
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Automated theorem provers: a practical tool for the working
mathematician?

Citation for published version:
Bundy, A 2011, 'Automated theorem provers: a practical tool for the working mathematician?', Annals of
Mathematics and Artificial Intelligence, vol. 61, no. 1, pp. 3-14. https://doi.org/10.1007/s10472-011-9248-8

Digital Object Identifier (DOI):
10.1007/s10472-011-9248-8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Annals of Mathematics and Artificial Intelligence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1007/s10472-011-9248-8
https://doi.org/10.1007/s10472-011-9248-8
https://www.research.ed.ac.uk/en/publications/d23918a4-fc15-4a12-9957-60796a588041


Noname manuscript No.
(will be inserted by the editor)

Automated Theorem Provers:
A Practical Tool for the Working Mathematician?

Alan Bundy

June 6, 2011

Abstract In contrast to the widespread use of computer algebra systems in math-
ematics automated theorem provers have largely met with indifference. There are
signs that this is at last beginning to change. We argue that it is inevitable that
automated provers will be adopted as a practical tool for the working mathemati-
cian. Mathematical applications of automated provers raises profound challenges
for their developers.

Keywords Automated theorem proving · Mathematician’s assistant · Very large
proofs · Proof understanding

1 Introduction

Automated theorem proving is the application of computer programs to the proof
of theorems. Axioms and theorems are formalised in a logic, and new theorems
are derived from old ones using logical rules of inference. The field ranges from
totally automated provers via semi-automated, interactive provers, to mere proof
checkers. Its main application has been to resolving the proof obligations that arise
from formal methods of ict system development, but it also finds applications in
mathematics and to commonsense reasoning in artificial intelligence.

The past decade has seen a number of significant developments in automated
theorem proving, for instance: the growing importance of sat, smt, description-
logic reasoners and other decision procedures; the industrial uptake of formal meth-
ods of ict system design; and the central role of automated inference in the Seman-
tic Web. In this essay, however, I want to focus on a development that is perhaps

The research reported in this paper was supported by EPSRC grants EP/F033559/1 and
EP/H023119/1. I am indebted to Bogdan Grechuk, Lucas Dixon, Ursula Martin and an anony-
mous amai referee for valuable feedback on earlier drafts, and to Michael Chan for help with
the submission.

Alan Bundy
School of Informatics, University of Edinburgh
Edinburgh EH8 9AB, UK.
E-mail: bundy@ed.ac.uk



2 Alan Bundy

less conspicuous, but which promises a far-reaching impact on the World’s oldest
science.

Mathematicians have keenly adopted a number of computational tools. Fore-
most among these have been: the use of latex for typesetting mathematical papers;
the use of computer algebra systems for formula manipulation and calculation;
and the use of the Polymath Blog1 for collective mathematical problem solving.
The mathematical community has been involved in the development or even cre-
ation of some of these tools, for instance, the ams latex packages and Polymath.
A more comprehensive account of the computational tools that mathematicians
have adopted can be found in [Martin, 1999].

Conspicuous by its absence has been the use of automated theorem provers to
assist with the development of proofs. Among the reasons that mathematicians
frequently give me when I ask them why they are not using automated theorem
provers are the following.

1. The detailed logical proofs typically produced by automated provers can have
an order of magnitude more steps than a typical textbook or journal paper
proof. This extra detail can be tedious to wade through. Mathematicians find
informal proofs more accessible and understandable. This point was developed
at length in [Millo et al, 1979] and is further discussed in [Martin, 1999].

2. Automated provers are not powerful enough to prove novel conjectures of inter-
est to mathematicians. In particular, they do not have the libraries of previously
proved theorems that a mathematician would want to use without having to
prove them first.

3. Some of the manipulations that mathematicians do routinely and quickly re-
quire tedious logical manipulations, such as: reinterpreting integers as reals2;
using symmetry and analogy to avoid proving new cases that are similar to old
ones; mapping theorems from one theory to another.

4. Automated provers are quite hard to use. Theorems have to be translated
into the format used by the prover, which may require an unexpected level of
detail, such as declaring the types of constants and variables. The translation
of informal mathematical concepts into formal logic may itself introduce errors,
so that the prover attempts to prove the wrong theorem. When the prover’s
automated techniques fail, it must be guided interactively, which involves some
understanding of its proof technique.

5. Theorem proving is what mathematicians most enjoy. Why let a machine have
all the fun?

On this last point, [Gowers, 2000][p2] says: “The idea that all our creativity and
insight might be reduced to something mechanical was, after all, not very appeal-
ing”.

In §7, we will reconsider each of these reasons in the light of our discussion in
the rest of this paper.

Despite these obstacles, the last decade has seen a small, but growing mathe-
matical interest in automated theorem proving. Consider, for instance, the series
of articles on automated proof that have recently appeared in the Notices of the
American Mathematical Society, e.g., [Hales, 2008,Gonthier, 2008]. I will argue

1 http://polymathprojects.org/
2 An example of type casting



Automated Theorem Provers: A Practical Tool for the Working Mathematician? 3

that this interest is not only inevitable, but is likely to grow and to have a pro-
found influence on mathematical methodology.

2 Simple Theorems with Enormous Proofs

The cause of this interest in automated proof is the emergence of simple theo-
rems whose shortest proof is very large. The existence of theorems with enormous
proofs is a direct corollary of the undecidability of predicate calculus provability.
In 1936, Alonzo Church and Alan Turing independently proved that there was no
algorithm that would determine whether or not a conjecture in predicate calculus
was provable [Church, 1936a,Church, 1936b,Turing, 1936]. This undecidability of
provability extends to nearly all nontrivial areas of Mathematics.

To see that this result entails the existence of theorems with enormous proofs,
suppose, on the contrary, that there was a limit to the size of proofs. To be concrete,
suppose that there was an arithmetic function, f , that set an upper limit on the
size of a theorem’s proof given the size of the theorem. Contrary to the above
Church/Turing result, we could now design an algorithm for the provability of a
conjecture. The algorithm is as follows:

– Given a conjecture, apply f to its size to determine the maximum size of its
proof.

– Generate all proofs in the theory up to that maximum size. This requires an
astronomical, but finite, amount of work. [Note that there are only finitely
many proofs of any given size.]

– If one of these proofs proves the conjecture, then it is a theorem.
– Otherwise, if when the process terminates no proof has been found, then the

conjecture is unprovable.

Since assuming an upper limit to proof size contradicts Church/Turing’s undecid-
ability result, then there can be no such upper limit. This result is even stronger
than the mere existence of enormous proofs, it says that however big you set the
proof size N , then there is a theorem of size n, much smaller than N , whose
shortest proof is bigger than N .

This might have remained a mere logical curiosity, were it not for the emergence
of a series of simple theorems which appear to require proofs of very large size3.
Three of the most prominent recent examples have been: Appel and Haken’s proof
of The Four Color Theorem [Appel et al, 1977] (see Figure 1); the Classification
of Finite Simple Groups [Gorenstein, 1982] (see Figure 2); and Hales’ proof of The
Kepler Conjecture [Hales, 2005b] (see Figure 3).

As important theorems requiring larger and larger proofs emerge, Mathematics
faces a dilemma: either these theorems must be ignored or computers must be used
to assist with their proof.

3 The Use of Computers in Proofs

Appel and Haken’s proof of The Four Color Theorem reduced it to 1,482 ‘reducible
configurations’, each of which then had to be discharged. They chose to use a

3 But as yet nothing compared to the enormous proofs that the Church/Turing result pre-
dicts.



4 Alan Bundy

Fig. 1 The Four Color Theorem. This map is coloured with just four colours, so that no
two adjacent countries share a colour. Will four colours always suffice?

Fig. 2 The Classification of Finite Simple Groups. This graph shows a small part of
the classification: the relations between the sporadic groups. Most of them are related to an
enormous group, called The Monster. Many of these sporadic groups were first constructed
using computer algebra systems.

Fig. 3 The Kepler Conjecture. These spheres are packed closely together. Is this always
the tightest possible packing method?

custom-built computer program to execute this discharge process. This was partly
to avoid the estimated couple of months of work that a manual calculation would
have taken, but mainly to ensure the absence of errors in the calculations. The use
of computers to automate part of the proof proved hugely controversial within the
mathematical community [Mackenzie, 2001][Chap. 4]. The main cause of concern



Automated Theorem Provers: A Practical Tool for the Working Mathematician? 5

was that there might have been a bug in the computer program, so that the
correctness of the proof could not be guaranteed.

One response to this concern about the correctness of the proof was to automate
it in a theorem prover. If the prover was built in the ‘lcf’ style [Gordon et al, 1979],
then any proof could only be constructed by a small kernel of logical rules of
inference. This ensured a high degree of confidence in the proof. This programme
was eventually carried out by Gonthier in 2005 [Gonthier, 2008] using the Coq
lcf-style prover.

Essentially the same story was repeated with Hales’ proof of The Kepler Con-
jecture. This proof also involved reducing the problem to lots of cases and then
using a custom-built computer program to check each case. When the proof was
submitted to the Annals of Mathematics, the editor appointed two teams of refer-
ees; a regular team to examine the human part of the proof and a 12-person team
to examine the computer-generated part. After months of effort, the team exam-
ining the computer part announced that they were unable confidently to verify
the proof. The human part was accepted for publication, but published with a dis-
claimer about the correctness of the computer part. Unsatisfied with this outcome,
Hales has set up the Flyspeck Project [Hales, 2005a] to apply lcf-style provers to
prove the whole theorem, and thus confirm its unqualified correctness.

The proof of The Classification of Finite Simple Groups has also involved
computers, but a more conventional use of computational algebra to help con-
struct some of the extremely large groups. Hand-crafted programs were used to
find matrices with certain properties. These programs were fore-runners of today’s
computer algebra systems. Perhaps surprisingly, given the notorious unsoundness4

of many computer algebra systems, this use of computers has not produced any-
thing like the controversy generated by the Four Color and Kepler Conjecture
computer proofs. The explanation in this case may rely on the specific use made
of computers: they were used to construct candidate groups, whose properties were
then relatively easy to check by hand. The proof that all groups had now been
identified was done purely by hand. However, computer algebra systems are in
widespread use in Mathematics, and it is not always so easy to explain away the
lack of concern about their unsoundness. Why is this?

4 Mathematicians’ Attitude to Error

In 2004, I co-ran a Royal Society meeting on “The Nature of Mathematical Proof”
[Bundy et al, 2005a]. This meeting brought together mathematicians, computer
scientists, logicians, philosophers, sociologists and others, to compare and con-
trast their different attitudes to ‘proof’. This uncovered huge cultural differences,
in which the logicians were closer to the computer scientists than to the other
mathematicians.

Aschbacher, one of the principal researchers involved in the Classification of
Finite Simple Groups, was a speaker and summarised the main cultural difference
when he said that “the probability of an error in the proof is one” [Aschbacher, 2005][p2403].
So here we have a paradox. On the one hand, Aschbacher is asserting that one

4 This most often arises when general results are returned without the conditions under
which they have been calculated. For instance, they may be false in degenerate cases, such as
at boundary values, but this is not stated.



6 Alan Bundy

of the triumphs of modern mathematics and a cornerstone of much subsequent
mathematics, definitely has at least one error. The mathematicians present seemed
neither surprised nor perturbed by this revelation. On the other hand, many math-
ematicians were deeply concerned with the possibility of error in the proof of The
Four Color Theorem — even though computers had been principally used in its
proof to avoid the strong possibility of error had the computer-generated parts of
the proof been done by hand.

One resolution of this paradox is that mathematicians distinguish two kinds of
error:

1. Minor errors that are readily corrected and that are not critical to the integrity
of the proof; and

2. Major errors that undermine the proof and that must be corrected.

Aschbacher presumably meant that the errors in the Classification proof were of
type 1, so were of little importance. Although, of course, it would still be considered
very important to correct any type 1 errors that were identified. The concern about
the computer parts of the Four-Color and Kepler proofs was that they might be
of type 2, that is, that a buggy program had erroneously ‘checked’ a case that was
actually a counter-example to the theorem.

Computer Scientists make a similar distinction between kinds of program bugs:
type 1 roughly corresponding to coding errors and type 2 to design errors. Auto-
mated prover developers, however, do not make such a distinction between kinds
of erroneous proofs. Firstly, errors rarely arise within proofs produced by mature
provers, especially lcf-style provers. Secondly, if they do, then the problem is likely
be blamed on the program, not the proof. Moreover, since most computer proof
terms are flat and low-level, all proof bugs are at the same level of granularity,
and all are considered equally fatal to the correctness of the proof.

This goes some way to explain the lack of mathematical concern over an impor-
tant proof that definitely contains an error, and the extreme concern over even the
possibility of error in a computer-produced proof. Confidence in this mathematical
judgement, of course depends on its accuracy, i.e., can experienced mathematicians
reliably distinguish between the two kinds of proof error?5 It seems that they can
distinguish between routine parts of the proof, e.g., standard definitions and lem-
mas, and the critical parts where the key novel contribution is made. They assume
that faults in the routine parts can be readily corrected without significant impact
on the rest of the proof. Attention is focused on the critical parts. From experience
they will have a collection of common counter-examples and common missteps that
they can use to test this critical part, exposing possible errors. They will also be
alert to the misquoting or inappropriate use of third-party lemmas.

That automated reasoners can be used to find and correct errors in informal
human-produced proofs is ably illustrated by Fleuriot’s formalisation of the deriva-
tion in, Newton’s Principia, of Kepler’s Laws of planetary motion [Fleuriot & Paulson, 1999].
His formalisation uncovered a previously undiscovered error in Newton’s proof.
The error, the cancellation of an infinitesimal quantity on either side of an equa-
tion, was one that Newton himself had elsewhere highlighted but had unwittingly
made himself on this occasion. Fleuriot was able to correct the error and complete
the automation of the proof. It is remarkable that three centuries of analysis of

5 Especially when, as in the Aschbacher quote above, they do not know what the error is.



Automated Theorem Provers: A Practical Tool for the Working Mathematician? 7

this keynote Principia proof failed to uncover this error, but that it was readily
discovered on the first attempt to automate the proof.

5 The Importance of Understanding Proofs

Although correctness is the usual reason cited for concern over computer proofs,
it is not the only reason — arguably not even the most important one. Mathe-
maticians also require to understand proofs. [Gowers, 2000][p3], for instance, says:
“...we tend to prefer questions that are interesting, comprehensible and seemingly
not completely out of reach, and we like our proofs to provide explanations rather
than just formal guarantees of truth”. This is not just so they can verify the proof’s
correctness, but also because they want to recycle new proof ideas in their own
future proofs. In fact, a new theorem can be important for two reasons: not just
the new knowledge that the theorem represents, with its potential for new appli-
cations both within and outwith6 mathematics, but also any novel proof method,
which has the potential to be applied to future conjectures. Proofs generated by
computer are inherently hard to understand. Indeed, the actual reasoning process
may not even be available for inspection, but only the binary result of the checking:
yes or no.

lcf-style proofs do offer some potential for understanding. A low-level proof
term is usually available to be inspected, but (a) this can be extremely large and
(b) it facilitates understanding only at the lowest level of detail: that one proof line
is a logical consequence of previous ones. Mathematicians also desire a higher-level
understanding: what are the main cases into which the proof is divided? what is the
key, novel proof idea? which bits of the proof are hard and/or surprising and which
bits routine and easy? [Gowers, 2000][p3], for instance, says: “Proofs are usually
clearer if they have a hierarchical structure” and “Many good proofs are variants of
existing better known arguments. This makes them easier to understand, because
all one has to do is concentrate on the parts that are new”.

Most research in automated proof presentation is focused on turning machine-
oriented proof representations into human-oriented ones, e.g., by translating them
into sequent calculus, natural deduction or natural language form. For instance, the
isar format [Wenzel, 2007] for Isabelle [Paulson, 1990] provides a more readable
‘deductive’ style of presentation rather than the previous tactic-based ‘procedural’
one, but the presentation is still low level.

This points to an important new direction for automated reasoning: multi-
level proof presentation in which the user can choose the level of granularity of
the proof and which highlights the key ideas and the hard parts of the proof.
Tactic-based provers already provide some basis for grouping proof steps and lift-
ing the granularity of the proof, but this functionality has been under-exploited
in existing provers. My research group has been addressing this issue in its work
on proof plans, which provide a high-level proof outline, and proof critics which
highlight the point at which standard proof techniques have broken down and
have needed to be adapted or repaired [Bundy et al, 2005b]. We have also exper-
imented with a hierarchical, graphical presentation of these proof plans, called

6 ‘Outwith’ is an invaluable Scottish word. It is the antonym of ‘within’, whereas ‘without’
is the antonym of ‘with’ and ‘outside’ the antonym of ‘inside’.



8 Alan Bundy

hiproofs, which the user can use to browse the proof at different levels of granular-
ity [Denney et al, 2006]. This provides the functionality both to get an overview
of the proof at the highest level of granularity, but also to delve down to any level
of detail. In contrast, journal presentations of human-produced proofs can only
provide one level of detail, leaving some readers bored and others mystified. In
future, one might also add functionality to explore the interrelationships within
a proof, e.g., where and why is it that this surprising condition is required? Help
information might be attached to definitions, axioms, etc. both to access their
formal definitions and explain the intuitions behind them.

6 Future Developments

The adoption of automated theorem provers in mathematical research will be slow
and incremental. Provers will not be used routinely until there is a solid basis of
well-developed mathematical theories from which novel research can grow. But
this basis must be provided by experienced mathematicians adopting provers and
formalising existing mathematics. Some initial formalisation has been started by
a few strongly motivated mathematicians and those computer scientists with an
interest in both automated proof and mathematics, but this is insufficient as a
basis for novel mathematics. So, we have deadlock.

In this section, we speculate on five potential applications that might overcome
this deadlock and kick-start the process.

6.1 Automated Theorem Synthesis

While coming up with a novel idea for a challenging theorem is both fun for
mathematicians and beyond the ability of current provers, there are more routine
activities in theorem proving where mathematicians might welcome automated
assistance, for instance, the initial exploration of alternative axiomatisations of a
domain. The MATHsAiD system [McCasland et al, 2006] was designed to address
this requirement7. Given a set of axioms, it will deduce simple theorems from them,
filtering out uninteresting ones. Precision/recall comparisons with theorems from
standard textbooks has shown that MATHsAiD’s judgement of interestingness
results in a similar outcome to those of the authors of those textbooks.

MATHsAiD will enable mathematicians quickly to explore alternative axioma-
tisations, reject those that lead to unwanted theorems or fail to produce wanted
ones, and even compare their relative ease of proof.

6.2 Automated Proof Refactoring

It is a common mathematical experience that well into the development of a new
theory one realises that the initial definitions or axioms are sub-optimal. Either
you decide to leave matters in this rather unsatisfactory state, or you commit
to an extensive, tedious and error-prone programme of what programmers call

7 There are other theorem synthesis systems, but most are focused on recursive theories.
These are of more interest to computer scientists than mathematicians.



Automated Theorem Provers: A Practical Tool for the Working Mathematician? 9

refactoring, i.e., of tracking the consequences of the changed definitions or axioms
through a development of, perhaps, hundreds of lemmas, theorems and corollar-
ies. If, however, the original theory was developed using a theorem prover, then
there is the potential to have the prover automate the refactoring. It can iden-
tify just those theorems that might need to be changed, try to automate their
proof in the changed environment, then report just those (we hope few) places
which require human intervention. Prototype tools already exist for this function
[Autexier & Hutter, 2005].

6.3 Automated Theorem Search

The field of Mathematics has existed for millennia. In its history it has accumulated
a huge number of theorems — no individual can be acquainted with all of them.
Any of these theorems might be just the lemma needed at some critical stage of a
proof. How can the working mathematician discover such lemmas, given that they
might use different notation, might require a small amount of bridging inference
to link them to the current problem and might be in a completely different area of
mathematics to the current conjecture? Provers such as Isabelle provide tools for
conducting such lemma search, i.e., by trying to prove a proposed lemma from the
previously proved theorems. It is, however, limited to those theorems already in its
own library. The wider problem of lemma search over the internet, is the subject
of the Mathematical Knowledge Management community (see www.mkm-ig.org),
which has many publications in this area.

6.4 Automated Referee Assistance

Referees for mathematical journals are responsible for checking the correctness of
the proofs in submitted papers. This is a time-consuming and enervating task. As
a result, referees often take a long time to return their reviews; delays of the order
of years, from submission to acceptance, are not unusual. The refereeing task is
also error prone; many ‘proofs’ pass refereeing but are later found to be faulty.
I often ask mathematicians how they check proofs. As I suspected, they do not
painstakingly check each line. Rather, as mentioned in §4, they use their experience
to identify where any type 2 error is likely to lie, then they analyse this critical
sub-proof using a collection of common counter-examples and common missteps.

An alternative approach would be for authors to check the proofs in their
paper by formalising them in a trusted automated prover. Each journal might
licence provers that it considered trustworthy, for instance, due to their lcf style.
Referees would merely have to check that the formalisation actually captured the
intended concepts and that the automated proof really did prove the theorem
claimed. Most of their referee effort could be directed to assessing the significance,
originality, relevance and presentation of the results, leaving validity to the prover.
Of course, this places an additional burden on authors. Their reward for this
additional effort would be a quicker refereeing process and the confidence that no
embarrassing error would be found in their proofs. The burden could be eased by
not insisting that these proofs be from first principles. Rather, authors would be
free to encode other mathematicians’ theorems as axioms in their formalisation.



10 Alan Bundy

Of course, referees would have to check that these third party theorems had been
correctly encoded.

Ironically, this process of automated referee assistance might be initiated out-
with mathematics. Theoretical papers in computer science, for instance, also con-
tain proofs. However, (a) these proofs are usually simpler, so easier to formalise,
than typical mathematics proofs and (b) the referees of these papers typically are
less mathematically skilled. So, outwith mathematics, the need is greater and the
task simpler. Success here, however, might then encourage experimentation within
mathematics.

6.5 Automated Exam Marking

I once asked two mathematicians which mathematical task they would be happiest
to have automated. Without collusion or hesitation, they simultaneously replied
“exam marking”. Automated provers are ideal for automating this task.

– Firstly, the kind of exam questions set to students are within the scope of state-
of-the-art automated provers — much easier, for instance, than the proofs from
novel, current research.

– Secondly, automated provers are well placed to deal with the variation of stu-
dent’s answers. It would be impossible to anticipate all possible correct answers
and pre-store them. The theorem prover, on the other hand, can just prove that
each step follows from the previous ones. If the gap between the steps is too
large, then the proof attempt might fail even though the step is correct, but
this is unlikely to be a serious practical problem.

– Thirdly, automated provers could be used to rank incorrect answers by clas-
sifying each proof step as correct or incorrect. Furthermore, if we formalised
common missteps as ‘malrules’, i.e., syntactically well-formed, but semanti-
cally unsound rules, then we might be able to classify some errors and even to
associate standard marking penalties with them.

Many problems remain, of course, such as how to input the student’s answer into
the prover, but, in principle, these problems are soluble.

7 Conclusion

We have argued that there are signs that mathematicians are becoming more
interested in automated theorem provers. The main driver of this interest is the
existence of simple theorems whose smallest proof is very large. Only with machine
assistance can we both produce such proofs and ensure that they are correct. In
particular, if lcf-style provers are used, then their proofs have a high assurance of
correctness. An initial indifference and, sometimes, hostility to computer-produced
proofs is giving way to curiosity and, sometimes, enthusiasm.

This interest creates new challenges for developers of automated provers. In
particular, they must find ways to present computer-produced proofs that make
them easy to understand — even when they are enormous. This requires the
presentation of proofs at varying levels of granularity, so that mathematicians can



Automated Theorem Provers: A Practical Tool for the Working Mathematician? 11

get an overview of the proof but also explore them in more detail, as required. The
presentations must highlight the key ideas of the proof and identify the hard bits.

A major barrier to the more widespread uptake of automated provers is that
existing theory libraries contain only a relatively small, albeit growing, area of
mathematics. Most interactive provers are accompanied by a growing library of
theories developed with their aid. Perhaps the best known, oldest and most de-
veloped is the Mizar library [Rudnicki, 1992], but even this library is relatively
very small compared to the vast body of mathematical knowledge. The qed Mani-
festo was a call to build a library of all known mathematics [Boyer, 1994], but this
project floundered in a disagreement about logics. So, the immediate entry-level
applications must only depend on the small number of libraries of pre-existing
theories. We have discussed five such applications: automated theorem synthesis
from axiomatic presentations; automated proof refactoring; automated theorem
search; automated referee assistants; and automated exam marking.

As promised, we end by returning to discuss the reasons given by mathemati-
cians for not using automated theorem provers.

1. Logic proofs are too detailed and long. Presenting a proof hierarchically,
e.g., as a hiproof, can provide both an overview of the high-level structure of
a proof, and the opportunity to investigate the proof in detail, explore the
dependencies between its parts and link it to help information to explain the
definitions and concepts involved. This would be a considerable improvement
over the current situation with long and complex human-produced proofs. Cur-
rently, only a handful of mathematicians understand each such proof. A hiproof
presentation would facilitate the understanding of a much wider group.

2. Provers are insufficiently powerful. The power of automated provers has
increased significantly over the last few decades. We see the results of this in-
creased power in the much more challenging theorems that are being proved
with them. In certain areas, for instance, decidable domains requiring long and
complicated calculations, automated provers are orders of magnitude faster
than humans and are not prone to the kind of errors that plague human cal-
culations. New libraries of proved theorems are gradually being added, but in
the meantime one can always add any required third-party lemmas as extra
axioms.

3. Provers are too tedious to use. Prover developers are gradually adding
the functionality to simplify ‘tedious’ manipulation. Such developments would
be stimulated by customers identifying such problems and demanding their
solution.

4. Provers are hard to use. Similar remarks apply as to the last point. Bog-
dan Grechuk, a mathematician, who was a Visiting Researcher in my group,
has tried to address this problem with a short Isabelle primer aimed at the
mathematician user [Grechuk, 2010].

5. Why give up the fun of proving? As we have seen in §6, there are a variety
of potential applications for provers that automate aspects of mathematics that
are not fun. These will leave more time for the fun bits.



12 Alan Bundy

References

[Appel et al, 1977] Appel, K., Haken, W. and Koch, J. (1977). Every planar map is
four colorable. I: Discharging. Illinois J. Math, 21:429–490.

[Aschbacher, 2005] Aschbacher, M. (2005). Highly complex proofs and the im-
plications of such proofs. In The nature of mathematical proof
[Bundy et al, 2005a], pages 2401–2406.

[Autexier & Hutter, 2005] Autexier, S. and Hutter, D. (2005). Formal software development
in MAYA. In Mechanizing Mathematical Reasoning, volume 2605
of LNCS, pages 407–432. Springer, Berlin/Heidelberg.

[Boyer, 1994] Boyer, R. et al. (1994). The QED manifesto. In Bundy, A.,
(ed.), Automated Deduction, CADE 12: 12th International Confer-
ence on Automated Deduction, volume 814 of LNCS, page 238251.
Springer-Verlag.

[Bundy et al, 2005a] Bundy, A., Atiyah, M., Macintyre, A. and Mackenzie, D. (2005a).
The nature of mathematical proof. Philosophical Transactions of
the Royal Society, 363(1835).

[Bundy et al, 2005b] Bundy, A., Basin, D., Hutter, D. and Ireland, A. (2005b). Rip-
pling: Meta-level Guidance for Mathematical Reasoning, volume 56
of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press.

[Church, 1936a] Church, A. (1936a). A note on the Entscheidungsproblem. Journal
of Symbolic Logic, pages 40–41 & 101–102.

[Church, 1936b] Church, A. (1936b). An unsolvable problem of elementary number
theory. American Journal of Mathematics, 58:345–363.

[Denney et al, 2006] Denney, E., Power, J. and Tourlas, K. (May 2006). Hiproofs: A
hierarchical notion of proof tree. Electronic Notes in Theoretical
Computer Science, 155:341–359.

[Fleuriot & Paulson, 1999] Fleuriot, J. D. and Paulson, L. C. (1999). Proving Newton’s
Propositio Kepleriana using geometry and nonstandard analysis in
Isabelle. In Automated Deduction in Geometry 1998, volume 1669
of Lecture Notes in Artificial Intelligence, pages 47–66.

[Gonthier, 2008] Gonthier, G. (December 2008). Formal proof — the four-color
theorem. Notices of the AMS, 55(11):1382–1393.

[Gordon et al, 1979] Gordon, M. J., Milner, A. J. and Wadsworth, C. P. (1979). Ed-
inburgh LCF - A mechanised logic of computation, volume 78 of
Lecture Notes in Computer Science. Springer-Verlag.

[Gorenstein, 1982] Gorenstein, D. (1982). Finite simple groups: An introduction to
their classification. Plenum Press (New York).

[Gowers, 2000] Gowers, W.T. (2000). Rough structure and classification. GAFA:
Geom. funct. anal., pages pp 1–39. Special volume.

[Grechuk, 2010] Grechuk, B., (2010). Isabelle primer for mathematicians, Available
from http://dream.inf.ed.ac.uk/projects/isabelle/.

[Hales, 2005a] Hales, T.C., (2005a). The Flyspeck project fact sheet.
http://code.google.com/p/flyspeck/wiki/FlyspeckFactSheet.

[Hales, 2005b] Hales, T.C. (2005b). A proof of the Kepler conjecture. Annals of
Mathematics, 162(3):1065–1185.

[Hales, 2008] Hales, T.C. (January 2008). Formal proof. Notices of the AMS,
55(11):1370–80.

[Mackenzie, 2001] Mackenzie, D. (2001). Mechanizing Proof. MIT Press.
[Martin, 1999] Martin, Ursula. (1999). Computers, reasoning and mathematical

practice. In Berger, Ulrich and Schwichtenberg, Helmut, (eds.),
Computational Logic, Proceedings of the NATO Advanced Study
Institute on Computational Logic, Marktoberdorf, Germany, 1997,
volume 165 of NATO ASI Series, pages 301–346. Springer-Verlag.

[McCasland et al, 2006] McCasland, R.L., Bundy, A. and Smith, P.F. (2006). Ascertaining
mathematical theorems. Electronic Notes in Theoretical Computer
Science, 151:21–38.

[Millo et al, 1979] Millo, Richard A. De, Lipton, Richard J. and J.Perlis, Alan. (May
1979). Social processes and proofs of theorems and programs. Com-
munications of the ACM, 22(5):214–225.



Automated Theorem Provers: A Practical Tool for the Working Mathematician? 13

[Paulson, 1990] Paulson, L.C. (1990). Isabelle: the next 700 theorem provers. In
Odifreddi, P., (ed.), Logic and Computer Science, pages 77–90. Aca-
demic Press.

[Rudnicki, 1992] Rudnicki, P. (1992). An overview of the Mizar project. In 1992
Workshop on Types for Proofs and Programs, Bastad. Chalmers
University of Technology. See http://mizar.org for up-to-date in-
formation on Mizar and the Journal of Formalized Mathematics.

[Turing, 1936] Turing, A. M. (1936). On computable numbers, with an appli-
cation to the Entscheidungsproblem. Proceedings of the London
Mathematical Society (2), 42:230–265.

[Wenzel, 2007] Wenzel, M. (2007). Isabelle/Isar — a generic framework for human-
readable proof documents. In Matuszewski, R. and Zalewska, A.,
(eds.), From Insight to Proof — Festschrift in Honour of An-
drzej Trybulec, volume 10(23) of Studies in Logic, Grammar, and
Rhetoric. University of Bialystok.


