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Threshold selection is a critical issue for extreme value analysis with
threshold-based approaches. Under suitable conditions, exceedances over a
high threshold have been shown to follow the generalized Pareto distribution
(GPD) asymptotically. In practice, however, the threshold must be chosen. If
the chosen threshold is too low, the GPD approximation may not hold and
bias can occur. If the threshold is chosen too high, reduced sample size in-
creases the variance of parameter estimates. To process batch analyses, com-
monly used selection methods such as graphical diagnostics are subjective
and cannot be automated. We develop an efficient technique to evaluate and
apply the Anderson–Darling test to the sample of exceedances above a fixed
threshold. In order to automate threshold selection, this test is used in con-
junction with a recently developed stopping rule that controls the false dis-
covery rate in ordered hypothesis testing. Previous attempts in this setting do
not account for the issue of ordered multiple testing. The performance of the
method is assessed in a large scale simulation study that mimics practical re-
turn level estimation. This procedure was repeated at hundreds of sites in the
western US to generate return level maps of extreme precipitation.

1. Introduction. Extreme value analysis has wide applications in a variety of
fields, such as hydrology [e.g., Katz, Parlange and Naveau (2002)] and climatology
[e.g., Davison and Smith (1990), Kharin et al. (2013)], and dates back to Fisher and
Tippett (1928). A major goal of inferences in these fields is to estimate the proba-
bility of extreme events, often expressed in terms of return level and return period.
A return level with a return period of T = 1/p years is a high value that is exceeded
with probability p. In other words, the average number of events exceeding this
level within a T -year period is one. Commonly used in extreme value analysis,
threshold-based methods involve modeling data exceeding a suitably chosen high
threshold with the generalized Pareto distribution (GPD) [Balkema and de Haan
(1974), Pickands (1975)]. Choice of the threshold is critical in obtaining accurate
estimates of model parameters and return levels. The threshold should be chosen
high enough for the excesses to be well approximated by the GPD to minimize
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bias, but not so high to substantially increase the variance of the estimator due to
reduction in the sample size (the number of exceedances).

Although it is widely accepted in the statistics community that the peaks-
over-threshold (POT) approach uses data more efficiently than the block maxima
method [e.g., Caires (2009), Wang (1991)], it is less utilized in some fields such
as climatology. Even when appropriate data is available for use with the POT ap-
proach, there are a lack of efficient procedures that can be applied consistently
and automatically to select the threshold in each sample, sometimes numbering
in the hundreds or thousands [e.g., Kharin et al. (2007, 2013)]. As a motivating
application, consider mapping the annual return levels of daily precipitation for
the three west coastal US states of California, Oregon, and Washington. For the
three states, one needs to repeat the estimation procedure, including threshold se-
lection, at each of the hundreds of stations. For the whole US, thousands of sites
would need to be processed. A graphical based diagnosis will be difficult to apply
consistently across many sites and is clearly impractical. It is desirable to have an
intuitive automated threshold selection procedure to use with POT analysis.

Many threshold selection methods are available in the literature; see Scarrott
and MacDonald (2012), Caeiro and Gomes (2015) and Langousis et al. (2016) for
recent reviews. Graphical diagnosis methods are commonly used [e.g., Davison
and Smith (1990), Drees, De Haan and Resnick (2000), Coles (2001), Scarrott and
MacDonald (2012)], but can be quite subjective and are not appropriate as an auto-
mated procedure. Recently, Northrop, Attalides and Jonathan (2017) take a unique
approach by applying Bayesian model averaging to combine inferences from mul-
tiple thresholds in order to reduce the sensitivity in estimates from using a single,
fixed threshold. Other selection methods can be grouped into various categories.
One is based on the asymptotic results about estimators of properties of the tail
distribution. Langousis et al. (2016) detail a few of these procedures for threshold
selection, such as the Jackson [Jackson (1967)] and Lewis [Lewis (1965)] kernel
statistics as modified in Goegebeur, Beirlant and de Wet (2008) (based on the Hill
estimator) and an automated version of the mean residual life (MRL) plot. Compu-
tational, resampling-based estimators require sufficient computing resources, may
involve tuning parameters [Danielsson et al. (2001)], and in some cases is not sat-
isfactory for small samples [Ferreira, de Haan and Peng (2003)].

A second category of methods are based on goodness-of-fit of the GPD, where
the threshold is selected as the lowest level above which the GPD provides ad-
equate fit to the exceedances [e.g., Davison and Smith (1990), Dupuis (1999),
Choulakian and Stephens (2001), Northrop and Coleman (2014), Langousis et al.
(2016)]. Goodness-of-fit tests are simple to understand and perform, but error con-
trol, however, is challenging because of the ordered nature of the hypotheses, and
the usual methods from multiple testing such as false discovery rate (FDR) [e.g.,
Benjamini (2010a, 2010b)] cannot be directly applied. This has not been addressed
to the best of our knowledge. Methods in the third category are based on mixtures
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of a GPD for the tail and another distribution for the “bulk” joined at the thresh-
old [e.g., MacDonald et al. (2011), Wadsworth and Tawn (2012), Naveau et al.
(2016)]. Treating the threshold as a parameter to estimate, these methods can ac-
count for the uncertainty from threshold selection in inferences. However, care is
needed to ensure that the bulk and tail models are robust to one another in the case
of misspecification.

The simple naive method is an a priori, or fixed threshold selection based on
expertise on the subject matter at hand. Various rules of thumb have been sug-
gested; for example, selecting the top 10% of the data [e.g., DuMouchel (1983)],
or the top square root of the sample size [e.g., Ferreira, de Haan and Peng (2003)].
Such one rule for all is not ideal in climate applications where high heterogeneity
in data properties is the norm. The proportion of the number of rain days can be
very different from wet tropical climates to dry subtropical climates; therefore, the
number of exceedances over the same time period can be very different across dif-
ferent climates. Additionally, the probability distribution of daily precipitation can
also be different in different climates, affecting the speed of the tail convergence
to the GPD [Raoult and Worms (2003)].

We propose an automated threshold selection procedure based on a sequence
of goodness-of-fit tests with error control for ordered, multiple testing. The re-
cently developed stopping rules in G’Sell et al. (2016), which control the FDR
[Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001)] for ordered
hypotheses, are adapted for use in this setting. They are applied to the Anderson–
Darling (AD) goodness-of-fit test at each candidate threshold sequentially from
low to high. The application is challenging in that the asymptotic null distribu-
tion of the testing statistic is unwieldy [Choulakian and Stephens (2001)], and
that parametric bootstrap puts bounds on the approximate p-values which can be
shown to reduce power of the stopping rules. We propose a fast approximation
of the p-value based on the results of Choulakian and Stephens (2001) to facili-
tate the application. The performance of the procedures are investigated in a large
scale simulation study, and recommendations are made. The procedure is applied
to precipitation return level mapping of three west coastal states of the US. Inter-
esting findings are revealed by applying different stopping rules. The automated
threshold selection procedure has applications in various fields, especially when a
consistent procedure for batch processing of massive datasets and of many sites is
needed.

The outline of the paper is as follows. Section 2 presents the generalized Pareto
model, its theoretical justification, and how to apply the automated sequential
threshold testing procedure. Section 3 introduces the tests proposed to be used
in the automated testing procedure. A simulation study demonstrates the power of
the tests for a fixed threshold under various misspecification settings and it is found
that the AD test is most powerful in the vast majority of cases. A large scale simula-
tion study in Section 4 demonstrates performance of the stopping rules for multiple
ordered hypotheses, under a plausible misspecified distribution and is compared
with competing methods. In Section 5, we return to our motivating application and



AUTOMATED THRESHOLD SELECTION 313

derive return levels for extreme precipitation at hundreds of west coastal US sta-
tions to demonstrate the usage of our method and some practical considerations.
A final discussion is delivered in Section 6.

2. Automated sequential testing procedure. Threshold methods for extreme
value analysis are based on that, under general regularity conditions, the only pos-
sible nondegenerate limiting distribution of properly rescaled exceedances of a
threshold u is the GPD as u → ∞ [e.g., Pickands (1975)]. The GPD(σu, ξ ) has
cumulative distribution function

(1) F(y|θ) =

⎧⎪⎪⎨
⎪⎪⎩

1 −
(

1 + ξy

σu

)−1/ξ

, ξ �= 0, y > 0,1 + ξy

σu

> 0,

1 − exp
(
− y

σu

)
, ξ = 0, y > 0,

where θ = (σu, ξ), ξ is a shape parameter, and σu > 0 is a threshold-dependent
scale parameter. The GPD also has the property that for some threshold v > u,
the excesses follow a GPD with the same shape parameter, but a modified scale
σv = σu + ξ(v − u). For the remainder of the text, the subscript u associated with
σ is dropped for ease of presentation.

Let X1, . . . ,Xn be a random sample of size n. If u is sufficiently high, the
exceedances Yi = Xi − u for all i such that Xi > u are approximately a random
sample from a GPD. The task is to find the lowest threshold such that the GPD
fits the sample of exceedances over this threshold adequately. Our solution is to
combine sequential goodness-of-fit testing with adjustments for multiplicity in the
ordered setting. The first component is similar to the approach taken in Choulakian
and Stephens (2001) or model specification testing [e.g., Northrop and Coleman
(2014), Wadsworth (2016)] for the GPD to the exceedances over each candidate
threshold in an increasing order. The second component, multiple testing in the
special ordered setting, is handled by the stopping rules in G’Sell et al. (2016).

Consider a fixed set of candidate thresholds u1 < · · · < ul . For each threshold,
there will be ni excesses, i = 1, . . . , l. The sequence of null hypotheses can be
stated as

H
(i)
0 : The distribution of the ni exceedances above ui follows the GPD.

For a fixed ui , many tests are available for this H
(i)
0 . An automated procedure

can begin with u1 and continue until some threshold ui provides an acceptance
of H

(i)
0 [Choulakian and Stephens (2001), Thompson et al. (2009)]. The problem,

however, is that unless the test has high power, an acceptance may happen at a low
threshold by chance and, thus, the data above the chosen threshold is contaminated.
One could also begin at the threshold ul and descend until a rejection occurs, but
this would result in an increased type I error rate. The multiple testing problem
obviously needs to be addressed, and the issue here is especially challenging be-
cause these tests are ordered; if H

(i)
0 is rejected, then H

(k)
0 has been rejected for
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all 1 ≤ k < i. Despite the extensive literature on multiple testing and the more re-
cent developments on FDR control and its variants [e.g., Benjamini and Hochberg
(1995), Benjamini and Yekutieli (2001), Benjamini (2010a, 2010b)], no definitive
procedure has been available for error control in ordered tests until the recent work
of G’Sell et al. (2016).

We adapt the ForwardStop rule of G’Sell et al. (2016) to the sequential testing of
(ordered) null hypotheses H1, . . . ,Hl . Let p1, . . . , pl ∈ [0,1] be the corresponding
p-values of the l hypotheses. G’Sell et al. (2016) transform the sequence of p-
values to a monotone sequence and then apply the original method of Benjamini
and Hochberg (1995) on the monotone sequence. The rejection rule is constructed
by returning a cutoff k̂ such that H1, . . . ,Hk̂

are rejected. If no k̂ ∈ {1, . . . , l} exists,
then no rejection is made. ForwardStop is given by

(2) k̂F = max

{
k ∈ {1, . . . , l} : −1

k

k∑
i=1

log(1 − pi) ≤ α

}
,

where α is a prespecified level.
Under the assumption of independence among the tests, ForwardStop was

shown to control the FDR at level α. In our setting, stopping at k implies that
goodness-of-fit of the GPD to the exceedances at the first k thresholds {u1, . . . , uk}
is rejected. In other words, the set of first k null hypotheses {H1, . . . ,Hk} is re-
jected. At each H

(i)
0 , ForwardStop is a transformed average of the previous and

current p-values.
Another stopping rule developed in G’Sell et al. (2016), StrongStop, could be

applied in the same manner. However, it provides stronger error control than For-
wardStop; it controls the familywise error rate instead of FDR. In that regard,
StrongStop is less desirable for this application as the stricter error control leads to
decreased power-to-reject and generally results in selected thresholds that are too
low.

ForwardStop, combined with the sequential hypothesis testing, provides an au-
tomated selection procedure—all that is needed is the level of desired error control
and a set of thresholds. A caveat is that the p-values of the sequential tests here are
dependent, unlike the setup of G’Sell et al. (2016). Nonetheless, ForwardStop may
still provide some reasonable error control as its counter part in the nonsequential
multiple testing scenario [Benjamini and Yekutieli (2001), Blanchard and Roquain
(2009)]. A simulation study is carried out in Section 4 to assess the empirical prop-
erties.

Additionally, it is of worth to note that there are two potential factors in the
application to real data that may directly affect threshold selection using the For-
wardStop procedure. First, by using critical values of goodness-of-fit tests intended
for continuous data, applied to quantized data, resulting p-values have the poten-
tial to be underestimated [e.g., Langousis et al. (2016)]. Second, ignoring serial
dependence in the excesses can lead to spurious precision in inferences about the
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GP parameters. Although ignoring such dependence does not introduce bias, it
does underestimate standard errors [Fawcett and Walshaw (2007)], which in turn
can influence the variability in goodness-of-fit test critical values.

3. The tests. The automated procedure can be applied with any valid test for
each hypothesis H

(i)
0 corresponding to threshold ui . Four existing goodness-of-

fit tests that can be used are presented. Because the stopping rules are based on
transformed p-values, it is desirable to have testing statistics whose p-values can
be accurately measured; bootstrap based tests that put a lower bound on the p-
values (1 divided by the bootstrap sample size) may lead to premature stopping.
For the remainder of this section, the superscript i is dropped. We consider the
goodness-of-fit of GPD to a sample of size n of exceedances Y = X − u above a
fixed threshold u.

3.1. Anderson–Darling and Cramér–von Mises tests. The AD and the
Cramér–von Mises (CvM) tests for the GPD have been studied in detail
[Choulakian and Stephens (2001)]. Let θ̂n be the maximum likelihood estimator
(MLE) of θ under H0 from the observed exceedances. Make the probability inte-
gral transformation based on θ̂n, z(i) = F(y(i)|θ̂n) as in (1), for the order statistics
of the exceedances y(1) < · · · < y(n). The AD statistic is

A2
n = −n − 1

n

n∑
i=1

(2i − 1)
[
log(z(i)) + log(1 − z(n+1−i))

]
.

The CvM statistic is

W 2
n =

n∑
i=1

[
z(i) − 2i − 1

2n

]2
+ 1

12n
.

The AD statistic is a slight modification of the CvM statistic, with more weight
given to observations in the tail of the distribution.

The asymptotic distributions of A2
n and W 2

n are unwieldy, both being sum of
weighted chi-squared variables with one degree of freedom with weight found
from the eigenvalues of an integral equation [Choulakian and Stephens (2001),
Section 6]. The distributions depend only on the estimate of ξ . The tests are often
applied by referring to a table of a few upper tail percentiles of the asymptotic
distributions [Choulakian and Stephens (2001), Table 2], or through bootstrap. In
either case, the p-values are truncated by a lower bound. Such truncation of a
smaller p-value to a larger one can be proven to weaken the ForwardStop rule
given in (2). In order to apply these tests in the automated sequential setting, more
accurate p-values are needed.

We provide two remedies to the table in Choulakian and Stephens (2001). First,
for ξ values in the range of (−0.5,1), which is applicable for most applications, we
enlarge the table to a much finer resolution through a pre-set Monte Carlo method.
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For each ξ value from −0.5 to 1 incremented by 0.01, 2,000,000 replicates of A2
n

and W 2
n are generated with sample size n = 1000 to approximate their asymptotic

distributions. A grid of upper percentiles from 0.999 to 0.001 for each ξ value is
produced and saved in a table for fast future reference. Therefore, if estimate ξ̂n

and the test statistic falls in the range of the table, the p-value is computed via
interpolation on the logarithmic scale. That is, the p-value for an observed test
statistic is found by taking the distance (on the log-scale) between the two nearest
critical values found in the table, and scaling the distances to a maximum range of
0.001. For example, if the test statistic falls at the one-quarter mark between two
critical values (on the log-scale), its p-value is equal to the smaller critical value’s
p-value + 0.00025.

The second remedy is for observed test statistics that are greater than that found
in the table (implied p-value less than 0.001). As Choulakian pointed out (in a
personal communication), the tails of the asymptotic distributions are exponential,
which can be confirmed using the available tail values in the table. For a given ξ̂n,
regressing − log(p-value) on the upper tail percentiles in the table, for example,
from 0.05 to 0.001, gives a linear model that can be extrapolated to approximate the
p-value of observed statistics outside of the range of the table. This approximation
of extremely small p-values helps reduce loss of power in the stopping rules.

The two remedies make the two tests very fast and are applicable for most ap-
plications with ξ ∈ (−0.5,1). For ξ values outside of (−0.5,1), although slow,
one can use parametric bootstrap to obtain the distribution of the test statistic, un-
derstanding that the p-value has a lower bound. The methods are implemented in
R package eva [Bader and Yan (2015)].

3.2. Moran’s test and Rao’s score test. Two other tests are compared for ref-
erence. Moran’s goodness-of-fit test is a byproduct of the maximum product spac-
ing (MPS) estimation of the GPD parameters. The maximized objective function
(evaluated at the MPS estimators) is Moran’s statistic [Moran (1953)]. Cheng and
Stephens (1989) showed that, under the GPD null hypothesis, Moran’s statistic,
when properly centered and scaled, has an asymptotic chi-square approximation.
Wong and Li (2006) show empirically the test holds its size for samples as small
as 10.

Northrop and Coleman (2014) considered a piecewise (varying) representation
of the shape parameter of the GPD at intervals between a set of thresholds. Under
H0 it is assumed that the shape parameter holds a constant value across all inter-
vals. Tests of this hypothesis are developed based on a multiple-threshold penulti-
mate model, using a construction of Rao’s score test.

3.3. A power study. The power of the four goodness-of-fit tests were examined
in an individual, non-sequential testing framework. The data generating schemes
in Choulakian and Stephens (2001) were used, some of which are very difficult to
distinguish from the GPD:
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TABLE 1
Empirical rejection rates of four goodness-of-fit tests for GPD under various data generation

schemes with nominal size 0.05. GPDMix(a, b) refers to a 50/50 mixture of GPD(1, a) and
GPD(1, b)

Test Score Moran AD CVM Score Moran AD CVM

Sample size 50 100
Gamma(2, 1) 7.6 9.7 47.4 43.5 8.0 14.3 64.7 59.7
LogNormal 6.0 5.9 13.3 8.6 5.4 8.2 28.3 23.4
Weibull(0.75) 11.5 7.8 55.1 23.5 12.1 9.5 65.1 39.4
Weibull(1.25) 6.6 11.3 29.1 27.3 5.6 12.5 20.8 19.2
GPDMix(−0.4, 0.4) 11.4 7.5 19.2 9.9 16.0 8.6 24.3 20.4
GPDMix(0, 0.4) 7.8 6.0 6.5 5.9 7.4 5.9 9.6 5.6
GPDMix(−0.25, 0.25) 8.1 6.5 6.0 7.4 8.9 6.5 11.1 8.4
GPD(1, 0.25) 6.9 5.5 6.7 6.1 5.0 5.2 5.2 5.2

Sample size 200 400
Gamma(2, 1) 15.4 23.3 95.3 93.1 36.5 42.2 100.0 100.0
LogNormal 5.7 11.9 69.3 59.7 7.9 19.1 97.8 95.0
Weibull(0.75) 16.5 10.7 84.8 66.4 32.1 14.6 98.2 93.0
Weibull(1.25) 8.0 14.7 40.9 36.7 15.5 19.2 79.8 74.6
GPDMix(−0.4, 0.4) 31.5 9.7 45.1 44.0 63.8 11.9 79.9 80.2
GPDMix(0, 0.4) 8.9 6.5 8.8 7.3 12.3 6.2 10.8 10.3
GPDMix(−0.25, 0.25) 13.9 6.7 16.6 14.8 26.2 7.9 33.0 32.4
GPD(1, 0.25) 5.3 5.8 7.2 5.2 4.7 5.3 5.8 4.7

• Gamma with shape 2 and scale 1.
• Standard lognormal distribution (mean 0 and scale 1 on log scale).
• Weibull with scale 1 and shape 0.75.
• Weibull with scale 1 and shape 1.25.
• 50/50 mixture of GPD(1,−0.4) and GPD(1,0.4).
• 50/50 mixture of GPD(1,0) and GPD(1,0.4).
• 50/50 mixture of GPD(1,−0.25) and GPD(1,0.25).

Finally, the GPD(1,0.25) was also used to check the type I error rate. Four sample
sizes were considered: 50, 100, 200, 400. For each scenario, 10,000 samples are
generated. The four tests were applied to each sample, with a rejection recorded if
the p-value is below 0.05. An additional requirement of the score test is to select
a set of intervals to constitute the piecewise representation of the shape parameter
[Section 1.2, Northrop and Coleman (2014)]; we set these according to the deciles
of the generated data. The likelihood under each specification was maximized with
the default setting of R function optim, the Nelder–Mead method.

The rejection rates are summarized in Table 1. Samples in which the MLE failed
were removed, which accounts for roughly 10.8% of the Weibull samples with
shape 1.25 and sample size 400, and around 10.7% for the Gamma distribution
with sample size 400. Decreasing the sample size in these cases actually decreases
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the percentage of failed MLE samples. This may be due to the shape of these two
distributions, which progressively become more distinct from the GPD as their
shape parameters increase. In particular, the Weibull changes shape dramatically
as it crosses 1, which is the case here (0.75 to 1.25). In the other distribution cases,
no setting resulted in more than a 0.3% failure rate. As expected, all tests appear to
hold their sizes, and their powers all increase with sample size. The mixture of two
GPDs is the hardest to detect. For the GPD mixture of shape parameters 0 and 0.4,
quantile matching between a single large sample of generated data and the fitted
GP distribution shows a high degree of similarity. In the vast majority of cases,
the AD test appears to have the highest power, followed by the Cramér–von Mises
test. The R-language code used to perform this power study can be found in the
Supplementary Materials [Bader, Yan and Zhang (2018)].

4. Simulation study of the automated procedure. It is of interest to inves-
tigate the performance of ForwardStop versus several competing methods under
misspecification. Empirical work on rainfall extremes [e.g., Papalexiou and Kout-
soyiannis (2013), Serinaldi and Kilsby (2014)] finds that the right tail for daily
rainfall is better described by heavy tail distributions than exponential types. Fol-
lowing the study of Roth, Jongbloed and Buishand (2016), data is generated from
a distribution characterized by a hazard function which transits smoothly from
the hazard function of a Weibull distribution to that of a GPD, with the tran-
sition occurring near some threshold u. Let h1(x) = κβ−κxκ−1, x > 0 be the
hazard function of a Weibull distribution with parameters (κ,β). Let h2(x) =
(σ + ξ(x − u))−1, x ≥ u be the hazard function of a GPD with parameters (ξ, σ ).
A smooth transition from h1(·) to h2(·), with a transition period of length between
(u,u + ε), defines a new hazard function

h(x) := h1(x)η

(
x − u

ε

)
+ h2(x)

(
1 − η

(
x − u

ε

))
,

where

η(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x ≤ 0,

2x3 − 3x2 + 1, 0 < x < 1,

0, x ≥ 1,

to ensure that h has a continuous derivative. The distribution function of the data
generating mechanism is then

F(x) = 1 − exp
(−H(x)

) = 1 − exp
(∫ x

0
h(z)dz

)
.

More detailed properties of this distribution are discussed in Roth, Jongbloed
and Buishand (2016), Section 5.1; a similar construction consisting of a GPD
mixture distribution was proposed by Holden and Haug (2009). Four differ-
ent thresholds are considered—(u1, u2, u3, u4) = (17.70,11.00,5.91,3.64) with
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FIG. 1. The cumulative and probability distributions used to generate data in the simulation study
in Section 4. It is a Weibull distribution, with GPD tail. The start of the GP tail (u + ε) is 18.20,
11.50, 6.41, and 4.14 for the 0.025, 0.05, 0.10, and 0.15 exceedance probabilities, respectively.

(σu1, σu2, σu3, σu4) = (11.51,10.45,6.80,4.55). All four distributions share the
same transition period length ε = 0.5, GPD parameter ξ = 0.15 and Weibull pa-
rameters (κ,β) = (0.45,1). Starting from u + ε, the tail is distributed as GPD.
Our selections imply that u + ε corresponds to the 97.5th, 95th, 90th, and 85th
percentiles, respectively. The distribution and density functions can be seen in Fig-
ure 1. For each setting, B = 1500 samples were generated from this distribution
with n = 4600, which can be thought of as 50 years of seasonal daily observations
(92 days each season).

The main quantity of interest is the N -year return level, defined for the GPD
[e.g., Coles (2001), Section 4.3.3] as

(3) zN =
⎧⎨
⎩

u + σ

ξ

[
(Nnyζu)

ξ − 1
]
, ξ �= 0,

u + σ log(Nnyζu), ξ = 0,

for a given threshold u, where ny is the number of observations per year, and
ζu is the rate, or proportion of the data exceeding u. In precise terms, this is a
high quantile of the GPD, which has the interpretation as the level expected to
be exceeded in a single year with probability 1/N . In estimation, ζu is set to the
proportion of threshold exceedances.

In addition to ForwardStop, three competing methods in return level estima-
tion were used for comparison. The first was the so-called “rules-of-thumb” [e.g.,
Ferreira, de Haan and Peng (2003), DuMouchel (1983)], which simply uses a fixed
(upper) fraction of the data to fit the GPD. In this setting, the top 15%, 10%, 5%,
and square root (1.5%) of the sample size were used in each simulation to fit the
GPD. The second, an automated procedure based on the MRL plot using weighted
least squares (WLS) and detailed in Langousis et al. (2016), Section 2.2, chooses
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the threshold that minimizes the mean sqared error (MSE) of the WLS fit. The
third was the unadjusted alternative to ForwardStop. It can be implemented two
ways—both relying on the raw p-values from each threshold tested and proceed-
ing sequentially. Specifically, the first version (denoted as Raw Up) begins at the
lowest threshold and selects the first (lowest) threshold which is accepted. If all are
rejected, the maximum threshold is selected. The second (denoted as Raw Down)
starts from the largest threshold and proceeds until a rejection of the test occurs;
then the threshold before the rejection is selected. If a rejection occurs on the first
(highest) threshold, that threshold is used. ForwardStop has the same direction of
operation as Raw Up, so it also chooses the highest threshold if all are rejected.

The estimated 50-year return levels were compared using the chosen threshold.
For each sample, two sets of percentiles were used to generate thresholds to test.
The first takes 10 percentiles, in increments of 5 beginning at 50 and ending at 95,
the second takes 20 percentiles, in increments of 2.5 beginning at 50 and ending
at 97.5. Three significance levels α ∈ {0.05,0.10,0.20} were used for testing with
ForwardStop and the two unadjusted procedures. For the automated MRL plot
method, a threshold was selected for each set of thresholds as the one with the
lowest MSE. For a given return period N , the root mean squared error (RMSE) of
an estimator is calculated as √√√√ 1

B

B∑
i=1

(
ẑi
N − zN

)2
.

Figure 2 shows the RMSE comparison of all the methods considered; the corre-
sponding plot for bias and variance (standard deviation) are available in the Sup-
plementary Materials [Bader, Yan and Zhang (2018)].

As expected, for the “top” methods with a fixed threshold, the resulting error
in estimation is highly dependent on the chosen fixed threshold. The correct fixed
threshold always has smallest RMSE. However, when the threshold is fixed at an
incorrect percentile, it is outperformed by ForwardStop and the unadjusted Raw
Up/Down procedures. The MRL method has varying performance, dependent on
the exceedance probability. Another property of the MRL is that a threshold is
always selected and thus the steps for further diagnostic testing is unclear. The
absolute bias for ForwardStop is generally lower than Raw Up/Down. Compared
with ForwardStop, Raw Down performs better for small exceedance probabilities
and worse for larger values (variance increases); Raw Up performs better for larger
exceedance probabilities and worse for smaller values (bias increases). Forward-
Stop hedges against both cases and provides similar or smaller error than the better
of Raw Up and Raw Down. This is an intuitive result—as the exceedance prob-
ability decreases, it is more likely for Raw Up to stop too early (increased bias).
Similarly, as the exceedance probability increases, it is more likely for Raw Down
to stop too high (increased variance). ForwardStop guards against either of these
cases.
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FIG. 2. Root mean squared error (RMSE) of the estimators for the 50 year return level for the
B = 1500 simulations and each method described in Section 4. The attached −10 and −20 refer
to the number of thresholds tested in the two sets. The decimals on the right axis reference the
exceedance probability. The decimals in the bars of Raw and FS (ForwardStop) correspond to the
significance level α used in conjunction. Note that the “top” methods are at a fixed threshold, thus
no testing procedure is needed.

An alternative simulation study is reported in the Supplementary Materials
[Bader, Yan and Zhang (2018)].

5. Return level mapping of extreme precipitation. Hydrologists are often
interested in estimating return levels of extreme precipitation [Katz, Parlange and
Naveau (2002)]. These return levels are provided as maps for infrastructure design
for risk management and land planning [Blanchet and Lehning (2010), Lateltin
and Bonnard (1999)]. Estimating return levels across many sites consistently is
often required to produce such maps. Our methodology uses automated threshold
selection to generate return level maps through batch processing of data from a
large number of sites. Here we consider a return level map of extreme precipitation
in the three western US coastal states of California, Oregon, and Washington with
diverse climates to demonstrate its application and practical usage. The automated
procedure in Section 2 provides a quick and consistent way to obtain an accurate
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map without the need to inspect every site, and without taking a homogeneous
approach.

Daily precipitation data is available for tens of thousands of surface sites around
the world via the Global Historical Climatology Network (GHCN). A description
of the data network can be found in Menne et al. (2012). After an initial screening
to remove sites with less than 50 years of available data, there were 720 remaining
sites across the three chosen coastal states. As the annual maximum daily amount
of precipitation mainly occurs in winter, only the winter season (November to
March) observations were used in modeling.

A major issue in the analysis of US precipitation data is the sensitivity of statis-
tical procedures in response to quantization. The United States precipitation data
has a unit in millimeters (mm) and the data are recorded to the nearest hundredth
of an inch. As a result, a rough rounding occurs with 0.2 and 0.3 mm intervals. The
inflation effect of quantization on goodness-of-fit tests for the GPD (in particular,
AD) has been well known [e.g., Deidda and Puliga (2006, 2009), Langousis et al.
(2016)]. Quantization pushes the null distribution of the AD statistic to the right;
the p-value obtained by positioning the observed statistic with quantized data to
the null distribution from continuous data is smaller than it should be. Rougher
rounding means a bigger change in magnitude of the null distribution. Given a
rounding level, the smaller the scale parameter of the null GPD, the bigger the
increase in the magnitude of the AD test statistic. To accommodate the quantiza-
tion issue, we seek to adjust the test statistic instead of the sampling distribution,
because the sampling distribution depends on the scale parameters and needs to be
approximated by Monte Carlo.

We approached the quantization issue by treating the observed data as uniformly
interval censored. That is, for an observed value of xi > 0, the actual observation is
treated as interval censored by the interval [xi − δ/2, xi + δ/2), where δ = 0.254.
To calculate the AD statistic, we perturbed each observed value xi by a random
draw from the uniform distribution over [−δ/2, δ/2). We replicated the jittering
process K times, and took the median of the resulting K AD statistics as our test-
ing statistic. Its p-value was then found from the null distribution obtained for
continuous data via the procedure in Section 3.1. As observed in the simulation
study reported in the Supplementary Materials [Bader, Yan and Zhang (2018)],
this jittering brings the AD statistic from quantized data much closer to the con-
tinuous version than the nonjittered version. The distribution of the jittered ver-
sion of the AD statistic is approximated reasonably well by the distribution of the
AD statistic for continuous data under varying degrees of quantization when σu is
“large.” Based on the experiments, sites are screened by taking σu=F−1(0.7) > 5.3,
which is the 25th percentile of estimated scale parameters estimated at all sites in
an exploratory data analysis using the top 30% of the data at each site. This results
in 501 sites to be used in the analysis. A fully satisfactory solution to handle the
quantization is noted as a topic of future work for its practical importance.
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Another potential source of uncertainty in the goodness-of-fit testing procedure
is the presence of serial dependence in the excesses. The goodness-of-fit tests as-
sume independence in the excesses under the null hypothesis and thus significant
departures may affect the testing conclusion. One way to check for this is the ex-
tremal index [Leadbetter et al. (1989)], which is a measure of the clustering of
the underlying process at extreme levels and quantifies such dependence. It can
take values from 0 to 1, with independent series exhibiting a value of exactly 1.
To get a sense for the properties of series in this dataset, the extremal index was
estimated using the so-called intervals estimator of Ferro and Segers (2003) for
each of the 501 selected sites at the 70th percentile threshold via the R package
texmex [Southworth and Heffernan (2012)]. In summary, 199 sites (40%) have
an estimated extremal index of 1, with a minimum value of 0.819. So the serial
dependence was not considered largely influential.

Candidate thresholds were chosen based on the data percentiles. For each site,
the set of thresholds was formed by taking the 70th to 98th percentiles in incre-
ments of 2, resulting in 15 thresholds to test. The 98th percentile is chosen as the
upper limit to ensure a sufficient amount of data is available for parameter esti-
mation. The FS rule is applied using significance level α = 0.05. If all thresholds
were rejected at a site, the 98th percentile was used to estimate the GPD parame-
ters and corresponding return levels for that site. Out of the 501 sites, 33 (7%) had
all thresholds rejected. This is an indication that these cases need to be looked at
more thoroughly. One possible explanation is that the quantized data led to over
rejection in the AD tests. Hence, the threshold selected tends to be overly high. If
an indirect solution is desired, one may relax the distributional assumptions [e.g.,
Papastathopoulos and Tawn (2013), Nadarajah and Eljabri (2013)] and follow the
same procedure. It is of worth to compare the selected thresholds at each site found
by various methods. Pairwise plots of selected thresholds for the FS, unadjusted,
and MRL methods are presented in the Supplementary Materials [Bader, Yan and
Zhang (2018)].

With the automatically selected thresholds for the 501 sites, the return levels
were estimated. Figure 3 shows map of the 50-, 100-, and 250-year estimated re-
turn levels of the three states. Note that only a very small number of sites in east-
ern Washington/Oregon and the Great Valley of California show on the map, with
low return levels. The screening process removed many sites from these specific
geographic areas, which had a smaller percentage of precipitation days than the
remaining 501 analyzed on average (27% versus 38%) in the winter season. These
areas are known dry areas because the air from the Pacific has already lost much
of its moisture on the windward west side of the mountains, and as it descends on
the leeward east side of the mountains it warms adiabatically, making it less likely
for the air to saturate and form precipitation. The selective feature of the FS pro-
cedure, even after the screening process, is desirable, as it suggests not to fit GPD
at even the highest threshold at these sites, a guard that is not available from those
unconditionally applied one-for-all rules.
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FIG. 3. Estimated 50, 100, and 250 year daily precipitation return levels (cm) using the Forward-
Stop procedure and AD test, combined with jittering.

6. Discussion. We propose an intuitive and comprehensive methodology for
automated threshold selection in the peaks over threshold approach. In addition,
it is less computationally intensive than some competing resampling or bootstrap
procedures [Danielsson et al. (2001), Ferreira, de Haan and Peng (2003)]. Automa-
tion and efficiency is required when prediction using the peaks-over-threshold ap-
proach is desired at a large number of sites. This is achieved through sequentially
testing a set of thresholds for goodness-of-fit to the GPD. This general methodol-
ogy has been applied previously [e.g., Choulakian and Stephens (2001), Thompson
et al. (2009)]; however, these did not account for the multiplicity issue. That is,
they selected a threshold by checking raw p-values against the desired signifi-
cance level until a rejection occurred. We apply the recently developed stopping
rule ForwardStop [G’Sell et al. (2016)], which transforms the results of ordered,
sequentially tested hypotheses to control the false discovery rate. There is a slight
caveat in our setting, that the tests are not independent, but it can be demonstrated
via simulation that the stopping rules in G’Sell et al. (2016) still provide reasonable
error control here.
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Four tests are compared in terms of power to detect departures from the GPD
at a single, fixed threshold and it is found that the AD test has the most power
in various nonnull settings. Choulakian and Stephens (2001) derived the asymp-
totic null distribution of the AD test statistic. However, this requires solving an
integral equation. Our contribution, with some advice from Professor Choulakian,
provides an approximate, but accurate and computationally efficient version of this
test. To investigate the performance of ForwardStop in conjunction with the AD
test, a large scale simulation study was conducted. Data is generated from a plau-
sible distribution—misspecified below a certain threshold and generated from the
null GPD above, smoothed via a transition function. In each replicate, the squared
error is recorded for various parameters using ForwardStop and compared with
competing alternative procedures. The results of this simulation are mixed—no
procedure outperformed in all settings. ForwardStop is, however, less sensitive to
the starting threshold than the unadjusted versions of sequential hypothesis testing
(Raw Up and Down) and it is not forced to always select a threshold, unlike the
MRL approach.

The entire methodology using ForwardStop is applied to daily precipitation data
at hundreds of sites in three U.S. west coast states, with the goal of creating a re-
turn level map. Quantization present in the U.S. GHCN dataset introduces addi-
tional uncertainty and in this instance, increased conservatism when performing
goodness-of-fit testing on the quantized data. To handle this, the data are treated as
(uniformly) interval censored and an adjusted testing statistic is found via realized
samples. As is discussed in the Supplementary Materials [Bader, Yan and Zhang
(2018)], this solution is still conservative (i.e., smaller p-values, higher thresholds
selected). The most precise way is to obtain the null distribution of the Anderson–
Darling statistic under quantization, but this is cumbersome, as the distribution
depends on both the relative size of σu to the quantization level and ξ . Sites across
eastern Washington/Oregon were screened out or estimated to have smaller return
levels, which is consistent with the known climate of that region.

Temporal or covariate varying thresholds, as discussed in Roth et al. (2012)
and Northrop and Jonathan (2011), is an obvious extension to this work. How-
ever, one particular complication that arises is performing model selection (i.e.,
what covariates to include), while concurrently testing for goodness-of-fit to vari-
ous thresholds. It is clear that threshold selection will be dependent on the choice
of model. Another possible extension involves testing for overall goodness-of-fit
across sites [e.g., Roth, Jongbloed and Buishand (2016)]. In this way, a fixed or
quantile regression based threshold may be predetermined and then tested simul-
taneously across sites. In this setup both spatial and temporal dependence need to
be taken into account. Handling this requires some care due to censoring [e.g., Dey
and Yan (2015), Section 2.5.2]. In other words, it is not straightforward to capture
the temporal dependence as exceedances across sites are not guaranteed to occur
at the same points in time.



326 B. BADER, J. YAN AND X. ZHANG

An important issue that needs to be addressed, both here and the field of ex-
tremes in general, is quantization. It has been studied in detail [Deidda and Puliga
(2006, 2009), Langousis et al. (2016)]. The most obvious way to handle quan-
tization is via simulation and/or bootstrap approaches. Direct application of this
becomes cumbersome when testing the GPD for goodness-of-fit at a large number
of thresholds, since the testing statistic under quantization is dependent on both
shape and scale parameters. Its effect has been reduced in this data analysis, but
future work is needed to directly accommodate quantization, particularly in the
sequential testing setting.

Acknowledgments. The authors thank Prof. Vartan Choulakian for the dis-
cussion and insight on approximating the tails of the null distribution of the
Anderson–Darling and Cramér–von Mises statistics for generalized Pareto dis-
tributed data.

SUPPLEMENTARY MATERIAL

Additional simulation results and data analysis (DOI: 10.1214/17-
AOAS1092SUPP; .pdf). Material consisting of R code for the power study, ad-
ditional simulation results, and analysis related to the application.
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