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Approaches using measures of voxel intensity similarity are showing promise in fully automating
magnetic resonance~MR! and positron emission tomography~PET! image registration in the head,
without requiring extraction and identification of corresponding structures. In this paper a method
of multiresolution optimization of these measures is described and five alternative measures are
compared: cross correlation, minimization of corresponding PET intensity variation, moments of
the distribution of values in the intensity feature space, entropy of the intensity feature space and
mutual information. Their ability to recover registration is examined for ten clinically acquired
image pairs with respect to the size of initial misregistration, the precision of the final result, and the
accuracy assessed by visual inspection. The mutual information measure proved the most robust to
initial starting estimate, successfully registering 98.8% of 900 trial misregistrations. Success is
defined as providing a visually acceptable solution to a trained observer. A high resolution search
~ 1

16 mm step size! of 30 trial misregistrations showed that optimization using the mutual information
measure provided solutions with 0.13 mm, 0.11 mm and 0.17 mm standard deviations in the three
Cartesian axes of the translation vector and 0.2°, 0.3° and 0.2° standard deviations for rotations
about the three axes. The algorithm takes between 4 and 8 minutes to run on a typical workstation,
including visual inspection of the result. ©1997 American Association of Physicists in Medicine.
@S0094-2405~97!00601-9#
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I. INTRODUCTION

Accurate three-dimensional~3D! registration and overlay o
magnetic resonance~MR! and positron emission tomograph
~PET! images of the brain provides important additional
formation by relating functional information from PET im
ages to the detailed anatomical information available in M
images. While there has been significant progress in re
years in developing semi-automated methods for image
istration all currently available methods rely on significa
user interaction. More automated techniques to date h
lacked sufficient robustness for routine clinical use. Inter
tive methods based on user guided registration1 or user iden-
tification of point landmarks2,3,24are robust but time consum
ing, require observer skill and are hence prone to obse
bias or error. Techniques dependent on the alignment of
responding surfaces4 require prior identification and segmen
tation of those surfaces. Fully automating this process is
ficult and some manual editing is usually required. T
surfaces visible in each modality may not correspond to
same anatomical surface. With targeted clinical scans on
small area of overlapping surface between the two modal
may be available and only a very small proportion of t
total data is used for registration. As a result partial symm
try in the surfaces may lead to incorrect registration, for
ample with cranio-caudal and lateral rotations. The surf
25 Med. Phys. 24 „1…, January 1997 0094-2405/97/24 „
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may move between acquisitions or be distorted by MR s
ceptibility affects, particularly when using the skin surface
the facial region, ears and back of the neck.

Recently there has been renewed interest in meth
based on voxel intensity information. Woodset al.5 have
proposed a method based on the minimization of the sum
the standard deviation of intensities of PET voxels cor
sponding to narrow ranges of MR voxel intensities. Th
have applied this to registration of PET and MR images
which the brain has been segmented. They report that
approach is unreliable when applied to unsegmented MR
ages.

In this paper we report our work in developing the co
cept of voxel similarity measures for registration with th
aim of providing a robust and accurate fully automat
method for the 3D registration of MR and PET images of t
head. We use the concept of the feature space, or joint p
ability distribution, of voxel intensities of the two modalitie
We compare the use of cross correlation as used by Apice6

for two-dimensional~2D! in-slice alignment of MR and PET
images, the variance of corresponding voxel intensit
adapted from the Woods measure,5 the third order moment
of the histogram of the joint probability distribution pro
posed by Hillet al.,7 and measures derived from an inform
tion theoretic approach to image registration based on
tropy of the joint distribution8 and mutual information
251…/25/11/$10.00 © 1997 Am. Assoc. Phys. Med.
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FIG. 1. Joint probability distribution of image intensities created from a MR~horizontal axis! and PET ~vertical axis! image pair registered~a! and
misregistered by translation along the cranio-caudal axis by 2 voxels~4 mm! ~b! and 4 voxels~8 mm! ~c!.
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developed in parallel by Collignonet al.9 and Viola and
Wells.10

All these measures require iterative search for a glo
minimum ~or maximum! in a six-dimensional paramete
space corresponding to the three orthogonal translations
three rotations of rigid body motion. Different authors utiliz
different optimization schemes in their work. We presen
fast, efficient and robust multiresolution optimization a
proach for searching the six-dimensional parameter spac
rigid body registration. Identical optimization is then us
for each of the measures to enable direct comparison of t
behavior.

Validation of registration algorithms for clinical use is o
vital importance yet very difficult. Alternatives reported
the literature include phantom validation,11 simulation of
PET from segmented MR,12 observer assessment,13 markers
placed on the skin14 and markers placed within cadaver
heads.15 Phantom data are never as realistic as patient’s s
and simulated data are dependent on MR image interpr
tion and accurate modelling of the PET imaging proce
Markers on the skin may move, stereotactic frames are g
erally too invasive for these studies and cadaveric head
are unsuitable for PET images. We have therefore un
taken an observer study of minimum detectable misregis
tion. Observer assessment will therefore provide an up
limit to registration accuracy.13

In this paper we report results of registering 10 MR a
PET 3D image pairs of the head using 6 similarity measu
We tested and compared the precision and robustness of
measure on 900 misregistrations of the pairs. We asse
the small but significant differences in registration obtain
by each measure. Finally we tested robustness to trunca
of the axial field of view of the MR data set as might occ
in targeted clinical scans.

II. VOXEL SIMILARITY REGISTRATION MEASURES

Given a pair of images to register and a transformat
mapping one set of voxels onto the other, we can find,
corresponding voxels in the volume of overlap of the tw
images, the intensitiesmPM in the MR imagem, and in-
tensitiesnPN in the nuclear medicine PET imagen, where
Medical Physics, Vol. 24, No. 1, January 1997
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M and N are the sets of all intensity values present in t
region of overlap of the MR and nuclear medicine imag
respectively. The setsM andN therefore depend on the rigi
body transformation between the images. Additionally,
can calculate the probability of the occurrence of individu
MR intensitiesp$m%, nuclear medicine intensitiesp$n%, and
corresponding intensity pairsp$m,n%, that occur within the
volume of overlap of the two images for a given transform
tion. The aim is to provide a similarity measure derived fro
these occurrences of corresponding intensities to relate
alignment for different transformations and overlaps.

In this section we describe a number of plausible simil
ity measures within the framework of this 2D distribution
corresponding voxel values~the voxel intensity feature spac
or joint probability distribution!. Figure 1~a! shows the dis-
tinctive 2D distribution of intensities for a manually regi
tered MR and PET image pair. Bright areas in the imag
correspond to large numbers of voxels with those MR a
PET intensities. Figures 1~b! and 1~c! show distributions at
different translational misregistrations. All the measur
evaluated attempt to quantify these observed change
some way and each makes assumptions about the natu
the distribution. Ideally we would like a measure of vox
similarity to give us a global optimum at registration and
a monotonic function of misregistration.

A. Correlation coefficient

The cross correlation function is commonly used in ima
matching. Apicella6 applied the measure to retrieve the o
entation of 2D MR and PET slices using Fourier decoupl
of rotations and translations. In this work we have evalua
the measure in the spatial domain to solve the full 3D rig
registration problem. In its simplest form the function is d
pendent both on the volume of overlap and the local inten
of the images. A section of MR image may match two stru
turally similar regions of PET but the match would be bias
toward the PET region with the higher intensity values.
better measure is the correlation coefficient which can
rewritten in terms of the joint probability distribution o
voxel values,
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g~M ,N!5
(mPM(nPN~m2m̄!.~n2n̄!.p$m,n%

$~(mPM(nPNp$m,n%~n2n̄!2!~(mPM(nPNp$m,n%~m2m̄!2!%1/2, ~1!
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wherem̄ is the mean MR intensity andn̄ is the mean nuclea
medicine intensity over the volume of overlap of the tw
images. At registrationg(M ,N) will be maximized or mini-
mized if there is a predominantly linear relationship betwe
voxel values in the two modalities at registration. Initial e
perimentation indicated that when applied to T1 weigh
MR images and18FDG ~fluorine-18-fluorodeoxyglucose!
PET images, the correlation coefficient provided a ma
mum at registration. Other MR sequences with different
sponses to tissue properties may provide a minimum at
istration.

B. Minimization of PET intensity variation

The measure proposed by Woods5 makes the basic assump
tion that for a given MR value the range of correspond
PET voxel values is a minimum at registration. Here we lo
at its behavior when applied to matching unsegmented
brain images with optimization over multiple image reso
tions. If n̄(m) is the mean value of corresponding PET vo
els for a given MR valuem and sn(m) is the standard de
viation of those values, then the normalized stand
deviation is defined as

sn8~m!5snPN~m!/n̄~m!.

In terms of the joint probability density of the voxel value
this is given by

sn8~m!5
1

n̄~m!
.A(

nPN
p$m,n%.~n2n̄~m!!2.

The standard deviation of the distribution of PET~abscissa!
intensities for each MR~ordinate! value should be mini-
mized at registration. A weighted sum of this normaliz
standard deviation for all MR values is a measure of simi
ity betweenM andN over their volume of overlap,

sp9~M ,N!5 (
mPM

@sn8~m!.p$m%#. ~2!

The weighting ensures that the measure is influenced m
strongly by PET intensity variation for the most comm
MR values.

This measure has been applied by Woods to segme
MR where the measure is calculated at a single scale only
those voxels with MR values corresponding to the brain a
PET values above a certain threshold which also should
respond to the brain.

C. Moments of the distribution of values in the
intensity feature space

This approach was first proposed by Hillet al.7 from visual
examination of the effects of misregistration on the feat
space. As the images approach registration, the peaks in
Medical Physics, Vol. 24, No. 1, January 1997
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feature space increase in height and the regions of the fea
space which contain lower counts decrease in area. In te
of the joint probability distribution there are more larger va
ues inp$m,n% and fewer smaller values which can be me
sured by the higher order moments of this distribution. T
results in an increase in skewness in the distribution of v
ues of p$m,n%. Given p$m,n% we calculate the number o
occurrences of a particular probabilityp$m,n%, u(p). Let
wp be the number of possible discrete probability valu
pi , i 51, . . . ,wp . The moment of orderk of this distribution
can then be evaluated:

Mk~M ,N!5(
i 51

wp

u~pi !.pi
k . ~3!

This can be normalized by dividing by the zero mome
or mass,

Mk8~M ,N!5
( i 51

wp u~pi !.pi
k

( i 51
wp u~pi !

. ~4!

Hill proposed the use of the third order moment as a m
sure of registration, which is the measure we used in th
comparisons:

M38~M ,N!5
( i 51

wp u~pi !.pi
3

( i 51
wp u~pi !

. ~5!

D. Entropy of the intensity feature space

This measure and the following one are derived from co
munication theory, and describe the dependence of one v
able on another. Entropy gives a measure of the aver
information provided by a set of symbols. In our case t
symbols are values occurring in the two images to be re
tered. We can evaluate the information provided by pairs
values occurring together in the combined image~joint en-
tropy! for a given transformation as used by Collignon16 and
Studholme8

H~M ,N!52 (
mPM

(
nPN

p$m,n% log~p$m,n%!. ~6!

If we assume there are some shared structures in the
modalities, then when there is misalignment between the
ages, the combined image will contain two versions of th
shared features~e.g., four eyes instead of two!. Empirically,
bringing the images into alignment will reduce the number
structures in the combined image and reduce the joint
tropy. Conversely, by manipulating the transformation in
der to reduce the joint entropy we should bring the imag
into alignment.
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E. Mutual information

The measure of mutual information is used in commu
cation theory to describe the information carried by a co
munications channel, by relating the information content
the transmitted and received symbols.17 It has been propose
independently as a measure of image registration in var
medical applications by Collignonet al.9 and Viola and
Wells.10,18As with the joint entropy, the information conten
is derived from the occurrence of values in the two imag
The difference is that mutual information relates the jo
entropy to the entropies of the modalities separately,

I ~M ;N!5H~M !1H~N!2H~M ,N!, ~7!

whereH(M ) and H(N) are the marginal entropies derive
from the probabilities of occurrence of intensities in t
overlapping portions of the images given by

H~M !52 (
mPM

p$m% log p$m% ~8!

and

H~N!52 (
nPN

p$n% log p$n%, ~9!

respectively. Using theseI (M ;N) can be rewritten giving,

I ~M ;N!5 (
mPM

(
nPN

p$m,n% log
p$m,n%

p$m%p$n%
. ~10!

In terms of registration, by maximizing mutual informatio
we minimize the information in the combined image~joint
entropy! with respect to that provided by the two imag
separately~marginal entropies!. To align the images we mus
evaluate and compare the measure derived from diffe
orientations, and therefore overlaps, of the two image v
umes. Because the regions of the two images being c
pared change with overlap, the information provided by
two images also changes. The joint entropyH(M ,N) is then
not only a function of how well the images match in th
overlap, but also by how much information is provided
the two modalities in the overlap. This means th
H(M ,N) can be minimized simply becauseH(M ) or
H(N) is small in the region of overlap.I (M ;N) should pro-
vide a better measure of alignment thanH(M ,N) alone be-
cause it simply represents the information shared betw
the two modalities for a given overlap.

III. REGISTRATION PROCEDURE

A. Multiresolution sampling

Medical image data are commonly sampled at differ
intervals within plane and between plane. In all the tests e
pair of images was first resampled to cubic voxels. Where
needed to increase sampling to achieve this we used tri-li
interpolation and where we needed to decrease sampling
used voxel averaging by the nearest integer factor follow
by tri-linear interpolation. This base sampling rate in effe
determines the precision of the final estimate and the t
processing time. Anoctreeof lower resolution versions wer
Medical Physics, Vol. 24, No. 1, January 1997
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then created from this using the same approach, first crea
lower resolution images differing by a factor of 2 in sam
pling, and then forming an intermediate resolution by t
linear interpolation from the next highest resolution. A
though not as accurate as a Gaussian resampling schem
have found that this approach had a negligible influence
the optimization results when compared with Gaussian re
mpling. Its major practical advantage is that it requires mi
mal processor and memory resources, which is an impor
factor in the use of the software at many clinical instal
tions.

B. Evaluation of p ˆm,n ‰

A given rigid body transformation defines a mapping
one discretely sampled set of voxels onto the other. We
the MR as the reference image and for each MR voxel fi
the intensity at the corresponding location in the PET v
ume. Each of these voxel value pairs are used to form
discrete representation of the joint probability distributio
p$m,n%. The binning of intensity values is achieved as fo
lows. At the highest sampling resolution, the full intens
range of the image of MR intensitiesRm is found and this
range is repeatedly divided by 2 until it is less than 128,

bm5
Rm

2i for i such that 64<bm,128.

This number is then taken as the number of intensity bins
MR to form M5$m1 ,m2 ,..,mbm%. The process is then re
peated for the PET intensities formingN5$n1 ,n2 ,..,nbn%,
thus defining the discrete binning of the joint probabili
distribution. At lower data resolutions fewer voxels are ava
able to form the estimate ofp$m,n% and so the number o
bins in the histogram was reduced proportionately. At a
mm data resolution, with18 the number of voxels of the 2 mm
base image,18 of the number of bins was therefore use
Experiments on a small number of data sets indicated
starting with a limit of 256 or 64 bins at the highest reso
tion made no significant difference to the performance of a
of the measures. Large numbers of bins can lead to sig
cant computation times for evaluation of the measures fr
p$m,n%.

Since the volumes are discretely sampled, some form
interpolation is required when evaluating PET intensity c
responding to a particular voxel in the reference MR ima
In our implementation we used nearest neighbor interpo
tion for evaluation at each resolution down to and includi
the base sampling rate. Where increased precision was b
assessed we then continued optimization by evaluating m
sures using tri-linear interpolation of the lowest level in t
octree.

C. Optimization of measures

The capture rangeis an important feature of this type o
registration scheme. The similarity measures give an ind
tion of how well matched the data are in the volume
overlap. If the proportion of overlapping data is small, th
the measures can give a misleading indication of registrat
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An extreme example of this arises if the images are so m
aligned that the only overlap is a small uniform region fro
one image, such as air surrounding the patient, overlayin
completely unrelated but also uniform region in the seco
image. The consequence of this is that at some large mis
istration, all the algorithms can give an incorrect global o
timum. There will always be a limited range of transform
tions for which a similarity measure is a monotonic functi
of misregistration~unlike registration schemes based on t
alignment of equivalent corresponding features!. This cap-
ture range is a function of the similarity measure, the ima
content, and the field of view, and cannot be determinea
priori . Optimization algorithms employing multiple startin
estimates would require assumptions to be made abou
shape and scale of the capture range to ensure all sta
estimates fall within this region. As a result we have e
ployed a simpler registration scheme which takes a star
transformation estimateT05$tx ,ty ,tz ,ux ,uy ,uz%, assumes
that it is within the capture range of the registration meas
and simply improves the registration in steps.

We evaluate the chosen similarity measure for a set o
transformationsT (T0). These are the current starting es
mate and the starting estimate with increments and de
ments of each of the 3 translations (6dt) and 3 rotations
~6du!. We can look for a better estimate of the registrati
transformationT1 for a given measureS such that forS
P$sp9(M ,N),H(M ,N)%,

T15 min
TPT ~T0!

$S~m~VmùTVn!,n~VmùTVn!!% ~11!

and forSP $g(M ,N),M38(M ,N),I (M ;N)%,

T15 max
TPT ~T0!

$S~m~VmùTVn!,n~VmùTVn!!%. ~12!

If Tn11ª Þ Tn then we can repeat the search withT (Tn11)
until Tn115Tn . The step sizes$6dt,6du% can then be re-
duced and the search continued, the minimum values
$6dt,6du% determine how close we get to the optimu
transformation. We extend this simple optimization approa
by applying it to multiple resolution versions of the imag
and linking the step size to the resolution of the data. At le
l in the octree, the isotropic voxel dimension, or resolutio
is r l . At a resolutionr l we setdt to r l and the rotational step
size ~in degrees! du5k3r l . Experimentation indicated tha
changing the value ofk between 0.5 and 2.0 had no signi
cant effect on registration results, and so we arbitrarily
k51.0 for the work presented in this paper.

Sampling resolution was reduced by a factor ofA2 from 2
mm down to 8A2 mm. This rate of sampling reduction wa
found to give improved performance on some of the data
compared to a simple quad-tree reduction. Experimenta
with starting estimates provided by manual estimates of r
istration indicated that using starting resolutions coarser t
8A2 mm led to an increase in failures with some of t
measures, presumably due to stepping out of the cap
range.

One measure of optimization efficiency is the number
evaluations of the similarity measure required, which can
Medical Physics, Vol. 24, No. 1, January 1997
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expressed in terms of the equivalent number of evaluation
the highest resolution~i.e. evaluations of a resolution con
taining 1

8 the number of voxels to transform would count
1
8 of an evaluation!. Over the many tests carried out on th
data using the standard algorithm a mean of around
evaluations was recorded ranging from 50 to around 150~for
those optimizations which were successful!. Typical process-
ing times were between 3 and 7 minutes on a Sun SPA
station 5/70 ~Sun Microsystems, Mountain View, CA!,
dominated by evaluations at the finest resolution~2 mm!.

IV. METHOD

A. The data

The basis for our registration tests were a set of 10 r
tinely acquired image pairs of the brain, chosen from 3 cli
cal protocols to represent a typical range of image data
quired at our site. All data consisted of nominally transax
slices but with a range of orientations typical in routine clin
cal scanning. All the PET images were acquired on
Siemens/CTI scanner~Knoxville, TN!. The PET images
were all static, summed from 6 dynamic18 FDG acquisitions
reconstructed to 31 slices of 128 by 128 voxels. The vo
size was 2.032.033.375 mm and the point spread functio
has full width at half maximum of approximately 8.0 mm
The MR acquisitions came from 3 different scanners, 1
spin echo image~patient A! from a 1.5T Philips Gyroscan
S15/HP, 5 3D gradient echo images~patients B to F! from a
1.5T GE Signa, and 4 3D gradient echo images~patients G
to J! from a 1.5T Philips Gyroscan ACS II. All were T1
weighted and intended to show good grey/white matter
lineation. Large MR volumes were used to give a good ran
of tissue types~white matter, grey matter, skull, scalp etc!
for registration.

All the image pairs were first manually registered by i
teractive location of between 10 and 14 corresponding p
landmarks. These estimates are shown in Table I in the f
of 3 translations and 3 rotations to map each PET image
MR coordinates~where thex-axis is the patient from right–
left, they-axis from front to back and thez-axis from feet to
head!. Alignment was achieved by minimization of the su

TABLE I. Transformation parameters estimated by manual point landm
identification.

Manual MR-PET~18FDG! Registration
Translation~mm! Rotation~deg.! RMS Num. MR voxel

Patient tx ty tz ux uy uz error points size~mm!

A 2.9 23.3 8.4 11.721.920.5 3.9 12 0.8630.8632.5
B 22.6 1.8 7.6 24.2 1.1 8.7 3.6 12 0.9030.9031.5
C 29.6 29.8 22.8 21.6 20.8 6.1 3.0 14 0.9430.9431.5
D 23.5 7.0 15.4 16.122.7 3.8 2.9 14 0.9430.9431.5
E 21.8 18.3 0.6 11.3 0.2 0.6 2.7 12 0.9430.9431.5
F 23.4 211.0 0.0 18.4 20.8 5.9 3.5 12 0.9430.9431.5
G 1.0 7.0 28.7 18.6 4.325.7 3.1 11 0.9030.9031.2
H 2.1 11.8 0.4 14.120.920.4 4.3 14 0.8630.8631.2
I 3.5 12.8 27.3 18.3 0.5 3.7 2.9 10 0.8630.8631.2
J 0.7 22.6 24.9 12.7 23.0 2.3 2.5 11 0.8630.8631.2
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of squared distances between corresponding points. The
mean square~rms! error between the points for this estima
is included in the table.

To check registration accuracy these manual point ba
registration estimates were inspected as described in
IV B. All registrations were confirmed visually to be withi
about 3 mm over the brain volume. These manual res
provide a valuable indication of the scale of typical misre
istration encountered between brain images in clinical pr
tice. The in-plane translational misalignment of the origin
images were within the range625 mm~roughly 1

5 of the field
of view!.

B. Assessment of registration

Numerically the 6 parameter solutions can be assesse
comparison with those provided by manual registration.
spection of the manual point based estimates still indica
small but visually detectable misregistrations. As a result
chose to use expert visual inspection of the automated re
to select a good registration for comparison, rather than
rectly comparing automated estimates with the manual p
based estimates. We employ a number of visualization to
to assess accuracy based around an interactive displa
orthogonal slices. A color overlay of PET intensity onto gr
level MR combined with the depiction of interactively s
lected iso-intensity PET boundaries onto MR grey levels
give a sensitive indication of misregistration. In our protoc
to assess registration quality the observer uses orthog
slices of the combined data intersecting in the following
gions:

~1! The interthalamic area.
~2! The center of each orbit.
~3! The posterior part of temporal lobes.
~4! A transaxial slice above the lateral ventricles.

The observer is also encouraged to view other area
thought necessary. Studies such as those by Pietrzyk13 have
shown ‘‘misalignment of 4 mm was detected unambig
ously.’’ We have performed similar studies using our so
ware and higher resolution image data to assess five ex
enced observers’ ability to detect misregistration of MR a
PET images of the head.19 This has shown that all observe
can detect anX or Y translational misregistration of 2 mm o
more, aZ axis translational misregistration of 3 mm or mor
rotations about theZ axis of 2° or more and rotations abo
the X axis or Y axis of 4° or more~4° corresponds to a
displacement of 7 mm at 100 mm from the axis of rotatio!.

C. Experiments

1. Direct image registration

The first test was to register each of the image pairs
delivered by the scanners. Initially the center of the two v
umes were aligned and the slice orientation was that of
scan acquisition. From this starting estimate, for each of
10 image pairs, each of the measures was optimized
respect to the transformation. To ensure precision of the
sult, tri-linear interpolation was then used to further impro
Medical Physics, Vol. 24, No. 1, January 1997
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the estimate, reducing the step sizes down to1
16 mm and 1

16°
by factors ofA2. Visual inspection was used to distinguis
good results from obvious failures.

2. Assessment of robustness to starting estimate

We defined a series of known misregistrations from
manual point based estimates shown in Table I. In total,
misregistrations were defined. Thirty of these correspon
to a misregistration by translation of 10 mm and a rotation
10°, 30 of 20 mm and 20° and 30 of 30 mm and 30°. Ea
set of 30 was randomly distributed over the surface
spheres in translational and rotational parameter space so
a set distributed over a wide range of possible combinati
of rotations and translations was tested. From Table I it
been seen that misregistrations of 30 mm and 30° are a
extremes of likely initial misregistrations. The same set of
misregistrations was then used as starting estimates for
measure. For these estimates optimization continued dow
a step size ofA2 mm with sampling of 2 mm.

Visual inspection of the direct image registration resu
and the point based estimates provided an indication of
quality of results and a good registration was selected, giv
a visually defined ‘‘gold standard’’ for each of the imag
pairs. We then count the number of optimization results
each of the 90 misregistrations falling within 3 mm and 4°
the visually selected gold standard. These ranges were
lected from a study of the skilled observers’ ability to dete
misregistration.19 Although this does not give a direct mea
sure of accuracy it gives a good indication of robustness
different magnitudes of initial misregistration.

3. Assessment of limits on precision

To test the limits to precision, optimization of the 30 mi
registrations of 10 mm and 10° were continued for patien
reducing the step size to116 mm by factors ofA2. The mean
registration parameters and their distribution about the m
were computed and compared. Using data from patient I
an arbitrary choice from the 4 data sets which gave a rea
able initial registration for each measure.

4. Assessment of the effects of axial truncation

To test robustness to truncation, three equal axial s
ments of 72 mm~from patients B to J! and 70 mm~for
patient A! axial extent were extracted from the top, midd
and base of the MR data sets of patients. The registra
experiments were repeated for the 10 mm and 10° rand
misregistrations for each of the measures.

V. RESULTS

A. Direct image registration

Initial experimentation on the image data indicated that
the measures, other than mutual information,I (M ;N), and
correlation coefficientg(M ;N), exhibited much improved
behavior if low intensities, corresponding to air in the tw
modalities, were excluded from the evaluation. A similar a
proach has been used by Woods5 to select intensities from
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FIG. 2. Orthogonal slices through~a! MR data for patient D,~b! PET data~with a PET iso-intensity boundary overlaid!, MR data with overlay of PET
iso-intensity boundary for~c! poor registration estimate provided by optimization of correlation coefficient,~d! visually acceptable registration estima
provided by mutual information.
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PET to match with segmented MR. As a result, for all t
results presented here we have not used MR intensities
low 10% of the maximum value and PET tracer values
low 20% of the maximum value when evaluatin
sp9(M ,N), H(M ;N) and M38(M ,N). Using this approach
alignment starting from the orientation delivered by the sc
ners showed that all measures achieved visually accep
registrations except for the correlation coefficient measu
which failed for 5 of the patients, and the moment of t
histogram of the feature space measure, which failed fo
patient. Examples of two of these results for patient D
shown in Figure 2. Failure of the correlation coefficient me
sure may have been due in this case to increased PET s
in the sinuses, caused either by unusually high18FDG uptake
in this region, or an error in the attenuation assumption in
Medical Physics, Vol. 24, No. 1, January 1997
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PET reconstruction, resulting in significant differences
brain boundary delineation in MR and PET. This is illu
trated in the region between the eyes in Figures 2~c! and
2~d!, where the threshold chosen matches the MR br
boundary well~note that the threshold chosen here does
delineate corresponding internal structures, such as v
tricles!. It is clear that on its own this result is not a goo
comparison of the robustness of the different measures.

B. Robustness to starting estimate

In this test we were interested in the large scale beha
of the optimization for each of the registration measures. T
solutions found can be divided into those which were clo
to those found in the direct image registration results, a
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those which have escaped from the capture range of the m
sure and resulted in significant misregistration. Table II su
marizes the number of the solutions lying within 3 mm a
4° of the visually defined ‘‘gold standard’’ for each of me
sures from the 900 random starting estimates.

These results show that mutual information performed
tremely well with only a very small number of failures for a
of the experiments~11 out of 900!. The PET intensity vari-
ance measure performed reasonably well with only 85 f
ures out of 900 trials. The third order moment of the inte
sity feature space performed well for small initi
misregistrations but showed poor results for larger ini
misregistrations. The other two measures performed sig
cantly worse, particularly for starting estimates further aw
from registration.

C. Precision of registration

The results of the experiment to test the limits of precis
for the different measures for patient I are shown in Ta
III. There is a small but significant difference in the me
registration transformation for each measure even when
do apparently produce good registrations as was the cas
patient I.

We examined the clustering of the solutions as follow
As it is difficult to visualize the distributions of the registra
tion solutions in a six-dimensional parameter space we p
jected the solutions into two dimensions. Residual transla
and rotation vectors were computed for each solution by
ing the root sum of squares of the rotational and translatio
displacements from the point based solution. These sc

TABLE II. The percentage of estimates falling within 3 mm and 4° of the fi
resolution optimization estimate, for 30 initial misregistrations of 10 m
and 10°, 30 of 20 mm and 20° and 30 of 30 mm and 30°.

Robustness to starting estimate
Initial misregistration

Measure 10 mm and 10° 20 mm and 20° 30 mm and 3

g(M ,N) 87.3% 58.3% 57.7%
sp9(M ,N) 92.0% 91.0% 88.7%
M38(M ,N) 99.7% 73.3% 31.3%
H(M ,N) 87.3% 28.3% 6.7%
I (M ;N) 100.0% 99.7% 97.0%
Medical Physics, Vol. 24, No. 1, January 1997
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plots were generated for each of the 6 measures and
presented in Figure 3, which clearly shows the consist
bias provided by the different measures.

Optimization using the mutual information measure w
continued to a finer step size and did not produce any
nificant difference in the means and standard deviatio
These figures therefore represent fine structure of the m
sure in parameter space and not the limited resolution of
search.

D. Effects of axial truncation

The results for all 10 image pairs using axially truncat
MR are summarized in Table IV. The correlation coefficie
measure failed completely to produce any acceptable re
trations on the truncated images. One possible explanatio
this difference in behavior is that the measure is domina
by the air-patient boundary. Removal of this boundary~in
this case in theZ-axis! results in a failure. The remaining
measures behaved significantly better on the central and
per volumes of the images. Mutual information again p
formed best but about 20% of the registrations still failed
the middle and upper slices and the measure perform
poorly for the lower slices. The poor results for the low
slices may be explained by the effect of a larger range
tissue types and MR intensities in the neck with no cor
sponding PET intensity.

For both the top and base of the data sets there was
dence of bias in the axial direction, with brain activity fro
PET registering with scalp from MR at the top and wi
muscles of the eye, face and back of the neck at the bas
the truncated data sets. The bias in these solutions is i
trated for patient I in the scatter plots of the rotational a
translational vectors in Figure 4. There is a consistent m
registration upwards of the PET data for the upper segm
of 2 mm for the mutual information measure. Converse
there is consistent misregistration downwards of the low
segment of 4 mm.

VI. CONCLUSION

Using a simple and computationally efficient optimizatio
approach over multiple resolutions, we have compared
robustness and precision of a number of voxel similar
measures for MR and PET brain image registration wh
presented with a typical range of initial misregistrations. T
and
TABLE III. Mean and standard deviations of 30 high precision registration trials for patient I from 10°
10 mm random misregistrations~see text!.

Precision from random starts
Translations~sd! Rotations~sd!

Measure tx mm ty mm tz mm ux° uy° uz°

g(M ,N) 2.83 ~0.23! 13.44~0.17! 28.85 ~0.23! 19.00~0.37! 0.27 ~0.36! 1.67 ~0.40!
sp9(M ,N) 3.25 ~0.10! 12.92~0.15! 28.55 ~0.22! 20.10~0.31! 20.53 ~0.21! 3.34 ~0.15!
M38(M ,N) 2.95 ~0.19! 14.30~0.25! 27.98 ~0.36! 18.88~0.28! 20.89 ~0.42! 3.15 ~0.22!
H(M ,N) 3.04 ~0.18! 15.60~0.32! 28.23 ~0.35! 20.30~0.47! 20.95 ~0.40! 3.35 ~0.34!
I (M ,N) 3.39 ~0.13! 13.97~0.11! 28.76 ~0.17! 19.80~0.21! 20.84 ~0.30! 3.58 ~0.22!
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FIG. 3. Translation~mm! and rotation~°! error vectors between the manual estimate and automated estimate from random starts for patient I fo
optimization of correlation~a!, PET variance~b!, third order moment~c!, entropy~d! and mutual information~e!.
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range of misregistrations was guided by that obtained on
clinically acquired MR and PET image pairs and includ
displacements and rotations of up to nearly 30 mm a
30°. We found that the mutual information measure was
bust and precise. Of 900 initial misregistrations of 10 M
and PET image pairs, only 11~1.2%! failed to produce a
visually acceptable result. The measure of PET inten
variation performed reasonably well with 85~9%! failures of
900 trials. The correlation coefficient measure proved l
reliable, particularly for certain image pairs, with more fa
ures for starting estimates further from registration. The th
dorder moment of the intensity feature space and the join
Medical Physics, Vol. 24, No. 1, January 1997
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TABLE IV. Number of successful registrations from 300 trials, judged
within 3 mm and 4° of the direct high resolution result obtained with t
mutual information measure for half the axial MR volume located at
bottom, middle and top of the original MR volume.

Effects of axial truncation
Measure Lower slices Middle slices Upper slices

g(M ,N) 0.0% 0.0% 0.0%
sp9(M ,N) 0.0% 37.3% 33.3%

M38(M ,N) 0.0% 47.3% 42.0%
H(M ,N) 0.0% 24.3% 46.7%
I (M ,N) 36.7% 82.0% 82.7%
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tropy showed an even more significant fall in performance
the starting estimate was degraded. This contrasts with
results of direct registration of the images as delivered by
scanners. Direct registration failed to distinguish between
performance of any of the measures, except the cross c
lation which failed for half of the image pairs. This unde
lines the need to assess registration performance with a r
of starting estimates as well as a number of different im
pairs. The difference in behavior between the mutual inf
mation and joint entropy measures reflects the normaliza
effect of the marginal entropies of the modalities in the
gion of overlap.

We have shown that the different measures, when they
produce an acceptable registration, converge to a solu
which is precise. For the mutual information measure wh
the search is continued down to a step size of1

16 mm
(0.0625 mm! and 1

16° (0.0625°), the standard deviation o
thirty evaluations of the translational estimates are 0.13 m
0.11 mm and 0.17 mm in theX, Y andZ axes respectively
and 0.21°, 0.30° and 0.22° for rotations about theX, Y and
Z axes. As expected there are small but significant diff
ences between each measure. These differences, for th
data set studied, are of the order of 1 mm and 1°.

We have no means of knowing whether these estim
are distributed about the ‘‘true’’ registration but they are
sually acceptable. A previous study has confirmed that vis
assessment will detect misregistrations greater than 2 mm
transaxial translation, 3 mm of axial translation, 2° of ax
rotation, or 4° of cranio-caudal or lateral rotation. These fi
ures determine the upper limit of accuracy in this pres
study.

The concept of capture range is important. When a lo
optimum exists which produces a visually acceptable re
tration there may well be a global optimum or other sign
cant local optima corresponding to significant misregist
tions. Ensuring that the optimization process does
erroneously find these false solutions requires care when
fining the maximum allowable initial misregistration of th
starting estimate and the coarsest step size of the multir

FIG. 4. Translation~mm! and Rotation~°! error vectors between the ful
volume estimate and estimates from random starts using 50% of MR s
for patient I following optimization of mutual information~a!.
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lution search. These in turn will depend on the correspond
information content of each image and empirically we ha
found that for MR and PET whole brain images the mutu
information measure performs well with a maximum st
size of 8A2 mm (11.3 mm! and initial misregistrations
within 30 mm translation and 30° rotation.

The performance of the mutual information measure
pends on there being sufficient corresponding intensity in
mation to achieve an optimum at registration. Clearly th
could be situations when this does not occur. The exp
ments on truncated data illustrate these limitations. In t
case mutual information is maximized when the upper a
lower truncated data sets are erroneously axially transla
by a few millimeters. Interestingly, registration of these tru
cated data sets is also very difficult for all but the mo
highly skilled observers, implying that high level anatomic
information may well be required in this particular task. T
algorithm does appear to follow reasonably well the perf
mance of the human visual system when the observer d
not have additional anatomical information.

The presence of large space occupying lesions or sig
cant intensity artifacts~streak artifacts or intensity shading!
may also affect the robustness and accuracy of the mea
All our image data were collected to study neuro function
parameters and significant space occupying lesions were
present. The MR images were processed as they were d
ered by the MR scanners. Residual image distortion was
corrected. Except for the possible presence of susceptib
effects in and around the air sinuses phantom experim
have indicated that MR distortion should be less than ab
1.5 mm throughout the volume of interest. Image scaling w
not a parameter in our registration algorithm and we rel
on effective quality control of the scanners used. We did
detect significant scaling errors in the data acquired for
study.

Processing times, excluding data transfer from scanne
workstation but including visual inspection of the resul
were between 4 and 8 minutes per study. This compa
favorably with typical times in our laboratory for fully inter
active registration, interactive point based registration, s
face matching and minimization of corresponding PET inte
sity variation ~the latter two include steps for user guide
MR brain segmentation!. The time is compatible with routine
clinical use in centers where efficient data transfer pro
dures are implemented.

This registration method is also being applied succe
fully to MR and CT images of the head23 and work is in
progress in MR, CT and PET images of the neck, thorax
pelvis. Further work is required to examine absolute ac
racy using an appropriate gold standard such as that
posed in the Vanderbilt study,20 to quantify in more detail
the effects of image artifact, and to compute local rigid bo
registration in the presence of patient movement, severe
metric distortions and intensity inhomogeneity. Results
the algorithms performance on many more data sets at m
tiple clinical sites will be reported in due course. Work
also underway to improve robustness and application
other image types, for example, by incorporating lab

es
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ling of connected regions21 and encoding spatial location o
intensity.22

ACKNOWLEDGMENTS

This work was funded by UK EPSRC. We are grateful f
the support and encouragement of our clinical colleague
this work, in particular Dr. Wai-Lup Wong, Dr. Josep
Wong, Dr. Iain Cranston and for the technical assistance
the Radiographic staff of Guy’s and St. Thomas’ Hospitals
London. We acknowledge useful discussions with And
Collignon and Dirk Vandermeulen of KUL, Leuven, Be
gium and Sandy Wells of MIT and Brigham and Women
Hospital Boston, MA, in particular on the subject of mutu
information. We also thank Dr. John Little of UMDS fo
assistance in the Mathematical formulations.

a!Electronic mail: C. Studholme@umds.ac.uk
1U. Pietrzyk et al., ‘‘An interactive technique for 3-dimensional imag
registration: Validation for PET, SPECT, MRI and CT brain studies,’’
Nucl. Med.35, 2011–2018~1993!.

2A.C. Evans, S. Marrett, J. Torrescorzo, S. Ku, and L. Collins, ‘‘MRI-PE
correlation in three dimensions using a volume-of-interest~VOI! atlas,’’
J. Cereb. Blood Flow Metab.11, A69–A78 ~1991!.

3D.L.G. Hill et al., ‘‘Registration of MR and CT images for skull bas
surgery using point-like anatomical features,’’ Br. J. Radiol.64, 1030–
1035 ~1991!.

4D.L.G. Hill et al., ‘‘Accurate frameless registration of MR and CT im
ages of the head: applications in planning surgery and radiation thera
Radiology191, 447–454~1994!.

5H. Jiang, R.A. Robb, and K.S. Holton, ‘‘New approach to 3-D regist
tion of multimodality medical images by surface matching,’’ Proc. SP
1808, 196–213~1992!.

6R.P. Woods, J.C. Mazziotta, and S.R. Cherry, ‘‘MRI PET registrat
with automated algorithm,’’ J. Comput. Assist. Tomogr.17, 536–546
~1993!.

7A. Apicella, J.S. Kippenham, and J.H. Nagel, ‘‘Fast multi-modality ima
matching,’’ Proc. SPIE1092, 252–263~1989!.

8D.L.G. Hill, C. Studholme, and D.J. Hawkes. ‘‘Voxel similarity measur
for automated image registration,’’ Proc. SPIE2359, 205–216~1994!.

9C. Studholme, D.L.G. Hill, and D.J. Hawkes, ‘‘Multiresolution voxe
similarity measures for MR-PET registration,’’ Proceedings of Inform
tion Processing in Medical Imaging, Ile de Berder, 1995, edited by
Bizais, C. Barillot, R. Di Paola~Kluwer Academic, Dordrecht, 1995!, pp.
287–298.
Medical Physics, Vol. 24, No. 1, January 1997
r
in

of
n
e

l

,’’

-

.

10A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, an
Marchal, ‘‘Automated multimodality image registration using inform
tion theory,’’ in Ref. 8, pp. 263–274.

11P.A. Viola and W.M. Wells, ‘‘Alignment by maximisation of mutua
information,’’ Proceedings of the 5th International Conference on Co
puter Vision, 1995~IEEE, New York, 1995!.

12T.G. Turkingtonet al., ‘‘Accuracy of registration of PET, SPECT and
MR images of a brain phantom,’’ J. Nucl. Med.34, 1587–1594~1993!.

13P. Neelin, J.E. Crossman, D.J. Hawkes, Y. Ma, and A.C. Evans, ‘‘V
dation of an MRI/PET landmark registration method using 3-D simula
PET images and point simulations,’’ Comput. Med. Imaging17, 351–356
~1993!.

14U. Pietrzyket al., ‘‘Three-dimensional alignment of functional and mo
phological tomograms,’’ J. Comput. Assisted Tomogr.14, 50–59~1990!.

15T.G. Turkingtonet al., ‘‘Accuracy of surface fit registration for PET and
MR brain images using full and incomplete brain surfaces.’’ J. Comp
Assist. Tomogr.19, 117–124~1995!.

16P.F. Hemler, P.A. Van den Elsen, T. Sumanaweera, S. Napel, J. D
and J.R. Adler, ‘‘A quantitative comparison of residual errors for thr
different multimodality registration techniques,’’ in Ref. 8, pp. 251–26

17A. Collignon, D. Vandermeulen, P. Suetens, and G. Marchal, ‘‘3D m
timodality medical image registration using feature space clusterin
Proceedings of CVR Med ‘95, Nice, FR, in Lecture Notes in Compu
Science~Springer-Verlag, Berlin, 1995!, Vol. 905, pp. 195–204.

18F.M. Reza,An Introduction to Information Theory~Dover, New York,
1994!, pp. 104–106.

19W.M. Wells, P. Viola, and R. Kikinis, ‘‘Multimodal volume registration
by maximization of mutual information,’’ Proceedings of the 2nd annu
international symposium on Medical Robotics and Computer Assis
Surgery, Baltimore, 1995~Wiley, New York, 1995!, pp. 55–62.

20J. Wong, C. Studholme, D.J. Hawkes, and M.N. Maisey, ‘‘Evaluation
the limits of visual detection of image registration in a brain F-18 FD
PET-MRI study,’’ J. Nucl. Med.37, 208 ~1996!.

21J. Westet al., ‘‘Comparison and evaluation of retrospective intermodal
registration techniques,’’ J. Comput. Assisted Tomogr.~in press!.

22C. Studholme, D.L.G. Hill, and D.J. Hawkes, ‘‘Incorporating connect
region labelling into automated image registration using mutual inform
tion,’’ Proceedings of Mathematical Methods in Biomedical Ima
Analysis, San Francisco, 1996~IEEE Computer Society Press!, pp. 23–
31.

23C. Studholme, D.L.G. Hill, J. Wong, M.N. Maisey, and D.J. Hawke
‘‘Registration measures for automated 3D alignment of PET and inten
distorted MR images,’’ Proceedings in Image Fusion and Shape Varia
ity Techniques, Leeds, 1996~Leeds University Press!, pp. 186–193.

24C. Studholme, D.L.G. Hill, and D.J. Hawkes, ‘‘Automated 3D registr
tion of truncated MR and CT images of the head,’’ Proceedings of
British Machine Vision Conference, Birmingham, British Machine Visio
Association, 1995, edited by D. Pycock~BMVA Press!, pp. 27–36.


