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ABSTRACT: The ability of atomic interaction parameters
generated using the Automated Topology Builder and
Repository version 3.0 (ATB3.0) to predict experimental
hydration free enthalpies (ΔGwater) and solvation free
enthalpies in the apolar solvent hexane (ΔGhexane) is presented.
For a validation set of 685 molecules the average unsigned
error (AUE) between ΔGwater values calculated using the
ATB3.0 and experiment is 3.8 kJ·mol−1. The slope of the line
of best fit is 1.00, the intercept −1.0 kJ·mol−1, and the R2 0.90.
For the more restricted set of 239 molecules used to validate
OPLS3 (J. Chem. Theory Comput. 2016, 12, 281−296, DOI: 10.1021/acs.jctc.5b00864) the AUE using the ATB3.0 is just 2.7
kJ·mol−1 and the R2 0.93. A roadmap for further improvement of the ATB parameters is presented together with a discussion of
the challenges of validating force fields against the available experimental data.

■ INTRODUCTION

The ability to model molecular systems using classical
molecular dynamics (MD) is critically dependent on the
accuracy of the potential energy function (force field) used to
represent atomic interactions. Extensively parametrized fixed-
charge force fields such as AMBER,1 CHARMM,2 OPLS,3 and
GROMOS4,5 are available for modeling common biomolecules
such as amino acids, nucleic acids, lipids, and certain sugars.
However, obtaining reliable parameters for heterogeneous
classes of compounds such as substrates, inhibitors, co-factors,
and drug-like molecules compatible with these force fields
remains a major challenge.6−8 While the functional forms used
to describe interatomic interactions in the force fields listed
above differ only superficially and all are fitted and validated
against similar experimental and/or computational data, the
philosophy underlying how they are optimized can vary
significantly. Some, such as GROMOS and OPLS, have
historically focused on fitting to thermodynamic properties
such as the heats of vaporization, liquid densities, and the
solvation properties of small molecules. While others, such as
AMBER and CHARMM, have placed more emphasis on the
reproduction of structural properties. The parameter develop-
ment strategies also differ between force fields. For example,
OPLS uses highly refined approaches to assign unique bonded
and nonbonded parameters to atoms based on their local
chemical environment9 leading to many thousands of
individual parameters, while GROMOS considers molecules
as a collection of functional groups and allocates only a limited
range of parameters. The argument for the former is that it

allows specific details associated with individual molecules to
be described while the aim of the later is to enhance
transferability and mitigate the possibility of overfitting.
Irrespective of the philosophy used, the parametrization and

testing of novel molecules can be laborious. To facilitate this
process, a number of automated methods have been
implemented as either standalone applications, e.g., Ante-
chamber,10,11 or as Web servers, e.g., PRODRG,12 RED,13

YASARA AutoSMILES,14 SwissParam,15 ParamChem,16−18

GAAMP,19,20 LigParGen,21 and, the focus of this study, the
Automated Topology Builder (ATB).22 The ATB is a Web
server that provides all-atom and united-atom interaction
parameters as topology and building-block files in formats
compatible with a range of molecular simulation and X-ray
refinement packages: GROMOS,23 GROMACS,24,25

LAMMPS,26 CNS,27 Phenix,28 and Refmac5,29 as well as
APBS.30 A major difference between the ATB and other
automated builders is that the parametrization procedures can
be progressively refined based on an internal database of
structural and quantum mechanical (QM) data. This internal
database has been built from molecules submitted for
parametrization by general users utilizing computational
facilities provided by the University of Queensland and the
Australian National Cyber Infrastructure and by researchers at
the Lawrence Livermore National Laboratory using its
computational facilities. The publicly accessible ATB reposi-
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tory currently contains in excess of 250,000 molecules,
including most of the molecules deposited in the PDB as
ligands together with all molecules in the ChEMBL database
containing 35 atoms or less. Access to the site and submission
pipeline is made freely available for academic (noncommercial)
use (atb.uq.edu.au).
While the ATB and each of the automated protocols listed

above are widely used, the degree to which the interaction
parameters they produce are reliable and accurate remains an
open question.22 The validation of molecular force fields in
general is highly challenging.31 This is because the amount of
experimental data that can be used for validation is limited
compared to the potential number of degrees of freedom in the
model, and the fact that multibody effects along with the
average contribution of the omitted electronic degrees of
freedom are incorporated implicitly. In the case of small
organics used in medicinal chemistry, much emphasis has been
placed on the ability to reproduce the free enthalpy of
solvation, i.e., the free enthalpy of transferring a molecule from
the gas phase into a solvent such as water. This is because the
free enthalpy of solvation can be directly measured
experimentally for many molecules and is widely viewed as a
robust method for validating solute−solvent interactions which
are critical in processes such as the binding of a ligand to a
protein or the partitioning of a molecule into a biological
membrane, both of which involve the desolvation from water
and the resolvation in a less polar environment. Indeed, studies
performed by others suggest that improvements in the
prediction of solvation data are correlated with improvements
in the ability to predict ligand−protein binding affinities.9,32

Despite the fact solvation data is widely used to validate
force fields, it is not without its challenges. Although free
enthalpies of solvation can in principle be measured with high
accuracy, the range of experimental data in the literature is
limited and often dates from over a half-century ago. In
addition, the process of collation, conversions between units,
and the prioritization of specific sources introduces additional
uncertainty in the values assigned to particular molecules. One
way the uncertainty in the historical data can be mitigated is by
validating against as broad a set of experimental data as
possible and by considering the sensitivity of the results to
subsets of the data. This has been widely recognized, and over
the past decade there has been a trend toward progressively
larger validation sets.9,20,33 For example, in 2011 ATB1.0 was
validated by computing the hydration free enthalpy of 190
compounds, 90 of which were biologically relevant small
organic molecules and 100 were drug-like molecules taken
from the CUP8/SAMPL0,34 SAMPL1,35 and SAMPL236 data
sets representing a diverse range of functional groups. ATB1.0
used a semiautomated protocol and was based directly on the
GROMOS53A6 united-atom force field.4 As expected ATB1.0
performed well for molecules comprised of functional groups
found within proteins but less well for molecules containing
halogens and functional groups not commonly found in
proteins and not part of the GROMOS force field including
nitro, ether, and N-alkyl groups among others. In 2014 the
ATB2.0 was validated against hydration free enthalpies for a set
of 214 drug-like molecules, including 47 molecules that formed
part of the SAMPL4 challenge. ATB2.0 used a fully automated
parametrization and validation protocol. This meant that
hydration free enthalpies could be obtained without manual
intervention following the submission of a molecule to the
ATB.37 ATB2.0 was based on the GROMOS 54A7 united-

atom force field,4,5 and while it contained refinements in regard
to the procedures used to assign bonded and Lennard-Jones
(LJ) parameters, no attempt was made to refine the underlying
force field, e.g., to refine the Lennard-Jones terms assigned to
particular functional groups. The average unsigned error
(AUE) compared to experiment using ATB 2.0 topologies
for the set of 214 molecules considered was 6.7 kJ·mol−1 and
the root-mean-square error (RMSE) was 9.5 kJ·mol−1.
However, for molecules containing functional groups that
form part of the GROMOS 54A7 united-atom force field, the
AUE was 3.4 kJ·mol−1 and the RMSE was 4.0 kJ·mol−1. This
suggested that small refinements to the parameters used to
represent functional groups not specifically parametrized in the
GROMOS 54A7 force field could lead to significant improve-
ments in the ability to reproduce solvation free enthalpies. It
also led to the development of improved refinement strategies
as described in Stroet et al.38

In this work we present results from the first major attempt
to refine the parameters used within the ATB. The ATB3.0
parameters have been validated by comparing the calculated
and experimental solvation free enthalpies for a set of 685
compounds in water and 218 compounds in hexane. It is
shown that the ATB3.0 parameters are predictive of solvation
free enthalpies in both water and hexane. Comparisons using
more restricted validation sets proposed by others suggest that
the performance of the ATB3.0 parameters with respect to the
prediction of hydration and apolar solvation is highly
competitive with respect to other similar force fields for
which published data are available. We also highlight cases
where further improvements in the performance of the
parameters should be possible.

■ METHODS

Parametrization Algorithm. The general protocol used
by the ATB to assign interaction parameters for small
molecules has been described in detail previously.22,37,39

Briefly, data derived from quantum mechanical (QM)
calculations are combined with a rule-based approach aimed
at generating interaction parameters compatible with a given
force field. Currently, the bonded parameters and 6−12
Lennard-Jones parameters are based around the GROMOS
54A7 force field.4,5 However, this parameter set has been
augmented with additional parameters specific to the ATB to
enable a broad range of molecules to be described. For
example, where a bonded interaction cannot be described
appropriately using terms within the existing GROMOS 54A7
force field, additional parameters are generated dynamically
based on an analysis of the QM Hessian. In addition, a number
of Lennard-Jones terms have been optimized based on the
experimental properties of a series of pure liquids properties
and solvation free enthalpy data. Atomic charges are obtained
by performing a least-squares fit of Coulomb point charges
located at the center of each atom to electrostatic potential
(ESP) surfaces as per the Merz and Kollman fitting scheme40

using the program FieldFit.41 ESP surfaces were calculated
with a point density of 1.0 bohr−2 from the optimized
geometry at the B3LYP/6-31G* level of theory in conjunction
with the PCM42 implicit solvation model for water. Fitting
artifacts associated with assigning ESP charges based on the
use of a single configuration were mitigated by averaging the
resulting charges for chemically equivalent atoms.43 Chemi-
cally equivalent atoms within a given moleculearising as a
result of molecular symmetry or rapid exchangewere
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identified from the automorphic nodes of the corresponding
molecular graph calculated using the package nauty.44

Solvation Free Enthalpy Calculations. Solvation free
enthalpies (ΔGsolv) were calculated using thermodynamic
integration, in which the difference in free enthalpy between
two states of a system A and B is expressed as

∫
λ

λΔ =
∂

∂λ

λ

λ

r
G

V( )
dAB

A

B

(1)

where V(r) is the potential energy of the system as a function
of the coordinate vector r and λ is a parameter that couples the
two states A and B.45 In this case the coupling parameter λ was
used to scale the inter- and intramolecular nonbonded
interactions of the solute from full interaction to no interaction
in the presence of solvent and in vacuum, the difference
between these values yielding ΔGsolv. To avoid sampling
singularities in the potential energy function and in the
derivative with respect to λ (as well as to reduce numerical
instabilities during the simulations), the nonbonded inter-
actions were scaled using the λ-dependent soft-core interaction
function of Beutler et al.46 with αLJ = 0.5 and αelectrostatic = 0.5
nm2. Note that when using the λ-dependent soft-core
interaction function as implemented in GROMOS (eqs 7
and 8 in Beutler et al.46), there is no requirement or advantage
in performing the removal of the charge and Lennard-Jones
interactions in separate steps as is sometimes required by other
codes.
All thermodynamic integration calculations were performed

in a fully automated manner. The statistical and systematic
error arising from the calculations of the ensemble averages
and numerical integration were analyzed dynamically to
optimize computational efficiency. This also allowed the
uncertainty in the calculated value of ΔGsolv to be iteratively
refined to a specified precision by the extension of the MD
simulation at a given λ-point or the addition of extra λ-points
according to the largest sources of uncertainty.
The standard error in the ensemble average was estimated

using the two-sample Kolmogorov−Smirnov statistic to
compare the distribution of fluctuations in progressively larger
portions of a time series. Full details are provided as
Supporting Information. The code used to perform this
analysis is available via GitHub.47 This approach enables the
effective equilibration time (i.e., the portion of a time series
which should be omitted from ensemble average calculations
due to relaxation from initial conditions) to be determined
automatically and also provides a heuristic for the robustness
of the convergence which indicates the reliability of the
estimate of the error in the ensemble with respect to a
predefined target uncertainty.
The error in the numerical integration of eq 1 involves two

terms: (1) the uncertainty in the ensemble average (⟨∂V/∂λ⟩λ)
value, and (2) truncation errors associated with the approach
used to interpolate between the series of discrete λ-points, in
this case the trapezoidal method. The contribution to the
integration error from the uncertainty in the ensemble average
at each λ-point was determined analytically for the trapezoidal
method by applying the general Gaussian error propagation
formula,48 while the truncation error was estimated using a
Taylor series expansion. Full details are provided as Supporting
Information and the code used in this analysis is available via
GitHub.49 Using the approach outlined above, the individual
contributions to the overall uncertainty can be calculated

explicitly. It is therefore possible to efficiently reduce the total
error by systematically targeting the largest individual
components of the error.
The calculations of ΔGsolv were initialized by performing

simulations of the solute in the solvent at 11 equally spaced λ-
points (⟨∂V/∂λ⟩λ,solvent). The calculations in vacuum were
performed at the same λ-points as used for the solvent
calculations. These were initialized using 20 configurations of
the solute extracted from the trajectories of the solute in
solvent at regular intervals. The convergence of the ensemble
averages was monitored using the method outlined above. The
final ΔGsolv values were obtained by using the trapezoidal
method to numerically integrate the curve given by ⟨∂V/
∂λ⟩λ,vac − ⟨∂V/∂λ⟩λ,solvent. If the uncertainty using the initial 11
λ-points was greater than the target error of 1.5 kJ·mol−1,
additional λ-points were added or the simulations extended
until the target error had been met.

Molecular Dynamics Simulations. All solvation free
enthalpy calculations were performed on all-atom representa-
tions as generated by the ATB3.0 using the GROMOS11
(version 1.2.4) simulation package.23 The simulations in water
were started from structures optimized with GAMESS-US50 at
the B3LYP/6-31G* level of theory in conjunction with the
PCM42 implicit solvation model for water. To generate the
solvated systems, a given molecule was placed at the center of a
cubic periodic box. The size of the box was chosen such that
the minimum distance between the solute and the box wall was
1.45 and 2.0 nm for solvation in water and hexane, respectively.
The solute was then solvated using an equilibrated box of
SPC51 water or all-atom hexane (ATB3.0). The ATB3.0 all-
atom hexane model reproduces the heat of vaporization, excess
free energy, and hydration free in SPC water to within 1 kJ·
mol−1 of the experimental values. The density of liquid hexane
at 298.15 K is within 2% of the experimental value. Full details
are provided as Supporting Information (Table S1). The
solvated systems were energy minimized using a steepest
decent algorithm. Initial velocities were taken from a Maxwell−
Boltzmann distribution at 298 K. Bond lengths were
constrained using SHAKE52 with a geometric tolerance of
10−4. The equations of motion were integrated using a time
step of 2 fs. All simulations were performed at constant
temperature (298 K) and pressure (1 atm) using a Berendsen
thermostat and barostat.53 The coupling times were 0.1 and
0.5 ps, respectively. The isothermal compressibility was 4.575
× 10−4 (kJ/mol/nm3)−1. Note, as the interactions between the
solute and the rest of the system are scaled to zero, the solute
can become thermally decoupled from the system. To prevent
this, and to maintain equipartition, the solute was stochastically
coupled to a reference temperature of 298 K using an atomic
friction coefficient of 1 ps−1. Nonbonded interactions were
calculated using a single-range cutoff at 1.4 nm with the pair
list updated every 5 steps. A reaction field correction54 was
applied to correct for the truncation of electrostatic
interactions beyond the long-range cutoff using a relative
dielectric permittivity of 61.55

The vacuum systems were generated by deleting the solvent
molecules within the simulation box. Pressure coupling was not
applied and the temperature was maintained using stochastic
dynamics with a reference temperature of 298 K and an atomic
friction coefficient of 91 ps−1.56

Experimental Data. The experimental solvation free
enthalpy data used in this study were obtained by aggregating
four published data sets. The data sets used were as follows:
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the Minnesota Solvation Databaseversion 2012, which
contains 3037 solvation energies and transfer free energies
for 790 unique molecules in 92 solvents;57 FreeSolv, a data set
of 642 hydration free energies of small, neutral molecules;58,59

the Schrodinger OPLS solvation free enthalpy validation data
set published by Shivakumar et al.,60 which contains hydration
free enthalpies of 239 small molecules; and the 292 hydration
free enthalpies collated in Gerber.61 Note that all four data sets
are secondary sources, and while many of the molecules within
these databases are identical, the reported experimental values
differed in some cases. The resulting set contained 773 neutral
molecules with experimental ΔGwater values and 59 with
experimental ΔGhexane values. Since the number of molecules
with experimental ΔGhexane values was limited, this data set was
augmented by exploiting the fact there is a very strong
correlation between the solvation free enthalpy of solutes in a
range of linear and cyclic alkanes. This enabled us to extend
the available apolar solvation data to 218 molecules. See Stroet
et al.38 for details and for the validation of this approach. All
experimental reference data that have been collated to date for
molecules used in this work are provided as Supporting
Information and is also available via GitHub.62

■ RESULTS AND DISCUSSION

Comparison Against All Available Data. The ATB3.0
all-atom interaction parameters were used to calculate the
solvation free enthalpies in water and hexane for all molecules
for which corresponding experimental data had been identified.
This included a total of 773 molecules for which experimental
data in water (ΔGwater) were available and 218 molecules for
which experimental data were available in either hexane
(ΔGhexane) or a surrogate apolar solvent (pentane, cyclohexane,
heptane, octane, nonane, decane, undecane, dodecane,
pentadecane, and hexadecane).38 The calculations were
performed using the automated thermodynamic integration
protocol described above. A complete list of all molecules, their
ATB repository identifiers, and the calculated values of
(ΔGwater) and (ΔGhexane) together with the collated exper-
imental data is provided as Supporting Information. A tar file
containing the optimized geometries used as starting
configurations in the calculations as well as full topology files
for all molecules examined are also provided as Supporting
Information, so that these results can be readily reproduced by
others. The starting configurations and topology files are also
available for download from the ATB website22 (https://atb.
uq.edu.au/). In addition, the website contains plots of ⟨∂V/∂λ⟩
versus λ allowing the precise λ-values used and the nature of
the convergence of the thermodynamic integration calculations
to be examined. A comparison between the calculated and
experimental values for ΔGwater yielded an average unsigned
error of 4.9 kJ·mol−1 and a root-mean-square error of 8.1 kJ·
mol−1. For ΔGhexane the AUE was 3.9 kJ·mol−1 and the RMSE
was 5.7 kJ·mol−1. The values in the case of ΔGwater were large
compared to the expected uncertainty, so the reliability of the
experimental data was examined further.
ATB3.0 Water Validation Set. Of the 773 molecules for

which experimental ΔGwater values are available, the reported
experimental uncertainty in the case of 88 molecules is greater
than 4.18 kJ·mol−1. This is more than twice the statistical
uncertainty in the calculated values (1.5 kJ·mol−1). Removing
these molecules from the test set resulted in an AUE between
calculated and experimental ΔGwater of 3.8 kJ·mol−1 and an
RMSE of 5.5 kJ·mol−1. The resulting set of 685 molecules will

be referred to as the ATB3.0 water validation set. A plot of the
calculated versus experimental ΔGwater data for the full set of
773 molecules showing the experimental uncertainty and the
distribution of the 88 molecules with an experimental
uncertainty of greater than 4.18 kJ·mol−1 is provided as
Supporting Information (Figure S1).
The fact that the removal of approximately 10% of the

ΔGwater data (that with high experimental uncertainty) resulted
in a 30% drop in the RMSE (8.1 to 5.5 kJ·mol−1) highlights
that uncertainty in the available experimental data remains a
major challenge in the validation of molecular force fields.
Indeed, a number of inconsistencies in the reported
experimental data were also identified as part of this work.
For example, the experimental ΔGwater for 1,2-dimethoxy-
ethane reported by Rizzo et al.63 (−20.3 kJ·mol−1) differs
significantly from that reported by Shivakumar et al.64 (−16.1
kJ·mol−1). The value for ΔGwater calculated for 1,2-dimethoxy-
ethane using the ATB3.0 parameters was −11.0 ± 1.5 kJ·
mol−1; however, it is not clear whether either of the proposed
experimental values are reliable. In the case of hexafluor-
opropylene an even greater discrepancy was found. The value
for ΔGwater reported by Wilhelm et al.65 (12.3 kJ·mol−1) differs
by 28 kJ·mol−1 from that reported by Boulanger et al.20 (−15.7
kJ·mol−1). The value calculated using ATB3.0 was 13.4 ± 1.5
kJ·mol−1. This, combined with the fact that Wilhelm et al.65

report primary data, strongly suggests that the value reported
by Boulanger et al.20 is unreliable. There are also three
significantly different values for ΔGwater of methoxybenzene
(anisole) reported: −4.34 kJ·mol−1 (Cabani et al.66), −10.25
kJ·mol−1 (Rizzo et al.63), and −15.61 kJ·mol−1 (Shivakumar et
al.64). The value calculated by ATB3.0 is −13.4 kJ·mol−1. It is
unclear which value, if any, is reliable.

ATB3.0 Apolar Validation Set. In all cases the reported
experimental uncertainty for the ΔG of solvation in the apolar
solvents considered was less than or equal to 4.18 kJ·mol−1. As
a consequence, no molecules were eliminated from this part of
the study. Nevertheless, a range of inconsistencies in the
published experimental data were evident. One illustrative case
is the unexpected difference between the solvation free
enthalpy of p-hydroxybenzaldehyde in hexane and cyclohexane
reported in the Minnesota Solvation Databaseversion
2012.57 As noted above, the solvation free enthalpies of
many compounds are highly correlated in a range of alkane
solvents.38 For example, the variation in the experimental
solvation free enthalpy of phenol in hexane (−23.0 kJ·mol−1)
and seven alternative alkane solvents (pentane, cyclohexane,
heptane, octane, nonane, decane, and hexadecane) is only 1.5
kJ·mol−1. Similarly, the variation between benzaldehyde in
hexane (−23.1 kJ·mol−1) and three alternative alkane solvents
(cyclohexane, heptane, and hexadecane) is only 0.75 kJ·mol−1.
However, the reported values for p-hydroxybenzaldehyde,
which contains a combination of the functional groups in
phenol and benzaldehyde, in hexane and cyclohexane are
−38.4 kJ·mol−1 and −30.1 kJ·mol−1, respectively, a difference
of 8.3 kJ·mol−1. The value of ΔGhexane for p-hydroxybenzalde-
hyde calculated using ATB3.0 is −26.0 ± 1.5 kJ·mol−1. Because
the ATB3.0 parameters predict the experimental solvation free
enthalpies of a range of closely related molecules including
phenol, benzaldehyde, and m-hydroxybenzaldehyde to within 3
kJ·mol−1, we suspect the value for p-hydroxybenzaldehyde in
cyclohexane is more representative of the true ΔG of solvation
of an isolated molecule of p-hydroxybenzaldehyde in an alkane
solvent than the value listed for hexane.
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Experimental Limitations. The examples of discrepancies
in the experimental data given above have been included to
illustrate the magnitude of the uncertainty present. They are
not a complete list of all the problems identified. As noted in
the Introduction, much of the data that is being used for
parametrization and validation dates from over a half-century
ago. This does not mean the data are flawed. However, the
process of collation, conversions between units and the
prioritization of specific sources over others means that the
accuracy of any particular value is uncertain. For example, the
data collated by Cabani et al.66 forms part of many modern
collections of experimental data. Cabani et al.66 used the data
to develop an empirical model for estimating thermodynamic
properties of molecules based on group contributions. In their
article multiple potential sources for the hydration free
enthalpies of particular compounds are cited. However, only
those values used to parametrize their model were recorded.
No errors or uncertainties are indicated, and most importantly,
no indication was provided for why a particular value was
chosen over the alternatives or even why a particular source
was preferred in a given case. This is important as the
preference given to particular sources by Cabani et al.66 is
inconsistent. For example, in the case of 1-propene the
hydration free enthalpy from Hine and Mookerjee67 was
selected and that of Wilhelm et al.65 rejected while for 2-
methylpropene the value of Wilhelm et al.65 was selected and
that of Hine and Mookerjee67 rejected. A similar selection of
data is likely to be a feature of all collations including Gerber61

and Abraham et al.,68 which have been incorporated into
modern collections such as the Minnesota Solvation Database
and FreeSolv. It is also important to note that the estimates of
the errors now associated with these data have often been
added subsequently.
Even in more recent studies it is unclear how the specific

molecules included in a given fitting or validation test set were
selected or why one particular experimental value is used as
opposed to another. While we have identified inconsistencies
in a number of cases (e.g., duplicate entries, ambiguous
molecule identifiers, and significant differences between the
values used and the value in the source that was cited), no
attempt was made to systematically curate all the data and it is
highly likely that other inconsistencies remain. This highlights

the need to parametrize and validate interaction parameters
with respect to large groups of related molecules in order to
reduce the dependence on individual experimental values.
Finally, given the discrepancies in the reported experimental

ΔGwater values and the fact that subsequent attempts to
quantify the experimental errors are also inconsistent, the most
appropriate method to choose between alternative values is
unclear. Due to the ambiguity in the experimental data, we
have chosen to compare to the reported experimental value
which deviates least from that calculated with ATB3.0.
However, all values that have been considered along with
their source are included in the Supporting Information.

Overall Performance of ATB3.0. Figure 1 shows the
relationship between the calculated and experimental values of
ΔGwater and ΔGhexane for 685 molecules and 218 molecules,
respectively. As can be seen in Figure 1a, ATB3.0 is able to
predict ΔGwater values for a very diverse set of molecules with
values ranging from −107 to 18 kJ·mol−1. The least-squares
linear fit between the calculated and experimental ΔGwater

values for the data shown in Figure 1a has a slope of 1.00, an
intercept of −1.0 kJ·mol−1, and an R2 of 0.90. While the overall
trend is very well reproduced, the ATB3.0 parameters, on
average, underestimate ΔGwater by 1 kJ·mol−1 meaning that the
average interaction of the molecules with SPC water is slightly
too favorable. It is also evident that there is increasing scatter
with increasing affinity for water. This may reflect challenges
associated with the experimental measurements. Both ob-
servations also suggest further refinement of the parameters is
possible.
In many common applications, such as the determination of

binding affinity in computational drug design or predicting
how compounds partition within biological membranes, the
property of interest is dependent on the difference in free
enthalpy between a molecule in water and the same molecule
in a weakly polar or apolar environment. The ability of the
ATB3.0 parameters to reproduce the aggregated experimental
data in an apolar solvent (ΔGhexane) is shown in Figure 1b. In
this case the AUE is 3.9 kJ·mol−1, RMSE is 5.7 kJ·mol−1, and
the line of best fit has a slope of 0.87, an intercept of −4.8 kJ·
mol−1 and an R2 of 0.65. The fact that the ΔGwater values are
better reproduced than ΔGhexane values in part reflects the
focus of previous parametrization efforts and the fact that

Figure 1. Calculated (calc.) versus experimental (exp.) solvation free enthalpies (ΔGwater and ΔGhexane) for molecules parametrized using ATB3.0:
(a) 685 molecules in water; (b) 218 molecules in hexane. The solid line corresponds to a one-to-one agreement between calculated and
experimental values. The dotted lines correspond to ±5.0 kJ·mol−1 from one-to-one agreement.
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values calculated in hexane are compared to experimental data
from a range of apolar solvents. The limited amount of
experimental data in apolar solvents also means the ΔGhexane

results are significantly impacted by a small number of outliers.
Analysis of Specific Functional Groups. To determine

whether the observed differences between the calculated and
experimental values were associated with particular functional
groups, the results were grouped and analyzed. Figure 2 shows

the results for ΔGwater (left) and ΔGhexane (right) with
particular subsets of related molecules which showed large
deviations from the experimental values highlighted. In panels
a and b, molecules containing bromine are indicated by purple
triangles and those containing iodine by green pentagons.
While the values for many of the bromine containing
molecules in water are roughly in line with experiment, the
values in hexane are systematically too favorable. The
molecules containing iodine are systematically too favorable
in both water and hexane. In panels c and d, thiol and sulfide
containing groups are indicated by red diamonds, phosphates
by orange circles, and thiophosphates by red circles. Clearly,
the systematic error in ΔGwater for molecules containing
thiophosphate groups (red circles) is to a first approximation
additive, the deviation reflecting the sum of the error in thiols/
sulfides and phosphates individually. This suggests that refining
the thiol, sulfide, and phosphate parameters independently
would also reduce the error in molecules containing a

thiophosphate group. In panels e and f, molecules containing
the urea moiety are indicated by blue triangles and molecules
without carbon atoms (e.g., hydrogen peroxide and ammonia)
by cyan squares. The solvation free enthalpies of molecules
containing urea moieties are systematically overestimated in
both water and hexane. In this case although the individual
values do not match experiment, the compensation of errors
would mean partition properties could still be reproduced.
Molecules which do not contain carbon atoms such as
hydrogen peroxide and ammonia are not well described by
the level of theory used and it is not surprising that these
molecules are not well represented by ATB3.0. It is also
important to note in regard to Figure 2 that the 6−12 Lennard-
Jones parameters used by ATB3.0 for sulfur and phosphorus as
well as the parameters used to describe urea groups are taken
directly from the GROMOS 54A7 force field and have not
been refined. The GROMOS 54A7 bromine Lennard-Jones
parameters were optimized to better reproduce ΔGwater for a
set of 19 reference molecules.69 The Lennard-Jones parameters
for iodine were based on those used in the OPLS2005 force
field but scaled to make them more compatible with other
GROMOS 54A7 parameters. This suggests that refinement of
these parameters would lead to a significant improvement in
the overall performance of ATB3.0. Indeed, in the case of the
ΔGhexane results, if molecules containing bromo, iodo, and
phosphate groups are excluded, the AUE for the remaining 189
molecules drops from 3.9 to 2.9 kJ·mol−1 and the RMSE from
5.7 to 4.2 kJ·mol−1.

Comparing the Performance of the ATB3.0, OPLS3,
GAFF/AM1-BCC, GAAMP, and LigParGen. As noted in the
Introduction a number of automated parametrization schemes,
both academic and commercial, have been developed.9−11,19,20

Direct comparison between the parameters generated by these
schemes is often challenging. Although these schemes are often
validated against solvation free enthalpies, in particular
hydration free enthalpies, the values are often calculated
using different solvent models, different simulation packages,
and different sets of molecules. In addition, the starting
geometries of the molecules, the extent to which the
calculations have converged, and even the parameter sets and
topologies are not always made public.
To compare the performance of the ATB3.0 to alternative

automated parametrization methods, we have not attempted to
calculate the hydration free enthalpies using parameters
generated by other schemes based on their associated force
fields for all 685 molecules in the ATB3.0 validation set.
Rather, we have analyzed the ATB3.0 ΔGwater results for the
data set used by Shivakumar et al.60 to validate OPLS3,9 the
data set used by Boulanger et al.20 to validate GAAMP, that of
Dodda et al.70 used to validate the 1.14*CM1A and
1.14*CM1A-LBCC charges used in LigParGen, and that of
Mobley et al.58,59 to test GAFF/AM1-BCC. These are shown
in Figure 3a−d, respectively. A summary of the performance
statistics for ATB3.0 is listed in Table 1 alongside equivalent
statistics for OPLS3, GAFF/AM1-BCC, GAAMP,
1.14*CM1A, and 1.14*CM1A-LBCC where available. The
data set proposed by Shivakumar et al.60 contains 239
molecules, that of Boulanger et al.20 contains 419 unique
molecules, and that of Dodda et al.70 consists of 425 unique
molecules; all are subsets of the ATB3.0 water validation set.
The FreeSolv data set of Mobley et al.58,59 contains 642
molecules; however, 59 of these have a reported uncertainty of
4.18 kJ·mol−1 or greater and were thus excluded from the

Figure 2. Examples of functional groups that lead to a systematic
deviation between the calculated (calc.) and experimental (exp.)
solvation free enthalpy (ΔG) in water (left) and hexane (right).
Molecules containing bromo (purple triangles) and iodo (green
pentagons) groups are highlighted in panels a and b; thiol and sulfide
(red diamonds), phosphate (orange circles) and thiophosphate
groups (red circles), in panels c and d; urea moieties (blue triangles)
and molecules without carbon atoms (cyan squares), in panels e and f.
In each case all other molecules are also indicated (blue dots). The
solid line corresponds to a one-to-one agreement between the
calculated and experimental values. The dotted lines correspond to
±5.0 kJ·mol−1 from a one-to-one agreement.
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ATB3.0 water validation set. As is clear from Figure 3, the

range of ΔGwater values and the diversity of chemical groups in

the Shivakumar et al.,60 Boulanger et al.,20 and Dodda et al.70

data sets is significantly less than that of FreeSolv58 and the

ATB3.0 water validation data set. It is unclear why only specific

fractions of the available experimental data were used in these

validation studies. Note that while both Boulanger et al.20 and

Dodda et al.70 report data sets of 426 molecules, they do not

Figure 3. Comparison between the ATB3.0 calculated (calc.) and experimental (exp.) hydration free enthalpy (ΔGwater) values for the data sets
proposed by Shivakumar et al.60 (a), Boulanger et al.20 (b), Dodda et al.70 (c), and Mobley et al.58,59 (d). The solid line corresponds to a one-to-
one agreement between the calculated and experimental values. The dotted lines correspond to ±5.0 kJ·mol−1 from a one-to-one agreement.

Table 1. Comparison between the ATB3.0 and Other Automated Parametrization Schemes for the Prediction of Hydration
Free Enthalpiesa

data set force field N AUE (kJ·mol−1) RMSE (kJ·mol−1) AE (kJ·mol−1) slope intercept (kJ·mol−1) R2

Shivakumar et al.60 ATB3.0 239 2.7 3.4 −0.4 1.01 −0.3 0.93

OPLS39 239 3.0 3.6 - - - -

GAFF/AM1-BCC64 239 4.9 5.8 - 0.97 3.3 0.87

Boulanger et al.20 ATB3.0 419b 2.9 3.7 −0.3 1.00 −0.3 0.91

GAAMP20 426 6.2 7.3 5.9 0.90 4.9 0.88

GAAMP scaled20 426 3.3 4.5 0.5 0.88 −0.8 0.86

GAFF/AM1-BCC20c 426 4.3 5.3 3.1(−6.3) 0.98(0.90) 2.8(−3.9) 0.88

Dodda et al.70 ATB3.0 425b 2.9 3.7 −0.3 0.98 −0.5 0.92

1.14*CM1A70d 426 5.3 6.6 −1.2 0.76 −3.6 0.81

1.14*CM1A-LBCC70d 426 2.5 3.3 0.0 0.90 −1.2 0.94

Mobley et al.58,59 ATB3.0 642 4.2 6.6 −1.6 1.02 −1.2 0.87

GAFF/AM1-BCC58,59 642 4.7 6.4 1.3 1.01 1.6 0.87

ATB validation set ATB3.0 685 3.8 5.5 −1.0 1.00 −1.0 0.90
aNumber of molecules (N), average unsigned error (AUE), root-mean-square error (RMSE), average error (AE), least-squares linear regression
(slope, intercept), and coefficient of determination (R2). bDuplicate and ambiguous entries removed; details in Supporting Information. cAE, slope,
and intercept values recalculated using supporting data provided by Boulanger et al.;20 reported values shown in brackets. dSummary statistics
calculated with experimental reference values on the y-axis.
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correspond to exactly the same set of molecules and even
where the same molecule is used in some cases the quoted
experimental values differ. Boulanger et al.20 do not explicitly
cite the source of their data. Dodda et al.70 cites FreeSolv.33

However, the data set of Dodda et al.70 contains 5 molecules
not found in FreeSolv33 or the more recent version of
FreeSolv.58,59 Of those 420 molecules found in FreeSolv,58,59

15 values differ by more than 0.5 kJ·mol−1 with the largest
being 2-methylpropyl 2-methylpropanoate which differs by 9.2
kJ·mol−1.
As can be seen from Table 1, the performance of ATB3.0 in

terms of AUE and RMSE is equivalent to that of OPLS39 using
the Shivakumar et al.60 data set (AUE = 2.7 for ATB3.0 versus
3.0 kJ·mol−1 for OPLS3; RMSE = 3.4 versus 3.6 kJ·mol−1).
The ATB3.0 parameters are highly predictive with the line of
best fit having a slope of 1.01, an intercept of −0.3 kJ·mol−1,
and an R2 of 0.93. The results for GAFF/AM1-BCC64 on this
particular subset are significantly worse for all metrics except
for the slope which is 0.97.
For the larger Boulanger et al.20 data set, there is a slight loss

of performance using ATB3.0 compared to the Shivakumar et
al.60 data set. AUE increases from 2.7 to 2.9 kJ·mol−1, and
RMSE increases from 3.3 to 3.7 kJ·mol−1. The line of best fit
has a slope of 1.00, an intercept of −0.3 kJ·mol−1, and an R2 of
0.91. A loss in performance with a larger test set could reflect
overfitted force field parameters, a higher degree of uncertainty
in the additional experimental data, or the inclusion of a larger
proportion of molecules containing functional groups for
which the ATB3.0 performs less well. In this case the loss in
performance can be attributed to just 5 of the additional 180
molecules: hydrazine, methylimidazole, 1-methypyrrole, trie-
thylamine, and butanethiol, which suggests that the loss in
performance is not due to overfitting. The performance of
GAAMP,20 GAAMP scaled,20 and GAFF/AM1-BCC20 on this
particular subset are all significantly worse than that of ATB3.0.
Note that the metrics reported by Boulanger et al.20 for the
GAFF/AM1-BCC results (shown in brackets in Table 1) could
not be reproduced when calculated using the supplementary
data that the authors provided and that the recalculated results
are significantly better than the metrics reported in the main
body of the publication itself.
The Dodda et al.70 data set used to validate the 1.14*CM1A

and 1.14*CM1A-LBCC charge models used in LigParGen has
a high degree of overlap with that of Boulanger et al.20 but
differs in a number of respects. Of the 425 and 419 unique
molecules in the Dodda et al.70 and Boulanger et al.20 data sets,
respectively, only 356 are found in both sets. Of these the
experimental hydration free enthalpies differ by more than 0.2
kJ·mol−1 in 10 cases. For the Dodda et al.70 data set the AUE
of ATB3.0 is 2.9 kJ·mol−1 and the RMSE is 3.7 kJ·mol−1. The
line of best fit has a slope of 0.98, an intercept of −0.5 kJ·
mol−1, and an R2 of 0.92. The results for ATB3.0 are
significantly better than those obtained using the 1.14*CM1A
charges on all criteria. The AUE and RMSE using
1.14*CM1A-LBCC, which contains 19 specially fitted bond
correction terms, is lower than that obtained using the ATB3.0
by 0.4 kJ·mol−1 in both cases. However, the slope and intercept
of the line of best fit reported by Dodda et al.70 for the
1.14*CM1A-LBCC charge model are 0.90 and −1.2 kJ·mol−1,
respectively. Note, the molecules chosen by Dodda et al.70 only
range in ΔGwater values from −46 to 14 kJ·mol−1. Given the
error in the slope, the predictive ability over a more diverse
range of compounds is uncertain.

The results obtained using the FreeSolv data set of Mobley
et al.58,59 (Table 1) show that the slope of best fit, the
intercept, and the R2 obtained using GAFF/AM1-BCC and
ATB3.0 are almost identical. ATB3.0 has a lower AUE but a
higher RMSE; the higher RMSE can be attributed to just 2
molecules. This is not entirely surprisingdespite the fact that
ATB3.0 performs significantly better than GAFF/AM1-BCC
on the other data setsgiven that FreeSolv contains a number
of molecules for which the uncertainty in the experimental data
is reported to be greater than 4.18 kJ·mol−1, indicating that
these values may be unreliable. Note that these molecules with
high reported uncertainty were omitted from the ATB3.0
validation set and were not present in any of the alternative
data sets that have been considered. The ATB3.0 results for
the omitted molecules are highlighted in Figure S1.
No comparison between the performance of the ATB3.0 and

either OPL3, GAFF/AM1-BCC, or GAAMP for apolar
solvation is presented since apolar solvation data are not
currently available for these alternative parameter sets.

Key Parameters and Parametrization Strategy. A key
element of ATB3.0 is the choice of a simple underlying model
and parametrization strategy. Much has been written by others
on the choice of charge fitting model, the fitting of dihedral
parameters, the choice of water model, and the treatment of
long-range electrostatic interactions in the calculation of
hydration free enthalpies.20,70−72 Indeed, all of these elements
are potentially important. However, given that the optimiza-
tion of atomistic force fields with respect to the available
experimental data is an underdetermined problem, there is a
danger that the attempt to optimize each specific element of
the calculation will lead to a proliferation of parameters and
potentially an overfitted model. In this initial round of
optimization we have deliberately attempted to restrict the
number of parameters used by the ATB to avoid overfitting.
Rather than attempting to optimize parameters for specific
cases, we have developed generalized rules that can be applied
across all molecules. This ensures that the parameters
proposed are transferable over as broad a region of chemical
space as possible. The results presented in this work involve
118 bond types, 73 angle types, and only 20 dihedral types. For
comparison, OPLS3, which achieves similar fidelity in terms of
the prediction of hydration free energies, includes 1187 bond
stretching types, 15236 bond bending types, and tens of
thousands of individually parametrized dihedrals. While these
numbers are for the complete force field and not just the
specific molecules considered in this work, OPLS3 does
contain a much greater number of parameters than ATB3.0 or
any other comparable force field, a fact repeatedly highlighted
by its developers.9 By default, the bonded parameters in this
work were taken from the GROMOS 54A7 biomolecular force
field which are primarily derived based on the element type
and hybridization state of the atoms involved. Where this was
not possible, additional bond and angle parameters are
generated dynamically based on an analysis of the QM
Hessian. In particular, the number of dihedral terms used in
this work is limited and very small compared to that used in
other comparable force fields. However, it is important to note
in this regard that rather than simply introducing a fixed scaling
factor, the GROMOS force field includes special Lennard-
Jones terms to describe 1−4 interactions and that these terms
act in concert with the dihedral terms. While this approach
does have limitations, for the 250,000 molecules currently in
the ATB repository the root-mean-square positional deviation
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(RMSD) between the QM optimized geometry and the
geometry of the molecule after minimization in vacuum is less
than 0.03 nm in over 95% of cases. Nevertheless, the results of
others suggest that it should be possible to further improve the
performance of the ATB by expanding the number of dihedral
terms.9,73

The GROMOS 54A7 united-atom force field contains 54
sets of C6 and C12 Lennard-Jones parameters (atom types).
However, only 23 atom types were used to represent the 773
molecules considered in this work. The Lennard-Jones
parameters included 2 atom types for hydrogen atoms, 4
atom types for carbon, 5 atom types for oxygen, 5 for nitrogen
atoms, 2 for sulfur, 1 for silicon and phosphorus combined, and
1 each for chlorine, bromine, and iodine. For completeness it
should be noted that the GROMOS force field allows for
alternative C12 terms to be specified for particular pairs of
interactions. Alternative C12 parameters were used for 3 of the
5 oxygen types and all of the 5 nitrogen types, effectively
yielding 31 unique sets of Lennard-Jones parameters. For
comparison, the developers of GAAMP highlight the fact they
used a total of 52 empirical Lennard-Jones parameters to
describe their set of 419 unique molecules noting that this was
a relatively small number.20 OPLS3 contains a total of 124
atom types with different van der Waals (Lennard-Jones)
parameter sets. Again, this is for the complete force field which
covers a broader range of chemical space than considered here.
The Lennard-Jones parameters used in the ATB3.0 force field
were based on those in the GROMOS 54A7 parameter set
which have been fitted to reproduce the densities and heats of
vaporization for a range of simple liquids at room temperature
and atmospheric pressure. However, a number of modifica-
tions and extensions were introduced. The Lennard-Jones
parameters for chlorine have been systematically optimized as
described previously.38 The parameters for bromine were
optimized against hydration free enthalpies. The charges
assigned by the ATB3.0 to oxygen atoms are systematically
more negative than those in the GROMOS 54A7 protein force
field. To compensate for the increase in Coulombic
interactions, the oxygen Lennard-Jones parameters used for
carbonyl atoms in aldehyde, ketone, ester, and carboxylic acid
groups were refined accordingly, as were the parameters for
oxygen atoms in hydroxy groups. Conversely, the charges
assigned by the ATB3.0 to aromatic hydrogen and carbon
atoms are systematically lower than those in the GROMOS
54A7 force field. The Lennard-Jones parameters for aromatic
carbon atoms were adjusted to compensate. As noted by
Pechlaner et al.,74 the original GROMOS 54A7 parameters
overestimate the free enthalpy of hydration for amines.75 In the
ATB3.0 separate parameters are used to describe primary,
secondary, and tertiary amines. Finally, the GROMOS 54A7
force field has a single set of parameters for a bare carbon used
in an all-atom representation irrespective of its partial charge.
While the partial charge on most aliphatic carbons is either
slightly negative or close to zero, the partial charge on some
carbon atoms associated with functional groups such as
alcohols, aldehydes, ketones, and esters are significantly greater
than zero. Such positively charged carbons were assigned an
alternative set of Lennard-Jones parameters.
The charge assignment model used in this work is also

relatively simple. The point charges located at the center of
each atom were obtained using the Merz and Kollman fitting
scheme.40 The primary variation from previously published
protocols was an increase in the density of points used to

represent the ESP surfaces. To avoid overpolarization and
ensure that the charges were in the same range as those
commonly used in the GROMOS force field and thus
compatible with the existing Lennard-Jones parameters, the
ESP surfaces were calculated in conjunction with the PCM42

implicit solvation model of water. Fitting artifacts resulting
from the use of a single conformation were mitigated by
identifying equivalent atoms that arise as a result of molecular
symmetry or rapid exchange using the nauty package and
averaging the charges.44 In contrast to force fields such as
1.14*CM1A-LBCC and GAFF/AM1-BCC, the introduction of
fitted charge scaling parameters and localized terms such as
bond charge corrections (BCCs)70 have been avoided.
A copy of the ATB3.0 augmented GROMOS 54A7

interaction parameter file used in this work is provided as
Supporting Information. Note, this file contains both the
original GROMOS parameters as well as the parameters used
by molecules parametrized with ATB3.0 so that ATB
molecules can be combined directly with the existing elements
of the GROMOS biomolecular force field.

■ CONCLUSIONS

In this work atomic interaction parameters generated using
version 3.0 of ATB were used to compare the calculated and
experimental free enthalpy of solvation in water and hexane for
773 and 218 molecules, respectively. Based on the results of
these calculations and an analysis of the reported uncertainties
in the experimental data, we have proposed a set of 685
molecules for which the uncertainty in the experimental
hydration data is ≤4.18 kJ·mol−1 as a validation set. For these
685 molecules the slope of the line of best fit between the
values calculated with ATB3.0 and experiment is 1.00; the
intercept, −1.0 kJ·mol−1; and R2, 0.90. The AUE = 3.8 kJ·
mol−1, and RMSE = 5.5 kJ·mol−1. This shows that the ATB3.0
parameters are predictive for a wide range of compounds.
Furthermore, comparisons using more restricted validation sets
proposed by others suggest that the performance of the
ATB3.0 parameters with respect to the prediction of hydration
and apolar solvation is better than or comparable to that of
similar force fields including OPLS3, GAAMP, LigParGen, and
GAFF/AM1-BCC20 based on published data.
The results described in this work represent the first stage in

an ongoing program to refine systematically the parameters
distributed as part of ATB. The parameters for molecules in
the ATB repository are continuously updated and are made
freely available for academic (noncommercial) use. The
parameters are distributed in a number of formats and can
be directly used in conjunction with a variety of simulation
packages including the current versions of GROMOS,
GROMACS and LAMMPS. A converter is also available to
allow systems generated using GROMOS to be simulated
using AMBER. This will be described in more detail elsewhere.
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(27) Brünger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.;
Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges,
M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G.
L. Crystallography & NMR system: A new software suite for
macromolecular structure determination. Acta Crystallogr., Sect. D:
Biol. Crystallogr. 1998, 54, 905−921.
(28) Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis,
I. W.; Echols, N.; Headd, J. J.; Hung, L.-W.; Kapral, G. J.; Grosse-
Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R.
J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P.
H. PHENIX: a comprehensive Python-based system for macro-
molecular structure solution. Acta Crystallogr., Sect. D: Biol. Crystallogr.
2010, 66, 213−221.
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