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ABSTRACT

Automated software testing aims to detect errors by produc-
ing test inputs that cover as much of the application source
code as possible. Applications for mobile devices are typ-
ically event-driven, which raises the challenge of automat-
ically producing event sequences that result in high cover-
age. Some existing approaches use random or model-based
testing that largely treats the application as a black box.
Other approaches use symbolic execution, either starting
from the entry points of the applications or on specific event
sequences. A common limitation of the existing approaches
is that they often fail to reach the parts of the application
code that require more complex event sequences.

We propose a two-phase technique for automatically find-
ing event sequences that reach a given target line in the
application code. The first phase performs concolic execu-
tion to build summaries of the individual event handlers of
the application. The second phase builds event sequences
backward from the target, using the summaries together
with a UI model of the application. Our experiments on
a collection of open source Android applications show that
this technique can successfully produce event sequences that
reach challenging targets.
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1. INTRODUCTION
Mobile applications are often structured as collections of

screens where user interactions and other events trigger tran-
sitions from one screen to another and cause updates of the
internal application state. To test such applications, the de-
velopers face the challenge of constructing test inputs that
exercise the functionality and cover all reachable applica-
tion code. A test input consists of a sequence of events,
each with some parameters depending on the kind of event,
for example, coordinates for click events and string values
when text fields are filled in. In contrast to other kinds
of software, a key challenge in mobile application testing
is managing the explosion in the number of possible event
sequences [3]. Since it can be difficult and tedious to con-
struct these test inputs we wish to automate the work. We
focus on Android, which has become the most widely used
platform for mobile software. More specifically, our goal is
to improve automated testing for Android applications that
are not computationally heavy but may have complex user
interaction patterns.

One popular technique is black-box random testing or
crawling [2, 13, 15]. Other related approaches are based
entirely on abstract models of the applications [21, 24] or
only involve the application code for extracting, for example,
available event handlers and basic information on how they
access shared state [4, 18]. Common to these approaches is
that they cannot effectively reach branches of the application
code that are highly constrained by the event parameters. In
contrast, symbolic execution, which analyzes the application
code in more detail, has shown to be a powerful approach to
find appropriate event parameters. However, most existing
techniques that do apply symbolic execution are not able to
effectively construct event sequences that consist of many
events. For example, the experiments reported by Anand et
al. [3] are limited to event sequences of length 4. Others,
for example, Mirzaei et al. [20] use symbolic execution, but
only for deriving the event parameters, not for the sequenc-
ing of events. As a consequence, these existing approaches
are not able to effectively reach parts of the application code
that require many events and with highly constrained event
parameters.

We propose a targeted approach to generation of event
sequences. Given a target location in the application code,
for example, a branch that is not reachable with the exist-
ing automated testing techniques, we wish to find an event
sequence that leads from the application entry to the target.
Note that it may be easy to reach the entry of an event han-
dler that contains the target but significantly more difficult



to reach the target itself, since it may be guarded by condi-
tionals that depend on events earlier in the event sequence.

Our approach is inspired by the work of Ma et al. who
consider the line reachability problem for C programs [17].
They present an algorithm that works backward in the call
graph from a given target, using traditional forward sym-
bolic execution of each function, until it finds a feasible path
from the start of the program. Call graphs of C programs
resemble finite-state UI models of event-driven applications,
however with the important difference that calls in a C pro-
gram are controlled by the program itself whereas navigation
in event-driven applications is largely controlled by the user.
This means that a simple backward search toward the ap-
plication entry would likely lead to an explosion of different
paths to consider. To address this problem, we draw inspira-
tion from another source: the model-based testing technique
by Arlt et al. [4]. In model-based testing of event-driven ap-
plications, test inputs are constructed from a finite-state ab-
straction of the user interface behavior that shows how the
event handlers are connected. In the technique by Arlt et
al., the conventional UI model is augmented by event depen-
dence information that for each pair of event handlers gives
an indication of how much state may be written by one of
them and read by the other. This information provides the
basis for construction of abstract event sequences, which are
subsequently extended to executable event sequences using
the UI model. In our approach, when we search backward
through the event handlers from the target, we use this idea
of exploiting UI models and event dependence information
to narrow the search space – although with some fundamen-
tal differences that we explain in Section 8. For the kind
of UI models we use, each state represents a combination of
registered event handlers, and transitions correspond to ex-
ecution of event handlers. Previous work has shown that it
is often possible to infer such UI models automatically [27].

Combining these ideas, our approach to targeted event
sequence generation works in two phases:

1) We first preprocess the application by performing con-
colic execution [11] of each event handler to infer path condi-
tions and symbolic states for its paths. The result is a sum-
mary for each event handler, reminiscent of the use of func-
tion summaries in compositional symbolic execution [10].
This phase is independent of the selected target.

2) Given a target location in the application code, the
main phase uses the event handler summaries together with
a UI model of the application to build a concrete event se-
quence that leads from the entry state of the application to
the target. This is structured as a worklist algorithm where
each worklist item consists of a path through one or more
event handlers ending at the target. Each path is extended
incrementally by searching for an event handler that may
be triggered in front of the path to satisfy some of the con-
straints in the path condition, following the idea from Ma
et al. [17]. This search uses the UI model and the symbolic
states to bypass event handlers that are likely not relevant
for the path condition. When candidate event sequences are
found, we compose the path summaries and check satisfia-
bility. This process continues until the entry state of the UI
model is reached.

Our contributions can be summarized as follows:

• We present a framework for automated testing of event-
driven applications that combines concolic execution
and UI models for targeted generation of test inputs to

reach application code that may require many events
and with highly constrained event parameters. An im-
portant part of this approach is how concolic execution
is applied to individual event handlers and the result-
ing summaries are composed for reasoning about event
sequences. Another central idea is to extract informa-
tion about data dependence between event handlers
from the concolic execution and exploit this to narrow
the search space.

• The framework can be tuned by the prioritization mech-
anism of the worklist. We suggest three example pri-
oritization heuristics that consider different aspects of
how execution of event handlers affect application state.

• We provide an experimental evaluation involving five
Android applications. Our prototype implementation
uses a novel approach to concolic execution that uti-
lizes the debugging interface of the Android emulator.
The experimental results show that the approach can
successfully cover challenging targets that are beyond
the reach of random testing and conventional model-
based test sequence generation.

Targeted generation of application inputs can be useful
not only for maximizing coverage in automated testing but
also for reproduction of reported errors and evolution of test
suites.

Although our work is motivated by practical challenges in
Android application development and our experimental tool
is built for this specific platform, we believe that our ap-
proach may also be applicable to other kinds of event-driven
programs, such as, JavaScript web applications and desktop
GUI applications. However, our approach is particularly
suitable for mobile applications, where event sequences are
often longer and event handlers are smaller than in web or
GUI applications.

2. MOTIVATING EXAMPLE
In this section we introduce a simple Android application,

TaxCalculator , that we use as a motivating example to il-
lustrate different aspects of our approach. TaxCalculator is
a personal tax calculator used to compute the income tax

(a) income (b) result

Figure 1: Two screens in TaxCalculator : (a) the income en-
try screen and (b) the result screen displaying the entered
income tax, deductions, and resulting tax.
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Figure 2: UI model of a part of TaxCalculator .

liability for a given income amount. Figure 1 shows screen-
shots illustrating its simplest use case.

On the entry screen, denoted income, the user enters an
income amount through a numeric keypad. Clicking the Cal-
culate button takes the user to a result screen, denoted re-

sult, which displays the calculated tax amount. By default
this is a fixed percentage of the income amount. Figure 2
shows a part of the UI model that captures the relevant event
sequences in this application. Intuitively, the states denote
principal GUI screens and the transitions denote user ac-
tions, such as, clicks on buttons or changes to text fields.
For example, e01, e

1

1, . . . , e
9

1 denote a click on the 0. . . 9 but-
tons in the numeric keypad, e2 is a click on Calculate, and
e3, e6, and e9 are clicks on the device’s back button (in the
lower left corner on the screen).

The default tax calculation can be modified by optionally
specifying an income tax deduction amount that is deducted
from the income before calculating the tax. To do this, the
user must press the device’s menu button (in the top right
corner of the screen), corresponding to e4 in the UI model, to
get to the menu screen, and from there click a Settings wid-
get, e5, to access the preferences screen, pref. That screen
contains a radio button for toggling tax deduction calcula-
tion. The user needs to click this button, e7, and then click
another button, e8, which opens a dialog box denoted by
deduct. Here, the user can specify the deduction amount
via a text field, e10. The value being entered here is available
as an event parameter, which is abstracted away in the UI
model. The back button can then be used to navigate back
to pref and further to income, corresponding to e9 and e6,
respectively. The user can now enter the income amount
and click Calculate to perform the modified tax calculation.

Figure 3 shows a fragment of code from TaxCalculator ,
used for performing the tax calculation. It is executed each
time the user clicks Calculate on the income screen. This
code, though simple, is not trivial to test. Specifically, the
calculation contains an if-statement with the predicate
taxable < 0. In order to reach line 8 the application must
be configured to take tax deduction into account, and the
tax deduction amount must be greater than the income en-
tered. The shortest sequence of user actions that can fulfill
this constraint contains 8 events: e4, e5, e7, e8, e10, e9, e6, e2.
Moreover, the branch on line 7 depends on the text value
entered at e10. In other words, reaching the target requires
not only a long event sequence but also specific values in
event parameters earlier in the sequence. Such a combina-
tion of requirements on event sequences and event param-
eters makes it difficult for existing automated testing tech-
niques to reach the target line.

1 income = this.appState.enteredAmount ;
2 deduction = 0;
3 if (Settings.getEnableTaxDeduction ()) {
4 deduction = Settings.getTaxDeduction ();
5 }
6 taxable = income - deduction;
7 if (taxable < 0) {
8 taxable = 0; // example target
9 }

10 tax = taxable * TAX_RATE;
11 result = income - tax;

Figure 3: Snippet from the onCreate method in the
TaxResult activity in TaxCalculator .

In our approach, we start at the given target at line 8.
Concolic execution infers a path constraint that involves
three variables in the application state: the income value,
the deduction value, and the flag that controls whether tax
deduction is enabled. It also infers event handler summaries
that show which events may influence these variables. This
information is then used when constructing event sequences.

3. UI MODELS FOR EVENT-DRIVEN

APPLICATIONS
The literature on automated testing contains many differ-

ent views on what constitutes an event-driven application.
This section establishes the essential terminology that we
use in the description of our proposed approach.

We view an event-driven application, in particular, an An-
droid application, as a collection of event handler methods.
During execution, event handlers can be attached to GUI
widgets. An event handler registration is a triple of a GUI
widget object, an event kind (click, text input, etc.), and an
event handler method that has been attached to the wid-
get. At any point during execution of the application we
thus have a set of such event handler registrations. For sim-
plicity, we assume that a single main method acts as entry
point to the application for setting up the initial event han-
dler registrations. The application is then driven by a se-
quence of events, each triggering the execution of an event
handler from the current set of event handler registrations.
Events with no corresponding event handler registration are
ignored. We focus on user events, which represent a human
user’s interaction with the application, but our approach is
equally applicable to system events that arise, for example,
when new activities are created or paused. Some events are
parameterized, for example, to indicate coordinates for click
events or string values for text field alterations.

Our approach falls under the category of model-based test-
ing. It operates on a UI model of the behavior of the graph-
ical user interface of the Android application under test.
Figure 2 shows a graphical view of the UI model for our mo-
tivating example. Formally, a UI model M is a finite-state
machine denoted by a 4-tuple M = (S, s0, E, T ). Here, S
is a finite set of abstract states representing different GUI
screens, where s0 ∈ S is the initial state that describes the
opening screen after the main method has been executed.
E is a finite set of event handler registrations, as defined
above, and T ⊆ S × E × S is a transition relation, corre-
sponding to the edges in the graphical view. Each abstract
state s ∈ S is uniquely characterized by its set of event han-
dler registrations defined by Rs = {ei ∈ E | (s, ei, ) ∈ T}.
We sometimes refer to event handlers and event handler reg-



istrations simply as events when the meaning is clear from
the context.

A sequence of events 〈e1, . . . , en〉 is consistent with a se-
quence of states p0, . . . , pn where each pi ∈ S if for each
i = 1, . . . , n, either (pi−1, ei, pi) ∈ T or ei /∈ Rpi−1

. The
latter case accounts for ignored events. In this way, every
given sequence of events gives rise to a non-empty set of
state sequences through M.

A UI model is sound if it represents an over-approximation
of the possible behavior of the application. More precisely,
for any sequence of events e = 〈e1, . . . , en〉, let Re denote the
set of event handler registrations that exist after executing
e on the concrete application starting from its entry state.
For M to be sound we now require that there exists a state
sequence p = p0, . . . , pn that is consistent with e and where
p0 = s0 and Rpn = Re. Using an unsound UI model may
prevent exploration of valid event sequences. Conversely,
over-approximation could suggest infeasible event sequences,
however, such sequences will be rejected by our algorithm,
which tests candidates using concrete execution.

4. APPROACH OVERVIEW
Given an Android application under test, a UI model of

the application, and a set of targets, the objective of our
technique is to generate a test case for each target, that is,
an event sequence that brings the application from its ini-
tial state to the target. Such targets, which can be lines or
branches in the application code, arise in a number of differ-
ent scenarios, as discussed in Section 1. The UI model could
be specified manually or generated automatically through
one of the model generation techniques proposed in the lit-
erature (see Section 8).

The motivating example in Section 2 demonstrates that
reaching a target generally requires execution of a series of
event handlers that mutate the program state, sometimes
based on strings or numbers provided by the user in the form
of event parameters, and navigation between these event
handlers, ultimately executing the event handler that con-
tains the target. More generally, our study of Android ap-
plications suggests that executions exercising specific targets
often have a particular structure:

• There exists a small set of events, which we call anchor
events, that are responsible for setting the necessary
program state for a target to be executed.

• There is a disjoint set of events used only for connect-
ing the initial state, the anchor events, and the target.
These connector events do not affect the program state
used at any anchor event or at the target.

For example, in the test case 〈e4, e5, e7, e8, e10, e9, e6, e2〉 for
the target at line 8 in Figure 3, e7 and e10 are the anchor
events, e4, e5, e8, e9, and e6 are connector events, and e2
exercises the target.

These observations motivate the key idea of our target
event sequence generation algorithm. We identify a series
of anchor events in reverse chronological order, starting at
the target. The anchor events guide the search for a feasible
test case by focusing on identifying events and paths in the
application that are indispensable for reaching the target.
In effect, this prunes away many sequences that can never
reach the target. Further, we need to find suitable connec-
tor events to connect the initial state with the sequence of

anchor events to the target. Thus, our approach works back-
ward from the target, iteratively identifying anchor events
and connector events, extending a partial sequence, until the
initial state is reached.

We use symbolic analysis of the application source code
to identify anchor events, build feasible paths exercising the
target, and compute appropriate values for user event pa-
rameters. The UI model is used as the basis for selecting
suitable connector events to connect the initial state, the
anchor events, and the targets. To build a test case exer-
cising a target, our analysis reasons at the level of individ-
ual execution paths within the event handlers. We refer to
an execution path in an event handler that is triggered by
an anchor event as an anchor path (or simply, an anchor).
Similarly, an execution path for a connector event handler
is called a connector path (or simply, a connector).

We note that the same event handler may be considered
many times in the construction of a test case. To exploit
this, we compute a symbolic summary of each event handler,
once, in a target agnostic manner. This is a key ingredient of
our approach. The construction of test cases now uses these
summaries, without considering the actual application code.

Our overall approach is thus divided into two phases: a
target agnostic symbolic summarization phase, followed by
a sequence generation phase that searches for a test case for
each target:

Symbolic Summarization This phase operates on the ex-
ecutable Android application. Symbolic analysis is ap-
plied to each event handler in turn to produce an event

handler summary characterizing its behavior. This
summary ideally includes necessary data and control-
flow information about every execution path in the
event handler code.

Sequence Generation This phase uses the event handler
summaries generated in the first phase, along with the
UI model to find a test case for a given target. In this
search, the UI model and event handler summaries are
used both to limit the search space, and as guides for
the search space exploration order. The event sequence
generation algorithm starts from the target and builds
a sequence of events backward until it reaches the ini-
tial state, combining individual paths from the event
handler summaries compositionally. In order to avoid
false positives, candidate event sequences are executed
concretely, using the executable application.

The algorithms for these two phases are presented in the
following sections.

5. SYMBOLIC SUMMARIZATION
The symbolic summarization phase preprocesses the ap-

plication code to produce a symbolic characterization, called
an event handler summary, for each event handler. The
event handlers can be located either using the UI model or
by a simple static analysis of the Dalvik bytecode. An event
handler summary is a set of path summaries, one for each
execution path within the event handler code. Execution
paths and their summaries encompass not only the event
handler method itself but also other methods that may be
called directly or indirectly from that method. A path sum-
mary W for a path P is a symbolic representation of the
behavior of P , as in classical symbolic execution [16].



1: function sequenceSearch(target , summaries , model)
2: worklist = initialize(target , summaries,model)
3: while worklist is not empty do

4: partialSequence = dequeue(worklist)
5: extendedPartialSequences = empty list of sequences
6: for anchor in anchors(partialSequence , summaries , model) do
7: for path in paths(anchor , partialSequence , summaries , model) do
8: newPartialSequence = combine(anchor , path , partialSequence)
9: if isComplete(newPartialSequence) then
10: potentialTestCase = extractTestCase(newPartialSequence)
11: if reachesTarget(potentialTestCase , target ) then
12: return potentialTestCase

13: end if

14: end if

15: append(extendedPartialSequences , newPartialSequence)
16: end for

17: end for

18: enqueue(worklist , extendedPartialSequences )
19: prioritize(worklist , extendedPartialSequences )
20: end while

21: return no test case found

22: end function

Figure 4: The event sequence generation algorithm. The input target denotes the target of interest, summaries is the set of
all handler summaries produced in the symbolic summarization phase, and model is the UI model of the application. The
algorithm either returns a test case that reaches the target, returns that it is unable to find a test case, or it diverges.

More formally, a path summary is denoted by a triple
W = (pc, σ, τ ), where pc is the symbolic path condition of
that path, σ is the symbolic state at the end of the execution
of P , and τ is a log of bytecodes executed in the path, which
serves as a unique signature of the path itself. The symbolic
state, σ, is a map from variables in the application state
to symbolic expressions, such that σ(v) represents the value
of v at the end of the execution of P . The values of event
parameters and object fields are treated symbolically.

Event handler summaries can be computed by performing
concolic execution [11]. Each iteration of concolic execution
symbolically explores one path and hence computes its path
summary. In this way, both the state that is shared between
event handlers and the event parameters are treated symbol-
ically at the entry of the event handler, so the event handler
summary characterizes the event handler in its most general
environment, independent of the preceding event sequence
and event parameters.

In practice, concolic execution may not be able to cover all
possible execution paths within a given event handler. This
means that our event handler summaries may be incom-
plete, which can potentially affect the efficacy of our overall
approach. However, this possibility is mitigated by the fact
that event handlers in mobile applications are often rela-
tively small, with much of the complexity of the application
code lying in the dependencies between the event handlers.

Note that reachability of a given target in an event han-
dler ei cannot be decided based on the summary of ei alone.
In case a path from the entry point in ei to the target has
a nontrivial path condition pc, we need to produce an event
sequence that brings the application from its entry state to a
state where ei can be triggered, i.e. it exists as an event han-
dler registration, and moreover, pc is satisfied. We address
this challenge in the following section.

6. SEQUENCE GENERATION
The event sequence generation phase generates a test case

for each given target, based on the event handler summaries
generated in the symbolic summarization phase and the UI
model. For this phase, we propose an algorithm that grad-
ually explores sequences of events backward, from the tar-
get to the application entry point. The algorithm, given in
Figure 4, is organized around a prioritized worklist of par-
tial sequences that are gradually extended until a complete
sequence is found. The prioritization mechanism guides the
selection of worklist items to be explored next.

A partial sequence is a sequence of path summaries rep-
resenting a concrete path 〈τ1, τ2, . . . , τn〉 through the appli-
cation, combined with an abstract state s in the UI model.
Each τi is a complete path in an event handler for an event
ei of the UI model, where the segment τn exercises the tar-
get. The event sequence 〈e1, e2, . . . , en〉 is consistent with a
state sequence starting from s in the UI model.

The initialize function (line 2) initializes the worklist as
follows. For each path summary W that exercises the target
of interest (that is, the bytecode log of the path summary
contains the target) and each abstract state s in the UI
model where s has an outgoing transition labelled ei such
that W belongs to ei, we add the partial sequence of length 1
defined by W and s to the worklist. For the example in Sec-
tion 2, the target is the event handler for e2, which appears
as an outgoing edge from income in Figure 2. Only a single
path summary exercises the target in this example, so the
worklist will be initialized to a single partial sequence de-
fined by that path summary and the income abstract state.

Next, the main search loop is entered (lines 3–20). A
partial sequence is selected from the worklist and extended
into a number of new partial sequences. This extension is
conducted in two steps:



1. A set of anchors for the partial sequence is found using
the anchors function (line 6) described in Section 6.1.
This function provides a set of event handler paths,
each of which (1) write to some program state that
the partial sequence depends on according to its path
condition, and (2) has a symbolic state that is consis-
tent with the path condition of the partial sequence.

2. For each anchor, we extract a set of feasible sequences
of connectors that lead from the anchor to the partial
sequence (line 7), using the paths function described
in Section 6.2. For each sequence, we construct a new
partial sequence consisting of the anchor, the sequence
of connectors, and the original partial sequence.

We say that a partial sequence is complete if it starts at
the entry state of the application and reaches the target.
Such a sequence may give rise to a concrete test case for the
target. The isComplete function checks if an extended par-
tial sequence is complete (line 9). In that case, we extract
a potential test case using the extractTestCase function
(line 10) and check that it reaches the target when executed
concretely by the reachesTarget function. If the new par-
tial sequence is not complete, it is added to a list of extended
partial sequences (line 15). On lines 18–19, these partial se-
quences are added to the worklist, and their priorities are
computed using the prioritize function that we describe in
Section 6.3.

6.1 Construction of Anchors
The anchors function produces a set of anchors for a

partial sequence. Recall from Section 4 that an anchor is
an execution path in an event handler that writes to some
program state that the partial sequence depends on, accord-
ing to its path condition. We define the dependency set of
a partial sequence as the set of variables that occur in its
path condition. In this way, an anchor corresponds to an
execution path in an event handler that affects the values in
the dependency set and thereby potentially discharges some
of the clauses in the path condition of the partial sequence.

The anchors are identified using the UI model and the
event handler summaries. First, we perform a breadth-first
backward traversal in the UI model, starting from the ab-
stract state of the partial sequence, until the nearest anchors
are located. More precisely, at each traversed transition in
the UI model, the dependency set of the partial sequence
is compared with each path summary that belongs to the
event handler of the transition. A path summary is marked
as an anchor if it affects the dependency set.

In the example from Section 2, the target in the event
handler e2 shown in Figure 3 depends on the symbolic con-
straint variable Settings.enableTaxDeduction. A partial
sequence containing a path summary for e2 will include this
variable in its dependency set. Since the path summaries for
the event handler e7 all affect this particular variable, they
will be identified as anchors for the partial sequence.

Some of these anchors, however, can safely be pruned
away. If the symbolic state of an anchor is inconsistent with
the path conditions of the current partial sequence (i.e. their
conjunction is unsatisfiable), then using this anchor for ex-
tending the partial sequence would not lead to any feasible
paths. By removing such anchors from further considera-
tion, we effectively reduce the search space of the sequence
generation algorithm. The resulting set of anchors is re-
turned by the anchors function.

As mentioned, the idea of using anchors is to guide the
sequence generation from the target backward toward the
entry state. For a complete sequence, that is, a partial
sequence that has reached the goal, the dependency set is
empty. The idea in our algorithm is that putting an anchor
in front of a partial sequence will likely reduce the depen-
dency set. However, there is no guarantee that the depen-
dency set is in fact reduced by this step, since the anchor
itself may introduce additional dependencies. Our experi-
mental evaluation in Section 7 investigates how the use of
anchors guides the search in practice.

6.2 Construction of Connector Sequences

The paths function generates a set of possible connector
sequences between the given anchor and partial sequence.
For this, we use the UI model to find all sequences of con-
nectors between the two. Each of these sequences have the
following two properties: (1) it corresponds to an acyclic
path in the UI model from a transition that has the anchor
as label to the abstract state at the beginning of the par-
tial sequence, and (2) none of the connectors, where each
corresponds to a single transition in the UI model, is an an-
chor. The first property can be ensured using a basic graph
traversal algorithm. Section 6.1 provides the information for
ensuring the second property.

Each connector sequence that has these properties is a
candidate for connecting the given anchor and partial se-
quence. Not all of these candidates are feasible, however.
If the symbolic state of the anchor is inconsistent with the
composition of the symbolic summaries of the connectors,
then no corresponding concrete path exists. The remaining
feasible paths are then returned by the paths function.

Continuing the example of the partial sequence containing
a path summary for e2 and an anchor for e7 from Section 6.1,
a path summary for e6 is a connector, since it connects the
two in the UI model and it does not affect the dependency
set of the partial sequence.

6.3 Prioritization
A key part of the algorithm is the prioritize function that

assigns priorities to newly added partial sequences. This
function initially selects the priority of a new sequence as
the priority of the sequence it extends. The priority is then
adjusted using a series of reprioritization functions repre-
senting different heuristics that we describe in the following.

Equivalent-Anchors Reprioritization

An event handler summary consists of a set of path sum-
maries. When extending a partial sequence with anchors, we
look at their path summaries to determine if they write any
program state that the partial sequence depends on. Since
multiple paths in an event handler can result in the same
mutation of the variables that appear in the dependency
set of the partial sequence, the resulting set of anchors will
likewise contain multiple candidates with the same effect.
Each of these anchors results in a new partial sequence in
the worklist.

As an example, if we assume the dependency set is {income}
and we consider the event handler in Figure 3, there exist
multiple paths through the event handler that all have the
same effect on income, so giving them the same priority
would lead to redundant work.



Our first reprioritization function exploits this observation
by lowering the priority of all the involved partial sequences,
except one that we pick arbitrarily. Finding the anchors
that have an equivalent effect relative to the dependency set
can be done by comparing the constant values and symbolic
values in their symbolic states.

Connector Reprioritization

There may exist multiple sequences of connectors between a
given anchor and a partial sequence. Recall our observation
in Section 4 that these connectors only navigate between
screens in the application, without affecting the program
state that the partial sequence depends on. In many cases,
any of these paths will suffice, and it would only lead to a
path explosion if we try to follow all of them.

Based on this, we introduce a second reprioritization func-
tion that exploits this observation by lowering the priority
of all the involved partial sequences, except one that we pick
arbitrarily, similar to the previous reprioritization function.

Increment-Decrement Reprioritization

Another common pattern is pairs of path summaries, in
which one changes some state, and another reverts those
changes. This general pattern manifests itself in a num-
ber of concrete instances, such as add/remove buttons that
mutate a collection of items, buttons for incrementing or
decrementing a number, or buttons toggling a value.

Extending partial sequences with path summaries that
simply undo changes is not productive and may lead to un-
necessary exploration of paths. Note that we only care about
parts of the program state that are in the dependency set of
the current partial sequence. Our third reprioritization func-
tion aims at decreasing the priority of any partial sequence
where this pattern is found. This is not trivial to detect pre-
cisely, however. A simple approximation is to consider only
numeric counters and boolean flags. Whenever the reprior-
itization function identifies a pair of path summaries where
one increments some variable the other decrements the same
variable, then the priority of event sequences that mix the
two path summaries is lowered, and similarly for boolean
flags.

7. EVALUATION
To evaluate the practical usefulness of our approach, we

have implemented the proposed event sequence generation
algorithm and supporting infrastructure in a tool called Col-

lider. We now consider the following research questions:

Q1. Is our algorithm able to generate test cases for chal-
lenging targets in real-world Android applications? We
view a target as being “challenging” if it cannot be
reached with traditional random testing or model-based
testing techniques.

Q2. Does the use of anchors and connectors have an effect
on the the ability to reach the targets? A simple al-
ternative would be a backward breadth-first search in
the UI model.

Q3. Do the prioritization heuristics have an effect on the
ability to reach the targets? If that mechanism is dis-
abled, the partial sequences in the worklist will be
treated in a random order.

7.1 Implementation
Collider is implemented with approximately 8,000 lines of

Java code excluding libraries. The part implementing the
sequence generation phase closely follows the pseudo-code
from Section 6, whereas the part for symbolic summarization
requires more explanation.

A central part of Collider is the concolic execution engine
for symbolically summarizing event handlers as described in
Section 5. As the concolic execution is performed at the
level of event handlers (including methods called in the pro-
cess), application state that may be shared between event
handlers, in particular, all object fields, are initialized with
symbolic values. Collider operates directly on the Dalvik
bytecode of the compiled Android applications. We do not
differentiate between application code, Android library code,
and the Java standard library, however, the symbolic exe-
cution uses mocks for more precise treatment of some basic
library methods.

The concolic execution engine must be able to evaluate
Android applications concretely, inspect the evaluation and
program state, and modify the program state in order to
explore new branches. In Collider, concrete execution is
handled by the Android emulator provided by the Android
SDK, which ensures a correct execution of the application.
All interaction between Collider and the Android emulator
is handled by a combination of the ordinary instrumentation
framework for testing Android applications and the debug-
ging interface in the Android VM. Via the debugger, break-
points are inserted after each bytecode instruction, such that
the symbolic execution can be performed in parallel with the
concrete execution in a lock-step manner. Using this tech-
nique, neither the application nor the emulator needs to be
modified in any way, which simplifies the implementation.

For the symbolic execution, we reuse parts of the solver in-
frastructure from Symbolic Java PathFinder,1 which in turn
relies on underlying solvers, such as, Yices.2 The solver in-
frastructure is also used to check the feasibility of partial
sequences, as described in Section 6. This implementation
currently supports basic constraints on numbers, booleans,
strings, and arrays. The Smali3 disassembler is used for
extracting various pieces of information about the Dalvik
bytecode, and the testing library Robotium4 is used for sim-
ulating user interactions with the application.

7.2 Benchmark Applications and Targets
Our evaluation has been conducted on five Android appli-

cations selected using the following criteria: (1) the source
code for the applications must be available to allow us to
manually inspect the application behavior, (2) we only con-
sider applications that are UI driven and not computation-
ally intensive, so we exclude games and system services,
(3) to get interesting targets, the applications must con-
tain branches that depend on previous events or event pa-
rameters, and (4) the applications should represent differ-
ent application categories, such as productivity, entertain-
ment, and tools, and from different repositories. The five
applications are: TippyTipper5 (1,800 LOC), a tip percent-

1
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc

2
http://yices.csl.sri.com/

3
http://code.google.com/p/smali/

4
http://code.google.com/p/robotium/

5
http://code.google.com/p/tippytipper/

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
http://yices.csl.sri.com/
http://code.google.com/p/smali/
http://code.google.com/p/robotium/
http://code.google.com/p/tippytipper/


Targets depending on Average size

Benchmark Sequence Parameters Reached Potential Test case Connectors Pruning of anchors
TippyTipper 15 1 7 9 13 9 71%
ConnectBot 17 25 16 26 8 4 58%
Munchlife 5 5 6 4 29 7 66%
OpenManager 11 7 9 9 8 4 39%
DieDroid 2 11 8 5 10 4 38%

Table 1: The first two columns of numbers show the targets that remain unreached after running both Monkey tool and the
crawler. The third and fourth columns show the additional targets reached by Collider, and targets that we believe could
potentially be reached if improving the symbolic execution implementation, respectively. The fifth and sixth columns show
the average sequence length of the produced test cases and the average number of connector events in the test cases. The
seventh column shows the percentage of anchors pruned from the search during sequence generation. The numbers in the
rightmost three columns are for the reached targets only.

age calculator including tax calculation and functionality
for splitting a bill between a group of people; ConnectBot6

(33,000 LOC), a SSH client with support for public/private
key management; MunchLife7 (400 LOC), a utility for keep-
ing score in a card game; OpenManager8 (2,500 LOC), a
file manager with support for viewing, moving, and copying
files; and DieDroid9 (1,900 LOC), an application for virtual
dice rolling using a number of different systems and condi-
tions on the die rolls.

We have manually built a UI model of each application.
This could in principle be done automatically, as discussed
in Section 8, but no suitable tool was available to us when
conducting the experiments. These UI models are sound in
the sense described in Section 3.

To obtain a baseline for comparison, we combine two ex-
isting approaches. First, we use a a simple crawler that pro-
duces events systematically based entirely on the UI models,
without considering the application code. Second, we use
the random testing tool Monkey provided by the Android
SDK.10 This tool fires a large number of random events and
periodically restarts the application. When we run these
tools on the benchmark applications, we observe that cover-
age first rises rapidly and then stabilizes. We select a time
budget that allows the stabilization to be reached. As a
result, the different benchmarks have been exercised using
3,000 to 6,000 events each. Now, we define that a branch in
a benchmark application is “challenging” if neither of these
two tools is capable of producing event sequences that reach
the target. Although the tools involve randomization, this
classification appears to be reasonably robust.

For our evaluation of Collider, we only consider the chal-
lenging targets. In practice, this means that all targets of
interest depend on the sequencing of events beyond what is
expressible in the UI models alone.

We focus on branches in the application code, not on those
in the Android SDK and external libraries. Moreover, we ex-
clude dead branches, i.e. those that cannot be reached with
any sequence of events according to a manual inspection. As
our focus is on user events, we also exclude branches that
depend on external data, such as, the file system or device
configuration. For the same reason, we populate the initial
application states with meaningful data, such as, files for
OpenManager and a valid SSH connection for ConnectBot.

6
http://code.google.com/p/connectbot/

7
https://github.com/sensae/MunchLife

8
https://github.com/nexes/Android-File-Manager

9
https://github.com/logomancer/diedroid

10
http://developer.android.com/tools/help/monkey.html

The first two columns of numbers in Table 1 show for each
benchmark (1) the number of targets of interest that depend
on event sequencing, but not on event parameters, and (2)
the number of targets that depend on both event sequencing
and event parameters. This classification is obtained by a
manual inspection of each target.

7.3 Results
Q1: We answer research question Q1 by applying our

event sequence generation algorithm on the selected targets.
The column named Reached in Table 1 shows the number
of targets where a successful test case is generated. For
example, 7 of the 16 targets of interest in TippyTipper are
reached. As we only consider targets where the baseline tools
fail, we conclude that our proposed algorithm is capable of
producing test cases for challenging targets.

As an example of a challenging target, the DieDroid bench-
mark contains a screen that shows a number of rolled dice,
marked red, green or gray depending on user-defined win-
ning and failure thresholds. In one event handler, a par-
ticular branch can only be reached if the winning threshold
is larger than the loosing threshold. To reach this target
branch, our algorithm identifies a path summary exercis-
ing the branch. The algorithm then continues to extend the
partial sequence backward, finding anchor points in two sep-
arate dialogs that set these thresholds, and inserting connec-
tor events as necessary. Each of these anchors is parameter-
ized by user input, for which the solver identifies two values
that satisfy the path condition. After extending the partial
sequence to the application entry point, the tool outputs a
concrete event sequence that reaches the target.

We have manually inspected all the targets that were not
reached by Collider to investigate whether the reason is due
to limitations in the symbolic summarization phase or due to
the assumptions we make in the sequence generation phase.
In the former case, the limitations can perhaps be remedied
by improving the concolic execution engine; in the latter
case, more fundamental changes to our approach might be
necessary to increase the coverage further. The number of
missed targets in the first category are shown for each bench-
mark in the column named Potential in Table 1: We observe
that none of the missed targets are in the second category.
Our prototype implementation only supports symbolic rea-
soning of numeric values and booleans, resulting in imprecise
treatment of, for example, strings and objects. A closer in-
spection reveals that this particular source of imprecision
is a dominant cause of missed targets. For this reason, we
believe that many of the challenging targets that are not

http://code.google.com/p/connectbot/
https://github.com/sensae/MunchLife
https://github.com/nexes/Android-File-Manager
https://github.com/logomancer/diedroid
http://developer.android.com/tools/help/monkey.html


Figure 5: Distribution of event sequence lengths in the gen-
erated test cases.

reachable with our current implementation can potentially
be reached with realistic improvements of the symbolic anal-
ysis, without requiring modifications of the main sequence
generation phase. Naturally, we will pursue this in our fur-
ther work.

The event sequence generation phase, which is the central
part of our algorithm, typically takes less than one minute
per target where a matching event sequence is found (run-
ning on an ordinary i5 3.1GHz PC). A few outliers, for exam-
ple in TippyTipper, require up to 30 minutes. This is caused
by a large number of connectors between partial event se-
quences and anchors. An adjustment of the prioritization
mechanism could perhaps give a performance improvement
in this case, but a more thorough experimental study would
be necessary to investigate this further.

The symbolic summarization phase is more time consum-
ing. Our simple prototype implementation runs for 3 to 5
hours on each benchmark. However, note that this phase
is doing preprocessing, independent of the choice of targets.
Moreover, the current implementation naively analyzes each
event handler in isolation, without taking into account that
event handler methods often share common functionality via
other methods. Thus a considerable amount of time is spent
re-analyzing shared methods. With additional implementa-
tion effort, we believe that well-known techniques can be
adapted to avoid this redundancy, which we return to in
Section 8. Another reason is the implementation approach:
Basing the concolic execution engine on single-stepping via
the Android VM debugger does lead to a relatively simple
implementation, but it naturally incurs a substantial over-
head.

Q2: To answer research question Q2, we investigate how
the use of anchors and connectors reduces the search space
compared to a simple backward breadth-first search.

The distribution of observed test case lengths is shown in
Figure 5. The sequence lengths range from 4 to 102 events,
however, with the test case containing 102 events being an
outlier. On average, a test case consists of 10 events if we
exclude this outlier. The average test input length for each
benchmark is shown in the ‘Average size Test case’ column in
Table 1. With such relatively long event sequences, a simple
backward breadth-first search would lead to an explosion of
possible paths.

Of all the generated test cases excluding the outlier, 53%
of the events are connector events. The average number of
connector events per test case is shown in the Connectors
column in Table 1. Since a considerable part of the events
are connectors, the ability to jump between anchors is an
advantage compared to a backward breadth-first search.

The idea of pruning potential anchors by checking consis-
tency of the symbolic states and the path conditions further
reduces the search space. The rightmost column in Table 1
lists the pruning of anchors for each benchmark. The prun-
ing eliminates 38%-71% of the anchors. Since this happens
in each step of the backward search, it adds up to a substan-
tial reduction of the search space.

Q3: For research question Q3, we disable the prioritiza-
tion functions and run Collider again. In theory, we are still
able to reach the same targets, however, we expect a slower
pace due to the larger number of paths that need to be con-
sidered before finding test cases that reach the targets. We
want to test if Collider is still able to reach the same targets,
even if we allow ten times as many iterations of the worklist
algorithm compared to number of iterations used when the
prioritization functions are enabled.

Running our algorithm again, 21 of the 46 targets are now
unreachable. Moreover, for the remaining 25 branches that
are still reached, the total running time for the sequence gen-
eration has increased from 45 seconds to 2.5 hours. Thus, we
conclude that the prioritization heuristics have a consider-
able impact on the ability to reach targets within reasonable
time.

A possible threat to validity in our evaluation is whether
the selected benchmarks represent the range of real-world
applications in use. All of the selected benchmarks are real-
world applications publicly available in the Android market-
place, and they have been selected in accordance with the
criteria stated in Section 7.2. The nature of our evaluation,
involving manual inspection of the benchmarks and manual
construction of UI models, reduces the feasibility of scaling
the evaluation to a larger number of benchmarks. However,
these preliminary experiments demonstrate the potential of
our algorithm.

8. RELATED WORK
Our work builds on a significant body of work in sym-

bolic execution and model-based testing. We first discuss
related work involving symbolic execution for event-driven
programs.

As in our approach, the ACTEve technique by Anand
et al. [3] performs automated testing for Android applica-
tions using concolic execution. However, their approach ex-
plores the application starting from the its entry point, not
aiming for particular targets. Concolic execution is applied
at the level of the entire application rather than on individ-
ual event handlers. Moreover, concolic execution is used for
reasoning about low-level properties of events, such as coor-
dinates for tap events, which we can treat more abstractly
by the use of UI models. Despite applying a subsumption
mechanism to filter away certain event sequences, their ap-
proach apparently does not scale beyond event sequences
consisting of more than four events.

The Barad framework by Ganov et al. [9] performs au-
tomated testing for SWT GUI applications, which are also
event-driven. It first symbolically executes each event han-
dler, not to produce path summaries as in our approach, but



to discover registered event handlers and build a model of
the application similar to the UI models we use. Next, a set
of abstract event sequences are produced from the model,
and symbolic execution is performed on each sequence to
produce concrete test inputs. Mirzaei el al. [20] generate
tests for Android applications using a similar approach by
first producing abstract event sequences based on applica-
tion models and then running Symbolic PathFinder to per-
form symbolic execution on each sequence. In contrast, our
approach utilizes information from symbolic execution also
when constructing the sequencing of events. Several other
symbolic execution tools have been build specifically for An-
droid [14, 25]. Related tools for automated testing of web
applications, which are also driven by user events, include
Apollo [6] for PHP and Kudzu [23] for JavaScript. Common
to these frameworks and tools is that they do not create
event sequences in a targeted manner but explore the given
application from its entry point.

As mentioned in Section 1, our targeted approach to gen-
eration of event sequences resembles call-chain-backward
symbolic execution by Ma et al. [17], although we consider
relations between events rather than function calls. In their
approach, call sequences are generated backward from the
target one function at a time. We also construct event se-
quences backward, but using anchors and connectors to nar-
row the search, as explained in Section 6.

The idea of guiding automated testing using data depen-
dence appears in many techniques [3–5, 7, 8]. Of particular
relevance is the one by Arlt et al. [4] that we also mentioned
in Section 1. In their technique, abstract event sequences
are constructed based on how event handlers read and write
shared state and subsequently concretized using a UI model,
but reasoning at the level of entire event handlers rather
than individual paths through event handlers. A novel fea-
ture of our approach is that path-specific data dependence
information is extracted from event handler summaries that
have been created using concolic execution.

For the symbolic summarization phase, we currently use
traditional concolic execution, also called dynamic symbolic
execution, or directed automated random testing [11], at the
level of event handlers. We can in principle benefit from the
numerous improvements that have been proposed to that
basic technique. Specifically, we suspect that performance
of the symbolic summarization phase can be improved using
compositional dynamic test generation [10], which involves
method summaries, orthogonal to our use of event handler
summaries.

Alternatives to symbolic execution for automated testing
include random testing, search-based testing, and model-
based testing. Monkey, which we used for the experiments
in Section 7, is a popular random testing tool for Android
that has been shown to be effective for bug finding [13].
The tools A2T2 [1], AndroidRipper [2], iCrawler [15], and
EXSYST [12] enhance random testing by using the applica-
tion GUI to guide the testing. These light-weight techniques
can be a good starting point for automated testing. How-
ever, as they have a black-box view on the application code,
they are generally unable to reach the challenging targets
that require many events and with constrained event pa-
rameters and specific execution paths in the event handlers,
as shown in Section 7.

Tools such as Artemis [5] and to some extent also
Dynodroid [18] employ feedback-directed automated test-

ing, which is based on random testing but prioritizing using
information gathered during the testing. Such techniques
can often obtain good coverage with fewer test inputs than
traditional random testing and faster than techniques that
involve symbolic execution, yet they are not suitable for the
more challenging targets that we focus on here.

Model-based testing approaches [22] organize the testing
around a model of the application under test. For the event-
driven applications we consider, the models express over-
approximations of the relevant event sequences by abstract-
ing away from the event parameters and the different exe-
cution paths that exist in the event handlers. Some tools
extract tests for Android applications directly from such
models using random or combinatorial approaches [21, 24],
without involving symbolic execution.

The models used in model-based testing may be specified
manually or generated automatically. The GUITAR tool by
Memon et al. [19] is among the earliest and most well known
approaches for reverse engineering models of GUI applica-
tions. It extracts the model using automated crawling. A
recent extension, AndroidGUITAR, supports Android ap-
plications. The Orbit tool by Yang et al. [27] is a variant
that builds models that are tailored to the Android event
system. Several of the other techniques that we have men-
tioned above also automatically construct models [3, 9, 20].
Although the various techniques involve different kinds of
models, each of them can in principle provide the informa-
tion we need for the UI models described in Section 3.

We distinguish between anchor events and connector
events, however, other classifications exist. As an example,
Xie and Memon [26] categorize events according to whether
they manipulate the GUI while we focus on how the events
modify data.

9. CONCLUSION

We have presented a targeted algorithm for automated
testing of event-driven systems, in particular Android ap-
plications. The algorithm is tailored to targets that require
long event sequences and reasoning about event parameters.
We have evaluated the effectiveness of this algorithm on a
small suite of real-world Android applications, aiming for
targets that are beyond reach for traditional random testing
and model-based testing techniques. Our prototype imple-
mentation, Collider, successfully produces event sequences
for many of the challenging targets.

Moreover, we believe that a large part of the remaining
targets can also be reached using the algorithm, provided
that the symbolic constraint solver component is extended
with better support for, in particular, strings and arrays. We
leave that for future work. Also, we plan to apply some of
the techniques suggested in the literature on concolic execu-
tion, for example, compositional dynamic test generation, to
improve performance of the symbolic summarization phase.
Another practical limitation of our current prototype is that
it requires UI models as input. This can in principle be
remedied by integrating existing algorithms for automatic
UI model construction. Such an extension of the imple-
mentation would enable a larger scale experiment in which
Android applications are automatically analyzed and tested.
For this purpose, it is practical that our approach works on
bytecode and does not need access to the source code of the
applications.
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