. (2) Our new notion of diversity for output signals outperforms
random baseline testing and an existing notion of signal diversity in
revealing faults in Simulink models. (3) The fault revealing ability
of our test generation approach outperforms that of the Simulink
Design Verifier, the only testing toolbox for Simulink.

1. INTRODUCTION
Modeling has a long tradition in software engineering. Soft-

ware models are particularly used to create abstract descriptions
of software systems from which concrete implementations are pro-
duced [17]. Software development using models, also referred to
as Model Driven Engineering (MDE), is largely focused around the
idea of models for code generation [16] or models for test gener-

ation [38]. Code or test generation, although important, is not the
primary reason for software modeling when software development
occurs in tandem with control engineering. In domains where soft-
ware closely interacts with physical processes and objects such as
Cyber Physical Systems (CPSs), one main driving force of model-
ing is simulation, i.e., design time testing of system models. Simu-
lation aims to identify defects by testing models in early stages and
before the system has been implemented and deployed.
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In the CPS domain, models built for simulation have major dif-
ferences from those from which code can be generated. Simulation
models are heterogeneous, encompassing software, network and
physical parts, and are meant to represent as accurately as possi-
ble the real world and its continuous dynamics. These models have
time-continuous behaviors (described using differential equations)
since they are expected to capture and continuously interact with
the physical world [26, 22]. Code generation models, on the other
hand, capture software parts only, and have discrete time behavior
(described using some form of discrete logic or discrete state ma-
chines) [46, 25]. This is because the generated code will run on
platforms that support discrete computations, and further, the code
will receive input data as discrete sequences of events.

When simulation models are available, testing starts very early
typically by running those models for a number of selected scenar-
ios. Early testing of simulation models pursues, among others, two
main objectives: (1) Ensuring correctness of simulation models so
that these models can act as oracle. This can significantly reduce
engineers’ reliance on expensive and late testing and measurements
on the final hardware. (2) Obtaining an initial test suite with high
fault revealing power to be used for testing software code, or at
later stages for testing the system on its final hardware platform.

Our goal is to provide automated techniques to generate effec-
tive test suites for Simulink models [48]. Simulink is an advanced
platform for developing both simulation and code generation mod-
els in the CPS domain. The existing approaches to testing and
verifying Simulink models almost entirely focus on models with
time-discrete behavior, i.e., code generation models. These ap-
proaches generate discrete test inputs for Simulink models with
the goal of reaching runtime errors to reveal faults [50, 23], vi-
olating assertions inserted into Simulink models based on some
formal specification [41, 14], and achieving high structural cov-
erage [36, 42]. Discrete test inputs, however, are seldom sufficient
for testing Simulink models, in particular, for those models with
time-continuous behaviors. Many faults may not lead to runtime
crashes. Formal specifications are rather rare in practice, and fur-
ther, are not amenable to capturing continuous dynamics of CPSs.
Finally, effectiveness of structural coverage criteria has yet to be
ascertained and empirically evaluated for Simulink model testing.

In this paper, we provide test generation techniques for Simulink
models with time-continuous behaviors. We generate test inputs
as continuous signals and do not rely on the existence of implicit
oracles (e.g., runtime failures) or formal specifications. Assuming
that automated oracles are not available, we focus on providing test
generation algorithms that develop small test suites with high fault
revealing power, effectively reducing the cost of human test ora-
cles [6, 32]. Instead of focusing on increasing structural coverage,
we propose and evaluate a test data generation approach that aims
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to maximize diversity in output signals of Simulink models. Output
signals provide a useful source of information for detecting faults
in Simulink models as they not only show the values of model out-
puts at particular time instants, but also they show how these values
change over time. By inspecting output signals, one can determine
whether the model output reaches appropriate values at the right
times, whether the time period that the model takes to change its
values is within acceptable limits, and whether the signal shape is
free of erratic and unexpected changes that violate continuous dy-
namics of physical processes or objects.

Our intuition is that test cases that yield diverse output signals
may likely reveal different types of faults in Simulink models. The
key here is the definition of output diversity. In our earlier work, we
proposed a notion of output diversity based on the Euclidean dis-
tance between signal vector outputs of mixed discrete-continuous
Stateflow models [29]. Stateflow is a subset of Simulink for captur-
ing state-based behaviors. In this work, we introduce a new notion
of diversity for signal outputs that is defined based on a set of rep-
resentative and discriminating signal feature shapes. We refer to
the former as vector-based and to the latter as feature-based diver-
sity objectives. We develop a meta-heuristic search algorithm that
generates test suites with diversified output signals where the di-
versity objective can be either vector-based or feature-based. Our
algorithm uses the whole test suite generation approach [19, 18].
Further, our algorithm adapts a single-state search optimizer [28]
to generate continuous test input signals, and proposes a novel way
to dynamically increase variations in test input signals based on the
amount of structural coverage achieved by the generated test suites.
We evaluate our algorithm using four industrial and public-domain
Simulink models. Our contributions are as follows:

(1) We identify the problem of testing simulation models and
argue that, though simulation models are essential in the CPS do-
main, few systematic testing/verification techniques exist for them.

(2) We propose a new notion of diversity for output signals and
develop a novel algorithm based on this notion for generating test
suites for both simulation and code generation models in Simulink.
We show that our new notion of diversity for output signals out-
performs random baseline testing and an existing notion of signal
output diversity in revealing faults in Simulink models.

(3) We compare our test generation approach that diversifies test
outputs with the Simulink Design Verifier (SLDV), the only test-
ing toolbox of Simulink. SLDV automatically generates test suites
for a subset of Simulink models with the goal of achieving high
structural coverage. We argue that while our approach is applica-
ble to the entire Simulink, SLDV supports a subset. We show that,
when considering the SLDV-compatible subset, our output diver-
sity approach is able to reveal significantly more faults compared
to SLDV, and further, it subsumes SLDV in revealing faults: Any
fault identified by SLDV is also identified by our approach.

2. MOTIVATION AND BACKGROUND
In this section, we provide examples of simulation and code

generation models. We then introduce SimuLink Design Verifier
(SLDV) and motivate our output diversity test generation approach.

Example. We motivate our work using a simplified Fuel Level
Controller (FLC) which is an automotive software component used
in cars’ fuel level management systems. FLC computes the fuel
volume in a tank using the continuous resistance signal that it re-
ceives from a fuel level sensor mounted on the fuel tank. The sensor
data, however, cannot be easily converted into an accurate estima-
tion of the available fuel volume in a tank. This is because the rela-
tionship between the sensor data and the actual fuel volume is im-
pacted by the irregular shape of the fuel tank, dynamic conditions

of the vehicle (e.g., accelerations and braking), and the oscillations
of the indication provided by the sensors. Hence, FLC has to rely
on complex filtering algorithms involving algebraic and differential
equations to accurately compute the actual fuel volume [47].

Simulation models. In the automotive industry, engineers build
simulation models prior to any software coding and often at the
time of system-level design and engineering. Simulation models
most often contain time-continuous mathematical operations [12].
For example, Figure 1(a) shows a very simplified FLC Simulink
model which is adopted from [59] and includes a time-continuous
integral operator (

∫

). We refer to the model in Figure 1(a) as a
simulation model of FLC. The input of this model is the resistance
signal from the sensor, and its output shows the fuel volume. The
Simulink model in Figure 1(a) is executable. Engineers can run the
model for any desired input signal and inspect the output. Automo-
tive engineers often rely on their knowledge of mechanics and con-
trol theory to design simulation models. These models, however,
need to be verified or systematically tested as they are complex and
may include several hundreds of blocks.

Code generation models. Figure 1(b) shows an example FLC code
generation model, (i.e., the model from which software code can be
automatically generated). The code generation model is discrete:
The time-continuous integrator block (

∫

) in the simulation model is
replaced by a time-discrete integrator (sum) in the code generation
model. The behavior of code generation models may deviate from
that of simulation models since the latter often has time-continuous
operations while the former is purely discrete. Typically, some de-
gree of deviations between simulation and code generation model
outputs are acceptable. The level of acceptable deviations, how-
ever, have to be determined by domain experts.

Simulation model outputs vs. code generation model outputs.

Figure 1(c) shows an example continuous input signal for FLC over
a 10 sec time period. The signal represents the resistance values re-
ceived from the tank sensor. This input signal can be applied to
both simulation and code generation models of FLC. Note that a
time-continuous model has to be provided with a continuous in-
put signal (i.e., a continuous function over time). A time-discrete
model, on the other hand, only requires single values at discrete
time steps which can be extracted from continuous signals as well.
Models in Figures 1(a) and (b) respectively produce the outputs in
Figures 1(d) and (e) once they are provided with the input in Fig-
ure 1(c). As shown in Figures 1(d) and (e), the percentages of fuel
volume in the continuous output signal differ from those in the dis-
crete output signal. For example, after one second, the output of
the simulation model is 91.43, while that of the code generation
model is 88.8. These deviations are due to the differences between
the continuous and discrete integrals. For example, the grey area
in the left part of Figure 1(f) shows the value computed by

∫

after
three seconds, while the value computed by the discretized integral
operator after three seconds is the grey area in the right part of Fig-
ure 1(f). Clearly, these two operators, and hence the two models in
Figures 1(a) and (b), generate different values for the same input.

Simulation models as oracles for code. In the CPS domain, time-
continuous simulation models play a crucial role. Not only that
they are the blueprints for code generation models, and later, the
software code, but also they serve as oracle generators for test-
ing software code on various platforms. While oracles obtained
based on formal specifications or runtime errors are often precise
and deterministic [34, 35], those obtained based on simulation out-
puts are inexact as some deviations from oracles are acceptable.
These oracles provide engineers with a reasonable and yet valuable
assessment of the code behavior. Further, the oracle information
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(d) FLC Simulation Model Output (Fuel Level)
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(e) FLC Code-Generation Model Output (Fuel Level)
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(f) Continuous vs. Discrete Integral
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(g) Faulty FLC Model Output (Test Input 1) (h) Faulty FLC Model Output (Test Input 2)
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(a) FLC Simulation Model (b) FLC Code Generation Model 

Faulty Model Output

Correct Model Output

Faulty Model Output

Correct Model Output

Figure 1: A Fuel Level Controller (FLC) example: (a) A sim-

ulation model of FLC; (b) a code generation model of FLC;

(c) an input to FLC; (d) output of (a) when given (c) as input;

(e) output of (b) when given (c) as input; (f) comparing outputs

of the blocks
∫

and sum from models (a) and (b), respectively;

(g) A test output of a faulty version of (a); and (h) another test

output a faulty version of (a).

that is obtained from simulation models is not readily available in
other artifacts, e.g., requirements and specifications. Therefore, it is
important to develop accurate and high quality simulation models.
Hence, our goal in this paper is to provide systematic algorithms to
help with testing of time-continuous simulation models.

Simulink Design Verifier. SimuLink Design Verifier (SLDV) is
a product of Mathworks and a Simulink toolbox. It is the only
Simulink toolbox that is dedicated to test generation. It automat-
ically generates test input signals for Simulink models using con-
straint solving and model-checking techniques [50]. SLDV pro-
vides two usage modes: (1) generating test suites to achieve some
form of structural coverage, and (2) generating test scenarios (counter-
examples) indicating violation of some given properties (assertions).
In the first usage mode, SLDV creates a test suite satisfying a given
structural coverage criterion [51]. In the second usage mode, SLDV
tries to prove that assertions inserted into Simulink models cannot
be reached, or otherwise, it generates inputs triggering the asser-
tions, hence, disproving the desired properties.

In this paper, we compare the fault revealing ability of our algo-
rithm with that of the first usage mode of SLDV, i.e., test generation
guided by structural coverage. Note that the second usage mode of
SLDV requires exact oracles which is out of the scope of this paper.
We chose to compare our work with SLDV as it is distributed by
the Mathworks and is among the most well-known tools for test-
ing and verification of Simulink models. Other existing tools in
that category, e.g., Reactis [40], rely on formal techniques as well.
Based on our experience working with SLDV and according to the
Mathworks white papers [21], SLDV has the following practical
limitations: (1) Model Compatibility. SLDV supports a subset of
the Simulink language (i.e., discrete fragment of Simulink) [12],
and is not applicable to time-continuous blocks of Simulink such
as the continuous integrator in Figure 1(a). Specifically, SLDV is
applicable to the model in Figure 1(b), but not to that in Figure 1(a).
Further, there are a number of blocks that are acceptable by the
Simulink code generator but are not yet compatible with SLDV in
particular, the S-Function block which provides access to system
functions and custom C code from Simulink models. (2) Scala-

bility. The lack of scalability of SLDV is recognized as an issue
by Mathworks [21]. Further, as the models get larger and more
complicated, it is more likely that they contain blocks that are not
supported by SLDV. So, for SLDV, the problem of compatibility
often precedes and overrides the problem of lack of scale [21].

Coverage vs. Output Diversity. In contrast to SLDV which aims
to maximize structural coverage, we propose a test generation al-
gorithm that tries to diversify output signals. We illustrate the dif-
ferences between test generation based on structural coverage and
based on output diversity using a faulty version of the simulation
model in Figure 1(a). Suppose the line connected to point A in
this model is mistakenly connected to point B. Figures 1(g) and (h)
show two different output signals obtained from this faulty model
along with the expected outputs. The faulty output is shown by a
solid line and the correct one (oracle) is shown by a dashed line.
The faulty output in Figure 1(g) almost matches the oracle, while
the one in Figure 1(h) drastically deviates from the oracle. Given
that small deviations from oracle are acceptable, engineers are un-
likely to identify any fault when provided with the output in Fig-
ure 1(g). When the goal is high structural coverage, the test inputs
yielding the two outputs in Figures 1(g) and (h) are equally de-
sirable. Indeed, for the FLC model, one test input is sufficient to
achieve full structural coverage. If this test input happens to pro-
duce the output in Figure 1(g), the fault goes unnoticed. In contrast,
our approach attempts to generate test cases that yield diverse out-
put signals to increase the probability of generating outputs that
noticeably diverge from the expected result. In Section 3, we in-
troduce our feature-based notion of signal output diversity and our
test generation algorithm.

3. TEST GENERATION ALGORITHMS
We propose a search-based whole test suite generation algorithm

for Simulink models. Our test generation algorithm aims to maxi-
mize diversity among output signals generated by a test suite. We
define two notions of diversity among output signals: vector-based

and feature-based. We first fix a notation, and will then describe
our notions of output diversity and our test generation algorithm.

Notation. Let M = (I, o) be a Simulink model where I =
{i1, . . . , in} is the set of input variables and o is the output vari-
able of M . Each input/output variable of M is a signal, i.e., a
function of time. Irrespective of M being a simulation or a code
generation model, each input or output of M is stored as a vector
whose elements are indexed by time. Assuming that the simula-
tion time is T , the simulation interval [0..T ] is divided into small
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equal time steps denoted by ∆t. We define a signal sg as a func-
tion sg : {0,∆t, 2 ·∆t, . . . , k ·∆t} → R, where ∆t is the simulation
time step, k is the number of observed simulation steps, and R is
the signal range. The signal rangeR is bounded by its min and max
values denoted minR and maxR, respectively. For the example in
Figure 1, we have T = 10s, ∆t = 1s, and k = 10. Note that in
that example, to better illustrate the input and output signals, ∆t

is chosen to be larger than normal. In one of our experiments, for
example, we have ∆t = 0.001s, T = 2s, and k = 2000.

Our goal is to generate a test suite TS = {I1, . . . , Iq}. Each
test input Ij is a vector (sgi1 , . . . , sgin) of signals for the input
variables i1 to in of M . By simulating M using each test input
Ij , we obtain an output signal sgo for the output variable o of M .
All the input signals sgij and the output signal sgo share the same
simulation time interval and simulation time steps, i.e., the values
of ∆t, T , and k are the same for all of the signals.

Test inputs. In Simulink, every variable even those representing
discrete events are described using signals. In this context, test
input generation is essentially signal generation. Each test input
is a vector (sgi1 , . . . , sgin) of signals. Each signal sgij is also
a vector with a few thousands of elements, and each element can
take an arbitrary value from the signal range. To specify an in-
put signal, however, engineers never define a few thousands of
values individually. Instead, they specify a signal by defining a
sequence of signal segments. To formalize input signals gener-
ated in practice, we characterize each input signal sg with a set
{(k1, v1), . . . , (kp, vp)} of points where k1 to kp are the simula-
tion steps s.t. k1 = 0, k1 ≤ k2 ≤ . . . ≤ kp, and v1 to vp are the
values that sg takes at simulation steps k1 to kp, respectively. The
set {(k1, v1), . . . , (kp, vp)} specifies a signal sg with p segments.
The first p− 1 segments of sg are defined as follows: For 1 ≤ j <

p, each pair (kj , vj) and (kj+1, vj+1) specifies a signal segment s.t.
∀l · kj ≤ l < kj+1 ⇒ sg(l ·∆t) = vj ∧ sg(kj+1 ·∆t) = vj+1. The last
segment of sg is a constant signal that starts at (kp, vp) and ends at
(k, vp) where k is the maximum number of simulation steps. For
example, {(0, v)} specifies a constant signal at v (i.e., one segment
p = 1). A step signal going from v0 to v1 and stepped at k′ is
specified by {(0, v0), (k

′, v1)} (i.e., two segments p = 2).
Input signals with fewer segments are easier to generate but they

may fail to cover a large part of the underlying Simulink model.
By increasing the number of segments in input signals, structural
coverage increases, but the output generated by such test inputs
becomes more complex, and engineers may not be able to deter-
mine expected outputs (oracle). Furthermore, highly segmented in-
put signals may not be reproducible on hardware platforms as they
may violate physical constraints of embedded devices. For each
input variable, engineers often have a good knowledge on the max-
imum number of segments that a signal value for that variable may
possibly contain and still remains feasible. In our test generation
algorithm discussed at the end of this section, we ensure that, for
each input variable, the generated input signals achieve high struc-
tural coverage while their segment numbers remain lower than the
limits provided by domain experts.

Vector-based output diversity. This diversity notion is defined di-
rectly over output signal vectors. Let sgo and sg′o be two signals
generated for output variable o by two different test inputs of M . In
our earlier work [29], we defined the vector-based diversity mea-
sure between sgo and sg′o as the normalized Euclidean distance
between these two signals. We denote the vector-based diversity

between sgo and sg′o by ˆdist(sgo, sg
′
o).

Our vector-based notion, however, has two drawbacks: (1) It is
computationally expensive since it is defined over signal vectors

with a few thousands of elements. Using it in a search algorithm
amounts to computing the Euclidean distance between many pairs
of output signals at every iteration of the search. (2) A search
driven by vector-based distance may generate several signals with
similar shapes whose vectors happen to yield a high Euclidean dis-
tance value. For example, for two constant signals sgo and sg′o,
ˆdist(sgo, sg

′
o) is relatively large when sgo is constant at the max-

imum of the signal range while sg′o is constant at the minimum of
the signal range. A test suite that generates several output signals
with similar shapes may not help with fault finding.

Feature-based output diversity. In machine learning, a feature
is an individual measurable and non-redundant property of a phe-
nomenon being observed [57]. Features serve as a proxy for large
input data that is too expensive to be directly processed, and further,
is suspected to be highly redundant. In our work, we define a set
of basic features characterizing distinguishable signal shapes. We
then describe output signals in terms of our proposed signal fea-
tures, effectively replacing signal vectors by feature vectors. Fea-
ture vectors are expected to contain relevant information from sig-
nals so that the desired analysis can be performed on them instead
of the original signal vectors. To generate a diversified set of output
signals, instead of processing the actual signal vectors with thou-
sands of elements, we maximize the distance between their corre-
sponding feature vectors with tens of elements.

Figure 2(a) shows our proposed signal feature classification. Our
classification captures the typical, basic and common signal pat-
terns described in the signal processing literature, e.g., constant,
decrease, increase, local optimum, and step [37]. The classification
in Figure 2(a) identifies three abstract signal features: value, deriva-
tive and second derivative. The abstract features are italicized. The
value feature is extended into: instant-value and constant-value fea-
tures that are respectively parameterized by (v) and (n, v). The
former indicates signals that cross a specific value v at some point,
and the latter indicates signals that remain constant at v for n con-
secutive time steps. These features can be instantiated by assigning
concrete values to n or v. Specifically, the constant-value (n, v)
feature can be instantiated as the one-step constant-value(v) and
always constant-value(v) features by assigning n to one and k (i.e.,
the simulation length), respectively. Similarly, specific values for v
are zero, and max and min of signal ranges (i.e., maxR and minR).

The derivative feature is extended into sign-derivative and extreme-
derivative features. The sign-derivative feature is parameterized by
(s, n) where s is the sign of the signal derivative and n is the num-
ber of consecutive time steps during which the sign of the signal
derivative is s. The sign s can be zero, positive or negative, re-
sulting in constant(n), increasing(n), and decreasing(n) features,
respectively. As before, specific values of n are one and k. The
extreme-derivatives feature is non parameterized and is extended
into one-sided discontinuity, one-sided discontinuity with local op-
timum, one-sided discontinuity with strict local optimum, discon-
tinuity, and discontinuity with strict local optimum features. The
second derivative feature is extended into more specific features
similar to the derivative feature. Due to space limit, we have not
shown those extensions in Figure 2(a).

Figures 2(b) to (e) respectively illustrate the instant-value(v), the
increasing(n), the one-sided continuity with local optimum, and
the discontinuity with strict local optimum features. Specifically,
the signal in Figure 2(b) takes value v at point A. The signal in
Figure 2(c) is increasing for n steps from B to C. The signal in
Figure 2(d) is right-continuous but discontinuous from left at point
D, and further, the signal value at D is not less than the values at
its adjacent point, hence making D a local optimum. Finally, the
signal in Figure 2(e) is discontinuous from both left and right at
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Figure 2: Signal Features: (a) Our signal feature classification, and (b)–(e) Examples of signal features from the classification in (a).

point E which is a strict local optimum point as well.
We define a function Ff for each (non-abstract) feature f in Fig-

ure 2(a). We refer to Ff as feature function. The output of func-
tion Ff when given signal sg as input is a value that quantifies the
similarity between shapes of sg and f . More specifically, Ff deter-
mines whether any part of sg is similar to feature f . For example,
suppose functions lds(sg, i) and rds(sg, i) respectively compute the
left and right derivative signs of sg at simulation step i. Specifi-
cally, they generate 1, −1, and 0 if the derivative value is positive,
negative, and zero, respectively. We define Ff for the feature in
Figure 2(d) as follows:

Ff (sg) =
k

max
i=1

(|derivative(sg, i)| × localOpt(sg, i)) such that

derivative(sg, i) = sg((i)·∆t)−sg((i−1)·∆t)
∆t

and

localOpt(sg, i) =

{

1, lds(sg, i) 6= rds(sg, i)

0, Otherwise

Function Ff (sg) computes the largest left or right derivative of sg
that occurs at a local optimum point, i.e., the largest one-sided
derivative that occurs at a point i such that the derivative of sg

changes its sign at i. The higher Ff (sg), the more similar sg is to
the feature in Figure 2(d). Our complete signal feature classifica-
tion and the corresponding feature functions are available at [30].

Having defined features and feature functions, we now describe
how we employ these functions to provide a measure of diversity
between output signals sgo and sg′o. Let f1, . . . , fm be m fea-
tures that we choose to include in our diversity measure. We com-
pute feature vectors F v(sgo) = (Ff1(sgo), . . . , Ffm(sgo)) and
F v(sg′o) = (Ff1(sg

′
o), . . . , Ffm(sg′o)) corresponding to signals

sgo and sg′o, respectively. Since the ranges of the feature func-
tion values may vary widely, we standardize these vectors before
comparing them. Specifically, we use feature scaling which is a
common standardization method for data processing [57]. Having
obtained standardized feature vectors F̂ v(sgo) and F̂ v(sg′o) cor-
responding to signals sgo and sg′o, we compute the Euclidean dis-

tance between these two vectors, (i.e., ˆdist(F̂ v(sgo), F̂ v(sg′o))),
as the measure of feature-based diversity between signals sgo and
sg′o. Below, we discuss how our diversity notions are used to gen-
erate test suites for Simulink models.

Whole test suite generation based on output diversity. We pro-
pose a meta-heuristic search algorithm to generate a test suite TS =
{I1, . . . , Iq} for a given model M = (I, o) to diversify the set of
output signals generated by TS . We denote by
TSO = {sg1, . . . , sgq} the set of output signals generated by TS .
We capture the degree of diversity among output signals in TSO

using objective functions Ov and Of that correspond to vector-
based and feature-based notions of diversity, respectively:

Ov (TSO) =
q
∑

i=1

MIN∀sg∈TSO\{sgi}
ˆdist(sgi, sg)

Of (TSO) =
q
∑

i=1

MIN∀sg∈TSO\{sgi}
ˆdist(F v(sgi), F

v(sg))

Function Ov computes the sum of the minimum distances of each
output signal vector sgi from the other output signal vectors in
TSO. Similarly, Of computes the sum of the minimum distances
of each feature vector F v(sgi) from feature vectors of the other
output signals in TSO. Our test generation algorithm aims to max-
imize functions Ov and Of to increase diversity among the signal
vectors and feature vectors of the output signals, respectively.

Our algorithm adapts the whole test suite generation approach [19]
by generating an entire test suite at each iteration and evolving, at
each iteration, every test input in the test suite. The whole test suite
generation approach is a recent and preferred technique for test data
generation specially when, similar to Ov and Of , objective func-
tions are defined over the entire test suite and aggregate all testing
goals. Another benefit of this approach for our work is that it allows
us to optimize our test objectives while fixing the test suite size at
a small value due to the cost of manual test oracles.

Our algorithm implements a single-state search optimizer that
only keeps one candidate solution (i.e, one test suite) at a time, as
opposed to population-based algorithms that keep a set of candi-
dates at each iteration. This is because our objective functions are
computationally expensive as they require to simulate the underly-
ing Simulink model and compute distance functions between ev-
ery test input pair. When objective functions are time-consuming,
population-based search may become less scalable as it may have to
re-compute objective functions for several new or modified mem-
bers of the population at each iteration.

Figure 3 shows our output diversity test generation algorithm for
Simulink models. We refer to it as OD. The core of OD is a Hill-
Climbing search procedure [28]. Specifically, the algorithm gen-
erates an initial solution (lines 2-3), iteratively tweaks this solution
(line 12), and selects a new solution whenever its objective function
is higher than the current best solution (lines 16-18). The objective
function O in OD is applied to the output signals in TSO that are
obtained from test suites. The objective function can be either Of

or Ov , respectively generating test suites that are optimized based
on feature-based and vector-based diversity notions.

While being a Hill-Climbing search in essence, OD proposes two
novel adaptations: (1) It initially generates input signals that con-
tain a small number of signal segments P . It then increases P only
when it is needed while ensuring that P is never more than the limit
provided by the domain expert Pmax . Recall that, on one hand, in-
creasing segments of input signals makes the output more difficult
to analyse, but that, on the other hand, input signals with few seg-
ments may not reach high model coverage. In OD, we initially gen-
erate test inputs with P segments (lines 1-2). The tweak operator
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Algorithm. The test generation algorithm applied to a Simulink model M .

1. P ← initial number of signal segments for test inputs
2. TS ← GENERATEINITIALTESTSUITE(P )
3. BestFound ← O(TSO)
4. Pmax ← maximum number of signal segments permitted in test inputs
5. TSO ← signal outputs obtained by simulating M for every test input in TS

6. whole-test-suite-coverage← coverage achieved by TS over M
7. initial-coverage← whole-test-suite-coverage

8. accumulative-coverage← initial-coverage

9. Let σ-exploration and σ-exploitation be the max and min tweak parameters, respectively.
10. σ ← σ-exploitation /*tweak parameter */
11. repeat

12. newTS = TWEAK(TS, σ, P ) /* generating new candidate solution */
13. TSO← signal outputs obtained by simulating M for every test input in newTS

14. whole-test-suite-coverage← coverage achieved by newTS over M
15. accumulative-coverage← accumulative-coverage + whole-test-suite-coverage

16. if O(TSO) > highestFound :

17. highestFound = O(TSO)
18. TS = newTS

19. if accumulative-coverage has reached a plateau at a value less than %100 and P < Pmax :

20. P = P + 1
21. Reduce σ proportionally as accumulative-coverage increases over initial-coverage

22. until maximum resources spent
23. return TS

Figure 3: Our output diversity (OD) test generation algorithm

for Simulink models.

does not change the number of segments either (line 12). We in-
crease P only when the accumulative structural coverage achieved
by the existing generated test suites reaches a plateau at a value
less than %100, i.e., remains constant for some consecutive itera-
tions of the algorithm (lines 19-20). Further, although not shown
in the algorithm, we do not increase P if the last increase in P has
not improved the accumulative coverage.

(2) The tweak operator in OD (line 12) is explorative at the be-
ginning and becomes more exploitative as the search progresses.
Our tweak is similar to the one used in (1+1) EA algorithm [28]. At
each iteration, we shift every signal sg ∈ TS denoted by
{(k1, v1), . . . , (kp, vp)} as follows: We add values xi (respectively
yi) to every vi (respectively ki) for 1 ≤ i ≤ p. The xi (respectively
yi) values are selected from a normal distribution with mean µ = 0
and variance σ × (maxR − minR) (respectively σ × k), where
R is the signal range and k is the number of simulation steps. We
control the degree of exploration and exploitation of our search us-
ing σ. Given that the search space of input signals is very large,
if we start by a purely exploitative search (i.e., σ = 0.01), our re-
sult will be biased by the initially randomly selected solution. To
reduce this bias, we start by performing a more explorative search
(i.e., σ = 0.5). However, if we let the search remain explorative,
it may reduce to a random search. Hence, we reduce σ iteratively
in OD such that the amount of reduction in σ is proportional to the
increase in the accumulative structural coverage obtained by the
generated test suites (line 21). Finally, we note that the tweak op-
erator takes the signal segments P as an input (line 12) and, in case
the number of signal segments has increased from the previous it-
eration, it ensures to increase the number of segments in signal sg.

4. EXPERIMENT SETUP
In this section, we present the research questions. We further de-

scribe our study subjects, our metrics to measure the fault revealing
ability of test generation algorithms and the way we approximate
their oracle cost. We finally provide our experiment design.

4.1 Research Questions

RQ1 (Sanity check). How does the fault revealing ability of the

OD algorithm compare with that of a random test generation strat-

egy? We investigate whether OD is able to perform better than
random testing which is a baseline of comparison. We compare the
fault revealing ability of the test suites generated by OD when used
with each of the Ov and Of objective functions with that of the test

suites generated by a random test generation algorithm.

RQ2 (Comparing Ov and Of ). How does the Of diversity objec-

tive perform compared to the Ov diversity objective? We compare
the ability of the test suites generated by OD with Ov and Of in
revealing faults in time-continuous Simulink models. In particular,
we are interested to know if, irrespective of the size of the gen-
erated test suites, any of these two diversity objectives is able to
consistently reveal more faults across different study subjects and
different fault types than the other.

RQ3 (Comparison with SLDV). How does the fault revealing

ability of the OD algorithm compare with that of SLDV? With this
question, we compare an output diversity approach (OD) with an
approach based on structural coverage (SLDV) in generating effec-
tive test suites for Simulink models. This question, further, enables
us to provide evidence that our approach is able to outperform the
most widely used industry strength Simulink model testing tool.
Finally, in contrast to RQ1 and RQ2 where we applied OD to time-
continuous Simulink models, this question has to focus on discrete
models because SLDV is only applicable to time-discrete Simulink
models. Hence, this question allows us to investigate the capabili-
ties of OD in finding faults for discrete Simulink models, as well.

4.2 Study Subjects
We use four Simulink models in our experiments: Two indus-

trial models, Clutch Position Controller (CPC) and Flap Position
Controller (FPC), from Delphi, and two public domain models,
Cruise Controller (CC) [49] and Clutch Lockup Controller (CLC),
from the Mathworks website [45]. Table 1 shows key character-
istics of these models. CPC and CC include Stateflows, and FPC
and CLC are Simulink models without Stateflows. FPC and CPC
are time-continuous models and incompatible with SLDV. The CC
model, which is the largest model from the SLDV tutorial exam-
ples, is compatible with SLDV. Since the other tutorial examples
of SLDV were small, we modified the CLC model from the Math-
works website to become compatible with SLDV by replacing the
time-continuous and other SLDV-incompatible blocks with their
equivalent or approximating discrete blocks. We have made the
modified version of CLC available at [30]. Note that we were
not able to make CPC, FPC or any other Delphi Simulink models
compatible with SLDV since they contained complex S-Function
blocks, and hence, they have to be almost reimplemented before
SLDV can be applied to them. The coverage criterion used by both
SLDV and OD in Figure 3 is decision coverage [51], also known
as branch coverage, that aims to ensure that each one of the possi-
ble branches from each decision point is executed at least once and
thereby ensuring that all reachable blocks are executed. We chose
branch coverage as it is the predominant coverage criterion in the
literature [19]. Table 1 reports the total number of decision points
in our study subjects. In addition, we report the total number of
Simulink blocks and Stateflow states as well as input variables and
configuration parameters for each model. CPC and FPC are rep-
resentative models from the automotive domain with many input
variables and blocks. In order to compare OD with SLDV, we use
CC from the Mathworks website and the modified version of CLC
as both models are reasonably large and complex, and yet compat-
ible with SLDV.

4.3 Measuring Fault Revealing Ability
We need test oracles to automatically assess the fault revealing

ability of generated test suites in our experimental setting. As dis-
cussed earlier, in our work, test oracles depend on manual inspec-
tion of output signals and on engineers’ estimates of acceptable de-
viations from the expected results. To measure the fault revealing
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Table 1: Characteristics of our study subject Simulink models.
Publicly 

Available
Name

No. 

Inputs

No. Blocks/

States

CPC No 10 590

No. Decision

Points

126

FPC

CC

CLC

No

Yes

No. 

Configs

41

8106521 120

6 3 43

Yes

12

2 0 81 10

ability of a test suite, we use a quantitative notion of oracle de-
fined as the largest normalized distance, among all output signals,
between test results and the ground truth oracle [6]. For the pur-
pose of experimentation, we use fault-free versions of our subject
models to produce the ground truth oracle. Let TS be a test suite
generated by either OD or SLDV for a given faulty model M , let
O = {sg1, . . . , sgq} be the set of output signals obtained by run-
ning M for the test inputs in TS , and let G = {g1, . . . , gq} be the
corresponding ground truth oracle signals. We define our quantita-

tive oracle (QO) as follows: QO(M,TS) = MAX 1≤i≤q
ˆdist(sgi, gi).

We use a threshold value THR to translate the quantitive oracle
QO into a boolean fault revealing measure denoted by FR. Specif-
ically, FR returns true (i.e, QO(M,TS) > THR) if there is at least
one test input in TS for which the output of M sufficiently deviates
from the ground truth oracle such that a manual tester conclusively
detects a failure. Otherwise, FR returns false. In our work, we set
THR to 0.2. We arrived at this value for THR based on our expe-
rience and discussions with domain experts. In our experiments, in
addition, we obtained and evaluated the results for THR = 0.15
and THS = 0.25 and showed that our results were not sensitive to
such small changes in THR.

4.4 Test Oracle Cost Estimation
Since we assume that test oracles are evaluated manually, to

compare the fault revealing ability of OD and SLDV (RQ3), we
need to ensure that the test suites used for comparison have the
same (oracle) cost. The oracle cost of a test suite depends on the
size of the test suite and the complexity of input data. The latter in
our work is determined by the number of signal segments (P ) of
each input signal. More precisely, test suites TS = {I1, . . . Iq1}
and TS′ = {I ′1, . . . I

′
q2
} have roughly the same oracle cost if (1)

they have the same size (q1 = q2), and (2) the input signals in TS

and TS′ have the same number of segments. That is, for every
test input Ii = (sg1, . . . , sgn) in TS (respectively TS′), there ex-
ists some test input Ij = (sg ′

1, . . . , sg
′
n) in TS′ (respectively TS)

such that sgk and sg ′
k (for 1 ≤ k ≤ n) have the same number of

segments. In our experiments described in Section 4.5, we ensure
that the test suites used for comparison of different test generation
algorithms satisfy the above two conditions, and hence, can be used
as a proper basis to compare algorithms.

4.5 Experiment Design
We developed a comprehensive list of Simulink fault patterns

and have made it available at [30]. Examples of fault patterns in-
clude incorrect signal data type, incorrect math operation, and in-
correct transition condition. We identified these patterns through
our discussions with senior Delphi engineers and by reviewing the
existing literature on mutation operators for Simulink models [61,
9, 7, 58]. We have developed an automated fault seeding program
to automatically generate 44 faulty versions of CPC, 30 faulty ver-
sions of FPC, 17 faulty versions of CC, and 13 faulty versions of
CLC (one fault per each faulty model). In order to achieve diver-
sity in terms of the location and the types of faults, our automation
seeded faults of different types and in different parts of the mod-
els. We ensured that every faulty model remains executable (i.e.,

no syntax error).
Having generated the fault-seeded models, we performed two

sets of experiments, EXP-I and EXP-II, described below.

EXP-I focuses on answering RQ1 and RQ2 using the 74 faulty
versions of the time-continuous models from Table 1, i.e., CPC
and FPC. We ran the OD algorithm in Figure 3 with vector-based
(Ov) and feature-based (Of ) objective functions. For each faulty
model and each objective function, we ran OD for 400 sec and
created a test suite of size q where q took the following values: 3,
5, and 10. We chose to examine the fault revealing ability of small

test suites to emulate current practice where test suites are small so
that the test results can be inspected manually. We repeated OD 20
times to account for its randomness. Specifically, we sampled 444
different test suites and repeated each sampling 20 times (i.e., in
total, 8880 different test suites were generated for EXP-I). Overall,
EXP-I took about 1000 hours in execution time on a notebook with
a 2.4GHz i7 CPU, 8 GB RAM, and 128 GB SSD.

EXP-II answers RQ3 and is performed on the SLDV-compatible
subject models from Table 1, i.e., CC and CLC. To answer RQ3,
we compare the fault revealing ability of the test suites generated
by SLDV with that of the test suites generated by OD. We give
SLDV and OD the same execution time budget (120 sec in our ex-
periment). This time budget was sufficient for SLDV to achieve a
high level of structural coverage over the subject models. Further,
we ensure that the generated test suites have the same test oracle
cost. Specifically, for each faulty model M , we first use SLDV to
generate a test suite TSM based on the decision coverage criterion
within the time allotted (120 sec). We then apply OD to M to gen-
erate a test suite TS ′

M such that TSM and TS ′
M have the same

test oracle cost (see Section 4.4). We have implemented a Matlab
script that enables us to extract the size of the test suites as well as
the number of input signal segments for each individual test input
of TSM . Further, we have slightly modified the OD algorithm in
Figure 3 so that it receives as input the desired number P of sig-
nal segments for each input signal and it does not modify P during
search. Finally, we note that while SLDV is deterministic and is
executed once per input model, OD is randomized, and hence, we
rerun it 20 times for each faulty model.

5. RESULTS AND DISCUSSIONS
This section provides responses, based on our experiment design,

for research questions RQ1 to RQ3 described in Section 4.

RQ1 (Sanity). To answer RQ1, we ran EXP-I, and further, in or-
der to compare with random testing, for each faulty version, we
randomly generated test suites with size 3, 5 and 10. We ensured
that each test suite generated by random testing has the same ora-
cle cost as the corresponding test suites generated by the OD algo-
rithm. Moreover, similar to OD, we reran random testing 20 times.
Figures 4(a) to (c) compare the fault revealing ability of random
testing and OD with the objective functions Of and Ov . Each dis-
tribution in Figures 4(a) to (c) contains 74 points. Each point relates
to one faulty model and represents either the average quantitive ora-
cle QO or the average fault revealing measure FR over 20 different
test suites with a fixed size and obtained by applying a test gener-
ation algorithm to that faulty model. Note that the FR values are
computed based on three different thresholds THR of 0.2, 0.15,
and 0.25. For example, a point with (x = R) and (y = 0.104) in
the QO plot of Figure 4(a) indicates that the 20 different random
test suites with size 3 generated for one faulty model achieved an
average QO of 0.104. Similarly, a point with (x = OD(Of )) and (y
= 0.65) in any of the FR plots of Figure 4(b) indicates that among
the 20 different test suites with size 5 generated by applying OD
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(a) Average QO and FR values for q=3 (for 74 faulty models)

(b) Average QO and FR values for q=5 (for 74 faulty models)

(c) Average QO and FR values for q=10 (for 74 faulty models)
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Figure 4: Boxplots comparing average quantitative oracle val-

ues (QO) and fault revealing measures (FR) of OD (with both

diversity objectives) and random test suites for different thresh-

olds and different test suite sizes.

with objective function Of to one faulty model, 13 test suites were
able to reveal the fault (i.e., FR = 1) and 7 could not reveal that
fault (i.e., FR = 0).

To statistically compare the QO and FR values, we performed
the non-parametric pairwise Wilcoxon Pairs Signed Ranks test [11],
and calculated the effect size using Cohen’s d [15]. The level
of significance (α) was set to 0.05, and, following standard prac-
tice, d was labeled “small” for 0.2 ≤ d < 0.5, “medium” for
0.5 ≤ d < 0.8, and “high” for d ≥ 0.8 [15].

Testing differences in the average QO and FR distributions, for
all the three thresholds and with all the three test suite sizes, shows
that OD with both objective functions Of and Ov performs sig-
nificantly better than random test generation. In addition, for all
the comparisons between OD and random, the effect size is con-
sistently “high” for OD with Of and “medium” for OD with Ov .
To summarize, the fault revealing ability of OD outperforms that of
random testing.

RQ2 (Comparing Of with Ov ). The results in Figure 4 compare
the average QO and FR values for the feature-based, OD(Of ), and
the vector-based, OD(Ov ), output diversity algorithms. As for the
QO distributions, the statistical test results indicate that OD(Of )
performs significantly better than OD(Ov ) for test suite sizes 3 and
5 with a “small” effect size. For test suite size 10, there is no sta-
tistically significant difference, but OD(Of ) achieves higher mean
and median QO values compared to OD(Ov ). As for the FR distri-
butions, the improvements of OD(Of ) over OD(Ov ) are not statis-
tically significant. However, for all the three thresholds and with all
the test suite sizes, OD(Of ) consistently achieves higher mean and
median FR values compared to OD(Ov ). Specifically, with thresh-
old 0.2, the average FR is .33, .35 and .48 for OD(Of ), and .23, .24
and .36 for OD(Ov ) for test suite sizes 3, 5, and 10, respectively.
That is, across all the faults and with all test suite sizes, the aver-
age probability of detecting a fault is about %10 higher when we
use OD(Of ) instead of OD(Ov ). To summarize, the fault revealing
ability of the OD algorithm with the feature-based diversity objec-
tive is higher than that of the OD algorithm with the vector-based
diversity objective.

RQ3 (Comparison with SLDV). To answer RQ3, we used the bet-
ter diversity objective from RQ2 (i.e., OD with the feature-based
diversity objective) and performed EXP-II on 30 faulty models of
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Figure 5: Boxplots comparing quantitative oracle values (QO)

and fault revealing abilities of OD and SLDV for different

thresholds.

CC and CLC. We evaluate the fault revealing ability of SLDV and
OD by comparing the quantitative oracle QO and the fault reveal-
ing measure FR values obtained over these 30 faulty models. In
addition, we investigate if any of SLDV and OD subsumes the other
technique (fault revealing subsumption). That is, we determine if
any of OD and SLDV does not find any additional faults missed
by the other technique. Finally, we compare the structural cover-
age achieved by each of SLDV and OD over these 30 faulty models.
We report coverage results for two reasons: (1) We confirm our ear-
lier claim that with the timeout of 120 sec used in EXP-II, SLDV
has been able to achieve high structural coverage. (2) We provide
evidence that achieving higher structural coverage does not neces-
sarily lead to better fault revealing ability.

Comparing fault revealing ability. We computed QO and FR

with three THR values of 0.15, 0.20, and 0.25 over the test suites
generated by OD and SLDV. Figure 5 compares the distributions
obtained for the 30 faulty models of CC and CLC. Recall that
SLDV is deterministic, and OD is randomized. So, in Figure 5,
each point in distributions related to SLDV shows the value of QO

or FR obtained for one and the only one test suite generated by
SLDV for one faulty model. In contrast, each point in distributions
related to OD shows the average value of QO or FR for 20 differ-
ent test suites generated by OD for each faulty model. Further, for
each faulty model, SLDV yields a FR value of one or zero, respec-
tively indicating whether SLDV reveals the fault or not. However,
for OD, we compute an average FR value over 20 different runs,
which is between zero and one, indicating an estimated probability
for OD to reveal a fault.

As shown in Figure 5, the QO and FR values obtained for SLDV
are very small compared to those obtained by OD. Testing dif-
ferences in QO and FR distributions with all the three thresholds
shows that OD performs significantly better than SLDV. In addi-
tion, for all the four comparisons depicted in Figure 5, the effect
size is “high”.

Fault revealing subsumption. Tables 2 and 3 compare perfor-
mance of OD and SLDV for individual faults. Specifically, Table 2
shows, for each faulty model, the distribution of QO values ob-
tained by OD and the single value of QO obtained by SLDV. Note
that x̄ shows the mean, and Q1, Q2, and Q3 refer to the three quar-
tiles of the QO distribution obtained by 20 different runs of OD
(i.e., Q1, Q2, and Q3 are the 25th, 50th, and 75th percentiles, re-
spectively). In addition, we report (as denoted by P in Table 2)
the percentages of OD runs that achieve a QO value greater than
or equal to that obtained by SLDV. For example, for faults 1, 2,
and 3 in Table 2, 100%, 100% and 30% of the OD runs, respec-
tively, yield QO values that are not worse than those generated by
SLDV. Table 3 shows, for each faulty model and when considering
FR with threshold 0.2, whether SLDV is able to identify the fault
or not. We depict detection of a fault by SLDV with �. Further,
the table shows, out of the 20 runs, how many times OD is able to
find the fault. Note that the results for the thresholds 0.15 and 0.25
were similar to those in Table 3.

Based on Table 2, six faults go undetected by both SLDV and
OD irrespective of the threshold value (i.e., for six faults, we have
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Table 2: Quantitative oracle QO distributions for OD and sin-

gle QO values for SLDV per each faulty model.

OD SLDV

1

x̄

Q1

Q2

Q3

0.631

0.566

0.628

0.705

0.013

OD SLDV

2

0

0

0

0

0

OD SLDV

3

OD SLDV

4

OD SLDV

5

0.012

OD SLDV

6

OD SLDV

7

OD SLDV

8

OD SLDV

9

x̄

Q1

Q2

Q3

OD SLDV

10

OD SLDV

11

OD SLDV

12

OD SLDV

13

OD SLDV

14

OD SLDV

15

OD SLDV

16

OD SLDV

17

x̄

Q1

Q2

Q3

OD SLDV

18

OD SLDV
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1.0 1.0

1.0 1.0 1.0 1.0

1.01.0 1.01.01.0

1.0 1.0

1.0

Table 3: The number of fault revealing runs of OD (out of 20)

for our 30 faulty models, and the fault(s) that SLDV is able to

find with a threshold (THR) of 0.2.

Faults 1 2 3 4 5 6 7 8 9101 2 3 4 5 6 7 8 9 201 2 3 4 5 6 7 8 9 30

20

SLDV

OD 0 0 0 1620 11 5 20 14 17 11 20 4 5 14 2 20 0 0 0 20 20 200 0 20 0 15 15

QO = 0 for both SLDV and all OD runs). There is no fault that
SLDV can possibly detect (QO > 0) but OD cannot. For 23 faults,
all 20 runs of OD yield results that are at least as good as those of
SLDV (P = 1). For all the faults, the average of QO obtained
by OD (denoted by x̄) is higher than the value of QO obtained by
SLDV. Finally, SLDV totally fails to detect faults 3, 4, 7, 8, 16,
29, and 30, while some runs of OD are able to identify these seven
faults. Based on Table 3, SLDV identifies only one fault with a
threshold of 0.2, and that particular fault is also detected by all the
20 runs of OD. The results for thresholds 0.15 and 0.25 are similar.

Comparing coverage. Figure 6 compares the structural coverage
percentages (i.e., decision coverage) achieved by test suites gener-
ated by OD and SLDV over the faulty models of CC and CLC. As
before, the distribution for SLDV shows the percentages of struc-
tural coverage achieved by individual test suites generated for in-
dividual faulty models, while the distribution for OD shows the
average of structural coverage percentages obtained by 20 different
runs of OD for each faulty model. As shown in the figure, SLDV
was able to achieve, on average, a coverage of 94% for CC models
and 85% for CLC models. In contrast, OD achieved, on average,
a coverage of 84% for CC and 75% for CLC. In addition, SLDV
has been able to cover 29 out of the 30 fault-seeded blocks, and
OD covered 28 out of the 30 fault-seeded blocks. This shows that
within 120 sec, SLDV had sufficient time to cover the structure
of the 30 faulty models (only one fault-seeded block was missed).
Indeed, for 22 out of 30 faults, SLDV terminated before the time-
out period elapsed. Hence, by increasing the execution time, it is
unlikely that SLDV’s fault revealing ability would be impacted.

In summary, our comparison of SLDV and OD shows that: (1) For
both studied models, OD is able to reveal significantly more faults
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Figure 7: Examples of test inputs and output signals generated

by SLDV and OD algorithm.

compared to SLDV. (2) OD subsumes SLDV in revealing faults:
Any fault identified by SLDV is also identified by OD. (3) SLDV
was able to cover a large part of the underlying models within the
given timeout period (i.e., 29 out of the 30 fault-seeded blocks),
and further, it achieved slightly higher decision coverage over study
subjects compared to OD. However, covering a fault does not nec-
essarily lead to detecting that fault. In particular, SLDV was able
to reveal only one out of the 29 faults that it could cover. (4) Fi-
nally, our results on comparing SLDV and OD are not impacted
by small modifications in the threshold values used to compute the
fault revealing measure FR.

Discussion. Why does SLDV perform poorly compared to OD? Our
results in RQ3 show that, compared to the output diversity (OD)
algorithm, SLDV is less effective in revealing faults in Simulink
models. In our experiment, even though test suites generated by
SLDV cover most faulty parts of the Simulink models, the outputs
produced by these test suites either do not deviate or only slightly
deviate from the ground truth oracle, hence yielding very small QO

values. In contrast, OD generates test suites with output signals
that are more distinct from the ground truth oracle. Note that, as
discussed in Section 2, any deviation should exceed some threshold
to be conclusively deemed a failure. For example, Figures 7(b) and
(d) show two output signals (solid lines) of a faulty model together
with the oracle signals (dashed lines) generated by OD and SLDV,
respectively. Note that the range of the Y-axis in Figure 7(b) is 1000
times larger than that in Figure 7(d). Hence, the deviation from the
oracle in Figure 7(b) is much larger than that in Figure 7(d). In
particular, the signals in Figures 7(b) and (d) respectively produce
QO values of 0.43 and 0.01. Therefore, the output in Figure 7(b)
is more fault revealing that the one in Figure 7(d).

Since SLDV is commercial and its technical approach descrip-
tion is not publicly available, we cannot precisely determine the
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reasons for its poor performance. We conjecture, however, that the
reason for SLDV’s poor fault finding lies in its input signal gener-
ation strategy. Specifically, all value changes in the input signals
generated by SLDV typically occur during the very first simulation
steps, and then, the signals remain constant for the most part and
until the end of the simulation time. In contrast, changes in the in-
put signals generated by OD can occur at any time during the entire
simulation period. For example, Figures 7(a) and (c) show two ex-
amples of input signals generated by OD and SLDV, respectively.
In both case, the signal value changes from one to zero. However,
for the signal in Figure 7(a), the change occurs almost in the middle
of the simulation (at 6 sec), while in Figure 7(c), the change occurs
after the first step (at 0.01 sec). Signals in Figures 7(a) and (c) hap-
pen to cover exactly the same branches of the underlying model.
However, they, respectively, yield the outputs in Figures 7(b) and
(d) with drastically different fault revealing ability.

6. RELATED WORK
Modeling is by no means new to the testing and verification

community and has already been the cornerstone of a number of
well-studied techniques. In particular, two well known techniques,
model-based testing and model checking, have been previously ap-
plied to test and verify Simulink models. Model-based testing relies
on models to generate test scenarios and oracles for implementation-
level artifacts. A number of model-based testing techniques have
been applied to Simulink models with the aim of achieving high
structural coverage or detecting a large number of mutants. For ex-
ample, search-based approaches [54, 55], reachability analysis [33,
21], guided random testing [43, 44], and a combination of these
techniques [50, 39, 42, 36, 20, 8] have been previously applied to
Simulink models to generate coverage-adequate test suites. Alter-
natively, various search-based [61, 62] and bounded reachability
analysis [9] techniques have been used to generate mutant-killing
test suites from Simulink models. These techniques aim to generate
test suites as well as oracles from models that are considered to be
correct. In reality, however, Simulink models might contain faults.
Hence, in our work, we propose techniques to help testing complex
Simulink models for which automated and precise test oracles are
not available. Further, even though in Simulink, every variable is
described using signals, unlike our work, none of the above tech-
niques generate test inputs in terms of signals.

Model checking is an exhaustive verification technique and has
a long history of application in software and hardware verifica-
tion [13]. It has been previously used to detect faults in Simulink
models [14, 21, 5, 31] by showing that a path leading to an error
(e.g., an assertion or a runtime error) is reachable, or by maximizing
structural coverage (e.g., by executing as many paths as possible in
a model). To solve the reachability problem or to achieve high cov-
erage, these techniques often extract constraints from the underly-
ing Simulink models and feed the constraints into some constraint
solver or SAT solver. Some alternative techniques [52, 23, 3] trans-
late Simulink models into code and use existing code analysis tools
such as Java PathFinder [24] or KLEE [10] to detect faults. All
these approaches only work for code generation models with lin-
ear behavior and fail to test or verify simulation models with time-
continuous behavior. Our approach, however, is applicable to both
simulation and code generation Simulink models.

Recent work in the intersection of Simulink testing and signal
processing has focused on test input signal generation using evolu-
tionary search methods [4, 56, 27, 53]. These techniques, however,
assume automated oracles, e.g., assertions, are provided. Since test
oracles are automated, they do not pose any restriction on the shape
of test inputs. In our work, however, we restrict variations in input

signal shapes as more complex inputs increase the oracle cost. Sim-
ilar to our work, the work of [60] proposes a set of signal features.
These features are viewed as basic constructs which can be com-
posed to specify test oracles. In our work, since oracle descriptions
do not exist, we use features to improve test suite effectiveness by
diversifying feature occurrences in test outputs.

Our algorithm uses whole test suite generation [19] that was pro-
posed for testing software code. This approach evolves an entire
test suite, instead of individual test cases, with the aim of covering
all structural coverage goals at the same time. Our algorithm, in-
stead, attempts to diversify test outputs by taking into account all
the signal features (see Figure 2) at the same time. The notion of
output diversity in our work is inspired by the output uniqueness
criterion [1, 2]. As noted in [2], effectiveness of this criterion de-
pends on the definition of output difference and differs from one
context to another. While in [1, 2], output differences are described
in terms of the textual, visual or structural aspects of HTML code,
in our work, output differences are characterized by signal shape
features.

In our earlier work, we proposed a number of test generation
algorithms including an algorithm based on output diversity for
mixed discrete-continuous Stateflow models [29]. Our current pa-
per provides a test generation algorithm for the entire Simulink in-
cluding Stateflows. Moreover, our output diversity algorithm in
this paper is defined based on a feature-based notion of output di-
versity, and our evaluation shows that this approach to diversity
outperforms the vector-based approach that was used in our previ-
ous paper [29].

7. CONCLUSIONS
Simulink is a prevalent modeling language for Cyber Physical

Systems (CPSs) and supports the two main CPS modeling goals:
automated code generation and simulation, i.e., design time test-
ing. In this paper, we distinguished Simulink simulation and code
generation models and illustrated differences in their behaviors us-
ing examples. In contrast to the existing testing approaches that are
only applicable to code generation Simulink models, we proposed
a testing approach for both kinds of Simulink models based on our
notion of feature-based output diversity for signals. Our testing ap-
proach is implemented using a meta-heuristic search algorithm that
is guided to produce test outputs exhibiting a diverse set of signal
features. Our evaluation is performed using two industrial and two
public domain Simulink models and shows that (1) Our approach
significantly outperforms random test generation. (2) The average
fault finding ability of our algorithm when used with the feature-
based notion of output diversity is higher than that of our approach
when output diversity is measured based on the Euclidean distance
between signal vectors. (3) We empirically compared our approach
with Simulink Design Verifier (SLDV) which is the only Simulink
toolbox provided by Mathworks and dedicated to testing. Our com-
parison shows that our approach is able to reveal significantly more
faults compared to SLDV, and further, our approach is able to find
the faults identified by SLDV with a 100% probability. Hence, our
approach subsumes SLDV.

SLDV and Reactis Validator [40] are the most well-known com-
mercial tools for testing Simulink models. According to [14], the
underlying approach of Reactis is similar to that of SLDV. We leave
the comparison with Reactis for future work. We further plan to im-
prove our feature-based algorithm by optimizing and customizing
the set of feature shapes for a given model. To do so, we intend to
identify shapes that are more likely to occur in a given model’s out-
puts and modify the derivative feature functions to observe changes
over varying time intervals.
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