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[1] Data uncertainty research of rain gauge network requires generation of large numbers of
Thiessen polygons. Despite its importance in hydrology, few studies on computational
Thiessen polygons have been carried out, and there is little published information in the
hydrological literature. This paper describes two automated approaches and the ways for
their implementation in hydrological applications: triangulation method and grid method.
Triangulation is a lossless method but suffers from complications in coding and slow
computational speed with small numbers of gauges. Grid method is easy to implement,
but a compromise must be made between the computational grid size, accuracy, and
speed. This paper describes a procedure to derive the relationship between the
catchment area, grid size, and accuracy indicator based on weighted mean error. The
computational speed comparison between the two methods has been found to follow a
logarithm curve, and the critical number of gauges could be found from this curve for
deciding the method choice if the computational speed is the limiting factor in a project.
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1. Introduction

[2] The Thiessen polygon method has played a very
important role in hydrology and meteorology for estimating
average rainfall (and other hydrometeorological factors,
e.g., solar radiation) over a bounded area since its introduc-
tion from the Voronoi diagram in mathematics by Thiessen
at the beginning of the twentieth century [Thiessen and
Alter, 1911]. Nowadays, it is still a very important tool in
hydrological research and practice [Grant et al., 2004;
Chand et al., 2005]. This is particularly analogous to the
popularity of the unit hydrograph method which is still
being researched [Yang and Han, 2006]. Although hydrol-
ogists can either derive the Thiessen polygons by hand
(pencil and paper) or by using commercial GIS (Geographic
Information System) packages (e.g., ARC GIS 9.0), these
approaches are not suitable for uncertainty research which
would need a huge number of randomly generated Thiessen
polygons for Monte Carlo analysis of rain gauge networks.
For example, to analyze the uncertainty characteristics of a
rain gauge network with various densities, it is necessary to
carry out some bootstrap resampling of the existing rain
gauges and usually thousands of simulations are needed, all
with different Thiessen polygons (Bootstrap is a type of
statistical analysis to test the reliability of certain systems to
input data variations). In such cases, three important factors
would influence the choice made by the hydrological
researcher: coding complexity, execution speed and accu-
racy. Hydrological researchers are not professional math-
ematicians or programmers, so it is important that the
algorithms involved must be simple and easy to imple-
ment in a common computational language (FORTRAN,
C, MATLAB, etc.).

[3] The principle of the Thiessen polygon is quite simple
[Mumm, 2005]: for a finite number of distinct sites in a
plane (e.g., rain gauges), we wish to partition the plane into
disjoint regions called cells, each of which contains exactly
one site, so that all other points within a cell are closer to
that cell’s site than to any other site. Mathematically,
suppose P = {p1, p2,. . ., pn} is a set of distinct points (sites)
in the plane. We subdivide the plane into n cells so that each
cell contains exactly one site. An arbitrary point (x,y) is in a
cell corresponding to a site piwith coordinates (xpi, ypi) if and

only if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xpi
� �2þ y� ypi

� �2q
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xpj
� �2þ y� ypj

� �2q
for all pj with j 6¼ i,1 � j,i � n. That is, the Euclidean

distance from (x,y) to any other site is greater than the distance
from (x,y) to pi. It turns out that the boundaries of the cells
defined in this way will be composed of straight lines and
segments forming convex polygons andwill be defined by the
perpendicular bisectors of segments joining each pair of sites.
This method of partitioning a plane is called a Voronoi
diagram in mathematics.
[4] Despite its importance in hydrology, few studies on

computational Thiessen polygons (or automated Thiessen
polygons) have been carried out and there is little published
information in the hydrological literature. This information
is timely needed now since the advancement of computing
technology and large rain gauge networks have provide
ideal opportunities for hydrological researchers to carry out
data uncertainty analysis with a large number of Monte
Carlo and Bootstrap simulations, which would require very
fast generation of the Thiessen polygons.
[5] In this study, the River Brue catchment, situated in

Somerset, England, is used as a test case for automated
Thiessen polygon generation (Figure 1). The total catch-
ment area is 136 km2 with 49 rain gauges. The high-density
rain gauge network is only feasible in hydrological experi-
ments and in practice, the operational rain gauge networks
are much less dense and hence would create uncertainties
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with the rainfall measured. Nowadays, uncertainty in river
flow modeling is very topical [Han et al., 2006] and among
the major uncertainty components in the modeling process
(data, parameters, and system uncertainties), data uncertainty
has been an active research area in hydrology [Hamlet and
Lettenmaier, 2005]. This 49-gauge network provides an ideal
case for assessing the uncertainties in the rain gauge network
with different time intervals. For example, to work out the
uncertainty in using 10 gauges instead of 49 gauges over the
Brue catchment, we would randomly select 10 gauges from
the gauge pool by Bootstrap resampling method and the
combinational possibilities are very high (49!/(10!*39!)) =
8 � 109. Although it is possible to limit the analysis to a
smaller quantity (e.g., 10,000 – 25,000 [Martinez and
Martinez, 2002, p. 214]) of combinations, there would
still be a large number of Thiessen polygons to generate,
therefore the execution speed of the chosen algorithm is
quite important in practice, in addition to its accuracy and
ease of coding. In this study, two approaches are included:
(1) triangulation method and (2) grid method. The study
explores these two methods and their application in auto-
mated Thiessen polygon generation based on the aforemen-
tioned three factors in hydrological research activities.

2. Triangulation Method

[6] Voronoi diagrams are the foundation for the Thiessen
polygon, which have been around for a long time and have
undergone a good deal of study. In fact, Aurenhammer
[1988] claims that about 1 out of 16 papers in computational
geometry have been on research concerning Voronoi dia-
grams! More than 600 papers on the subject are listed by

Okabe et al. [1992]. Numerous algorithms have been
developed by mathematicians in improving the computa-
tional efficiency of Voronoi diagrams [Aggarwal et al.,
1987; Klein and Lingas, 1992], such as linear time ran-
domized algorithm, divide and conquer algorithm and
sweep algorithm. It has been found that there is no univer-
sally superior algorithm; ultimately one must choose an
algorithm based on the particulars of the data and of the
application [Mumm, 2005].
[7] Mathematically, the triangulation method is based on

Delaunay triangulation [Lee and Lin, 1986], which has a
collection of edges satisfying an ‘‘empty circle’’ property:
for each edge we can find a circle containing the edge’s
endpoints but not containing any other points. A Voronoi
diagram can then be constructed based on Delaunay trian-
gulation (Figure 2). The coding of those processes is very
complicated and it is recommended that some third party
functions should be used by hydrologists. In this study,
MATLAB 7.0 (with mapping toolbox) is used (if other
packages are used, e.g., Mathematica, the procedure should
be very similar to the one described here). From the Voronoi
diagram, there are two problems for us in converting it into
a Thiessen polygon diagram (i.e., a bounded Voronoi
diagram): (1) many cells are open and do not form proper
polygons; (2) some lines are missing between the unclosed
Voronoi cells due to their infinite conjunction points (where
the points at which the lines meet are at an infinite distance).
To solve these problems, all gauges are mirrored in four
directions. The rationale for using the mirrored method is
based on the symmetrical properties of the Voronoi diagram.
The authors have tried other approaches (e.g., use algebraic
geometry to close Voronoi cells or to program the closed

Figure 1. River network, gauges, and boundary of the Brue catchment (location of the river outlet:
NGR: ST59003180 or 051�0500100N, 002�3500700W).
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cells from the first principles) and found none of them are
practical for hydrologists to code. The new Voronoi diagram
based on the mirrored rain gauges can produce fully closed
polygons for all the original sites as shown in Figure 3. The
final Thiessen polygon scheme can be derived by polygon
intersection and separation between the catchment polygon
and the ones in Voronoi diagram. In this study, it has been
found that the CPU time is closely linked with the number
of gauges. For a 49-gauge network, aMonte Carlo simulation
of 10,000 Thiessen polygon schemes would require about ten
hours of CPU time. If we need towork from two gauges all the
way up to 49 gauges, the CPU time required would be much

longer, therefore more efficient algorithms are desirable (The
computer used in this study has a CPU of Pentium IV with
3GHz speed Hyperthread and one GB RAM).

3. Grid Method

[8] The grid method is a numerical approach, hence it is
an approximation to a lossless method (where no accuracy
is lost due to the numerical scheme) and some accuracy is
sacrificed for the sake of simplicity and speed of the
algorithm. Early work in this area uses the paint function
(to flood a polygon with the same color) on the screen to
count the number of pixels in each cell [Ge, 2001]. Their
method has a limitation caused by the screen resolution. An
improved scheme is proposed in this study to use virtual
pixels (or grids) in the computer memory and then use
Euclidian distance to allocate each pixel to individual rain
gauges. A compromise has to be made about the resolution
of the grid and numerical accuracy. A fine grid size would
produce high-quality Thiessen polygons, but would demand
longer CPU time, and vice verse. A ten gauge Thiessen
polygon scheme in the Brue catchment is shown as an
illustration of this method in Figure 4. Firstly, a grid of
pixels is distributed uniformly covering the rectangular area
which encloses the catchment. Those pixels outside of the
catchment are then excluded by using azimuth angle count-
ing (calculate cumulative change in azimuth using tan�1

from pixel points to all catchment border vertices. If a point
is inside the catchment, the cumulative angle would be
360 degrees, otherwise it would be zero). Next, the
Euclidian distances between all interior pixels and the
rain gauges are calculated. In practice, the grid method
can be implemented in two ways: (1) combine the grid
generation and allocation in one subroutine and (2) separate
those two functions into different subroutines so that the
duplicated grid generation part is used once and only a grid
allocation function is called in subsequent simulations. The

Figure 2. Voronoi diagram for the Brue catchment.

Figure 3. Bounded Voronoi diagram by polygon intersec-
tion (the Thiessen polygons).

Figure 4. Grid method result for 10 rain gauges with grid
size of 1000 m.
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study has found that the grid method with separated functions
is much faster than the combined method. To aid the imple-
mentation of both methods, Figure 5 illustrates the key steps
in the relevant procedures.
[9] To improve the computational efficiency further, it is

important to use the squared distance as a proxy of
Euclidian distance. This is because the inequality relation-

ship based on Euclidian distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xpi
� �2þ y� ypi

� �2q
<

.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xpj
� �2þ y� ypj

� �2q
is equivalent to (x�xpi)(x�xpi) +

(y � ypi)(y � ypi) < (x � xpj)(x � xpj) + (y � ypj)(y � ypj).

The latter is much faster to execute than the former due to
the working mechanism of modern computers. For each
pixel, a minimum distance (or its proxy) can be found and
that will be linked with a specific rain gauge. The Thiessen
polygon weights can then be derived by summing up all
pixels for every linked rain gauge.
[10] Like any numerical scheme, it is important to under-

stand the relationship between the computation step (or grid
size for pixels in this case) and the output accuracy. A large
computation step can reduce the CPU time but it will reduce
the output accuracy. An optimal scheme should be the one
which uses the largest step allowable for the required
accuracy. There are many statistics for measuring accuracies
(such as RMSE (root mean square error), absolute errors
and relative errors, etc.) and there is no single statistic which
can satisfy all hydrological applications. In this study, the
weighted mean error is (WME) further explored (if other
criteria are used, the same procedure could be used as
described below).

WME ¼ 100
XN
i¼1

WGi �WTi

WTi

� �
WTi ð1Þ

where N is the number of rain gauges, WGi is weight by grid
method for the gauge i, and WTi is weight by triangulation
method for the gauge i. WME is basically a mean relative
error for the weights in relation to the true weights derived
by the triangulation method. To prevent the bias caused by
large relative errors from small weights, all relative errors
are adjusted by the Thiessen weights so that WME would
reflect the overall accuracy of the grid method for the
computed grid sizes and gauge numbers. A diagram with
different grid sizes and WME could be produced by a large
number of simulations as shown in Figure 6. If a threshold
of 1% mean error is desired (other thresholds could be
chosen depending on the project nature), the maximum
allowed grid sizes for different numbers of gauges can then

Figure 5. Flowcharts of triangulation and grid methods.

Figure 6. Polygon scheme accuracy based on the grid
sizes and number of gauges.
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be derived from Figure 6. It is interesting to notice that
when the number of grids is divided by the number of
gauges, the ratio is roughly around 200, therefore the more
gauges in a catchment, the more grid pixels are needed to
meet the accuracy demand. In this study, with WME as a
measuring indicator, we can derive a formula for the
required grid size for 1% error threshold:

Grid size ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

catchment area

200� number of gauges

s
ð2Þ

The number of 200 in equation (2) would be different if
other thresholds and error statistics are used. On the basis of
this formula, the required grid sizes for various numbers of
gauges can be derived and the speed comparison between
the grid method and triangulation method could be made. In
this case study, the computational result shows that the grid
method is much faster than the triangulation method for
small numbers of gauges. For example, the triangulation
method would need almost ten hours for 10,000 simulations
with 50 gauges, while the grid method would need just
20 min, which is twenty times faster. However, the speed
advantage of the grid method decreases with the increase
of gauges, indicating that at a certain level, this speed
advantage by the grid method would be lost to the
triangulation method. Because of the computer memory
problem in this study (out of memory), this critical level
has not been simulated. Instead, an extrapolation based on
the existing ratio curve could be used to estimate this
level. It has been found that a logarithm curve fits very
well to the data points and the fitted function is

Ratio ¼ �15:1� ln number of gaugesð Þ þ 80 ð3Þ

When the ratio is one, the critical number of gauges would
be 187 by equation (3). It should be pointed out that
equation (3) has been found based on WME at the Brue
catchment and hydrologists with other catchments and
measuring indicators should use the methodology described
in the paper to find individual critical numbers of gauges. If
computation speed is the limiting factor in a project, this
critical number of gauges would be very useful for choosing
the suitable automated method. For other cases, it would be
a compromise to balance the aforementioned three factors.

4. Conclusions

[11] Despite its importance in hydrology and other water
resources areas, few studies on computational Thiessen
polygons (or automated Thiessen polygons) have been
carried out and there is little published information in the
hydrological literature. This technical note has proposed
two methods that are suitable for hydrologists to implement
in water resources projects. The equations derived in the

study on the grid size and logarithm ratio curve provide a
useful foundation for further work in this area. The two
approaches explored have both strengths and weakness in
terms of their speed, coding and accuracy. It is important to
note that the optimal choice of the computation method
should be dependent on the project nature and there is no
single method that would suit all application cases. For
example, if computation speed is a crucial factor in a
project, the adoption of triangulation or grid method would
depend on the critical number of gauges. If other factors are
used, the decision process would be different. The informa-
tion from this study is timely needed now since the
advancement of computing technology and large rain gauge
networks have provide an ideal opportunity for hydrological
researchers to carry out data uncertainty analysis of rain
gauge networks with a large number of Monte Carlo or
bootstrap simulations.
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