
1

Automated Testing of Android Apps:
A Systematic Literature Review

Pingfan Kong, Li Liξ, Jun Gao, Kui Liu, Tegawendé F. Bissyandé, Jacques Klein

✦

Abstract—Automated testing of Android apps is essential for app users,

app developers and market maintainer communities alike. Given the

widespread adoption of Android and the specificities of its develop-

ment model, the literature has proposed various testing approaches for

ensuring that not only functional requirements but also non-functional

requirements are satisfied. In this paper, we aim at providing a clear

overview of the state-of-the-art works around the topic of Android app

testing, in an attempt to highlight the main trends, pinpoint the main

methodologies applied and enumerate the challenges faced by the An-

droid testing approaches as well as the directions where the community

effort is still needed. To this end, we conduct a Systematic Literature

Review (SLR) during which we eventually identified 103 relevant re-

search papers published in leading conferences and journals until 2016.

Our thorough examination of the relevant literature has led to several

findings and highlighted the challenges that Android testing researchers

should strive to address in the future. After that, we further propose a

few concrete research directions where testing approaches are needed

to solve recurrent issues in app updates, continuous increases of app

sizes, as well as the Android ecosystem fragmentation.

1 INTRODUCTION

Android smart devices have become pervasive after gaining
tremendous popularity in recent years. As of July 2017,
Google Play, the official app store, is distributing over
3 million Android applications (i.e., apps), covering over
30 categories ranging from entertainment and personali-
sation apps to education and financial apps. Such popu-
larity among developer communities can be attributed to
the accessible development environment based on familiar
Java programming language as well as the availability of
libraries implementing diverse functionalities [1]. The app
distribution ecosystem around the official store and other
alternative stores such as Anzhi and AppChina is further
attractive for users to find apps and organisations to market
their apps [2].

Unfortunately, the distribution ecosystem of Android
is porous to poorly-tested apps [3]–[5]. Yet, as reported

•
ξ The corresponding author.

• P. Kong, J. Gao, K. Liu, T. Bissyandé, and J. Klein are with the In-
terdisciplinary Centre for Security, Reliability and Trust, University of
Luxembourg, Luxembourg.

• L. Li is with the Faculty of Information Technology, Monash University,
Australia.
E-mail: li.li@monash.edu

Manuscript received XXX; revised XXX.This work was supported by the
Fonds National de la Recherche (FNR), Luxembourg, under projects CHAR-
ACTERIZE C17/IS/11693861 and Recommend C15/IS/10449467.

Android
Device

Testing
Approaches

(1) Install App

(3) Send Test Cases

(4) Observe Execution
Behaviour

(5) Clean Environment

(2) Static
Analysis

Testing

Environment

Testing

Approaches

Fig. 1: Process of testing Android apps.

by Kochhar [3], error-prone apps can significantly impact
user experience and lead to a downgrade of their ratings,
eventually harming the reputation of app developers and
their organizations [5]. It is thus becoming more and more
important to ensure that Android apps are sufficiently tested
before they are released on the market. However, instead of
manual testing, which is often laborious, time-consuming
and error-prone, the ever-growing complexity and the enor-
mous number of Android apps call for scalable, robust and
trustworthy automated testing solutions.

Android app testing aims at testing the functionality,
usability and compatibility of apps running on Android
devices [6], [7]. Fig. 1 illustrates a typical working process.
At Step (1), target app is installed on an Android device.
Then in Step (2), the app is analysed to generate test cases.
We remind the readers that this step (in dashed line) is
optional and some testing techniques such as automated
random testing do not need to obtain pre-knowledge for
generating test cases. Subsequently, in Step (3), these test
cases are sent to the Android device to exercise the app.
In Step (4), execution behaviour is observed and collected
from all sorts of perspectives. Finally, in Step (5), the app
is uninstalled and relevant data is wiped. We would like
to remind the readers that installation of the target app is
sometimes not a necessity, e.g., frameworks like Robolectric
allow tests directly run in JVM. In fact, Fig. 1 can be
borrowed to describe the workflow of testing almost any
software besides Android apps. Android app testing, on the
contrary, falls in a unique context and often fails to use
general testing techniques [8]–[13]. There are several dif-
ferences with traditional (e.g., Java) application testing that
motivate research on Android app testing. We enumerate
and consider for our review a few common challenges:

First, although apps are developed in Java, traditional
Java-based testing tools are not immediately usable on An-

2

droid apps since most control-flow interactions in Android
are governed by specific event-based mechanisms such as
the Inter-Component Communication (ICC [14]). To address
this first challenge, several new testing tools have been
specifically designed for taking Android specificities into
account. For example, RERAN [15] was proposed for testing
Android apps through a timing- and touch-sensitive record-
and-replay mechanism, in an attempt to capture, represent
and replay complicated non-discrete gestures such as circu-
lar bird swipe with increasing slingshot tension in Angry Birds.

Second, Android fragmentation, in terms of the diversity
of available OS versions and target devices (e.g., screen size
varieties), is becoming acuter as now testing strategies have
to take into account different execution contexts [16], [17].

Third, the Android ecosystem attracts a massive number
of apps requiring scalable approaches to testing. Further-
more, these apps do not generally come with open source
code, which may constrain the testing scenarios.

Finally, it is challenging to generate a perfect coverage of
test cases, in order to find faults in Android apps. Traditional
test case generation approaches based on symbolic execution
and tools such as Symbolic Pathfinder (SPF) are challenged by
the fact that Android apps are available in Dalvik bytecode
that differs from Java bytecode. In other words, traditional
Java-based symbolic execution approaches cannot be di-
rectly applied to tackle Android apps. Furthermore, the
event-driven feature, as well as framework libraries, pose
further obstacles for systematic generation of test cases [18].

Given the variety of challenges in testing Android apps,
it is important for this field, which has already produced
a significant amount of approaches, to reflect on what has
already been solved, and on what remains to tackle. To
the best of our knowledge, there is no related literature
review or survey summarizing the topic of Android testing.
Thus, we attempt to meet this need through a comprehen-
sive study. Concretely, we undertake a systematic literature
review (SLR), carefully following the guidelines proposed
by Kitchenham et al. [19] and the lessons learned from
applying SLR within the software engineering domain by
Brereton et al. [20]. To achieve our goal, we have searched
and identified a set of relevant publications from four well-
known repositories including the ACM Digital Library and
from major testing-related venues such as ISSTA, ICSE.
Then, we have performed a detailed overview on the current
state of research in testing Android apps, focusing on the
types and phases of the testing approaches applied as well
as on a trend analysis in research directions. Eventually, we
summarize the limitations of the state-of-the-art apps and
highlight potential new research directions.

The main contributions of this paper are:

• We build a comprehensive repository tracking the re-
search community effort to address the challenges in
testing Android apps. In order to enable an easy naviga-
tion of the state-of-the-art, thus enabling and encourag-
ing researchers to push the current frontiers in Android
app testing, we make all collected and built information
publicly available at

http://lilicoding.github.io/TA2Repo/

• We analyse in detail the key aspects in testing Android
apps and provide a taxonomy for clearly summarising

Research Question
Identification

Keywords
Identification

Repository
Search

CCF-Ranked
Venues Search

Results Merging

Exclusion Criteria
Application

Data Extraction

Cross Checking

Harvested
Publications

Primary
Publications

SLR Report

Fig. 2: Process of the SLR.

and categorising all related research works.
• Finally, we investigate the current state of the art,

enumerate the salient limitations and pinpoint a few
directions for furthering the research in Android test-
ing.

The rest of the paper is organized as follows: Section 2
depicts the methodology of this systematic literature review,
including a general overview and detailed reviewing pro-
cesses of our approach. In Section 3, we present the results of
our selected primary publications, along with a preliminary
trend and statistic analysis on those collected publications.
Later, we introduce our data extraction strategy and their
corresponding findings in the following two sections: Sec-
tion 4 and 5. After that, we discuss the trends we observed
and challenges the community should attempt to address in
Section 6 and enumerate the threats to validity of this SLR in
Section 7. A comparison of this work with literature studies
is given in Section 8 and finally we conclude this SLR in
Section 9.

2 METHODOLOGY OF THIS SLR

We now introduce the methodology applied in this SLR. We
remind the readers that an SLR follows a well-defined strat-
egy to systematically identify, examine, synthesize, evaluate
and compare all available literature works in a specific topic,
resulting in a reliable and replicable report [19], [21], [22].
Fig. 2 illustrates the process of our SLR. At the beginning,
we define relevant research questions (cf. Section 2.1) to
frame our investigations. The following steps are unfolded
to search and consolidate the relevant literature, before
extracting data for answering the research questions, and
finalizing the report.

Concretely, to harvest all relevant publications, we iden-
tify a set of search keywords and apply them in two separate
processes: 1) online repository search and 2) major1 venues
search. All results are eventually merged for further review-
ing (cf. Section 2.2). Next, we apply some exclusion criteria
on the merged list of publications, to exclude irrelevant
papers (e.g., papers not written in English) or less relevant
papers (e.g., short papers), in order to focus on a small, but

1. We rely on the China Computer Federation (CCF) ranking of
computer science venues.

http://lilicoding.github.io/TA2Repo/

3

highly relevant, set of primary publications (cf. Section 2.3).
Finally, we have developed various metrics and reviewed
the selected primary publications against these metrics
through full paper examination. After the examination, we
cross-check the extracted results to ensure their correctness
and eventually we report on the findings to the research
community (cf. Section 2.4).

2.1 Initial research questions

Given the common challenges enumerated in the Introduc-
tion section, which have motivated several research lines in
Android apps, we investigate several research questions to
highlight how and which challenges have been focused on
in the literature. In particular, with regards to the fact that
Android has programming specificities (e.g., event-based
mechanisms, GUI), we categorize test concerns targeted by
the research community. With regards to the challenge of
ensuring scalability, we study the tests levels which are
addressed in research works. With regards to the challenge
of generating test cases, we investigate in details the funda-
mental testing techniques leveraged. Finally, with regards
to the fragmentation of the Android ecosystem, we explore
the extent of validation schemes for research approaches.
Overall, we note that testing Android apps is a broad
activity that can target a variety of functional and non-
functional requirements and verification issues, leverage
different techniques and focus on different granularity levels
and phases. Our investigation thus starts with the following
related research questions:

• RQ1: What are the test concerns? With this research
question, we survey the various objectives sought by An-
droid app testing researchers. In general, we investigate
the testing objectives at a high level to determine what
requirements (e.g., security, performance, defects, energy)
the literature addresses. We look more in-depth into the
specificities of Android programming, to enumerate the
priorities that are tackled by the community, including
which concerns (e.g., GUI and ICC mechanism) are fac-
tored in the design of testing strategies.

• RQ2: Which test levels are addressed? With the second
research question, we investigate the levels (i.e., when
the tests are relevant in the app development process)
that research works target. The community could indeed
benefit from knowing to what extent regression testing is
(or is not) developed for apps which are now commonly
known to evolve rapidly.

• RQ3: How are the testing approaches built? In the third
research question, we process detailed information on the
design and implementation of test approaches. In par-
ticular, we investigate the fundamental techniques (e.g.,
concolic testing or mutation testing) leveraged, as well as
the amount of input information (i.e., to what extent the
tester should know about the app prior to testing) that
approaches require to perform.

• RQ4: To what extent are the testing approaches vali-
dated? Finally, the fourth research question investigates
the metrics, datasets and procedures in the literature for
measuring the effectiveness of state-of-the-art approaches.
Answers to this question may shed light on the gaps in the
research agenda of Android testing.

2.2 Search Strategy

We now detail the search strategy that we applied to harvest
literature works related to Android app testing.

Identification of search keywords. Our review focuses
on two key aspects: Testing and Android. Since a diversity
of terms may be used by authors to refer, broadly or pre-
cisely, to any of these aspects, we rely on the extended set
of keywords identified in Table 1. Our final search string
is then constructed as a conjunction of these two categories
of keywords (search string = cat1 & cat2), where each
category is represented as a disjunction of its keywords
(cat = kw1 | kw2 | kw3).

TABLE 1: Search Keywords

Category Keywords

Android
android, mobile, portable device,
smartphone, smart phone, smart device

Test
test, testing, measure, measurement, measuring,
check, checking, detect, detecting, detection

Online repository search. We use the search string on
online literature databases to find and collect relevant pa-
pers. We have considered four widely used repository for
our work: ACM Digital Library2, IEEE Xplore Digital Li-
brary3, SpringerLink4, and ScienceDirect5. The “advanced”
search functionality of the four selected online repositories
are known to be inaccurate, which usually result in a huge
set of irrelevant publications, noising the final paper set [22].
Indeed, those irrelevant publications do not really match our
keywords criteria. For example, they may not contain any of
the keywords shown in the Test category. Thus, we develop
scripts (combined with Python and Shell) to perform off-line
matching verification on the papers yielded by those search
engines, where the scripts follow exactly the same criteria
that we have used for online repository search. For example,
regarding the keywords enumerated in the Test category,
if none of them is presented in a publication, the scripts
will mark that publication as irrelevant and subsequently
exclude it from the candidate list.

Major venues search. Since we only consider a few
repositories for search, the coverage can be limited given
that a few conferences such as NDSS6 and SEKE7 do not
host their proceedings in the aforementioned repositories.
Thus, to mitigate the threat to validity of not including all
relevant papers, we further explicitly search in proceedings
of all major venues in computer science. We have chosen the
comprehensive CCF-ranking of venues8 and leveraged the
DBLP9 repository to collect the Document Object Identifiers
(DOI) of the publications in order to crawl abstracts and
all publication metadata. Since this search process considers
major journal and conference venues, the resulting set of

2. http://dl.acm.org/
3. http://ieeexplore.ieee.org/Xlpore/home.jsp
4. http://link.springer.com
5. http://www.sciencedirect.com
6. The Network and Distributed System Security Symposium
7. International Conference on Software Engineering & Knowledge

Engineering
8. http://www.ccf.org.cn/sites/ccf/paiming.jsp, we only take into

account software engineering and security categories, as from what have
observed, the majority of papers related to testing Android apps.

9. http://dblp.uni-trier.de

4

literature papers should be a representative collection of the
state-of-the-art.

2.3 Exclusion Criteria

After execution of our search based on the provided key-
words, a preliminary manual scanning showed that the re-
sults are rather coarse-grained since it included a number of
irrelevant or less relevant publications which, nonetheless,
matched10 the keywords. It is thus necessary to perform a
fine-grained inclusion/exclusion in order to focus on a con-
sistent and reliable set of primary publications and reduce
the eventual effort in further in-depth examination. For this
SLR, we have applied the following exclusion criteria:

1) Papers that are not written in English are filtered out
since English is the common language spoken in the
worldwide scientific peer-reviewing community.

2) Short papers are excluded, mainly because such papers
are often work-in-progress or idea papers: on the one
hand, short papers are generally not mature, and, on the
other hand, many of them will eventually appear later in
a full paper format. In the latter case, mature works are
likely to already be included in our final set. In this work,
we take a given publication as a short paper when it has
fewer than 4 pages (included) in IEEE/ACM-like double-
column format 11 or fewer than 8 pages (included) in
LNCS-like single column format as short papers are
likely to be 4 pages in double column format and 8 pages
in single column format.

3) Papers that are irrelevant to testing Android apps are
excluded. Our search keywords indeed included broad
terms such as mobile and smartphone as we aimed at
finding all papers related to Android even when the term
“Android” was not specifically included in the title and
abstract. By doing so, we have excluded papers that only
deal with mobile apps for other platforms such as iOS
and Windows.

4) Duplicated papers are removed. It is quite common for
authors to publish an extended version of their confer-
ence paper to a journal venue. However, these papers
share most of the ideas and approach steps. To consider
both of them would result in a biased weighting of the
metrics in the review. To mitigate this, we identify dupli-
cate papers by first comparing paper titles, abstracts and
authors and then further manually check when a given
pair of records share a major part of their contents. We
filter out the least recent publication when duplication is
confirmed.

5) Papers that conduct comparative evaluations, including
surveys on different approaches of testing Android apps,
are excluded. Such papers indeed do not introduce new
technical contributions for testing Android apps.

6) Papers in which the testing approach targets the operat-
ing system, networks, or hardware, rather than mobile
apps are excluded.

10. The keywords were found for example to be mentioned in the
related sections of the identified papers.

11. Note that we have actually kept a short paper entitled “GuiDiff:
a regression testing tool for graphical user interface” because it is very
relevant to our study and it does not have an extended version released
in the following years.

7) Papers that assess12 existing testing methods are also
filtered out. The publications that they discuss are sup-
posed to be already included in our search results.

8) Papers demonstrating how to set up environments and
platforms to retrieve runtime data from Android apps are
excluded. These papers are also important for Android
Apps testing, but they are not focusing on new testing
methodology.

9) Finally, some of our keywords (e.g., “detection” of issues,
“testing” of apps) have led to the retrieval of irrelevant
literature works that must be excluded. We have mainly
identified two types of such papers: the first includes
papers that perform detection of malicious apps using
machine learning (and not testing); the second includes
papers that describe the building of complex platforms,
adopting existing mature testing methodologies.

We refer to all collected papers that remain after the
application of exclusion criteria as primary publications.
These publications are the basis for extracting review data.

2.4 Review Protocol

Concretely, the review is conducted in two phases: 1) First,
we perform an abstract review and quick full paper scan to
filter out irrelevant papers based on the exclusion criteria
defined above. At the end of this phase, the set of primary
publications is known. 2) Subsequently, we perform a full
review of each primary publication and extract relevant in-
formation that is necessary for answering all of our research
questions.

In practice, we have split our primary publications to
all the co-authors to conduct the data extraction step. We
have further cross-checked all the extracted results: when
some results are in disagreement, informal discussions are
conducted until a consensus is reached.

3 PRIMARY PUBLICATIONS SELECTION

TABLE 2: Summary of the selection of primary publications.

Step Count
Repository and Major Venues Search 9259

After reviewing titles/abstracts (scripts) 472
After reviewing titles/abstracts 255

After skimming/scanning full paper 171
After final discussion 103

Table 2 summarizes statistics of collected papers during
the search phase. Overall, our repository search and major
venue search have yielded in total 9,259 papers.

Following the exclusion criteria in Section 2, the papers
satisfying the matching requirements immediately drop
from 9259 to 472. We then manually go through the title and
abstract of each paper to further dismiss those that match
the exclusion criteria. After this step, the set of papers is
reduced to 255 publications. Subsequently, we go through
the full content of papers in the set, leading to the exclusion
of 84 more papers. Finally, after discussion among the
authors for the rest of the set, we reach a consensus on con-
sidering 103 publications as relevant primary publications.

12. For example, [23] and [24] propose tools and algorithms for
measuring the code coverage of testing methods.

5

Fig. 3: Word Cloud based on the Venue Names of Selected
Primary Publications.

1

4

9

15

27

23
24

2010 2011 2012 2013 2014 2015 2016

Fig. 4: The number of publications in each year.

Table A1 (in appendix) enumerates the details of those 103
publications.

It is noteworthy that around 4% of the final primary
publications are exclusively found by major venues search,
meaning that they cannot be found based on well-known
online repositories such as IEEE and ACM. This result, along
with our previous experiences [22], suggests that repository
search is necessary but not sufficient for harvesting review
publications. Other steps (e.g., top venues search based on
Google Scholar impact factor [22] or CCF ranking) should
be taken in complement to ensure reliable coverage of state-
of-the-art papers.

Fig. 3 presents a word cloud based on the venue names
of selected primary publications. The more papers selected
from a venue, the bigger its name showing in the word
cloud. Not surprisingly, the recurrently targeted venues
are mainly testing-related conferences such as ISSTA, ICST,
ISSRE, etc.

Fig. 4 illustrates the trend of the number of publications
in each year we have considered. From this figure, we can
observe that the number of papers tackling the problem
of testing Android apps has increased gradually to reach
a peak in 2014. Afterwards, the pace of developing new
testing techniques has stabilized.

We further look into the selected primary publications
through their published venue types and domains. Fig. 5a
and Fig. 5b illustrate the statistic results, respectively. Over
90% of examined papers are published in conferences and
workshops (which are usually co-located with top confer-
ences) while only 10% papers are published in journals.
These findings are in line with the current situation where
intense competition in Android research forces researchers

70.9%

9.7%

19.4%

Conference Journal/Magazine Workshop

(a) Venue Types.

82.5%

6.8%

10.7%

SE/PL Other SEC

(b) Venue Domains.

Fig. 5: Distribution of examined publications through published
venue types and domains.

to make available their works as fast as possible. We further
find that over 80% of examined papers are published in
software engineering and programming language venues,
showing that testing Android apps is mainly a concern
in the software engineering community. Nevertheless, as
shown by several papers published in proceedings of se-
curity venues, testing is also a valuable approach to address
security issues in Android apps.

4 TAXONOMY OF ANDROID TESTING RESEARCH

To extract relevant information from the literature, our SLR
must focus on specific characteristics eventually described
in each publication. To facilitate this process in a field that
explores a large variety of approaches, we propose to build
a taxonomy of Android testing. Such a taxonomy eventually
helps to gain insights into the state-of-the-art by answering
the research questions proposed in Section 2.1.

By searching for answers to the aforementioned research
questions in each publication, we are able to make a system-
atic assessment of the literature with a schema for classify-
ing and comparing different approaches. Fig. 6 presents a
high-level view of the taxonomy diagram spreading in four
dimensions (i.e., Test Objectives, Test Targets, Test Levels
and Test Techniques) associated with the first three research
questions13.

Test Objectives. This dimension summarizes the tar-
geted objectives of our examined testing-related publica-
tions. We have enumerated overall 6 recurring testing ob-
jectives such as Bug/Defect detection.

Test Targets. This dimension summarizes the representa-
tive targets where testing approaches focus on. In particular,
for testing Android apps, the GUI/Event and ICC/IAC are
recurrently targeted. For simplicity, we regroup all the other
targets such as normal code analysis into General.

Test Levels. This dimension checks the different levels
(also known as phases) at which the test activities are per-
formed. Indeed, there is a common knowledge that software
testing is very important and has to be applied to many
levels such as unit testing, integration testing, etc. Android
apps, as a specific type of software, also need to go through

13. Test Objectives and Test Targets for RQ1 (test concerns), Test
Levels for RQ2 (test levels) and Test Techniques for RQ3 (test ap-
proaches). RQ4 explores the validity of testing approaches that is not
summarised in the taxonomy.

6

Android Testing

Test Objectives Test Levels Test Techniques

C
o

n
c
u

rre
n

c
y

S
e

c
u

rity

P
e

rfo
rm

a
n

c
e

E
n

e
rg

y

B
u

g
/D

e
fe

c
t

C
o

m
p

a
tib

ility

T
e

s
tin

g
 T

y
p

e
s

T
e

s
tin

g
 M

e
th

o
d

s

U
n

it/R
e

g
re

s
s
io

n

S
y
s
te

m

In
te

g
ra

tio
n

B
la

c
k
-b

o
x

W
h

ite
-b

o
x

G
re

y
-b

o
x

M
o

d
e

l-b
a

s
e

d

S
e

a
rc

h
-b

a
s
e

d

R
a

n
d

o
m

F
u

z
z
in

g

A
/B

C
o

n
c
o

lic

M
u

ta
tio

n

T
e

s
tin

g

E
n

v
iro

n
m

e
n

ts

E
m

u
la

to
r

R
e

a
l D

e
v
ic

e

Test Targets

G
U

I/E
v
e

n
t

IC
C

/IA
C

G
e

n
e

ra
l

E
m

u
la

to
r +

 R
e

a
l

D
e

v
ic

e

Fig. 6: Taxonomy of Android App Testing.

a thorough testing progress before being released to public
markets. In this dimension, we sum up the targeted testing
phases/levels of examined approaches, to understand what
has been focused so far by the state-of-the-art.

Test Techniques. Finally, the fourth dimension focuses
on the fundamental methodologies (e.g., Fuzzy or Mutation)
that are followed to perform the tests, as well as the test-
ing environments (e.g., on emulated hardware) and testing
types (e.g., black-box testing).

5 LITERATURE REVIEW

We now report on the findings of this SLR in light of the
research questions that we have raised in Section 2.2.1.

5.1 What concerns do the approaches focus on?

Our review investigates both the objectives that testing
approaches seek to achieve and the app elements that are
targeted by the test cases. Test objectives focus on problems
that can be located anywhere in the code, while test targets
focus on specific app elements that normally involve only
certain types of code (e.g., functionality).

5.1.1 Test objectives

Android testing research has tackled various objectives, in-
cluding the assessment of apps against non-functional prop-
erties such as app efficiency in terms of energy consumption,
and functional requirements such as the presence of bugs.
We discuss in this section some recurrent test objectives from
the literature.

Concurrency. Android apps expose a concurrency model
that combines multi-threading and asynchronous event-
based dispatch, which may lead to subtle concurrency errors
because of unforeseen thread interleaving coupled with
non-deterministic reordering of asynchronous tasks. These
error-prone features are however useful and increasingly

becoming common in the development of efficient and
feature-rich apps. To mitigate concurrency issues, several
works have been proposed, notably for detecting races such
as data races, event-based races, etc. in Android apps. As
an example, Maiya et al. [62] have built DroidRacer, which
identifies data races (i.e., the read and write operations
happen in parallel) by computing the happens-before re-
lation on execution traces that are generated systematically
through running test scenarios against Android apps. Bielik
et al. [47] later have proposed a novel algorithm for scal-
ing the inference of happens-before relations. Hu et al. [9]
present a work for verifying and reproducing event-based
races, where they have found that both imprecise Android
component modelling and implicit happens-before relation
could result in false positive for detecting potential races.

Security. As shown by Li et al. [22], the Android re-
search community is extensively working on providing
tools and approaches for solving various security problems
for Android apps. Some of these works involve app test-
ing, e.g., to observe defective behaviour [57] and malicious
behaviour [79], track data leaks [75]. For example, Yan et
al. [78] have built a novel and comprehensive approach
for the detection of resource leaks using test criteria based
on neutral cycles: sequences of GUI events should have a
“neutral” effect and should not increase the usage of re-
sources. Hay et al. [45] dynamically detect inter-application
communication vulnerabilities in Android apps.

Performance. Android apps are sensitive to performance
issues. When a program thread becomes expensive, the
system may stop app execution after warning on the user
interface that the “Application [is] Not Responding”. The
literature includes several contributions on highlighting is-
sues related to the performance of Android apps such as
poor responsiveness [29] and exception handling [55]. Yang
et al. [74], for example, have proposed a systematic testing
approach to uncover and quantify common causes of poor

7

TABLE 3: Test objectives in the literature.

Tool C
o

n
cu

rr
en

cy

S
ec

u
ri

ty

P
er

fo
rm

an
ce

E
n

er
g

y

C
o

m
p

at
ib

il
it

y

B
u

g
/

D
ef

ec
t

Tool C
o

n
cu

rr
en

cy

S
ec

u
ri

ty

P
er

fo
rm

an
ce

E
n

er
g

y

C
o

m
p

at
ib

il
it

y

B
u

g
/

D
ef

ec
t

Dagger [25] ✓ Malisa et al. [26] ✓

CRASHSCOPE [27] ✓ MAMBA [28] ✓

Pretect [29] ✓ SSDA [30] ✓

TrimDroid [8] ✓ ERVA [9] ✓

SAPIENZ [11] ✓ RacerDroid [31] ✓ ✓

DiagDroid [32] ✓ MOTIF [33] ✓

DRUN [34] ✓ GAT [35] ✓

Zhang et al. [36] ✓ Jabbarvand et al. [37] ✓ ✓

Qian et al. [38] ✓ ✓ Ermuth et al. [39] ✓

Zhang et al. [40] ✓ Zhang et al. [41] ✓

dLens [42] ✓ Packeviius et al. [43] ✓

Knorr et al. [44] ✓ IntentDroid [45] ✓

Farto et al. [46] ✓ Bielik et al. [47] ✓

MobiGUITAR [48] ✓ Aktouf et al. [49] ✓

AppAudit [50] ✓ Hassanshahi et al. [51] ✓

iMPAcT [52] ✓ Deng et al. [53] ✓

Espada et al. [54] ✓ Zhang et al. [55] ✓

QUANTUM [56] ✓ CRAXDroid [57] ✓ ✓ ✓

IntentFuzzer [58] ✓ ✓ Vikomir et al. [59] ✓

Shahriar et al. [60] ✓ ✓ ✓ APSET [61] ✓

DROIDRACER [62] ✓ AppACTS [63] ✓

CAFA [64] ✓ Guo et al. [65] ✓

Griebe et al. [66] ✓ PBGT [67] ✓

Banerjee et al. [68] ✓ A5 [69] ✓

Suarez et al. [70] ✓ Linares et al. [71] ✓

Sasnauskas et al. [72] ✓ AMDetector [73] ✓

RERAN [15] ✓ Yang et al. [74] ✓ ✓

DroidTest [75] ✓ Appstrument [76] ✓

Avancini et al. [77] ✓ LEAKDROID [78] ✓

Mahmood et al. [79] ✓ ✓ Franke et al. [80] ✓

Dhanapal et al. [81] ✓ SmartDroid [82] ✓

JarJarBinks [83] ✓ Hu et al. [84] ✓

Count 7 18 13 5 4 27

responsiveness of Android apps. Concretely, they explicitly
extend the delay for typical problematic operations, using
the test amplification approach, to demonstrate the effects
of expensive actions that can be observed by users.

Energy. One of the biggest differences between tradi-
tional PC and portable devices is the fact that portable
devices may run on battery power which can get depleted
during app usage. A number of research works have in-
vestigated energy consumption hotspots arising from soft-
ware design defects, unwanted service execution (e.g., adver-
tisement), or have leveraged energy fingerprints to detect
mobile malware. As an example, Wan et al. [42] present a
technique for detecting display energy hotspots to guide the
developers to improve the energy efficiency of their apps.
Since each activity performed on a battery powered device
drains a certain amount of energy from it, if the normal
energy consumption is known for a device, the additionally
used energy should be flagged as abnormal.

Compatibility. Android apps are often suffering from
compatibility issues, where a given app can run success-
fully on a device, characterized by a range of OS versions
while failing on others [85]. This is mainly due to the
fragmentation in the Android ecosystem brought by its
open source nature. Every vendor, theoretically, can have its

own customized system (e.g., for supporting specific low-
level hardware) and the screen size of its released devices
can vary as well. To address compatibility problems, there
is a need to devise scalable and efficient approaches for
performing compatibility testing before releasing an app
into markets. Indeed, as pointed out by Vilkomir et al. [59],
it is expensive and time-consuming to consider testing all
device variations. The authors thus proposed to address
the issue with a combinatorial approach, which attempts to
select an optimal set of mobile devices for practical testing.
Zhang et al. [41] leverage a statistical approach to optimize
the compatibility testing strategy where the test sequence is
generated by K-means statistic algorithm.

Bug/Defect14. Like most software, Android apps are
often buggy, usually leading to runtime crashes. Due to the
high competition of apps in the Android ecosystem, defect
identification is critical since they can be detrimental to user
rating and adoption [86]. Indeed, researchers in this field
leverage various testing techniques such as fuzzing testing,

14. Terminologically, the aforementioned objectives could also be cat-
egorised as bug/defect problems (e.g., concurrency issues). To make the
summarisation more meaningful in this work, we only flag publications
as bug/defect as long as their main focuses are bug/defect problems,
e.g., when they address the gap between app’s misbehaviour and
developer’s original design.

8

mutation testing, and search-based testing to dynamically
explore Android apps to pinpoint defective behaviour [57],
GUI bugs [84], Intent defects [72], crashing faults [11], etc.

Table 3 characterizes the publications selected for our
SLR in terms of the objectives discussed above. Through
our in-depth examination, the most considered testing ob-
jective is bug/defect, accounting for 23.3% of the selected
publications.

5.1.2 Test targets

Test approaches in software development generally target
core functionality code. Since Android apps are written
in Java, the literature on Android app testing focused on
Android specificities, mainly on how to address the GUI
testing with a complex event mechanism as well as inter-
component and inter-application communications.

GUI/Event. Android implements an event-driven graph-
ical user interface system, making Android apps testing
challenging, since they intensively interact with user inputs,
introducing uncertainty and non-determinism. It is gener-
ally complicated to model the UI/system events because it
not only needs the knowledge of the set of GUI widgets
and their supporting actions (e.g., click for buttons) but
also requires the knowledge of system events (e.g., receiv-
ing a phone call) which however are usually unknown in
advance. Consequently, it is generally difficult to assemble
a valid set of input event sequences for a given Android
app with respect to coverage, precision, and compactness test
criteria [87]. The Android testing community has proposed
many approaches to address this challenge. For example,
Android-GUITAR, an extension of the GUITAR tool [88] was
proposed to model the structure and execution behaviour
of Android GUI through a formalism called GUI forests
and event-flow graphs. Denodroid [89] applies a dynamic
approach to generate inputs by instrumenting the Android
framework to record the reaction of events.

ICC/IAC. The Inter-Component Communication (ICC)
and Inter-Application communication (IAC15) enable a loose
coupling among components [90], [91], thus reducing the
complexity to develop Android apps with a generic means
to reuse existing functionality (e.g., obtain the contact list).
Unfortunately, ICC/IAC also come with a number of se-
curity issues, among which the potential for implement-
ing component hijacking, broadcast injection, etc. [92]. Re-
searchers have then investigated various testing approaches
to highlight such issues in Android apps. IntentDroid [45],
for instance, performs comprehensive IAC security testing
for inferring Android IAC integrity vulnerabilities. It uti-
lizes lightweight platform-level instrumentation, which is
implemented through debug breakpoints, to recover IAC-
relevant app-level behaviour. IntentFuzzer [58], on the other
hand, leverages fuzz testing techniques to detect capability
leaks (e.g., permission escalation attacks) in Android apps.

General For all other publications which did not address
the above two popular targets, the category General applies.
Publications with targets like normal code analysis are
grouped into this category.

Table 4 characterizes the test targets discussed above.
The most frequently addressed testing target is GUI/Event,

15. IAC is actually ICC where the communicating components are
from different apps.

accounting for 45.6% of the selected publications. Mean-
while, there are only 12 publications targeted ICC/IAC. 44
publications are regrouped under the General category.

Insights from RQ1 - on Targets and Objectives

– “Bug/defect” has been the most trending concern
among Android research community. “Compatibility”
testing which is necessary for detecting issues that plague
the Android fragmented ecosystem remains under-
studied. Similarly, we note that because mobile devices
are quickly getting powerful, developers build increas-
ingly complex apps with services exploring hardware
multi-core capabilities. Therefore, the community should
invest more efforts in approaches for concurrency testing.
– Our review has also confirmed that GUI is of
paramount importance in modern software development
for guaranteeing a good user experience. In Android
apps, the GUI actions and reactions are intertwined with
the app logic, increasing the challenges of analysing app
codes for defects. For example, modelling GUI behaviour
while taking into account potential runtime interruption
by system events (e.g., incoming phone call) is necessary,
yet not trivial. These challenges have created opportuni-
ties in Android research: as our literature review shows,
most test approaches target GUI or the Event mechanism.
The community now needs to focus on transforming the
approaches into scalable tools that will perform deeper
security analyses and accurate defect identification in
order to improve the overall quality of apps distributed
in markets.

5.2 Which Test Levels are Addressed?

Development of Android apps involves classical steps of
traditional software development. Therefore, there are op-
portunities in various phases to perform tests with spe-
cific emphasis and purpose. The Software testing com-
munity commonly acknowledges four levels of software
testing [127], [128]. Our literature review has identified
that Android researchers have proposed approaches which
considered Unit/Regression testing, Integration testing, and
System testing. Acceptance testing, which involves end-users
evaluating whether the app complies with their needs and
requirements, still faces a lack of research effort in the
literature.

Unit Testing is usually applied at the beginning of the
development of Android apps, which are usually written
by developers and can be taken as a type of white-box test-
ing. Unit testing intends to ensure that every functionality,
which could be represented as a function or a component,
works properly (i.e., in accordance with the test cases).
The main goal of unit testing is to verify that the imple-
mentation works as intended. Regression testing consists in
re-executing previously executed test cases to ensure that
subsequent updates of the app code have not impacted the
original program behaviour, allowing issues (if presented)
to be resolved as quickly as possible. Usually, regression
testing is based on unit testing. It re-executes all the unit
test cases every time when a piece of code is changed.
As an example, Hu et al. [84] have applied unit testing to

9

TABLE 4: Test targets in the literature.

Tool G
U

I/
E

v
en

t

IC
C

/
IA

C

G
en

er
al

Tool G
U

I/
E

v
en

t

IC
C

/
IA

C

G
en

er
al

Zeng et al. [12] ✓ Dagger [25] ✓

Malisa et al. [26] ✓ CRASHSCOPE [27] ✓

MAMBA [28] ✓ Pretect [29] ✓

DroidMate [93] ✓ SSDA [30] ✓

TrimDroid [8] ✓ ERVA [9] ✓

Clapp et al. [10] ✓ SAPIENZ [11] ✓

RacerDroid [31] ✓ Baek et al. [94] ✓

DiagDroid [32] ✓ MobiPlay [95] ✓

MOTIF [33] ✓ DRUN [34] ✓

DroidDEV [96] ✓ GAT [35] ✓

Zhang et al. [36] ✓ Jabbarvand et al. [37] ✓

Qian et al. [38] ✓ Ermuth et al. [39] ✓

Cadage [97] ✓ Zhang et al. [40] ✓

Zhang et al. [41] ✓ dLens [42] ✓

Sonny et al. [98] ✓ Packeviius et al. [43] ✓

SIG-Droid [99] ✓ Knorr et al. [44] ✓

TAST [100] ✓ IntentDroid [45] ✓

Griebe et al. [101] ✓ Farto et al. [46] ✓

Bielik et al. [47] ✓ MobiGUITAR [48] ✓

AGRippin [102] ✓ Aktouf et al. [49] ✓

THOR [103] ✓ AppAudit [50] ✓

Morgado et al. [104] ✓ Hassanshahi et al. [51] ✓

iMPAcT [52] ✓ Deng et al. [53] ✓

Espada et al. [54] ✓ Zhang et al. [55] ✓

QUANTUM [56] ✓ CRAXDroid [57] ✓

IntentFuzzer [58] ✓ Vikomir et al. [59] ✓

Shahriar et al. [60] ✓ APSET [61] ✓

DROIDRACER [62] ✓ EvoDroid [105] ✓

SPAG-C [106] ✓ Caiipa [107] ✓

UGA [108] ✓ AppACTS [63] ✓

CAFA [64] ✓ Holzmann et al. [109] ✓

Guo et al. [65] ✓ Griebe et al. [66] ✓

PBGT [67] ✓ Chen et al. [110] ✓

Banerjee et al. [68] ✓ Amalfitano et al. [111] ✓

Adinata et al. [112] ✓ A5 [69] ✓

Suarez et al. [70] ✓ Linares et al. [71] ✓

Sasnauskas et al. [72] ✓ AMDetector [73] ✓

RERAN [15] ✓ Yang et al. [74] ✓

ORBIT [87] ✓ DroidTest [75] ✓

Appstrument [76] ✓ Dynodroid [89] ✓

SPAG [113] ✓ SwiftHand [114] ✓

A3E [115] ✓ Avancini et al. [77] ✓

Amalfitano et al. [116] ✓ SALES [117] ✓

LEAKDROID [78] ✓ GUIdiff [118] ✓

Collider [119] ✓ Mirzaei et al. [18] ✓

JPF-Android [120] ✓ Mahmood et al. [79] ✓

MASHTE [121] ✓ Franke et al. [80] ✓

Dhanapal et al. [81] ✓ ACTEve [122] ✓

SmartDroid [82] ✓ JarJarBinks [83] ✓

TEMA [123] ✓ Sadeh et al. [124] ✓

Hu et al. [84] ✓ A2T2 [125] ✓

ART [126] ✓

Count 47 12 44

automatically explore GUI bugs, where JUnit, a unit testing
framework, is leveraged to automate the generation of unit
testing cases.

Integration Testing. Integration testing combines all
units within an app (iteratively) to test them as a group.
The purpose of this phase is to infer interface defects among
units or functions. It determines how efficient the units are
interactive. For example, Yang et al. [58] have proposed
a tool called IntentFuzzer to test the capability problems
involved in inter-component communication.

System Testing. System testing is the first step that the
whole app is tested as a whole. The goal of this phase is
to assess whether the outlined requirements and quality
standards have been fulfilled. Usually, system testing is
done in a black-box style, which is usually conducted by
independent testers who have no knowledge of the apps
to be tested. As an example, Mao et al. [11] have pro-
posed a testing tool named Sapienz that combines several
approaches including fuzzing testing, search-based testing
to systematically explore faults in Android apps.

Table 5 summarises the aforementioned test phases,
where the most recurrently applied testing phase is system
testing (accounting for nearly 80% of the selected publi-
cations), followed by unit testing and integration testing,

respectively.

TABLE 5: Recurrent testing phases.

Tool U
n

it
/

R
eg

re
ss

io
n

In
te

g
ra

ti
o

n

S
y

st
em

Tool U
n

it
/

R
eg

re
ss

io
n

In
te

g
ra

ti
o

n

S
y

st
em

Zeng et al. [12] ✓ Dagger [25] ✓

Malisa et al. [26] ✓ CRASHSCOPE [27] ✓

MAMBA [28] ✓ Pretect [29] ✓

DroidMate [93] ✓ SSDA [30] ✓

TrimDroid [8] ✓ ERVA [9] ✓

Clapp et al. [10] ✓ SAPIENZ [11] ✓

RacerDroid [31] ✓ Baek et al. [94] ✓

DiagDroid [32] ✓ MobiPlay [95] ✓

MOTIF [33] ✓ DRUN [34] ✓

DroidDEV [96] ✓ GAT [35] ✓

Zhang et al. [36] ✓ Jabbarvand et al. [37] ✓

Qian et al. [38] ✓ Ermuth et al. [39] ✓

Cadage [97] ✓ Zhang et al. [40] ✓

Zhang et al. [41] ✓ dLens [42] ✓

Sonny et al. [98] ✓ Packeviius et al. [43] ✓

SIG-Droid [99] ✓ Knorr et al. [44] ✓

TAST [100] ✓ IntentDroid [45] ✓

Griebe et al. [101] ✓ Farto et al. [46] ✓

Bielik et al. [47] ✓ MobiGUITAR [48] ✓

AGRippin [102] ✓ Aktouf et al. [49] ✓

THOR [103] ✓ AppAudit [50] ✓

Morgado et al. [104] ✓ Hassanshahi et al. [51] ✓

iMPAcT [52] ✓ Deng et al. [53] ✓

Espada et al. [54] ✓ Zhang et al. [55] ✓

QUANTUM [56] ✓ CRAXDroid [57] ✓ ✓

IntentFuzzer [58] ✓ Vikomir et al. [59] ✓

Shahriar et al. [60] ✓ APSET [61] ✓

DROIDRACER [62] ✓ EvoDroid [105] ✓

SPAG-C [106] ✓ Caiipa [107] ✓

UGA [108] ✓ AppACTS [63] ✓

CAFA [64] ✓ Holzmann et al. [109] ✓

Guo et al. [65] ✓ Griebe et al. [66] ✓ ✓

PBGT [67] ✓ Chen et al. [110] ✓

Banerjee et al. [68] ✓ Amalfitano et al. [111] ✓

Adinata et al. [112] ✓ A5 [69] ✓

Suarez et al. [70] ✓ Linares et al. [71] ✓

Sasnauskas et al. [72] ✓ AMDetector [73] ✓

RERAN [15] ✓ Yang et al. [74] ✓

ORBIT [87] ✓ DroidTest [75] ✓

Appstrument [76] ✓ Dynodroid [89] ✓

SPAG [113] ✓ SwiftHand [114] ✓

A3E [115] ✓ Avancini et al. [77] ✓

Amalfitano et al. [116] ✓ SALES [117] ✓

LEAKDROID [78] ✓ GUIdiff [118] ✓

Collider [119] ✓ Mirzaei et al. [18] ✓

JPF-Android [120] ✓ Mahmood et al. [79] ✓

MASHTE [121] ✓ ✓ Franke et al. [80] ✓

Dhanapal et al. [81] ✓ ACTEve [122] ✓

SmartDroid [82] ✓ JarJarBinks [83] ✓

TEMA [123] ✓ Sadeh et al. [124] ✓ ✓

Hu et al. [84] ✓ A2T2 [125] ✓

ART [126] ✓

Count 19 7 81

Insights from RQ2 - on Test Levels

– The large majority of approaches reviewed in this SLR
are about testing the whole app against given test crite-
ria. This correlates with the test methodologies detailed
below. Unit and regression testing, which would help
developers assess individual functionalities in a white-
box testing scenario, are limited to a few approaches.

5.3 How are the Test Approaches Built?

Our review further investigates the approaches in-depth to
characterize the methodologies they leverage, the type of
tests that are implemented as well as the tool support they
have exploited. In this work, we refer to test technique as a
broad concept to describe all the technical aspects related
to testing, while we constrain the term test methodology to

10

specifically describe the concrete methodology that a test
approach applies.

5.3.1 Test methodologies

Table 6 enumerates all the testing methodologies we ob-
served in our examination.

Model-based Testing is a testing methodology that goes
one step further than traditional methodologies by automat-
ically generating test cases based on a model, which de-
scribes the functionality of the system under test. Although
such methodology incurs a substantial, usually manual,
effort to design and build the model, the eventual test
approach is often extensive, since test cases can be automat-
ically generated and executed. Our review has revealed that
model-based testing is the most common methodology used
in Android testing literature: 63% of publications involve
some model-based testing steps. Takala et al. [123] present
a comprehensive documentation on their experiences in
applying a model-based GUI testing to Android apps. They
typically discuss how model-based testing and test automa-
tion are implemented, how apps are modelled, as well as
how tests are designed and executed.

Search-based Testing is using the metaheuristic search
techniques to generate software tests [129], with the aim
to detect as many bugs as possible, especially the most
critical ones, in the system under test. In [105], the authors
developed an evolutionary testing framework for Android
apps. Evolutionary testing is a form of search-based testing,
where an individual corresponds to a test case, and a
population comprised of many individuals is evolved ac-
cording to certain heuristics to maximize the code coverage.
Their technique thus tackles the common shortcoming of
using evolutionary techniques for system testing. In order
to generate the test suites in an effective and efficient way,
Amalfitano et al. [102] proposed a novel search-based test-
ing technique based on the combination of genetic and hill
climbing techniques.

Random Testing is a software testing technique where
programs are tested by generating random, independent
inputs. Results of the output are compared against software
specifications to verify that the test output is a pass or a fail
[130]. In the absence of specifications, program exceptions
are used to detect test case fails. Random testing is also
acquired by almost all other test suite generation method-
ologies and serves as a fundamental technique. Random
testing has been used in several literature works [89], [97],
[103], [108], [126].

Fuzzing Testing is a testing technique that applies in-
valid, unexpected, or random data as inputs to a testing
object. It is commonly used to test for security problems in
software or computer systems. The main focus then shifts
to monitoring the program for exceptions such as crashes,
or failing built-in code assertions or for finding potential
memory leaks. A number of research papers (e.g., [23],
[84]) have explored this type of testing via automated or
semi-automated fuzzing. Fuzzing testing is slightly different
from random testing, as it mainly embraces, usually on
purpose, unexpected, invalid inputs and focuses on mon-
itoring crashes/exceptions of the tested apps while random
testing does not need to conform to any of such software
specifications.

A/B Testing provides a means for comparing two vari-
ants of a testing object, and hence determining which of the
two variants is more effective. A/B testing is recurrently
used for statistical hypothesis tests. In [112], Adinata et
al. have applied A/B testing to test mobile apps, where
they have solved three challenges of applying A/B testing,
including element composition, variant delivery and inter-
net connection. Holzmann et al. [109] conduct A/B testing
through a multivariate testing tool.

Concolic Testing is a hybrid software verification tech-
nique that performs symbolic execution, a classical tech-
nique which treats program variables as symbolic vari-
ables, along with a concrete execution path (testing on
particular inputs). Anand et al. [122] propose a concolic
testing technique, CONTEST, to alleviate the path explo-
sion problem. They develop a concolic-testing algorithm to
generate sequences of events. Checking the subsumption
condition between event sequences allows the algorithm to
trim redundant event sequences, thereby, alleviating path
explosion.

Mutation Testing is used to evaluate the quality of
existing software tests. It is performed by selecting a set
of mutation operators and then applying them to the source
program, one operator at a time, for each relevant program
location. The result of applying one mutation operator to
the program is called a mutant. If the test suite is able
to detect the change (i.e., one of the tests fails), then the
mutant is said to be killed. In order to realize an end-to-
end system testing of Android apps in a systematic manner,
Mahmood et al. [105] propose EvoDroid, an evolutionary
approach of system testing of apps, in which two types
of mutation (namely, input genes and event genes) are
leveraged to identify a set of test cases that maximize code
coverage. Mutation testing-based approaches are however
not common in the Android literature.

Overall, our review has shown that the literature often
combines several methodologies to improve test effective-
ness. In [108], the authors combined model-based test-
ing with random testing to complete the testing. Finally,
EvoDroid [105] is a framework that explores model-based,
search-based and mutation testing techniques.

5.3.2 Test types

In general, there are three types of testing, namely the White-
box testing, Black-box testing, and Grey-box testing. Table 7
summarizes these testing types by emphasizing on the ideal
tester (the software developer or a third-party), on whether
knowledge on implementation details is fully/partially/not
required.

White-box testing is a scenario in which the software is
examined based on the knowledge of its implementation
details. It is usually applied by the software developers
in early development stages when performing unit testing.
Another common usage scenario is to perform thorough
tests once all software components are assembled (known
as regression testing). In this SLR, when an approach requires
app source (or byte) code knowledge, whether obtained
directly or via reverse engineering, we consider it a white-
box approach.

Black-box testing, on the other hand, is a scenario where
internal design/implementation of the tested object is not

11

TABLE 6: Test method employed in the literature.

Tool M
o

d
el

-b
as

ed

S
ea

rc
h

-b
as

ed

R
an

d
o

m

F
u

zz
in

g

A
/

B

C
o

n
co

li
c

M
u

ta
ti

o
n

Tool M
o

d
el

-b
as

ed

S
ea

rc
h

-b
as

ed

R
an

d
o

m

F
u

zz
in

g

A
/

B

C
o

n
co

li
c

M
u

ta
ti

o
n

Zeng et al. [12] ✓ Dagger [25] ✓

Malisa et al. [26] ✓ CRASHSCOPE [27] ✓

MAMBA [28] ✓ DroidMate [93] ✓

SSDA [30] ✓ ✓ TrimDroid [8] ✓

ERVA [9] ✓ Clapp et al. [10] ✓

SAPIENZ [11] ✓ ✓ RacerDroid [31] ✓

Baek et al. [94] ✓ DiagDroid [32] ✓

MOTIF [33] ✓ DRUN [34] ✓

DroidDEV [96] ✓ GAT [35] ✓

Zhang et al. [36] ✓ Jabbarvand et al. [37] ✓

Qian et al. [38] ✓ Ermuth et al. [39] ✓

Cadage [97] ✓ Zhang et al. [40] ✓

Zhang et al. [41] ✓ dLens [42] ✓

Sonny et al. [98] ✓ Packeviius et al. [43] ✓

SIG-Droid [99] ✓ TAST [100] ✓

IntentDroid [45] ✓ Farto et al. [46] ✓

Bielik et al. [47] ✓ MobiGUITAR [48] ✓

AGRippin [102] ✓ ✓ Aktouf et al. [49] ✓

THOR [103] ✓ AppAudit [50] ✓

Morgado et al. [104] ✓ Hassanshahi et al. [51] ✓ ✓

iMPAcT [52] ✓ Deng et al. [53] ✓

Espada et al. [54] ✓ Zhang et al. [55] ✓

QUANTUM [56] ✓ CRAXDroid [57] ✓

IntentFuzzer [58] ✓ Shahriar et al. [60] ✓ ✓

APSET [61] ✓ DROIDRACER [62] ✓

EvoDroid [105] ✓ ✓ ✓ SPAG-C [106] ✓

Caiipa [107] ✓ UGA [108] ✓ ✓

AppACTS [63] ✓ Holzmann et al. [109] ✓

Guo et al. [65] ✓ Griebe et al. [66] ✓

PBGT [67] ✓ Amalfitano et al. [111] ✓

Adinata et al. [112] ✓ A5 [69] ✓

Suarez et al. [70] ✓ Linares et al. [71] ✓

Sasnauskas et al. [72] ✓ ✓ AMDetector [73] ✓

RERAN [15] ✓ Yang et al. [74] ✓

ORBIT [87] ✓ Dynodroid [89] ✓

SwiftHand [114] ✓ A3E [115] ✓

Avancini et al. [77] ✓ SALES [117] ✓

LEAKDROID [78] ✓ GUIdiff [118] ✓

Collider [119] ✓ ✓ JPF-Android [120] ✓

Mahmood et al. [79] ✓ ✓ ACTEve [122] ✓

SmartDroid [82] ✓ JarJarBinks [83] ✓

TEMA [123] ✓ Hu et al. [84] ✓

A2T2 [125] ✓ ART [126] ✓

Count 65 3 11 11 2 2 3

TABLE 7: Common test types.

Testing Ideal Implementation
Type Tester Knowledge

White-box Developer Known
Black-box Independent Tester Unknown
Grey-box Independent Tester Partially Known

required. Black-box testing is often conducted by third-
party testers, who have no relationships with the developers
of tested objects. If an Android app testing process only
requires the installation of the targeted app, we reasonably
put it under this category.

Grey-box testing is a trade-off between white-box test-
ing and black-box. It does not require the testers to have
full knowledge on the source code where white-box testing
needs. Instead, it only needs the testers to know some lim-
ited specifications like how the system components interact.
For the investigations of our SLR, if a testing approach
requires to extract some knowledge (e.g., from the Android
manifest configuration) to guide its tests, we consider it a
grey-box testing approach.

Fig. 7 illustrates the distribution of test types applied by

52

42

14

0

10

20

30

40

50

60

Black-box Grey-box White-box

Fig. 7: Breakdown of examined publications regarding their
applied testing types.

examined testing approaches. White-box testing is the least
used type, far behind black-box and grey-box testing. This
is expected because Android apps are usually compiled and
distributed in APK format, so testers in most scenarios have
no access to source code. We also wish to address that one
literature can make use of more than one testing type, this is
why the sum of the three types in Fig. 7 is larger than 103.

12

Device

68

Emulator

38

Both

15

Neither

12

Fig. 8: Venn Diagram of Testing Environment.

5.3.3 Test environments

Unlike static analysis of Android apps [22], testing requires
to actually run apps on an execution environment such as a
real device or an emulator.

Real Device has a number of advantages: they can be
used to test apps w.r.t compatibility aspects [41], [59], [63],
energy consumption [42], [68], [71], and the poor respon-
siveness issue [29], [74]. Unfortunately, using real devices is
not efficient, since it cannot scale in terms of execution time
and resources (several devices may be required).

Emulator, on the contrary, can be scalable. When de-
ployed on the cloud, using the emulator can grant a tester
great computing resources and carry out parallel tests at
a very large scale [79]. Unfortunately, emulators are inef-
fective for security-relevant tests, since some malware have
the functionality to detect whether they are running on an
emulator. If so, they may decide to refrain from exposing
their malicious intention [131]. Emulators also introduce
huge overhead when mimicking real-life sensor inputs, e.g.,
requiring altering the apps under testing at source code
level [101].

Emulator + Real Device, can be leveraged together
to test Android apps. For example, one can first use an
emulator to launch large-scale app testing for pre-selecting
a subset of relevant apps and then resort to real devices for
more accurate testing.

As can be seen from Figure 8, real devices are largely
used by 68 publications in our final list. Only 38 publications
used emulators, despite the fact that they are cheap. 15 pub-
lications chose both environments to avoid disadvantages
of either. Deducting these 15 publications, we can calculate
that 23 publications focused solely on emulators, where 53

publications selected real devices as the only environment.

5.3.4 Tool support

While performing the SLR, we have observed that several
publicly available tools were recurrently leveraged to imple-
ment or complement the state-of-the-art approaches. Table 8
enumerates such tools with example references to works
where they are explored.

AndroidRipper is a tool for automatic GUI testing of
Android apps. It is driven by a user-interface ripper that au-
tomatically and systematically travels the app’s GUI aiming
at exercising a given app in a structured way. In order to
generate test cases in an effective and efficient way, Amalfi-
tano et al. [102] extend this work with search-based testing
techniques, where genetic and hill climbing algorithms are
considered.

EMMA is an open-source toolkit for measuring and re-
porting Java code coverage. Since Android apps are written
in Java, researchers often use EMMA to compute the code
coverage of their Android app testing approaches, including
EvoDroid [105] and SIG-Droid [99].

Monkey is a test framework released and maintained by
Google, the official maintainer of Android. It generates and
sends pseudo-random streams of user/system events into
the running system. This functionality is exploited in the
literature to automatically identify defects of ill-designed
apps. As an example, Hu et al. [84] leveraged Monkey to
identify GUI bugs of Android apps. The randomly gener-
ated test cases (events) are fed into a customized Android
system that produces log/trace files during the test. Those
log/trace files can then be leveraged to perform post analy-
sis and thereby to discover event-related bugs.

RERAN is a record and replay tool for testing Android
apps. Unlike traditional record-and-reply tools, which are
inadequate for Android apps because of their expressive-
ness on smartphone features, RERAN supports sophisti-
cated GUI gestures and complex sensor events. Moreover,
RERAN achieves accurate timing requirements among var-
ious input events. A3E [115] for example uses RERAN to
record its targeted and depth-first exploration for systematic
testing of Android apps. Those recorded explorations can
later be replayed so that to benefit debuggers in quickly
localizing the exact event stream that has led to the crash.

Robotium is an open-source test framework, which has
full support for native and hybrid apps. It also eases the
way to write powerful and robust automatic black-box UI
tests of android apps. SIG-Droid [99] for example leverages
Robotium to execute its generated test cases (with the help
of symbolic execution). We have found during our review
that Robotium were most frequently leveraged by state-of-
the-art testing approaches.

Robolectric is a unit testing framework, which simulates
the Android execution environment (either on a real device
or on an emulator) in a pure Java environment. The main
advantage of doing that is to improve the testing efficiency
because tests running inside a JVM are much faster than that
of running on an Android device (or even emulator), where
it usually takes minutes to build, deploy and launch an app.
Sadeh et al. [124] have effectively used Robolectric frame-
work to conduct unit testing for their calculator application.
They have found that it is rather easy to write test cases with
this framework, which requires only a few extra steps and
abstractions. Because testers do not need to maintain a set of
fake objects and interfaces, it is even preferable for complex
apps.

Sikuli uses visual technology to automate GUI testing
through screenshot images. It is particularly useful when
there is no easy way to obtain the app source code or
the internal structure of graphic interfaces. Lin et al. [106],
[113] leveraged Sikuli in their work to enable record-and-
replay testing of Android apps, where the user interactions
are saved beforehand in Sikuli test formats (as screenshot
images).

13

TABLE 8: Summary of basic tools that are frequently leveraged by other testing approaches.

Tool Brief Discription Example Usages
AndroidRipper An automated GUI-based testing tool Yang et al. [74], Amalfitano et al. [111], [116], AGRippin [102], MobiGUI-

TAR [48]
EMMA A free Java code coverage measuring tool Mirzaei et al. [18], Mahmood et al. [79], SIG-Droid [99], BBOXTESTER

[23], EvoDroid [105]
Monkey An automated testing tool that generates and executes

randomly generated test cases
Hu et al. [84], BBOXTESTER [23], TAST [100],

RERAN A timing- and touch-sensitive record and replay tool for
Android apps

UGA [108], dLens [42], A3E [115]

Robotium An open-source test framework for writing automatic
black box testing cases for Android apps

A2T2 [125],Chen et al. [110], UGA [108], THOR [103], Yang et al. [74],
ORBIT [87], Mahmood et al. [79], AGRippin [102], Guo et al. [65], SIG-
Droid [99]

Robolectric A unit test framework that enables tests run inside JVM
instead of DVM

Sadeh et al. [124], Mirzaei et al. [18]

Sikuli A visual technology to automate and test GUIs using
screenshot images

SPAG [113], SPAG-C [106]

Insights from RQ3 - on Used Techniques

– Given the complexity of interactions among compo-
nents in Android apps as well as with the operating
system, it is not surprising that most approaches in
the literature resort to “model-based” techniques which
build models for capturing the overall structure and
behaviour of apps to facilitate testing activities (e.g.,
input generation, execution scenarios selection, etc.).
– The unavailability of source code for market apps make
white-box techniques less attractive than grey-box and
black-box testing for assessing apps in the wild. Never-
theless, our SLR shows that the research community has
not sufficiently explored testing approaches that would
directly benefit app developers during the development
phase.
– Tool support for building testing approaches is abun-
dant. The use of the Robotium open source test frame-
work by numerous approaches once again demonstrates
the importance of making tools available to stimulate
research.

5.4 To What Extent are the Approaches Validated?

Several aspects must be considered when assessing the
effectiveness of a testing approach. We consider in this SLR
the measurements performed on code coverage as well as
on accuracy. We also investigate the use of a ground truth
to validate performance scores, the size of the experimental
dataset.

Coverage is a key aspect for estimating how well the
program is tested. Larger coverage generally correlates with
higher possibilities of exposing potential bugs and vulner-
abilities, as well as uncovering malicious behaviour. There
are numerous coverage metrics leveraged by state-of-the-art
works. For example, for evaluating Code Coverage, metrics
such as LoC (Lines of Code) [11], [102], [105], Block [97],
Method [108], [115], Branch [114] have been proposed in
our community. In order to profile the Accuracy of testing
approaches, other coverage metrics are also proposed in the
literature such as bugs [42] and vulnerabilities [45] (e.g., how
many known vulnerabilities can the evaluated testing approach
cover?). Table 9 enumerates the coverage metrics used in
the literature, where LoC appears to be the most concerned
metric.

TABLE 9: Assessment Metrics (e.g., for Coverage, Accuracy).

Metrics
Example Publications

(# of)

LoC
EvoDroid [105], AGRippin [102], THOR [103]
Zeng et al. [12], SAPIENZ [11]

Block Cadage [97]
Branch SwiftHand [114]

Method UGA [108], A3E [115]
Exception Zhang et al. [55]

Action ORBIT [87]

Activity
A3E [115], Avancini et al. [77], Malisa et al. [26]
MAMBA [28], Clapp et al. [10]

Service Zhang et al. [40]

Bug dLens [42], TEMA [123], Hu et al. [84], MobiGUITAR [48]
Defect APSET [61]

Fault QUANTUM [56], Vikomir et al. [59], Sonny et al. [98]
Crash Shahriar et al. [60], Caiipa [107], .CRASHSCOPE [27]

Vulnerability Sadeh et al. [124], IntentDroid [45]
Leakage CRAXDroid [57], Yang et al. [58]

Ground Truth refers to a reference dataset where each
element is labelled. In this SLR, we consider two types
of ground truths. The first is related to malware detection
approaches: the ground truth then contains apps labelled
as benign or malicious. As an example, the Drebin [132]
dataset has recurrently been leveraged as ground truth to
evaluate testing approaches [133]. The second is related to
vulnerability and bug detection: the ground truth represents
code that is flagged to be vulnerable or buggy based on the
observation of bug reports summited by end users or bug
fix histories committed by developers [55], [84].

Dataset Size The Dataset Size is the number of apps
tested in the experimental phase. We can see from Fig. 9
that most works (ignoring outliers) carried out experiments
on no more than 100 apps, with a median number of 8 apps.
Comparing to the distribution of the number of evaluated
apps summarized in an SLR of static analysis of Android
apps [22], where the median and maximum numbers are
respectively 374 and 318,515, far bigger than the number of
apps considered by testing approaches. This result is some-
how expected as testing approaches (or dynamic analysis
approaches) are generally not scalable.

Insights from RQ4 - on Approach Validation

Although literature works always provide evaluation
section to provide evidence (often through comparison)
that their approaches are effective, their reproducibility
is still challenged by the fact that there is a lack of estab-

14

0 5 10 15 20 25 30

Number of Tested Apps

Fig. 9: The distribution of the number of tested apps (outliers
are removed).

lished ground truth and benchmarks. Yet, reproducibility
is essential to ensure that the field is indeed progressing
based on a baseline performance, instead of relying on
subjective observation by authors and on datasets with
variable characteristics.

6 DISCUSSION

Research on Android app testing has been prolific in the
past years. Our discussion will focus on the trends that
we observed while performing this SLR, as well as on
the challenges that the community should still attempt to
address.

6.1 Trend Analysis

The development of the different branches in the taxonomy
is disparate.

Fig. 10 illustrates the trend in testing types over the
years. Together, black-box and grey-box testing are involved
in 90% of the research works. Their evolution is thus re-
flected by the overall evolution of research publications (cf.
Fig. 4). White-box testing remains low in all years.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(a) Black-box.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(b) White-box.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(c) Grey-box.

Fig. 10: Trend of Testing Types.

Fig. 11 presents the evolution over time of works ad-
dressing different test levels. Unit/regression and integra-
tion testing phases include a low, but stable, number of
works every year. Overall, system testing has been heav-
ily used in the literature and has even doubled between
2012 and 2014. System testing of Android apps is favored
since app execution is done on a specific virtual machine
environment with numerous runtime dependencies: it is not
straightforward to isolate a single block for unit/regression
testing or to test the integration of two components without
interference from other components. Nevertheless, with the

increasing use of code instrumentation [14], there are new
opportunities to eventually slice android apps for perform-
ing more grey-box and white-box testing.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(a) Unit/Regression.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(b) Integration.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(c) System.

Fig. 11: Trend of Testing Levels.

Trend analysis of testing methods in Fig. 12 confirms
that model-based testing is dominating in the literature of
Android app testing, and its evolution is reflected in the
overall evolution of testing approaches. Most approaches
indeed start by constructing a GUI model or a call graph
(CG) to generate efficient test cases. In the last couple of
years, mutation testing has been appearing in the literature,
similarly to search-based techniques.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(a) Model-based.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(b) Search-based.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(c) Random.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(d) Fuzzing.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(e) Concolic.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(f) Mutation.

Fig. 12: Trend of Testing Methods.

With regard to testing targets, Fig. 13(a-b) shows that the
graphical user interfaces, as well as the event mechanism,
are continuously at the core of research approaches. Since
Android Activities (i.e., the UIs) are the main entry points for
executing test cases, the community will likely continue to
develop black-box and grey-box test strategies that increase
interactions with GUI to improve code coverage. Inter-
component and inter-application communications, on the
other hand, have been popular targets around 2014.

With regard to testing objectives, Fig. 13(c-h) shows that
security concerns have attracted a significant amount of
research, although the output has been decreasing in the
last couple of years. Bug/defect identification, however, has
somewhat stabilized.

6.2 Evaluation of Authors

Android testing is a new field of research which has at-
tracted several contributions over the years due to the
multiple opportunities that it offers for researchers to apply
theoretical advances in the domain of software testing.
We emphasize the attractiveness of the field by showing
in Fig. 14 the evolution of single authors contributing to
research approaches. We count in each year, the Total Authors

15

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(a) GUI/Event.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(b) ICC/IAC.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(c) Concurrency.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(d) Security.
2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(e) Performance.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(f) Energy.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(g) Compatibility.

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

5

10

15

20

25

(h) Bug/Defect.

Fig. 13: Trend of Testing Targets and Objectives.

who participated in at least one of our selected publications,
the New Authors that had had no selected publication un-
til that year, and the number of Stayed Authors who had
publications selected both that year and the years to come.
Overall, the figures raise several interesting findings:

• Every year, the community of Android testing research
authors is almost entirely renewed.

• Only a limited number of researchers publish again in
the theme after one publication.

These facts may suggest that the research in Android
app testing is often governed by opportunities. Further-
more, challenges (e.g., building a sound GUI event model)
quickly arise, making authors lose interest in pursuing in
this research direction. Although we believe that the fact
that the topic is within reach of a variety of authors from
other backgrounds is good for bringing new ideas and cross-
fertilizing, the maturity of the field will require commitment
from more authors staying in the field.

6.3 Research Output Usability

In the course of our investigations for performing the
review, we have found that the research community on
Android app testing seldom contributes with reusable tools
(e.g., implementation of approaches for GUI testing), not
even mention to contribute with open source testing tools.
Yet, the availability of such tools is necessary not only to
limit the efforts in subsequent works but also to encourage
true progress beyond the state-of-the-art.

Despite most testing approaches are not made publicly
available, it is nevertheless gratifying to observe that some
of them have been leveraged in industry. For example,
research tool TEMA has now been integrated into the RATA
project16, where researchers (from Tampere University of

16. http://wiki.tut.fi/RATA/WebHome

3

1
5

4
1

3
8

1
1
0

7
2

8
8

3

1
5

4
1

3
3

1
0
0

6
2 7
1

0 4 7 1
1 1
5

3 2

2010 2011 2012 2013 2014 2015 2016

Total	Authors New	Authors Stayed	Authors

Fig. 14: Trend in community authors. “New Authors” and
“Stayed Authors” indicate the number of authors that enter
the field (no relevant publications before) and have stayed in
the field (they will keep publishing in the following years).

Technology) and practitioners (from Intel Finland, OptoFi-
delity, and VTT) work together to provide robot-assisted
test automation for mobile apps. Another research tool
named SAPIENZ has led to a start-up called MaJiCKe and
recently been acquired by Facebook London, being the core
component of Facebook’s testing solutions for mobile apps.

6.4 Open Issues and Future Challenges

Although the publications we chose all have their own solid
contributions, some authors posed open issues and future
challenges to call in more research attention to the domain.
We managed to collect the concerns and summarized as
follows:

• Satisfying Fastidious Pre-conditions. One recurrently
discussed issue is to generate test cases that can ap-
propriately satisfy pre-conditions such as login to an
app. When the oracles generate events to traverse the
activities of Android apps, some particular activities
are extremely hard to be touched. A publicly known
condition is to tap the same button for 7 consecutive
times in order to trigger developer mode [12], [99].
Another example would be to break through the login
page which requires a particular combination of user
account and passwords. Both preconditions are clearly
not easy to be satisfied during the process of testing
Android apps.

• Modelling Complex Events (e.g., Gestures or Non-
user Events). In addition to simple events such as click-
ing, Android OS also involves quite a lot of complex
events such as user gestures (swipe, long press, zoom
in/out, spin, etc.) and system events (network connec-
tivity, events coming from light, pressure and temper-
ature sensors, GPS, fingerprint recognizer, etc.). All the
events would introduce non-deterministic behaviours
if they are not properly modelled. Unfortunately, at
the moment, most of our reviewed papers only tackle
simple events like clicking, letting other events remain
untouched [67], [101].

• Bridging Incompatible Instruction Sets. To improve
the performance of Android apps, Google provides
a toolset, i.e., the Android Native Developer Kit

16

(NDK), allowing app developers to implement time-
intensive tasks via C/C++. Those tasks implemented
with C/C++ are closely dependent on the CPU in-
struction sets (e.g., Intel or ARM) and hence can only
be launched in right instruction sets, e.g., tasks imple-
mented based on the ARM architecture can only be
executed on ARM-based devices). However, as most
mobile devices nowadays are assembled with ARM
chips while most PCs running Android emulators are
assembled with Intel chips, running ARM-based em-
ulators on Intel-based PCs are extremely slow, this
gap has caused problems for emulator-based testing
approaches [95].

• Evaluating Testing Approaches Fairly. Frequently, re-
searchers complain about the fact that our commu-
nity has not provided a reliable coverage estimator
to approximate the coverage (e.g., code coverage) of
testing approaches and to fairly compare them [12],
[29], [41], [43]. Although some outstanding progress
has been made for developing estimation tools [23],
our SLR still indicates that there does not exist any
universally acquired tool that supports fair compari-
son among testing approaches. We, therefore, urge our
fellow researchers to appropriately resolve this open
issue and subsequently contribute to our community
a reliable artefact benefiting many aspects of future
research studies.

• Addressing Usability Defect. The majority of the re-
search studies focuses on functional defects of Android
apps. The usability defect does not attract as much at-
tention as the users are concerned [53]. Usability defect
like poor responsiveness [74] is a major drawback of
Android apps and receives massive complaints from
users. Bad view organization on the screen arising from
incompatibility and repetitive imprecise recognition of
user gestures also imply bad user experience.

6.5 New Research Directions

In light of the SLR summary of the state-of-the-art and con-
sidering the new challenges reported in the literature, there
are opportunities for exploring new testing applications
to improve the quality of Android apps or/and increase
confidence in using them safely. We now enumerate three
example directions:

6.5.1 Validation of app updates

Android app developers regularly update their apps for
various reasons, including keeping them attractive to the
user base17. Unfortunately, recent studies [134] have shown
that updates of Android apps often come with more security
vulnerabilities and functional defects. In this context, the
community could investigate and adapt regression tech-
niques for identifying defect-prone or unsafe updates. To
accelerate the identification of such issues in updates, one
can consider exploring approaches with behavioural equiv-
alence, e.g., using “record and replay” test-case generation
techniques.

17. https://savvyapps.com/blog/how-often-should-you-update-
your-app

6.5.2 Accounting for the ecosystem fragmentation

As previously highlighted, the fragmentation of the An-
droid ecosystem (with a high variety in operating system
versions where a given app will be running, as well as a
diversity of hardware specifications) is a serious challenge
for performing tests that can expose all issues that a user
might encounter on his specific device runtime environ-
ment. There is still room to investigate test optimization
and prioritization for Android to cover a majority of devices
and operating system versions. For example, on top of
modelling apps, researchers could consider modelling the
framework (and its variabilities) and account for it during
test execution.

6.5.3 Code prioritization vs test prioritization

Finally, we note that Android apps are becoming larger and
larger in terms of size, including obsolete code for func-
tionalities that are no longer needed, or to account for the
diversity of devices (and their OS versions). For example,
in large companies, because of developer rotation, “dead”
code/functionality may remain hidden in plain sight of
app code without development teams risking to remove
them. As a result, the effort thrown in maintaining those
apps increases continuously, where consequently the testing
efforts required to verify the functional correctness of those
apps also boost. Therefore, to alleviate this problem, we
argue that testing such apps clearly necessitates optimizing
the selection of code that must be tested in priority. Test
cases prioritization must then be performed in conjunction
with a code optimization process to focus on actively used
code w.r.t. user interactions to the app.

7 THREATS TO VALIDITY

We have identified the following threats to validity in our
study:

On potential misses of literature – We have not considered
for our review books and Master or PhD dissertations
related to the Android testing. This threat is mitigated by
the fact that the content of such publications is eventually
presented in peer-reviewed venues which we have consid-
ered. We have also considered only publications written in
English. Nevertheless, while searching with the compiled
English keywords, we have also found a few papers writ-
ten in other languages, such as German and Chinese. The
number of such non-English papers remain however signifi-
cantly small, compared with the collected English literature,
suggesting that our SLR is likely complete. Last but not
the least, although we have refined our searching keywords
several times, it is still possible that some synonyms are
missed in this work. To mitigate this, we believe that natural
language processing (NLP) could be leveraged to disclose
such synonyms. We, therefore, consider it as our future work
towards engineering sound keywords for supporting SLR.

On data extraction errors – Given that papers are often
imprecise with information related the aspects that we have
investigated, the extracted data may not have been equally
reliable for all approaches, and data aggregation can still
include several errors as warned by Turner et al. [135]
for such studies. We have nevertheless strived to mitigate
this issue by applying a cross-checking mechanism on the

17

extracted results, following the suggestion of Brereton et
al. [20]. To further alleviate this, we plan to validate our
extracted results through their original authors.

On the representativeness of data sources and metrics – We
have implemented the “major venues search” based on the
venue ranking provided by the CCF. This ranking is not
only potentially biased towards a specific community of
researchers but may also change from one year to another.
A replication of this study based on other rankings may
lead to different primary publications set, although the
overall findings will likely remain the same since most major
venues continue to be so across years and across ranking
systems.

The aspects and metrics investigated in this approach
may also not be exhaustive or representative of everything
that characterizes testing. Nevertheless, these metrics have
been collected from testing literature to build the taxonomy
and are essential for comparing approaches.

8 RELATED WORK

Mobile operating systems, in particular, the open-source
Android platform, have been fertile ground for research
in software engineering and security. Several surveys and
reviews have been performed on approaches for secur-
ing [136], [137], or statically analysing Android apps [22]. A
systematic literature review is indeed important to analyse
the contributions of a community to resolve the challenges
of a specific topic. In the case of Android testing, such a
review is missing.

Several works in the literature have however attempted
to provide an overview of the field via surveys or gen-
eral systematic mappings on mobile application testing
techniques. For example, the systematic mapping of Sein
et al. [138] addresses all together Android, iOS, Symbian,
Silverlight and Windows. The authors have provided a
higher-level categorization of techniques into five groups: 1)
usability testing; 2) test automation; 3) context-awareness; 4)
security and 5) general category. Méndez-Porras et al. [139]
have provided another mapping, focusing on a more nar-
rowed field, namely automated testing of mobile apps. They
discuss two major challenges for automating the testing
process of mobile apps, which are an appropriate set of
test cases and an appropriate set of devices to perform the
testing. Our work, with this SLR, goes in-depth to cover
different technical aspects of the literature on specifically
Android app testing (as well as test objectives, targets and
publication venues).

Other related works have discussed directly the chal-
lenges of testing Android apps in general. For example,
Amalfitano et al. [140] analyse specifically the challenges
and open issues of testing Android apps, where they have
summarized suitable and effective principles, guidelines,
models, techniques and technologies related to testing An-
droid apps. They enumerate existing tools and frameworks
for automated testing of Android apps. They typically
summarize the issues of software testing regarding non-
functional requirements, including performance, stress, se-
curity, compatibility, usability, accessibility, etc.

Gao et al. [141] present a study on mobile testing-as-
a-service (MTaaS), where they discuss the basic concepts

of performing MTaaS. Besides, the motivations, distinct
features, requirements, test environments and existing ap-
proaches are also discussed. Moreover, they have also dis-
cussed the current issues, needs and challenges of applying
MTaaS in practice.

More recently, Starov et al. [142] performed a state-
of-the-art survey to look into a set of cloud services for
mobile testing. Based on their investigation, they divide the
cloud services of mobile testing into three sub-categories:
1) Device clouds (mobile cloud platforms); 2) Services to
support application lifecycle management and 3) Tools to
provide processing according to some testing techniques.
They also argue that it is essential to migrate the testing
process to the clouds, which would make teamwork become
possible. Besides, it can also reduce the testing time and
development costs.

Muccini et al. [143] conducted a short study on the
challenges and future research directions for testing mobile
apps. Based on their study, they find that (1) Mobile apps are
so different from traditional ones and thus they require dif-
ferent and specialized techniques in order to test them and
(2) There seems to have many challenges. As an example,
the performance, security, reliability and energy are strongly
affected by the variability of the testing environment.

Janicki et al. [144] surveyed the obstacles and opportuni-
ties in deploying model-based GUI testing of mobile apps.
Unlike conventional automatic test execution, model-based
testing goes one step further by considering the automation
of test generation phases as well. Based on their studies, they
claim that the most valuable kind of research need (as future
work) is to perform a comparative experiment on using
conventional test and model-based automation, as well as
exploratory and script-based manual testing to evaluate
concurrently on the same system and thus to measure the
success of those approaches.

Finally, the literature includes several surveys [136],
[145]–[147] on Android, which cover some aspects of An-
droid testing. As an example, Tam et al. [136] have studied
the evolution of Android malware and Android analy-
sis techniques, where various Android-based testing ap-
proaches such as A3E have been discussed.

9 CONCLUSION

We report in this paper on a systematic literature review
performed on the topic of Android app testing. Our re-
view has explored 103 papers that were published in ma-
jor conferences, workshops and journals in software engi-
neering, programming language, and security domain. We
have then proposed a taxonomy of the related research
exploring several dimensions including the objectives (i.e.,
what functional or non-functional concerns are addressed
by the approaches) that were pursued, and the techniques
(i.e., what type of testing methods – mutation, concolic,
etc.) that were leveraged. We have further explored the
assessments presented in the literature, highlighting the lack
of established benchmarks to clearly monitor the progress
made in the field. Finally, beyond quantitative summaries,
we have provided a discussion on future challenges and
proposed new research directions of Android testing re-
search for further ensuring the quality of apps with regards
to compatibility issues, vulnerability-inducing updates, etc.

18

APPENDIX

The full list of examined primary publications are enumer-
ated in Table A1.

REFERENCES

[1] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
An investigation into the use of common libraries in android
apps. In The 23rd IEEE International Conference on Software Analy-
sis, Evolution, and Reengineering (SANER 2016), 2016.

[2] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F
Bissyandé, Alexandre Bartel, Jacques Klein, and Yves Le Traon.
Androzoo++: Collecting millions of android apps and their meta-
data for the research community. arXiv preprint arXiv:1709.05281,
2017.

[3] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan,
Thomas Zimmermann, and David Lo. Understanding the test
automation culture of app developers. In Software Testing, Verifi-
cation and Validation (ICST), 2015 IEEE 8th International Conference
on, pages 1–10. IEEE, 2015.

[4] Li Li. Mining androzoo: A retrospect. In The Doctoral Sympo-
sium of 33rd International Conference on Software Maintenance and
Evolution (ICSME-DS 2017), 2017.

[5] Haoyu Wang, Hao Li, Li Li, Yao Guo, and Guoai Xu. Why are
android apps removed from google play? a large-scale empirical
study. In The 15th International Conference on Mining Software
Repositories (MSR 2018), 2018.

[6] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and
Jacques Klein. Characterising deprecated android apis. In The
15th International Conference on Mining Software Repositories (MSR
2018), 2018.

[7] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein.
Accessing inaccessible android apis: An empirical study. In The
32nd International Conference on Software Maintenance and Evolution
(ICSME 2016), 2016.

[8] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza
Sadeghi, and Sam Malek. Reducing combinatorics in gui testing
of android applications. In International Conference on Software
Engineering, 2016.

[9] Yongjian Hu, Iulian Neamtiu, and Arash Alavi. Automatically
verifying and reproducing event-based races in android apps. In
International Symposium on Software Testing and Analysis, 2016.

[10] Lazaro Clapp, Osbert Bastani, Saswat Anand, and Alex Aiken.
Minimizing gui event traces. In ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2016.

[11] Ke Mao, Mark Harman, and Yue Jia. Sapienz: multi-objective
automated testing for android applications. In International Sym-
posium on Software Testing and Analysis, 2016.

[12] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng,
Wing Lam, Wei Yang, and Tao Xie. Automated test input
generation for android: are we really there yet in an industrial
case? In ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2016.

[13] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F Bis-
syandé, Tianming Liu, Guoai Xu, and Jacques Klein. Frauddroid:
Automated ad fraud detection for android apps. In The 26th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE 2018), 2018.

[14] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein,
Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden,
Damien Octeau, and Patrick Mcdaniel. IccTA: Detecting Inter-
Component Privacy Leaks in Android Apps. In ICSE, 2015.

[15] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Mill-
stein. Reran: Timing-and touch-sensitive record and replay for
android. In International Conference on Software Engineering, 2013.

[16] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein.
Cid: Automating the detection of api-related compatibility issues
in android apps. In The ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2018), 2018.

[17] Lili Wei, Yepang Liu, and Shing-Chi Cheung. Taming android
fragmentation: Characterizing and detecting compatibility issues
for android apps. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2016, pages
226–237, 2016.

[18] Nariman Mirzaei, Sam Malek, Corina S. Psreanu, Naeem Es-
fahani, and Riyadh Mahmood. Testing android apps through
symbolic execution. In ACM SIGSOFT Software Engineering Notes,
2012.

[19] Barbara Kitchenham and Stuart Charters. Guidelines for per-
forming systematic literature reviews in software engineering. In
Technical report, EBSE Technical Report EBSE-2007-01. sn, 2007.

[20] Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark
Turner, and Mohamed Khalil. Lessons from applying the sys-
tematic literature review process within the software engineering
domain. Journal of systems and software, 80(4):571–583, 2007.

[21] Phu H Nguyen, Max Kramer, Jacques Klein, and Yves Le Traon.
An extensive systematic review on the model-driven develop-
ment of secure systems. Information and Software Technology,
68:62–81, 2015.

[22] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried
Rasthofer, Alexandre Bartel, Damien Octeau, Jacques Klein, and
Yves Le Traon. Static analysis of android apps: A systematic
literature review. Information and Software Technology, 2017.

[23] Yury Zhauniarovich, Anton Philippov, Olga Gadyatskaya, Bruno
Crispo, and Fabio Massacci. Towards black box testing of android
apps. In Availability, Reliability and Security (ARES), 2015 10th
International Conference on, pages 501–510. IEEE, 2015.

[24] Chao-Chun Yeh and Shih-Kun Huang. Covdroid: A black-
box testing coverage system for android. In Computer Software
and Applications Conference (COMPSAC), 2015 IEEE 39th Annual,
volume 3, pages 447–452. IEEE, 2015.

[25] Chao Yang, Guangliang Yang, Ashish Gehani, Vinod Yeg-
neswaran, Dawood Tariq, and Guofei Gu. Using provenance
patterns to vet sensitive behaviors in android apps. In ACM
SIGSAC conference on Computer and communications security, 2016.

[26] Luka Malisa, Kari Kostiainen, Michael Och, and Srdjan Capkun.
Mobile application impersonation detection using dynamic user
interface extraction. In European Symposium on Research in Com-
puter Security, 2016.

[27] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas,
Christopher Vendome, and Denys Poshyvanyk. Automati-
cally discovering, reporting and reproducing android application
crashes. In IEEE International Conference on Software Testing,
Verification and Validation, 2016.

[28] Joseph Chan Joo Keng, Lingxiao Jiang, Tan Kiat Wee, and Ra-
jesh Krishna Balan. Graph-aided directed testing of android
applications for checking runtime privacy behaviours. In Inter-
national Workshop on Automation of Software Test, 2016.

[29] Yu Kang, Yangfan Zhou, Min Gao, Yixia Sun, and Michael R
Lyu. Experience report: Detecting poor-responsive ui in android
applications. In International Symposium on Software Reliability
Engineering, 2016.

[30] Yongjian Hu and Iulian Neamtiu. Fuzzy and cross-app replay
for smartphone apps. In International Workshop on Automation of
Software Test, 2016.

[31] Hongyin Tang, Guoquan Wu, Jun Wei, and Hua Zhong. Generat-
ing test cases to expose concurrency bugs in android applications.
In International Conference on Automated Software Engineering, 2016.

[32] Yu Kang, Yangfan Zhou, Hui Xu, and Michael R Lyu. Diagdroid:
Android performance diagnosis via anatomizing asynchronous
executions. In International Conference on Foundations of Software
Engineering, 2016.

[33] Marı́a Gómez, Romain Rouvoy, Bram Adams, and Lionel Sein-
turier. Reproducing context-sensitive crashes of mobile apps
using crowdsourced monitoring. In International Conference on
Mobile Software Engineering and Systems, 2016.

[34] Quan Sun, Lei Xu, Lin Chen, and Weifeng Zhang. Replaying
harmful data races in android apps. In International Symposium
on Software Reliability Engineering Workshop, 2016.

[35] Xiangyu Wu, Yanyan Jiang, Chang Xu, Chun Cao, Xiaoxing Ma,
and Jian Lu. Testing android apps via guided gesture event
generation. In Asia-Pacific Software Engineering Conference, 2016.

[36] Hailong Zhang, Haowei Wu, and Atanas Rountev. Automated
test generation for detection of leaks in android applications. In
International Workshop in Automation of Software Test, 2016.

[37] Reyhaneh Jabbarvand, Alireza Sadeghi, Hamid Bagheri, and Sam
Malek. Energy-aware test-suite minimization for android apps.
In International Symposium on Software Testing and Analysis, 2016.

[38] Ju Qian and Di Zhou. Prioritizing test cases for memory leaks in
android applications. In Journal of Computer Science and Technol-
ogy, 2016.

[39] Markus Ermuth and Michael Pradel. Monkey see, monkey do:
Effective generation of gui tests with inferred macro events. In
Proceedings of the 25th International Symposium on Software Testing
and Analysis, pages 82–93. ACM, 2016.

19

[40] Tao Zhang, Jerry Gao, Oum-El-Kheir Aktouf, and Tadahiro Ue-
hara. Test model and coverage analysis for location-based mobile
services. In International Conference on Software Engineering and
Knowledge Engineering, 2015.

[41] Tao Zhang, Jerry Gao, Jing Cheng, and Tadahiro Uehara. Com-
patibility testing service for mobile applications. In Symposium
on Service-Oriented System Engineering, 2015.

[42] Mian Wan, Yuchen Jin, Ding Li, and William G. J. Halfond. De-
tecting display energy hotspots in android apps. In International
Conference on Software Testing, Verification and Validation, 2015.

[43] Šarūnas Packevičius, Andrej Ušaniov, Šarūnas Stanskis, and Ed-
uardas Bareiša. The testing method based on image analysis
for automated detection of ui defects intended for mobile ap-
plications. In International Conference on Information and Software
Technologies, 2015.

[44] Konstantin Knorr and David Aspinall. Security testing for an-
droid mhealth apps. In Software Testing, Verification and Validation
Workshops, 2015.

[45] Roee Hay, Omer Tripp, and Marco Pistoia. Dynamic detection
of inter-application communication vulnerabilities in android. In
International Symposium on Software Testing and Analysis, 2015.

[46] Guilherme de Cleva Farto and Andre Takeshi Endo. Evaluating
the model-based testing approach in the context of mobile appli-
cations. In Electronic Notes in Theoretical Computer Science, 2015.

[47] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. Scalable
race detection for android applications. In ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2015.

[48] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana,
Bryan Dzung Ta, and Atif M. Memon. Mobiguitar: Automated
model-based testing of mobile apps. In IEEE Software, 2015.

[49] Oum-EI-Kheir Aktouf, Tao Zhang, Jerry Gao, and Tadahiro Ue-
hara. Testing location-based function services for mobile applica-
tions. In Symposium on Service-Oriented System Engineering, 2015.

[50] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue
Liu. Effective real-time android application auditing. In IEEE
Symposium on Security and Privacy, 2015.

[51] Behnaz Hassanshahi, Yaoqi Jia, Roland HC Yap, Prateek Saxena,
and Zhenkai Liang. Web-to-application injection attacks on
android: Characterization and detection. In European Symposium
on Research in Computer Security, 2015.

[52] Inês Coimbra Morgado and Ana CR Paiva. Testing approach for
mobile applications through reverse engineering of ui patterns.
In International Conference on Automated Software Engineering Work-
shop, 2015.

[53] Lin Deng, Nariman Mirzaei, Paul Ammann, and Jeff Offutt.
Towards mutation analysis of android apps. In International
Conference on Software Testing, Verification and Validation Workshops,
2015.

[54] Ana Rosario Espada, Marı́a del Mar Gallardo, Alberto Salmerón,
and Pedro Merino. Runtime verification of expected energy
consumption in smartphones. In Model Checking Software, 2015.

[55] Pingyu Zhang and Sebastian G. Elbaum. Amplifying tests to
validate exception handling code: An extended study in the
mobile application domain. In International Conference on Software
Engineering, 2014.

[56] Razieh Nokhbeh Zaeem, Mukul R. Prasad, and Sarfraz Khur-
shid. Automated generation of oracles for testing user-interaction
features of mobile apps. In International Conference on Software
Testing, Verification, and Validation, 2014.

[57] Chao-Chun Yeh, Han-Lin Lu, Chun-Yen Chen, Kee-Kiat Khor,
and Shih-Kun Huang. Craxdroid: Automatic android system
testing by selective symbolic execution. In International Conference
on Software Security and Reliability-Companion, 2014.

[58] Kun Yang, Jianwei Zhuge, Yongke Wang, Lujue Zhou, and
Haixin Duan. Intentfuzzer: detecting capability leaks of android
applications. In ACM symposium on Information, computer and
communications security, 2014.

[59] Sergiy Vilkomir and Brandi Amstutz. Using combinatorial ap-
proaches for testing mobile applications. In International Con-
ference on Software Testing, Verification, and Validation Workshops,
2014.

[60] Hossain Shahriar, Sarah North, and Edward Mawangi. Testing of
memory leak in android applications. In International Symposium
on High-Assurance Systems Engineering, 2014.

[61] Sebastien Salva and Stassia R. Zafimiharisoa. Apset, an android
application security testing tool for detecting intent-based vul-

nerabilities. In International Journal on Software Tools for Technology
Transfer, 2014.

[62] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. Race
detection for android applications. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2014.

[63] Junfei Huang. Appacts: Mobile app automated compatibility
testing service. In International Conference on Mobile Cloud Com-
puting, Services, and Engineering, 2014.

[64] ChunHung Hsiao, Cristiano Pereira, Jie Yu, Gilles Pokam, Satish
Narayanasamy, Peter M. Chen, Ziyun Kong, and Jason Flinn.
Race detection for event-driven mobile applications. In ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2014.

[65] Chenkai Guo, Jing Xu, Hongji Yang, Ying Zeng, and Shuang Xing.
An automated testing approach for inter-application security in
android. In International Workshop on Automation of Software Test,
2014.

[66] Tobias Griebe and Volker Gruhn. A model-based approach to
test automation for context-aware mobile applications. In Annual
ACM Symposium on Applied Computing, 2014.

[67] Pedro Costa, Miguel Nabuco, and Ana C. R. Paiva. Pattern based
gui testing for mobile applications. In International Conference on
the Quality of Information and Communications Technology, 2014.

[68] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and
Abhik Roychoudhury. Detecting energy bugs and hotspots in
mobile apps. In ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2014.

[69] Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas
Christin, and Patrick Tague. A5: Automated analysis of adver-
sarial android applications. In ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, 2014.

[70] Guillermo Suarez-Tangil, Mauro Conti, Juan E Tapiador, and
Pedro Peris-Lopez. Detecting targeted smartphone malware with
behavior-triggering stochastic models. In European Symposium on
Research in Computer Security, 2014.

[71] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-
Cárdenas, Rocco Oliveto, Massimiliano Di Penta, and Denys
Poshyvanyk. Mining energy-greedy api usage patterns in an-
droid apps: an empirical study. In Working Conference on Mining
Software Repositories, 2014.

[72] Raimondas Sasnauskas and John Regehr. Intent fuzzer: crafting
intents of death. In Joint International Workshop on Dynamic
Analysis (WODA) and Software and System Performance Testing,
Debugging, and Analytics, 2014.

[73] Shuai Zhao, Xiaohong Li, Guangquan Xu, Lei Zhang, and Zhiy-
ong Feng. Attack tree based android malware detection with
hybrid analysis. In International Conference on Trust, Security and
Privacy in Computing and Communications, 2014.

[74] Shengqian Yang, Dacong Yan, and Atanas Rountev. Testing for
poor responsiveness in android applications. In International
Workshop on the Engineering of. Mobile-Enabled Systems, 2013.

[75] Sarker T. Ahmed Rumee and Donggang Liu. Droidtest: Testing
android applications for leakage of private information. In
International Journal of Information Security, 2013.

[76] Vikrant Nandakumar, Vijay Ekambaram, and Vivek Sharma.
Appstrument - a unified app instrumentation and automated
playback framework for testing mobile applications. In Inter-
national Conference on Mobile and Ubiquitous Systems: Networking
and Services, 2013.

[77] Andrea Avancini and Mariano Ceccato. Security testing of the
communication among android applications. In International
Workshop on Automation of Software Test, 2013.

[78] Dacong Yan, Shengqian Yang, and Atanas Rountev. Systematic
testing for resource leaks in android applications. In International
Symposium on Software Reliability Engineering, 2013.

[79] Riyadh Mahmood, Naeem Esfahani, Thabet Kacem, Nariman
Mirzaei, Sam Malek, and Angelos Stavrou. A whitebox approach
for automated security testing of android applications on the
cloud. In International Workshop on Automation of Software Test,
2012.

[80] Dominik Franke, Stefan Kowalewski, Carsten Weise, and Nath
Prakobkosol. Testing conformance of life cycle dependent prop-
erties of mobile applications. In International Conference on Soft-
ware Testing, Verification and Validation, 2012.

[81] Karthikeyan Balaji Dhanapal, K Sai Deepak, Saurabh Sharma,
Sagar Prakash Joglekar, Aditya Narang, Aditya Vashistha, Paras
Salunkhe, Harikrishna G. N. Rai, Arun Agrahara Somasundara,

20

and Sanjoy Paul. An innovative system for remote and auto-
mated testing of mobile phone applications. In Service Research
and Innovation Institute Global Conference, 2012.

[82] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui
Gong, Xinhui Han, and Wei Zou. Smartdroid: an automatic
system for revealing ui-based trigger conditions in android ap-
plications. In ACM workshop on Security and privacy in smartphones
and mobile devices, 2012.

[83] Amiya K Maji, Fahad A Arshad, Saurabh Bagchi, and Jan S
Rellermeyer. An empirical study of the robustness of inter-
component communication in android. In International Conference
on Dependable systems and Networks, 2012.

[84] Cuixiong Hu and Iulian Neamtiu. Automating gui testing for
android applications. In International Workshop on Automation of
Software Test, 2011.

[85] Lili Wei, Yepang Liu, and Shing-Chi Cheung. Taming android
fragmentation: Characterizing and detecting compatibility issues
for android apps. In Automated Software Engineering (ASE), 2016
31st IEEE/ACM International Conference on, pages 226–237. IEEE,
2016.

[86] Hammad Khalid, Meiyappan Nagappan, and Ahmed Hassan.
Examining the relationship between findbugs warnings and end
user ratings: A case study on 10,000 android apps. IEEE Software,
2015.

[87] Wei Yang, Mukul R. Prasad, and Tao Xie. A grey-box approach
for automated gui-model generation of mobile applications. In
International Conference on Fundamental Approaches to Software
Engineering, 2013.

[88] Atif M Memon, Ishan Banerjee, and Adithya Nagarajan. Gui
ripping: Reverse engineering of graphical user interfaces for
testing. In WCRE, volume 3, page 260, 2003.

[89] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid:
An input generation system for android apps. In The joint meet-
ing of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering,
2013.

[90] Damien Octeau, Somesh Jha, Matthew Dering, Patrick Mcdaniel,
Alexandre Bartel, Li Li, Jacques Klein, and Yves Le Traon. Com-
bining static analysis with probabilistic models to enable market-
scale android inter-component analysis. In Proceedings of the 43th
Symposium on Principles of Programming Languages (POPL 2016),
2016.

[91] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein,
and Yves Le Traon. ApkCombiner: Combining Multiple Android
Apps to Support Inter-App Analysis. In Proceedings of the 30th
IFIP International Conference on ICT Systems Security and Privacy
Protection (SEC 2015), 2015.

[92] Li Li, Alexandre Bartel, Jacques Klein, and Yves Le Traon.
Automatically exploiting potential component leaks in android
applications. In Proceedings of the 13th International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom 2014), 2014.

[93] Konrad Jamrozik, Philipp von Styp-Rekowsky, and Andreas
Zeller. Mining sandboxes. In Software Engineering (ICSE), 2016
IEEE/ACM 38th International Conference on, pages 37–48. IEEE,
2016.

[94] Young-Min Baek and Doo-Hwan Bae. Automated model-based
android gui testing using multi-level gui comparison criteria. In
International Conference on Automated Software Engineering, 2016.

[95] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. Mobiplay:
A remote execution based record-and-replay tool for mobile
applications. In International Conference on Software Engineering,
2016.

[96] Yauhen Leanidavich Arnatovich, Minh Ngoc Ngo, Tan Hee Beng
Kuan, and Charlie Soh. Achieving high code coverage in an-
droid ui testing via automated widget exercising. In Asia-Pacific
Software Engineering Conference, 2016.

[97] Haowen Zhu, Xiaojun Ye, Xiaojun Zhang, and Ke Shen. A
context-aware approach for dynamic gui testing of android ap-
plications. In Computer Software and Applications Conference, 2015.

[98] Kwangsik Song, Ah-Rim Han, Sehun Jeong, and Sung Deok Cha.
Generating various contexts from permissions for testing android
applications. In International Conference on Software Engineering
and Knowledge Engineering, 2015.

[99] Nariman Mirzaei, Hamid Bagheri, Riyadh Mahmood, and Sam
Malek. Sig-droid: Automated system input generation for an-
droid applications. In International Symposium on Software Relia-
bility Engineering, 2015.

[100] Bo Jiang, Peng Chen, Wing Kwong Chan, and Xinchao Zhang. To
what extent is stress testing of android tv applications automated
in industrial environments? In IEEE Transactions on Reliability,
2015.

[101] Tobias Griebe, Marc Hesenius, and Volker Gruhn. Towards
automated ui-tests for sensor-based mobile applications. In
International Conference on Intelligent Software Methodologies, Tools
and Techniques, 2015.

[102] Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, and
Porfirio Tramontana. Agrippin: a novel search based testing
technique for android applications. In International Workshop on
Software Development Lifecycle for Mobile, 2015.

[103] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders
Møller. Systematic execution of android test suites in adverse
conditions. In International Symposium on Software Testing and
Analysis, 2015.

[104] Inês Coimbra Morgado and Ana CR Paiva. The impact tool: Test-
ing ui patterns on mobile applications. In International Conference
on Automated Software Engineering, 2015.

[105] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. Evodroid:
segmented evolutionary testing of android apps. In ACM SIG-
SOFT International Symposium on Foundations of Software Engineer-
ing, 2014.

[106] Ying-Dar Lin, Jose F. Rojas, Edward T.-H. Chu, and Yuan-Cheng
Lai. On the accuracy, efficiency, and reusability of automated
test oracles for android devices. In IEEE Transactions on Software
Engineering, 2014.

[107] C.-J. Liang, N. Lane, N. Brouwers, L. Zhang, B. Karlsson, H. Liu,
Y. Liu, J. Tang, X. Shan, R. Chandra, and F. Zhao. Caiipa: Auto-
mated large-scale mobil app testing through contextual fuzzing.
In International conference on Mobile computing and networking,
2014.

[108] Xiujiang Li, Yanyan Jiang, Yepang Liu, Chang Xu, Xiaoxing Ma,
and Jian Lu. User guided automation for testing mobile apps. In
Asia-Pacific Software Engineering Conference, 2014.

[109] Clemens Holzmann and Patrick Hutflesz. Multivariate testing of
native mobile applications. In International Conference on Advances
in Mobile Computing and Multimedia, 2014.

[110] Xiangping Chen and Zhensheng Xu. Towards automatic con-
sistency checking between web application and its mobile ap-
plication. In International Conference on Software Engineering and
Knowledge Engineering, 2014.

[111] Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino,
Ugo Gentile, Gianluca Mele, Roberto Nardone, and Valeria Vit-
torini. Improving code coverage in android apps testing by
exploiting patterns and automatic test case generation. In Inter-
national workshop on Long-term industrial collaboration on software
engineering, 2014.

[112] Muhammad Adinata and Inggriani Liem. A/b test tools of native
mobile application. In International Conference on Data and Software
Engineering, 2014.

[113] Ying-Dar Lin, Edward T.-H. Chu, Shang-Che Yu, and Yuan-
Cheng Lai. Improving the accuracy of automated gui testing
for embedded systems. In IEEE Software, 2013.

[114] Wontae Choi, George Necula, and Koushik Sen. Guided gui
testing of android apps with minimal restart and approximate
learning. In ACM SIGPLAN international conference on Object
oriented programming systems languages and applications, 2013.

[115] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first
exploration for systematic testing of android apps. In ACM
SIGPLAN international conference on Object oriented programming
systems languages and applications, 2013.

[116] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana,
and Nicola Amatucci. Considering context events in event-
based testing of mobile applications. In International Conference
on Software Testing, Verification and Validation Workshops, 2013.

[117] Antonio Corradi, Mario Fanelli, Luca Foschini, and Marcello
Cinque. Context data distribution with quality guarantees for
android-based mobile systems. In Security and Communication
Networks, 2013.

[118] Sebastian Bauersfeld. Guidiff - a regression testing tool for
graphical user interfaces. In International Conference on Software
Testing, Verification and Validation, 2013.

[119] Casper S Jensen, Mukul R Prasad, and Anders Møller. Au-
tomated testing with targeted event sequence generation. In
International Symposium on Software Testing and Analysis, 2013.

21

[120] Heila van der Merwe, Brink van der Merwe, and Willem Visser.
Verifying android applications using java pathfinder. In ACM
SIGSOFT Software Engineering Notes, 2012.

[121] Haeng-Kon Kim. Hybrid mobile testing model. In International
Conferences, ASEA and DRBC, 2012.

[122] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok
Yang. Automated concolic testing of smartphone apps. In ACM
SIGSOFT International Symposium on the Foundations of Software
Engineering, 2012.

[123] Tommi Takala, Mika Katara, and Julian Harty. Experiences of
system-level model-based gui testing of an android application.
In IEEE International Conference on Software Testing, Verification and
Validation, 2011.

[124] Ben Sadeh, Kjetil Ørbekk, Magnus M. Eide, Njaal C.A. Gjerde,
Trygve A. Tønnesland, and Sundar Gopalakrishnan. Towards
unit testing of user interface code for android mobile appli-
cations. In International Conference on Software Engineering and
Computer Systems, 2011.

[125] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tra-
montana. A gui crawling-based technique for android mobile
application testing. In International Conference on Software Testing,
Verification and Validation Workshops, 2011.

[126] Zhifang Liu, Xiaopeng Gao, and Xiang Long. Adaptive random
testing of mobile application. In International Conference on Com-
puter Engineering and Technology, 2010.

[127] Milind G Limaye. Software testing. Tata McGraw-Hill Education,
2009.

[128] Software Testing Fundamentals. Software testing lev-
els. http://softwaretestingfundamentals.com/software-testing-
levels/.

[129] Afzal Wasif, Torkar Richard, and Feldt Robert. A systematic
review of search-based testing for non-functional system prop-
erties. Information and Software Technology, 51:957–976, 2009.

[130] Richard Hamlet. Random testing. Encyclopedia of software Engi-
neering, 1994.

[131] Timothy Vidas and Nicolas Christin. Evading android runtime
analysis via sandbox detection. In Proceedings of the 9th ACM
symposium on Information, computer and communications security,
pages 447–458. ACM, 2014.

[132] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gas-
con, Konrad Rieck, and CERT Siemens. Drebin: Effective and
explainable detection of android malware in your pocket. In
NDSS, 2014.

[133] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas
Schreck, and Johannes Hoffmann. Mobile-sandbox: having a
deeper look into android applications. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, pages 1808–1815.
ACM, 2013.

[134] Vincent F Taylor and Ivan Martinovic. To update or not to update:
Insights from a two-year study of android app evolution. In

Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, pages 45–57. ACM, 2017.

[135] Mark Turner, Barbara Kitchenham, David Budgen, and OP Brere-
ton. Lessons learnt undertaking a large-scale systematic literature
review. In Proceedings of EASE, volume 8, 2008.

[136] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh,
and Lorenzo Cavallaro. The evolution of android malware and
android analysis techniques. ACM Computing Surveys (CSUR),
49(4):76, 2017.

[137] Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih, Kangjie Lu,
Cong Zheng, Ruian Duan, Yeongjin Jang, Byoungyoung Lee,
Chenxiong Qian, et al. Toward engineering a secure android
ecosystem: A survey of existing techniques. ACM Computing
Surveys (CSUR), 49(2):38, 2016.

[138] Samer Zein, Norsaremah Salleh, and John Grundy. A systematic
mapping study of mobile application testing techniques. Journal
of Systems and Software, 117:334–356, 2016.

[139] Abel Méndez-Porras, Christian Quesada-López, and Marcelo
Jenkins. Automated testing of mobile applications: a systematic
map and review. In XVIII Ibero-American Conference on Software
Engineering, Lima-Peru, pages 195–208, 2015.

[140] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramon-
tana, and Bryan Robbins. Testing android mobile applications:
Challenges, strategies, and approaches. Advances in Computers,
89(6):1–52, 2013.

[141] Jerry Gao, Wei-Tek Tsai, Rimi Paul, Xiaoying Bai, and Tadahiro
Uehara. Mobile testing-as-a-service (mtaas)–infrastructures, is-
sues, solutions and needs. In High-Assurance Systems Engineering
(HASE), 2014 IEEE 15th International Symposium on, pages 158–
167. IEEE, 2014.

[142] Oleksii Starov, Sergiy Vilkomir, Anatoliy Gorbenko, and Vyach-
eslav Kharchenko. Testing-as-a-service for mobile applications:
state-of-the-art survey. In Dependability Problems of Complex Infor-
mation Systems, pages 55–71. Springer, 2015.

[143] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito.
Software testing of mobile applications: Challenges and future
research directions. In Automation of Software Test (AST), 2012 7th
International Workshop on, pages 29–35. IEEE, 2012.

[144] Marek Janicki, Mika Katara, and Tuula Pääkkönen. Obstacles and
opportunities in deploying model-based gui testing of mobile
software: a survey. Software Testing, Verification and Reliability,
22(5):313–341, 2012.

[145] Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, and Sam Malek.
A taxonomy and qualitative comparison of program analysis
techniques for security assessment of android software. IEEE
Transactions on Software Engineering, 43(6):492–530, 2017.

[146] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and
Mark Harman. A survey of app store analysis for software
engineering. IEEE Transactions on Software Engineering, 2016.

[147] Ping Yan and Zheng Yan. A survey on dynamic mobile malware
detection. Software Quality Journal, pages 1–29, 2017.

22

TABLE A1: The Full List of Examined Publications.

Year Venue Title
2016 APSEC Achieving High Code Coverage in Android UI Testing via Automated Widget Exercising
2016 ISSRE Experience Report: Detecting Poor-Responsive UI in Android Applications
2016 ASE Generating test cases to expose concurrency bugs in android applications
2016 AST Fuzzy and cross-app replay for smartphone apps
2016 ICST Automatically Discovering, Reporting and Reproducing Android Application Crashes
2016 JCST Prioritizing Test Cases for Memory Leaks in Android Applications
2016 SecureComm Using Provenance Patterns to Vet Sensitive Behaviors in Android Apps
2016 ICSE Reducing combinatorics in GUI testing of android applications
2016 FSE Minimizing GUI event traces
2016 ESORICS Mobile Application Impersonation Detection Using Dynamic User Interface Extraction
2016 AST Automated test generation for detection of leaks in Android applications
2016 ISSTA Energy-aware test-suite minimization for android apps
2016 ISSREW Replaying Harmful Data Races in Android Apps
2016 FSE DiagDroid: Android performance diagnosis via anatomizing asynchronous executions
2016 ISSTA Automatically verifying and reproducing event-based races in Android apps
2016 ICSE Mobiplay: A remote execution based record-and-replay tool for mobile applications
2016 ISSTA Sapienz: multi-objective automated testing for Android applications
2016 FSE Automated test input generation for Android: are we really there yet in an industrial case?
2016 APSEC Testing Android Apps via Guided Gesture Event Generation
2016 AST Graph-aided directed testing of Android applications for checking runtime privacy behaviours
2016 ASE Automated model-based android gui testing using multi-level gui comparison criteria
2016 ICSE Mining Sandboxes
2016 MOBILESoft Reproducing context-sensitive crashes of mobile apps using crowdsourced monitoring
2016 ISSTA Monkey see, monkey do: effective generation of GUI tests with inferred macro events
2015 ISSTA Systematic execution of Android test suites in adverse conditions
2015 ICST Detecting Display Energy Hotspots in Android Apps
2015 OOPSLA Scalable race detection for Android applications
2015 SEKE Generating various contexts from permissions for testing Android applications
2015 ToR To What Extent is Stress Testing of Android TV Applications Automated in Industrial Environ-

ments?
2015 SoMet Towards Automated UI-Tests for Sensor-Based Mobile Applications
2015 ESORICS Web-to-Application Injection Attacks on Android: Characterization and Detection
2015 ICIST The Testing Method Based on Image Analysis for Automated Detection of UI Defects Intended

for Mobile Applications
2015 MCS Runtime Verification of Expected Energy Consumption in Smartphones
2015 ASEW Testing Approach for Mobile Applications through Reverse Engineering of UI Patterns
2015 ICSTW Towards mutation analysis of Android apps
2015 SOSE Testing Location-Based Function Services for Mobile Applications
2015 IS MobiGUITAR: Automated Model-Based Testing of Mobile Apps
2015 DeMobile AGRippin: a novel search based testing technique for Android applications
2015 ICSTW Security testing for Android mHealth apps
2015 SOSE Compatibility Testing Service for Mobile Applications
2015 ISSRE SIG-Droid: Automated System Input Generation for Android Applications
2015 COMPSAC A Context-Aware Approach for Dynamic GUI Testing of Android Applications
2015 S&P Effective Real-Time Android Application Auditing
2015 ISSTA Dynamic detection of inter-application communication vulnerabilities in Android
2015 ASE The iMPAcT Tool: Testing UI Patterns on Mobile Applications
2015 SEKE Test Model and Coverage Analysis for Location-based Mobile Services
2015 ENTCS Evaluating the Model-Based Testing Approach in the Context of Mobile Applications
2014 SPSM A5: Automated Analysis of Adversarial Android Applications
2014 WISE Improving code coverage in android apps testing by exploiting patterns and automatic test case

generation
2014 MobiCom Caiipa: Automated Large-scale Mobil App Testing through Contextual Fuzzing
2014 SAC A model-based approach to test automation for context-aware mobile applications
2014 PLDI Race detection for event-driven mobile applications
2014 AsiaCCS IntentFuzzer: detecting capability leaks of android applications
2014 AST An automated testing approach for inter-application security in Android
2014 ICSTW Using Combinatorial Approaches for Testing Mobile Applications

23

2014 MoMM Multivariate Testing of Native Mobile Applications
2014 STTT APSET, an Android aPplication SEcurity Testing tool for detecting intent-based vulnerabilities
2014 FSE Detecting energy bugs and hotspots in mobile apps
2014 ICSE Amplifying Tests to Validate Exception Handling Code: An Extended Study in the Mobile

Application Domain
2014 SEKE Towards Automatic Consistency Checking between Web Application and its Mobile Application
2014 MobileCloud AppACTS: Mobile App Automated Compatibility Testing Service
2014 ESORICS Detecting Targeted Smartphone Malware with Behavior-Triggering Stochastic Models
2014 MSR Mining energy-greedy API usage patterns in Android apps: an empirical study
2014 QUATIC Pattern Based GUI Testing for Mobile Applications
2014 FSE EvoDroid: segmented evolutionary testing of Android apps
2014 ICST Automated Generation of Oracles for Testing User-Interaction Features of Mobile Apps
2014 TrustCom Attack Tree Based Android Malware Detection with Hybrid Analysis
2014 SERE-C CRAXDroid: Automatic Android System Testing by Selective Symbolic Execution
2014 HASE Testing of Memory Leak in Android Applications
2014 WODA/PERTEA Intent fuzzer: crafting intents of death
2014 PLDI Race Detection for Android Applications
2014 APSEC User Guided Automation for Testing Mobile Apps
2014 TSE On the Accuracy, Efficiency, and Reusability of Automated Test Oracles for Android Devices
2014 ICODSE A/B test tools of native mobile application
2013 FASE A Grey-box Approach for Automated GUI-Model Generation of Mobile Applications
2013 IJIS DroidTest: Testing Android Applications for Leakage of Private Information
2013 ISSRE Systematic testing for resource leaks in Android applications
2013 MOBIQUITOUS Appstrument - A Unified App Instrumentation and Automated Playback Framework for Testing

Mobile Applications
2013 IS Improving the Accuracy of Automated GUI Testing for Embedded Systems
2013 OOPSLA Targeted and depth-first exploration for systematic testing of android apps
2013 MOBS Testing for poor responsiveness in android applications
2013 ESEC/FSE Dynodroid: An Input Generation System for Android Apps
2013 ICST GUIdiff - A Regression Testing Tool for Graphical User Interfaces
2013 AST Security testing of the communication among Android applications
2013 ICSTW Considering Context Events in Event-Based Testing of Mobile Applications
2013 SCN Context data distribution with quality guarantees for Android-based mobile systems
2013 ICSE Reran: Timing-and touch-sensitive record and replay for android
2013 OOPSLA Guided GUI testing of android apps with minimal restart and approximate learning
2013 ISSTA Automated testing with targeted event sequence generation
2012 SEN Verifying android applications using Java PathFinder
2012 FSE Automated concolic testing of smartphone apps
2012 ASEA/DRBC Hybrid Mobile Testing Model
2012 AST A whitebox approach for automated security testing of Android applications on the cloud
2012 SEN Testing android apps through symbolic execution
2012 ICST Testing Conformance of Life Cycle Dependent Properties of Mobile Applications
2012 SPSM SmartDroid: an automatic system for revealing UI-based trigger conditions in android applica-

tions
2012 SRII An Innovative System for Remote and Automated Testing of Mobile Phone Applications
2012 DSN An empirical study of the robustness of Inter-component Communication in Android
2011 ICSTW A GUI Crawling-Based Technique for Android Mobile Application Testing
2011 AST Automating GUI testing for Android applications
2011 ICST Experiences of System-Level Model-Based GUI Testing of an Android Application
2011 ICSECS Towards Unit Testing of User Interface Code for Android Mobile Applications
2010 ICCET Adaptive random testing of mobile application

