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Automated Testing of WS-BPEL Service
Compositions: A Scenario-Oriented Approach

Chang-ai Sun, Member, IEEE , Yan Zhao, Lin Pan, Huai Liu, Member, IEEE , and

Tsong Yueh Chen, Member, IEEE

Abstract—Nowadays, Service Oriented Architecture (SOA) has become one mainstream paradigm for developing distributed

applications. As the basic unit in SOA, Web services can be composed to construct complex applications. The quality of Web services

and their compositions is critical to the success of SOA applications. Testing, as a major quality assurance technique, is confronted

with new challenges in the context of service compositions. In this paper, we propose a scenario-oriented testing approach that can

automatically generate test cases for service compositions. Our approach is particularly focused on the service compositions specified

by Business Process Execution Language for Web Services (WS-BPEL), a widely recognized executable service composition

language. In the approach, a WS-BPEL service composition is first abstracted into a graph model; test scenarios are then derived from

the model; finally, test cases are generated according to different scenarios. We also developed a prototype tool implementing the

proposed approach, and an empirical study was conducted to demonstrate the applicability and effectiveness of our approach. The

experimental results show that the automatic scenario-oriented testing approach is effective in detecting many types of faults seeded in

the service compositions.

Index Terms—Service Oriented Architecture, service compositions, Business Process Execution Language for Web Services,

scenario-oriented testing.

✦

1 INTRODUCTION

S Ervice Oriented Architecture (SOA) [22] has been widely
applied into the development of various distributed

applications. Web services, the basic applications in SOA,
are often developed and owned by a third party, and are
published and deployed in an open and dynamic envi-
ronment. A single Web service normally provides limited
functionalities, so multiple Web services are expected to
be composed to implement complex and flexible business
processes. Business Process Execution Language for Web
Services (WS-BPEL) [14] is a popular language for service
compositions. In the context of WS-BPEL, all communi-
cations among Web services are via standard eXtensible
Markup Language (XML) messages [35], which provides
a perfect solution to address the challenging issues in a
distributed and heterogeneous environment, such as data
exchange and application interoperability. Moreover, Web
services inside service compositions can be easily replaced
to cater for the quickly changing business requirements and
environments due to its loosely coupled feature. However,
ensuring the quality of such loosely coupled service compo-
sitions becomes difficult yet important.
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C.-A. Sun, Y. Zhao, and L. Pan are with School of Computer and Commu-
nication Engineering, University of Science and Technology Beijing, Haidian
100083 Beijing, China (e-mail: casun@ustb.edu.cn).
H. Liu is with Australia-India Research Centre for Automation Software
Engineering, RMIT University, Melbourne 3001 VIC, Australia (email:
huai.liu@rmit.edu.au).
T. Y. Chen is with Department of Computer Science and Software Engineering,
Swinburne University of Technology, Hawthorn 3122 VIC, Australia (email:
tychen@swin.edu.au).
All correspondence should be addressed to both C.-A. Sun and H. Liu.

Testing is a practical and feasible approach to the quality
assurance of service-based systems [4], [27]. It mainly in-
volves two aspects, namely testing individual Web services
and testing service compositions. The former is usually done
by service developers, and lots of testing techniques are
available [21], [29], [25], while the latter is left for service
consumers, which corresponds to the integrated testing.
However, service composition testing is greatly different
from the traditional integrated testing in two aspects. First,
Web services are developed and tested independently. Thus,
it is hard for service developers to expect all possible
scenarios. Second, services within compositions are usually
abstract ones and only bound to concrete Web services at
run-time. This run-time binding delays the execution of
testing and calls for the on-the-fly testing techniques. In
this context, traditional integrated testing techniques are not
applicable.

In the previous work [26], [30], [39], a model-based
approach has been proposed to automatically generating a
set of test scenarios based on UML activity diagram specifi-
cations. With this approach, testers can test on demand the
corresponding programs whose behaviors are described by
UML activity diagrams. WS-BPEL specifications in nature
are very similar to UML activity diagram specifications
because they are both based on the state machine and
provide the mechanism for supporting concurrent control
flows. Unlike UML activity diagram specifications, WS-
BPEL specifications are executable programs rather than
workflow models.

In this paper, based on our recent study [28], we propose
an automatic scenario-oriented testing approach for WS-
BPEL service compositions. This approach leverages the
previous work [26], [30], [39] on testing UML activity di-
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agrams in the context of SOA, and addresses the challenges
of testing loosely coupled and run-time binding service
compositions. In our approach, an abstract test model is first
defined to represent WS-BPEL processes. Then, test scenar-
ios are generated from the test model with respect to the
given coverage criteria. Finally, test data are generated and
selected to drive the execution of test scenarios. However,
in the preliminary study, the approach, especially the final
step of test case generation, was not fully automated. In
this paper, we not only present basic ideas of the approach,
but also propose novel techniques for fully automating the
proposed approach. We also developed a prototype tool that
implements the proposed approach in the SOA environ-
ment. In addition, an empirical study has been conducted
to demonstrate our approach and validate its applicability
and effectiveness.

The main contributions of this paper, together with its
preliminary version [28], are threefold:

(i) We propose a scenario-oriented testing framework
for WS-BPEL service compositions, including a
graph model for WS-BPEL specifications, a set of
mapping rules and an algorithm for converting WS-
BPEL specifications to the graph model, an algorithm
for generating test scenarios with respect to a specific
criterion, and a constraint-based technique of test
data generation;

(ii) We develop a tool to automate the proposed
scenario-oriented testing framework and algorithms;
and

(iii) We validate the feasibility of the proposed approach
and evaluate its fault-detection effectiveness via an
empirical study.

The rest of the paper is organized as follows. Section 2 in-
troduces underlying concepts related to WS-BPEL, scenario-
oriented testing, and constraint solving techniques. Section 3
proposes the scenario-oriented testing approach for WS-
BPEL service compositions. Section 4 describes the proto-
type tool developed by us. Section 5 describes an empirical
study where the proposed approach is used to test two
real-life WS-BPEL service compositions. The experimental
results are discussed in Section 6. Section 7 discusses related
work. Section 8 concludes the paper and proposes the future
work.

2 BACKGROUND

In this section, we introduce underlying concepts and tech-
niques of the proposed approach.

2.1 Business Process Execution Language for Web

Services (WS-BPEL)

For a service-based system, a bundle of Web services need
to be coordinated and each service is expected to execute the
predefined functionalities. For such coordination, there are
two representative ways, namely orchestration and chore-
ography [22]. Among them, orchestration is more widely
recognized and adopted in practice. WS-BPEL is an exe-
cutable service composition language which specifies busi-
ness processes by orchestrating Web services, and exports
the process as a composite Web service described by the

Web Service Description Language (WSDL [34]). In this way,
individual WS-BPEL process can be used as a basic service
unit to participate in the more complex business processes.

A WS-BPEL process often consists of four sections,
namely partner link statements, variable statements, han-
dler statements, and interaction steps. Activities are basic
interaction units of WS-BPEL processes, and are further
divided into basic activities and structural activities. Basic
activities execute an atomic execution step, including assign,
invoke, receive, reply, throw, wait, empty, and so on. Structural
activities are composites of basic activities and/or structural
activities, including sequence, switch, while, flow, pick, and so
on.

WS-BPEL has standard control structures, such as se-
quence, switch, and while. In addition, WS-BPEL provides
concurrency among activities via flow activities and synchro-
nization via link tags within flows. Each link has a source
activity and a target activity. A transition condition, which is
an XPath Boolean expression, can be associated with some
links. A transition can happen only when the associated
conditions are satisfied, that is, executing the target activity
after completion of the source activity. If transition condi-
tions are not explicitly specified, their default values are
true, indicating that target activity will always be performed
after executing the source activity. If an activity is the target
activity of multiple links, the activity should have an asso-
ciated join condition, and only when all the incoming links
are defined and its join condition is true, can the activity be
enabled. Otherwise, if the join condition is false, the activity
is not executed and the effect is propagated downstream to
the subsequent activities. Through the flow and link struc-
ture, WS-BPEL provides a “multiple-choice” style workflow
pattern [32], and multiple outgoing flows may be enabled
simultaneously representing concurrent behaviors.

2.2 Scenario-oriented testing

From the workflow point of view, the functionalities of a
system can be described as a set of scenarios. A scenario
usually represents an execution path of a software system.
In this sense, one needs to first derive a set of possible test
scenarios and then execute these scenarios with test data
and observe their behaviors. Test data associated with a
specific test scenario can be derived by analyzing and solv-
ing the conditions along the associated path. If an execution
of scenarios does not happen as expected, then a fault is
detected.

WS-BPEL provides the mechanism to specify concurrent
behaviors in workflows. This feature gives rise to new
challenges when testing those service compositions with
concurrency behavior. First, concurrency behaviors are non-
deterministic and thus difficult to be repeated. Secondly,
the concurrency mechanism introduces nonstructural ele-
ments, which are more difficult to be tested than common
control flows. Finally, comprehensive testing of concurrent
behaviors significantly increases the number of possible test
scenarios.

To decide to what extent concurrent elements should
be tested, Sun [26] has proposed three coverage criteria as
follows:
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• Weak concurrency coverage. Test scenarios are de-
rived to cover only one feasible sequence of parallel
processes, without considering the interleaving of
activities between parallel processes.

• Moderate concurrency coverage. Test scenarios are
derived to cover all the feasible sequences of parallel
processes, without considering the interleaving of
activities between parallel processes.

• Strong concurrency coverage. Test scenarios are de-
rived to cover all feasible sequences of activities and
parallel processes.

Although these test coverage criteria were first proposed
for concurrency testing in general, they are applicable to
testing concurrent behaviors in WS-BPEL programs. All
these test coverage criteria require covering each activity
in parallel at least once. Among them, weak coverage and
moderate coverage criteria require the parallel activities to
be tested in a sequential way, while strong coverage criterion
which considers all possible combinations of activities and
transitions is therefore impractical due to its huge costs.

2.3 Constraint solving techniques

Constraint solving techniques can enable applications such
as extended static checking, predicate abstraction, test case
generation and bounded model checking [7]. Especially,
constraint solving plays an important role in test case gen-
eration for the purpose of coverage or a particular type of
property verification, such as bug finding and vulnerability
detection [41]. Furthermore, constraint solver-based testing
tools enable more precise analysis with the ability to gener-
ate bug-revealing inputs.

For the past decade, researchers developed a variety
of constraint solvers [18]. Among them, Z3 [7] is one of
the most powerful constraint solvers with features of sup-
porting linear real and integer arithmetic, fixed-size bit-
vector, uninterpreted functions, extensional arrays, quanti-
fiers, multiple input formats, and extensive APIs (including
C/C++/.NET/Java/Python APIs). Z3-str [41] is an exten-
sion of Z3 supporting combined logics over strings and
non-string operations. It supports three sorts of logic: (i)
string-sorted terms include string constants and variables
of arbitrary length; (ii) integer-sorted terms are standard,
with the exception of the length function over string terms;
(iii) Boolean operators are used to combine atomic formulas
which are equations over string terms and equalities or
inequalities over integer terms. In this paper, we leverage
advances in constraint solvers and use Z3 and Z3-str as
constraint solver to generate the relevant input values of
a path condition, which is to be discussed later.

3 SCENARIO-ORIENTED TESTING FOR WS-BPEL

SERVICE COMPOSITIONS

The proposed scenario-oriented testing approach for WS-
BPEL service compositions is sketched in Figure 1. In the
context of WS-BPEL specifications, a test scenario corre-
sponds to a set of activities and transitions. The number
of test scenarios may be very huge when service compo-
sitions are complex. One key issue is how to generate a
set of test scenarios according to a certain coverage criteria.

Fig. 1. Overview of our approach

Furthermore, WS-BPEL service compositions may be subject
to frequent changes in order to cater for quickly changed
business requirements and dynamic environments. It may
be very tedious and difficult to generate test scenarios
manually, especially for large and complex WS-BPEL com-
positions. Therefore, the scenario-oriented testing for service
compositions should be automated as much as possible. In
this section, we elaborate the main steps of our approach
and show how the above mentioned issues are addressed
when applying the approach to WS-BPEL programs1.

3.1 WS-BPEL Graph Model (BGM)

WS-BPEL programs are represented as XML files, which
are greatly different in syntax from those programs written
in traditional programming languages, such as C or Java.
On the other hand, WS-BPEL programs are well structured
and hence can be easily analyzed by means of available
XML analysis techniques, such as Document Object Model
(DOM) [33] and Simple API for XML (SAX) [24]. When we
generate test scenarios from WS-BPEL programs, only those
elements defined in the interaction section make sense, and
thus we can skip over those elements defined in partner
links variables and handler sections. Furthermore, we can
also skip over those attributes of an activity that make no
contributions to the construction of test scenarios.

To make the testing task simple and effective, we first
define an abstract test model called WS-BPEL Graph Model
(BGM), which only considers activities and their relation-
ships within WS-BPEL specifications. The objective of BGM
is two-fold. First, one can use it to convert a complex WS-
BPEL program into a simple graph, which is formal and
easy for analysis. Second, it abstracts activities with the
similar semantics as a type of node, thus reducing the
quantity of control structure types. For example, both the
switch and pick types are used to specify the optional control
logic, and they should share the same notations in BGM.

The BGM of a WS-BPEL program is an extended graph
BGM =< Nodes, Edges >. A node in Nodes corresponds
to a WS-BPEL activity and is represented as an entry
< id, responseid, outing, type, name >, where

• id is the unique identification of an activity. It starts
from zero and each activity inside optional or parallel
activities are labeled in a depth-first way.

1. In this paper, we use WS-BPEL compositions and WS-BPEL pro-
grams interchangeably.
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TABLE 1
Definitions of node types in BGM

Node type Description
initial The beginning of interactions
end The end of interactions
action A normal activity
branch The beginning of an optional activity
merge The end of an optional activity
fork The beginning of parallel activities
join The end of parallel activities
cycle A loop activity

• outing refers to the number of subsequent activities
of the current activity.

• type refers to the type of the current activity. Node
types in BGM are summarized in Table 1.

• name refers to the name of the current activity.
• responseid is used to identify the hierarchy of WS-

BPEL activities. The definitions of different node
type’s responseid are further explained as follows.

– responseid of an action or initial node de-
notes the next non-normal node;

– responseid of a branch node denotes its
matching merge node;

– responseid of a fork node denotes its match-
ing join node;

– responseid of a merge node or join node
denotes its next node after the merge or join
node, respectively;

– responseid of an end node denotes itself;
– responseid of a cycle node denotes itself.

An edge in Edges corresponds to a transition in WS-
BPEL and is represented as an entry < iID, oID >, where

• iID refers to the ID of the incoming activity of the
transition;

• oID refers to the ID of the outgoing activity of the
transition.

3.2 Conversion of WS-BPEL program into BGM

We first classify activities of WS-BPEL specifications into
five types. Among them, normal activities are the basic
activity, while others are structural activities.

• Normal activities refer to an atomic execution unit.
• Sequential activities refer to that their child activities

are executed in the sequential order, such as the
sequence and scope activity.

• Optional activities refer to that only one branch of
their child activities can be executed, such as the
switch, if/else if/else, pick activity.

• Loop activities refer to that their child activities are
executed all the time until some conditions are satis-
fied.

• Parallel activities refer to that their child activities
are executed simultaneously, such as the flow activ-
ity.

In order to convert WS-BPEL specifications into BGMs,
we define a set of mapping rules with respect to each type
of WS-BPEL activities, as follows.

• For the normal activities, they are directly mapped
to action nodes.

• For the sequential activities, a sequence of nodes are
created and each node corresponds to a child activity;
meanwhile, an edge is added between each pair of
nodes.

• For the optional activities, they are mapped to
branch-merge node pairs, and each branch is
mapped to a child node.

• For the loop activities, their child activities are
mapped to a sequence of nodes, and a cycle node is
added in the end whose outgoing edges are towards
the first node in the loop and the first node after the
loop.

• For the parallel activities, they are used to support
concurrency with flows in WS-BPEL. For those ac-
tivities without source or target activities, they are
executed in parallel. In this context, the < flow >-<
/flow > pairs are mapped to fork-join node pairs,
and each parallel branch is mapped to a child node
of fork and the father node of join. For those child
activities that have the source and target elements
within the flows, transitions are enabled depending
on whether the link’s conditions are satisfied.

(a) normal (b) sequential (c) optional

(d) loop (e) parallel

Fig. 2. Illustration of mapping rules

Figure 2 illustrates these mapping rules. Note that for
the structural activities (sequential, optional, loop, and
parallel), their child activities can be either basic or struc-
tural activities. The mapping rules discussed above can be
applied recursively.

Based on these mapping rules, we propose a recursive
conversion algorithm (Algorithm 1), which can be used to
automatically convert a WS-BPEL program into a BGM. The
proposed algorithm first gets the number of top activities
of the current WS-BPEL program, and then converts each
activity according to its type. The conversions are conducted
following the above-mentioned mapping rules.

The algorithm is able to convert complex and nested
structural activities. Its time complexity is proportional to
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Algorithm 1 Covert(B, G) converting a WS-BPEL program
(B) to a WS-BPEL graph model (G)

1: n← getTopActivityNumber(B)
2: for all i = 1, 2, · · · , n do
3: currentActivity← getActivity(B, i)
4: if currentActivity is a normal activity then
5: Create an action node a and add a to G
6: else if currentActivity is a sequential activity then
7: BS ← getBPELSegment(currentActivity)
8: Convert(BS, G)
9: else if currentActivity is a branch activity then

10: Create a branch node b and add b to G
11: BS ← getBPELSegment(currentActivity)
12: Convert(BS, G)
13: Create a merge node m and add m to G
14: else if currentActivity is a loop activity then
15: BS ← getBPELSegment(currentActivity)
16: Convert(BS, G)
17: Create a cycle node c and add c to G
18: else if currentActivity is a parallel activity then
19: Create a fork node f and add f to G
20: BS ← getBPELSegment(currentActivity)
21: Convert(BS, G)
22: Create a join node j and add j to G
23: end if
24: end for

the number of basic activities, that is, O(n) where n denotes
the number of basic activities.

As an illustration, we apply the above mapping rules to
SupplyChain described in Section 5.2. The resulting BGM is
shown in Figure 3.

Fig. 3. The resulting BGM for the SupplyChain service composition

3.3 Generation of test scenarios based on BGM

The abstract BGM provides a formal test model on the basis
of which we can easily define algorithms to automatically

generate test scenarios with respect to the given coverage
criterion. As an illustration, we proposed Algorithm 2 to
generate test scenarios from BGM with respect to the weak
concurrency coverage discussed in Section 2.2.

Algorithm 2 WeakCoverage(Node start, Node end) gen-
erating test scenarios from BGM (G) with respect to weak
concurrency coverage

1: if start 6= end then
2: if start.type =“action” then
3: tmpPaths ← WeakCoverage(start.afterNodes.

get(0), end)
4: Add start node to each path in tmpPaths
5: return tmpPaths
6: end if
7: if start.type = “action” or start.type = “action”

then
8: node← getResponseNode(start.responseid)
9: for all i = 1, 2, · · · , start.afterNodes. size() do

10: tmp[i] ← WeakCoverage(start.afterNodes.
get(i), node)

11: end for
12: tmpPaths ← WeakCoverage(start.afterNodes.

get(0), end)
13: merge tmp[] and tmpPaths into resultPaths
14: return resultPaths
15: end if
16: if start.type =“cycle” then
17: startNode← the first node in the loop
18: endNode← the last node in the loop
19: tmpPaths1 ← WeakCoverage(startNode,

endNode)
20: tmpNode← the first node after the loop
21: tmpPaths2←WeakCoverage(tmpNode, end)
22: Merge tmpPaths1 and tmpPaths2 into

resultPaths
23: return resultPaths
24: end if
25: else
26: Add start node to resultPaths
27: return resultPaths
28: end if

The algorithm generates test scenarios from a start node
to an end node recursively. In the first round, the start
node corresponds to the initial node and the end node
corresponds to the end node of a BGM. After that, a start
node and an end node form a segment of BGM, and partial
test scenarios are generated according to the types of nodes:

• If the start node is a branch node or a fork node,
the BGM segment is divided into two parts. One is
from the start node (namely branch or fork node)
to the corresponding response node (namely merge
or join node) that can be specified by means of its
responseid; the other is from the first node next to
the corresponding response node to the end node.
The algorithm generates partial test scenario for each
part and then combines them to form the complete
test scenario.
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• If the start node is a cycle node, the BGM segment
is also divided into two parts. One is from the first
node in loop to the last node in loop; the other
is from the first node after loop to the end node.
The algorithm generates partial test scenario for each
part and combines them to form the complete test
scenario.

• If the start node is the end node, it means that all
nodes have been handled, and the start node is
added to the generated test scenarios.

The proposed algorithm traverses all nodes once,
so its time complexity is proportional to the number
of nodes, that is, O(n) where n denotes the number
of nodes in BGM. When the algorithm is applied to
BGM shown in Fig. 3, two test scenarios are generated: (i)
‘initial’→‘receiveInput’→‘warehouse’→‘branch’→‘Shipper’
→‘Assign’→‘Merge’→‘reply’→‘end’; and (ii) ‘initial’→
‘receiveInput’→‘warehouse’→‘branch’→‘Assign’→‘Merge’
→‘reply’→‘end’.

3.4 Constraint-based test case generation

Scenario-oriented testing is actually a path sensitive testing
approach that traverses program paths in a depth-first way.
For each program path, a set of constraints on the program’s
inputs is generated. The conjunction of those constraints is
called a path condition, which is used to avoid infeasible
paths. The constraints are of various kinds: constraint sat-
isfaction problems (e.g. “A or B is true”), simplex algorithm
(e.g. “x ≤ 5”), and others.

Typically, there are three methods for generating test
data for a specific program path [40], namely (i)symbolic
execution is a method of analyzing a program to determine
what inputs cause each part of a program to execute; this
method assumes symbolic values for inputs rather than
concrete inputs as normal execution of the program would;
(ii) genetic algorithm searches the possible inputs by means of
heuristic that mimics the process of natural selection, such
as inheritance, mutation, selection, and crossover; and (iii)
constraint solving. Among these methods, symbolic execution
is a static approach and mainly suitable for solving linear
paths, while genetic algorithm is a dynamic approach requir-
ing the execution of a program multiple times and hence
very time-consuming.

Based on the above observations, we employ constraint
solving to generate test data for a specific program path, and
particularly select Z3 [6] as constrain solver. The process
of constraint-based test case generation is illustrated in
Figure 4. Firstly, the path conditions are identified for each
test scenario. Secondly, test data are generated according to
the path conditions via constraint solver. Finally, test suites
are constructed based on the test data. The details how to
automate each step are given in the following.

• Identification of path conditions: To identify the path
condition of a specific test scenario, we need to
extract constraints that have to be satisfied in order
to run the scenario. In the context of WS-BPEL,
branch statements (such as “switch”, “if”, “elseif”,
and “else”) and cycle statements (such as “while”,
“repeatUntil”, and “forEach”) are supported; all con-
ditions of branch or cycle nodes on the path are

Fig. 4. The process of constraint-based test case generation

extracted and combined to form an expression of the
path conditions. Since WS-BPEL programs are rep-
resented as well-structured XML files, the extraction
of node’s information required in BGM is eased via
XML DOM. If the condition part of a branch or cycle
node in the test scenario is not empty, it will be added
to the path condition.

• Generation of test data: As mentioned before, a WS-
BPEL program is implemented as a composite Web
service. The WS-BPEL program is commonly de-
scribed by a WSDL file, which clearly declares the
signature of operations supported by the Web ser-
vice. Thus, one can know its input requirements
by analyzing WS-BPEL programs. It is tedious and
time-consuming to manually generate test data that
satisfy the path conditions. In this study, we turn to
constraint solver Z3 to automatically generate test
data according to the expressions of path conditions.
To do that, we first convert the path condition ex-
pression into variables that Z3 can accept. During
this step, we also simplify the expression to remove
redundant or irrelevant variables. Next, we set the
value range of each input variables by the analysis of
WS-BPEL programs. Finally, Z3 solver is executed to
obtain concrete values within the range. Test data are
then constructed by composing the concrete values
of all variables in the expression.

• Construction of test suite: A test case consists of test
scenario and its associated test data. Since test data
can be generated for each test scenario, a complete
test suite can be constructed by generating test data
for all test scenarios of the WS-BPEL program.

4 PROTOTYPE TOOL

We have developed a prototype tool to automate all the
steps of test case generation in the proposed approach. It
has the following main features: (i) Automatic generation
of a set of test scenarios with respect to a coverage crite-
rion; (ii) Automatic generation of a scenario-oriented test
suite whose size is adjustable. Furthermore, it provides an
integrated test execution and verification mechanism for
WS-BPEL programs: it aids the execution of the WS-BPEL
program with generated test cases and the verification of
each tests by comparing actual outputs with expected ones.

The tool was developed using Java and its implemen-
tation consists of about 3500 lines of codes. Figure 5 de-
picts the architecture of the tool. The tool consists of three
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main components, namely Test Scenario Generation, Test Data
Generation, and Execution and Verification. Inside Test Sce-
nario Generation, BPEL Parser is responsible for parsing WS-
BPEL programs; Converter converts WS-BPEL programs into
BGMs implementing the mapping rules in Section 3.2; Sce-
nario Generator implements the algorithms of generating test
scenarios with respect to the given concurrency coverage
criteria. Inside Test Data Generation, WSDL Parser is respon-
sible for parsing the WS-BPEL programs; Path Analyzer is
responsible for constructing of path conditions of test sce-
narios; Data Generator is responsible for generating test data
based on path conditions which can drive the execution of
the given test scenarios, and its implementation is based on
the integration of Z3. Inside Execution and Verification, Proxy
is responsible for executing tests using test suite, and is
implemented by integrating ActiveBPEL, a well recognized
WS-BPEL engine [1]; Verifier is responsible for verifying test
results with expected outputs and producing a test report.

Note that the prototype was developed based on the
general WS-BPEL standard and thus is not restricted to
specific WS-BPEL systems. To equip the prototype with
a good adaptability, an interface was reserved to further
integrate Apache ODE [2], an open source WS-BPEL engine.
More details on the tool is available in [40]. This prototype
tool was used in the experiments that evaluate the fault-
detection effectiveness of the proposed approach, which is
going to be described next.

Fig. 5. The architecture of the prototype tool

5 EMPIRICAL STUDY

In this section, we reported on an empirical study where two
real-life WS-BPEL programs are used as subject programs,
mutation analysis was applied to quantitatively measure the
fault-detection effectiveness, and the tool mentioned above
was used to aid the experiments.

5.1 Research Questions

In this study, we attempt to answer the following questions.

• RQ1: Is the proposed scenario-oriented approach ap-
plicable to WS-BPEL programs?
In this study, we selected two real-life representative
WS-BPEL programs as subject programs, and used

the proposed approach and prototype tool to test
these two programs.

• RQ2: How effective is the proposed scenario-oriented
approach in detecting faults in WS-BPEL programs?
The fault-detection effectiveness is a major metric
for evaluating a testing method. Normally, the more
faults a testing method can detect, the more effective
it is. In this study, we evaluate the fault-detection
effectiveness of the scenario-oriented approach via
mutation analysis [8].

• RQ3: Is the proposed approach better than random
testing?
In this study, we compare the fault-detection ef-
fectiveness of the proposed approach with that of
random testing, which is widely adopted in practice.

5.2 Subject programs

SupplyChain [5] is a WS-BPEL process in the management
system of supply chain. Figure 6 illustrates its flowchart
labeled with the statement identifiers. It receives three input
messages from customers, which are NameProduct, Amount-
Product, and WarehouseResponse. Customer sends Retailer the
booking request, based on which Retailer sends Warehouse
the supply request. Warehouse will response to Retailer ac-
cording to the stock. After receiving the response, Retailer
will react as follows: If Warehouse replies “yes” (that is,
the stock is enough), Retailer will send shipping request to
Shipper, who will then confirm by sending “yes” to Retailer;
if Warehouse replies “no” (that is, the stock is not enough),
Retailer will send the Customer the message “Warehouse can-
not receive the bill” and cancel the booking. The WS-BPEL
service composition for SupplyChain is relatively simple,
involving three Web services.

Fig. 6. The BPEL flowchart of the SupplyChain process

SmartShelf [17] receives an input message called com-
modity, which is composed of three fields, namely name,
amount, and status. The process returns an output message
which is composed of quantity, location, and status. Figure 7
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illustrates its flowchart labeled with the statement identi-
fiers. After receiving the input message, the process com-
pares it with available shelf items and decides whether the
amount, location and status of the available items meet the
expected requirements. If the amount of available goods on
shelf is larger than the amount of commodity, the quantity
of message is “Quantity is enough”; otherwise, it transfers
goods from warehouse. If the amount of available goods
in warehouse is larger than the amount of commodity, the
quantity of message is “Quantity is enough”; otherwise, the
quantity of message is “Warehouse quantity is not enough”.
If the name of commodity is not the same as the name of
available goods on shelf, it rearranges the goods and returns
“Rearrange is done” as the location of message; otherwise
it returns “Location is OK”. If the status of commodity is
larger than the available status of shelf, it sends status to
warehouse and returns “Status is fine now” as status of
message; otherwise, it returns “Status is ok”. The above
comparisons are done in parallel. The WS-BPEL service
composition for SmartShelf is complex and involves the
interactions among 14 Web services. It behaves as a typical
concurrent program and hence is very representative.

5.3 Mutant generation

Mutation analysis [8] is widely used to assess the adequacy
of a test suite and the effectiveness of testing techniques.
It applies some mutation operators to seed various faults
into the program under test, in order to generate a set of
variants, namely mutants. If a test case causes a mutant to
show a behavior different from the program under test, the
mutant is said to be “killed”.

In this study, we employ mutation analysis to validate
the effectiveness of our approach. Though a set of mutation
operators was proposed WS-BPEL service compositions [9],
[11], [12], only five types of mutation operators are applica-
ble and thus were selected in our experiments: ERR refers
to “replacing a relational operator by another of the same
type”, AIE refers to “removing an else if element or an else
element of an activity”, ACI refers to “changing the value
of the createInstance attribute from ‘yes’ to ‘no”’, ASF refers
to “replacing a sequence activity by a flow activity”, and
ASI refers to “exchanging the order of two sequence child
activities”. In this study, we manually seeded faults into the
WS-BPEL programs, because there was no practical tool for
this purpose when we started this work. For SupplyChain,
we have generated totally 11 mutants; while 26 mutants
were generated for SmartShelf. These mutants are sum-
marized in Appendix A. Note that among the 26 mutants
for SmartShelf, the mutant #22 is equivalent to the basic
program (that is, it always shows the same behavior as the
base program), and thus is excluded from the experiment.

5.4 Variables and measures

5.4.1 Independent variables

The independent variables in our experiment are the test
case generation techniques. A natural choice for the variable
is our scenario-oriented test case generation technique for
WS-BPEL service compositions, as described in Section 3. In
addition, we used a random testing method as the baseline

technique for comparison. In the random testing method,
the input parameters are first identified for each program;
next, a value range is defined for each input parameter; a
concrete value is then randomly generated from the corre-
sponding value range according to the uniform distribution;
finally, a test case is constructed by combining the random
values.

5.4.2 Dependent variables

We employ two metrics, namely mutation score (MS) and
fault discovery rate (FDR), to measure the effectiveness of our
approach. MS is defined as

MS(p, TS) =
Nk

Nm −Ne

, (1)

where p refers to the program under test, TS refers to
the test suite used for testing the mutants, Nk refers to
the number of mutants killed by TS, Nm refers to the
total number of generated mutants, and Ne refers to the
number of equivalent mutants. MS intuitively indicates the
capability of a test suite killing mutants. The larger the MS
is, the more effective a test suite is in killing mutants for the
given program.

FDR is defined as

FDR(m, TS) =
Nf

NTS

, (2)

where m refers to a certain mutant, TS refers to the test
suite, Nf refers to the number of test cases that can kill
m, and NTS refers to the total number of test cases in TS.
Intuitively speaking, FDR indicates how effective a test suite
is in killing a certain mutant. The larger the FDR is, the more
effective a test suite is to kill the given mutant.

5.5 Experiment Environment

The experiments were conducted in the environment of
MS Windows 7 with 64-bits, a dual processor of 2.30 GHz,
and 2 GB memory. All Web services were implemented in
Java language. WS-BPEL programs were developed using
Eclipse 4.3.0 and deployed on Apache Tomcat 5.5.33. The
prototype tool is based on Z3 4.3.0 for Windows 64 bits and
ActiveBPEL 5.0.2.

5.6 Test case generation and data collection

In the experiments, each testing strategy (either our
scenario-oriented technique or the random generation
method) was used to generate four different test suites for
each object program. In the test suites, each test scenario
was associated with five, ten, twenty, and fifty test cases.
In total, SmartShelf and SupplyChain have 12 and 2 test
scenarios, respectively. Therefore, the four test suites for
SmartShelf will have contain 60, 120, 240, and 600 test cases,
respectively; while the suites for SupplyChain contains 10,
20, 40, and 100 test cases, respectively. In the rest of the
paper, we will use TS-60, TS-120, TS-240, TS-600 to represent
the test suites for SmartShelf, while TS-10, TS-20, TS-40, TS-
100 for SupplyChain.

All test cases were used to test each mutant (except
Mutant #22 of SmartShelf, which is an equivalent mutant).
The output of the mutant will be compared with that of the
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Fig. 7. The BPEL flowchart of the SmartShelf process

base program, which, in this study, was regarded as a test
oracle. The testing result (“pass” or “fail”) will be recorded
to the later calculation of FDR and MS.

5.7 Threats to Validity

The threat to internal validity mainly relates to the im-
plementations of the two testing techniques (our scenario-
oriented technique and the random testing method) under
this study. The programming work was conducted by sev-
eral individuals, and was examined by different personnel.
We are confident that the testing techniques were correctly
implemented.

The threat to external validity is concerned with the
selection of object programs. Though only two WS-BPEL
service compositions were used in our experiment, they
show consistent results (as observed in the next Section 6).
Having said that, we cannot say that the similar results will
be exhibited on other service compositions.

The threat to construct validity is in the measurements
used in this study. Mutation score has been popularly
used in the context of mutation analysis for measuring
the fault-detection effectiveness of many testing techniques.
The other metric, fault discovery rate, is also natural and

straightforward to reflect how effective a test suite is in
detecting a certain fault.

The most obvious threat to conclusion validity is that we
only have a limited number of experimental data. For each
subject program, tens of mutants were constructed. For each
testing technique, four test suites were generated. Though
all the experimental results are consistent, we cannot guar-
antee that our conclusion is applicable in a more general
sense.

6 EXPERIMENTAL RESULTS

In this section, we report on the experimental results and
answer the research questions posed in Section 5.1.

6.1 Results on SupplyChain

The values of FDR on the 11 mutants of SupplyChain are
summarized in Figure 8 (Original experimental data are
available in Appendix B).

From Figure 8, we can observe that the test suite gen-
erated by our approach show different fault-detection ef-
fectiveness on different mutants. The effectiveness is also
varying with different suite sizes. Such observations are
intuitively expected as in the context of software testing;
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Fig. 8. FDR on SupplyChain

there does not exist a “golden” test suite that is effective in
detecting any type of fault. For the fault types ACI, ASF,
and ASI, our approach has fairly consistent performance
on different suite sizes. However, on the fault types ERR
and AIE, we have observed that the effectiveness shows
a large variation. In other words, it is relatively uncertain
how effective our approach is to detect these two types of
faults. Thus, it is recommended that one should pay much
attention to ERR and AIE when designing and testing WS-
BPEL programs.

In addition, our scenario-oriented technique outper-
forms random testing for some mutants, while random
testing performs better for other mutants. However, we can
still observe that FDR of the scenario-oriented technique
has lower variation than that of random testing. In other
words, our scenario-oriented technique is more reliable than
random testing method.

With regard to MS, all four test suites generated by the
scenario-oriented technique achieve an MS of 100%, that is,
they can kill all the mutants. On contrary, random testing

only has an MS of 90.9% (all four random test suites can-
not kill the mutant M3). Generally speaking, our scenario-
oriented technique is more effective than random testing in
detecting various faults.

6.2 Results on SmartShelf

The values of FDR on the 25 mutants of SmartShelf are
summarized in Figure 9 (Original experimental data are
available in Appendix B).

Our observation based on Figure 9 is similar to those for
SupplyChain: The fault-detection effectiveness varies with
different mutants, different test suite sizes, and different
testing techniques. Our approach delivers consistent effec-
tiveness on the fault types ACI, ASF, and ASI. Nevertheless,
the performance of our approach on the fault types ERR
and AIE also shows a large variation, which implies that
our approach is not steady on these types of faults, and thus
much attention should be paid on them in testing. Moreover,
the scenario-oriented technique is a more reliable method
than random testing.
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(c) TS-240
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Fig. 9. FDR on SmartShelf

With regard to MS, its value is always 100% on all
four test suite sizes generated by our scenario-oriented
technique, while random testing can only achieve an MS
of 88% (it could not kill three mutants). It implies that our
approach is much more effective than random testing in
detecting all seeded faults.

6.3 Answers to Research Questions

Based on the above experimental results and observations,
we now answer the research questions:

1) Answer to RQ1 (Applicability): The proposed ap-
proach has been successfully employed to test two
real-life WS-BPEL programs. Most steps of the pro-
posed approach in the experiments have been au-
tomated by the prototype tool. The proposed ap-
proach and prototype tool significantly reduce test-
ing efforts, but also make it possible on-the-fly and
on demand testing of WS-BPEL programs.

2) Answer to RQ2 (Fault-detection effectiveness): From
the experimental results, the proposed scenario-

oriented technique shows an MS of 100%, which
indicates that generated test suites can detect all
seeded faults for both WS-BPEL programs; and the
proposed technique also shows a high FDR for most
cases, which means that generated test suite is very
sensitive to detect faults in WS-BPEL programs.
Furthermore, our approach becomes more efficient
with the aid of the tool.

3) Answer to RQ3 (Fault-detection effectiveness com-
parison): The experimental results show that our ap-
proach and random testing have a comparable FDR,
while the former has a higher mutation score. In
addition, the smaller variation of FDR than random
testing implies that our approach is a more reliable
test technique for WS-BPEL programs.

7 RELATED WORK

WS-BPEL provides a mechanism to build flexible business
processes by assembling loosely coupled Web services. Ad-
equately and effectively testing WS-BPEL service composi-
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tions is necessary when they are used to execute mission-
critical business processes. Some efforts have been reported
to test service compositions [3], [23]. We next describe
several closely related studies on testing WS-BPEL service
compositions.

WS-BPEL service compositions are a kind of concurrent
programs with SOA features. To test such concurrent pro-
grams, people usually turn to the reachability analysis [31].
Fanjul et al. [15], [16] proposed a model based approach
to testing WS-BPEL processes. In their approach, SPIN is
employed as a model to generate the test suite for WS-
BPEL programs. A transition coverage criterion is employed
to select test cases. Since the approach needs to model all
possible states of WS-BPEL specifications, it encounters the
state space explosion problem when service compositions
are complex and thus has limits in practice. Estero-Botaro
et al. [10] proposed a test case generation framework for
WS-BPEL programs. Their framework is based on a genetic
algorithm which generates test suites for mutation testing.
To maximize the mutation score of a test suite, the proposed
genetic algorithm needs to execute WS-BPEL programs un-
der test many times, which is very time-consuming and
thus not efficient. Unlike their approach, our approach uses
the adequacy criteria based on the structure of WS-BPEL
programs and constraint solving techniques.

Yuan et al. [37] proposed a graph-search based test
case generation method for WS-BPEL programs. In their
approach, an extended control flow graph (BFG) is de-
fined to represent WS-BPEL programs, and then traverse
the BFG model to generate concurrent test paths. Test
data are generated using a constraint solving method. A
XML schema is employed to represent test cases, which
are abstract and thus not executable. No experiments are
reported on the effectiveness of their approach. Similarly,
Yan et al. [36] proposed an extended control flow graph
(XCFG) to represent WS-BPEL programs, and sequential
test paths are generated from XCFG. A constraint solver is
employed to construct test cases for the generated paths.
A case study is reported where 14 sequential paths and 57
combined paths are generated. Only 9 paths are feasible.
For the above approaches, experimental results in terms
of fault detection capability are missing. Our approach is
similar to the two approaches in that both our approach
and the above approaches consider test case generation by
means of control flows of WS-BPEL programs. Unlike the
above approaches, our approach can generate executable
test cases on demand and the fault detection capability of
our approach is also reported by applying it to two real-life
WS-BPEL programs.

Ni et al. [20] recently presented an approach to gener-
ating message sequences for testing WS-BPEL programs.
Their approach first models the WS-BPEL program under
test as a message-sequence graph (MSG), then generates
message sequences based on MSG, and finally generates
test cases based on MSG. Experiments were performed
with six small WS-BPEL programs and the fault-detection
effectiveness of their approach was compared with the other
techniques. Our approach and their approach explore test
case generation for WS-BPEL programs from different di-
rections: The former does this from test scenarios, while the
latter from message sequences. On the other hand, both test

scenarios and message sequences actually represent a logic
path of BPEL programs. Finally, it is not clear to what extent
test case generation in their approach can be automated;
our approach has been fully automated with the aid of the
prototype tool. This is particularly desired for the on-the-fly
testing of BPEL programs.

Zhang et al. [38] proposed a model-based approach to
generating test cases for WS-BPEL programs. The approach
transforms Web service flows into UML 2.0 activity dia-
grams and then generates test cases from the activity dia-
gram. The approach is very close to our previous work [26],
[30], [39], in which we proposed a model-based approach
to automatically generating a set of test scenarios for UML
activity diagram programs. Unlike the above approaches
which generate abstract test cases from a formal or semi-
formal representation, our approach presented in this pa-
per generates directly executable test cases and supports
different concurrency coverage criteria when generating
test scenarios. Furthermore, we developed a prototype tool
to automate the proposed approach and conducted case
studies on two realistic WS-BPEL programs to show the
effectiveness of generated test scenarios and test suite.

8 CONCLUSION AND FUTURE WORK

In this paper, we present a scenario-oriented testing ap-
proach to address the challenges related to ensuring the
quality of WS-BPEL service compositions. This approach
first converts WS-BPEL programs into an abstract test
model, and test scenarios are then automatically generated
from the model with respect to some coverage criteria.
For the derived test scenarios, test suites can be obtained
automatically. We developed a tool to automate our ap-
proach, and an empirical study was conducted to demon-
strate how the approach can be applied to real-life service
compositions. Experimental results validate the feasibility
and effectiveness of the approach.

Using our approach and the prototype, testers can ef-
fectively test WS-BPEL service compositions. In the context
of SOA, service compositions may face frequent changes,
and concrete services are likely to be bound at runtime.
Our approach nicely cater for the requirements for testing
SOA software in that (1) it supports on demand testing
on WS-BPEL service compositions, (2) it saves test efforts
significantly through automatic generations of test cases,
(3) it can be adapted to the run-time binding because it
supports on-the-fly tests. In this sense, our approach does
address the challenges caused by the unique features of SOA
software.

In our current work, we have achieved the full automa-
tion of test case generation, which is a significant improve-
ment from the preliminary study [28]. In the future work, we
will investigate how to automate the process of test result
verification. Metamorphic testing [19] is a promising ap-
proach in this field, and we have conducted some studies on
applying this approach into the testing of Web services [29].
It is worthwhile to combine the current work with these
previous studies, with the purpose of automating the whole
testing procedure for service compositions.

It should be noted that our approach is not restricted to
the specific platform. WS-BPEL was designed as a platform-
independent language, which make it possible for different
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organizations to interconnect their services. Though only
two subject programs were used in our empirical study,
it does not necessarily imply that our approach is only
applicable to them. Having said that, larger-scale empirical
studies on different platforms are still required to reinforce
the applicability and effectiveness of our approach. In the fu-
ture work, we will include more different subject programs,
and evaluate our approach on the mutants that are automat-
ically (instead of manually) generated by some tools [13].
Moreover, it will be interesting to investigate whether and
how our approach can be adjusted and extended to test
other types of services (such as big data services) and service
compositions (such as mashups). Since the main compo-
nents of our approach, namely, scenario-oriented testing,
Z3 constraint solver, etc., are general techniques rather than
specific to WS-BPEL, such adjustment and extension should
not be a very difficult task and would be a promising
research direction.
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