
152 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON ROBOTICS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND AUTOMATION, VOL. 9, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, APRIL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1993

Automated Tracking and Grasping of a Moving
Object with a Robotic Hand-Eye System

Peter K. Allen, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMember, IEEE, Aleksandar Timcenko, Student Member, IEEE,
Billibon Yoshimi, Student Member, IEEE, and Paul Michelman, Member, IEEE

Abstract- Most robotic grasping tasks assume a stationary
or fixed object. In this paper, we explore the requirements for
tracking and grasping a moving object. The focus of our work
is to achieve a high level of interaction between a real-time
vision system capable of tracking moving objects in 3-D and a
robot arm with gripper that can be used to pick up a moving
object. There is an interest in exploring the interplay of hand-eye
coordination for dynamic grasping tasks such as grasping of
parts on a moving conveyor system, assembly of articulated
parts, or for grasping from a mobile robotic system. Coordination
between an organism's sensing modalities and motor control
system is a hallmark of intelligent behavior, and we are pursuing
the goal of building an integrated sensing and actuation system
that can operate in dynamic as opposed to static environments.
The system we have built addresses three distinct problems in
robotic hand-eye coordination for grasping moving objects: fast
computation of 3-D motion parameters from vision, predictive
control of a moving robotic arm to track a moving object, and
interception and grasping. The system is able to operate at
approximately human arm movement rates, and experimental
results in which a moving model train is tracked is presented,
stably grasped, and picked up by the system. The algorithms we
have developed that relate sensing to actuation are quite general
and applicable to a variety of complex robotic tasks that require
visual feedback for arm and hand control.

I. INTRODUCTION

HE focus of our work is to achieve a high level of T interaction between a real-time vision system capable of
tracking moving objects in 3-D and a robot arm equipped
with a dextrous hand that can be used to intercept, grasp,
and pick up a moving object. We are interested in exploring
the interplay of hand-eye coordination for dynamic grasping
tasks such as grasping of parts on a moving conveyor system,
assembly of articulated parts, or for grasping from a mobile
robotic system. Coordination between an organism's sensing
modalities and motor control system is a hallmark of intelli-
gent behavior, and we are pursuing the goal of building an
integrated sensing and actuation system that can operate in
dynamic as opposed to static environments.

There has been much research in robotics over the last few
years that addresses either visual tracking of moving objects
or generalized grasping problems. However, there have been

Manuscript received October 14, 1991; revised June 2, 1992. This work
was supported in part by DARPA under Contract "39-84-C-0165, by
NSF under Grants DMC-86-05065, DCI-86-08845, CCR-86.12709, IRI-86-
57151, and IRI-88-1319 by North American Philips Laboratories, by Siemens
Corporation, and by Rockwell Inc.

The authors are with the Department of Computer Science, Columbia
University, New York, NY 10027.

IEEE Log Number 9207358.

few efforts that try to link the two problems. It is quite clear
that complex robotic tasks such as automated assembly will
need to have integrated systems that use visual feedback to
plan, execute, and monitor grasping.

The system we have built addresses three distinct problems
in robotic hand%ye coordination for grasping moving objects:
fast computation of 3-D motion parameters from vision, pre-
dictive control of a moving robotic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm to track a moving
object, and interception and grasping. The system is able to
operate at approximately human arm movement rates, using
visual feedback to track, intercept, stably grasp, and pick up a
moving object. The algorithms we have developed that relate
sensing to actuation are quite general and applicable to a
variety of complex robotic tasks that require visual feedback
for arm and hand control.

Our work also addresses a very fundamental and lim-
iting problem that is inherent in building integrated sens-
ing/actuation systems; integration of systems with different
sampling and processing rates. Most complex robotic systems
are actually amalgams of different processing devices, con-
nected by a variety of methods. For example, our system
consists of three separate computation systems: a parallel
image processing computer; a host computer that filters, trian-
gulates, and predicts 3-D position from the raw vision data; and
a separate arm control system computer that performs inverse
kinematic transformations and joint-level servoing. Each of
these systems has its own sampling rate, noise characteristics,
and processing delays, which need to be integrated to achieve
smooth and stable real-time performance. In our case, this
involves overcoming visual processing noise and delays with
a predictive filter based upon a probabilistic analysis of the
system noise characteristics. In addition, real-time arm control
needs to be able to operate at fast servo rates regardless of
whether new predictions of object position are available.

The system consists of two fixed cameras that can image a
scene containing a moving object (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1). A PUMA-560 with
a parallel jaw gripper attached is used to track and pick up the
object as it moves (Fig. 2) . The system operates as follows:

1) The imaging system performs a stereoscopic optic-flow
calculation at each pixel in the image. From these optic-
flow fields, a motion energy profile is obtained that forms
the basis for a triangulation that can recover the 3-D
position of a moving object at video rates.

2) The 3-D position of the moving object computed by
step 1 is initially smoothed to remove sensor noise,
and a nonlinear filter is used to recover the correct

1042-296X/93$03.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1993 IEEE

I

153 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAALLEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: AUTOMATED TRACKING AND GRASPING OF A MOVING OBJECT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

\
circie of radius
250 millimeters

L Stereo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ
Cameras

Fig. 1 . Tracking/grasping system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
trajectory parameters which can be used for forward pre-
diction, and the updated position is sent to the trajectory-
planner/arm-control system.

3) The trajectory planner updates the joint-level servos of
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm via kinematic transform equations. An additional
fixed-gain filter is used to provide servo-level control
in case of missed or delayed communication from the
vision and filtering system.

4) Once tracking is stable, the system commands the arm
to intercept the moving object and the hand is used to
grasp the object stably and pick it up.

The following sections of the paper describe each of these
subsystems in detail along with experimental results.

11. PREVIOUS WORK

Previous efforts in the areas of motion tracking and real-
time control are too numerous to exhaustively list here. We
instead list some notable efforts that have inspired us to use
similar approaches. Burt et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. [9] have focused on high-
speed feature detection and hierarchical scaling of images
in order to meet the real-time demands of surveillance and
other robotic applications. Related work has been reported by
Lee and Wohn [29] and Wiklund and Granlund [43] who use
image differencing methods to track motion. Corke, Paul, and
Wohn [13] report a feature-based tracking method that uses
special-purpose hardware to drive a servo controller of an
arm-mounted camera. Goldenberg et al. [161 have developed
a method that uses temporal filtering with vision hardware
similar to our own. Luo, Mullen, and Wessel [30] report a real-
time implementation of motion tracking in 1-D based on Horn
and Schunk’s method. Verghese et ul. [41] report real-time
short-range visual tracking of objects using a pipelined system
similar to our own. Safadi [37] uses a tracking filter similar to
our own and a pyramid-based vision system, but few results
are reported with this system. Rao and Durrant-Whyte [36]
have implemented a Kalman filter-based decentralized tracking

Fig. 2. Experimental hardware

system that tracks moving objects with multiple cameras.
Miller [31] has integrated a camera and arm for a tracking
task where the emphasis is on learning kinematic and control
parameters of the system. Weiss et al. [42] also use visual
feedback to develop control laws for manipulation. Brown [8]
has implemented a gaze control system that links a robotic
“head” containing binocular cameras with a servo controller
that allows one to maintain a fixed gaze on a moving object.
Clark and Ferrier [12] also have implemented a gaze control
system for a mobile robot. A variation of the tracking problems
is the case of moving cameras. Some of the papers addressing
this interesting problem are 191, [15], [441, and [18].

The majority of literature on the control problems encoun-
tered in motion tracking experiments is concerned with the
problem of generating smooth, up-to-date trajectories from
noisy and delayed outputs from different vision algorithms.
Our previous work [4] coped with that problem in a similar
way as in [38], using an cy - p - y filter, which is a
form of steady-state Kalman filter. Other approaches can be
found in papers by [33], [34], [28], [6]. In the work of
Papanikolopoulos et al. [33], [34], visual sensors are used in
the feedback loop to perform adaptive robotic visual tracking.
Sophisticated control schemes are described which combine a
Kalman filter’s estimation and filtering power with an optimal
(LQG) controller which computes the robot’s motion. The
vision system uses an optic-flow computation based on the
SSD (sum of squared differences) method which, while time
consuming, appears to be accurate enough for the tracking

154 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 9, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, APRIL 1993

task. Efficient use of windows in the image can improve
the performance of this method. The authors have presented
good tracking results, as well as stated that the controller is
robust enough so the use of more complex (time-varying LQG)
methods is not justified. Experimental results with the CMU
Direct Drive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAArm I1 show that the methods are quite accurate,
robust, and promising.

The work of Lee and Kay [28] addresses the problem of
uncertainty of cameras in the robot’s coordinate frame. The
fact that cameras have to be strictly fixed in robot’s frame
might be quite annoying since each time they are (most often
incidentally) displaced, one has to undertake a tedious job
of their recalibration. Again, the estimation of the moving
object’s position and orientation is done in the Cartesian space
and a simple error model is assumed. Andersen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. [6] adopt
a 3rd-order Kalman filter in order to allow a robotic system
(consisting of two degrees of freedom) to play the labyrinth
game. A somewhat different approach has been explored in the
work of Houshangi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[24] and Koivo et al. [27]. In these works,
the autoregressive (AR) and autogressive moving-average with
exogenous input (ARMAX) models are investigated for visual
tracking.

111. VISION SYSTEM

In a visual tracking problem, motion in the imaging system
has to be translated into 3-D scene motion. Our approach
is to initially compute local optic-flow fields that measure
image velocity at each pixel in the image. A variety of
techniques for computing optic-flow fields have been used with
varying results including matching-based techniques [5], [101,
[39], gradient-based techniques [23], [32], [113, and spatio-
temporal energy methods [20], [2]. Optic-flow was chosen as
the primitive upon which to base the tracking algorithm for
the following reasons.

The ability to track an object in three dimensions implies
that there will be motion across the retinas (image planes)
that are imaging the scene. By identifying this motion in
each camera, we can begin to find the actual 3-D motion.
The principal constraint in the imaging process is high
computational speed to satisfy the update process for
the robotic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm parameters. Hence, we needed to be
able to compute image motion quickly and robustly. The
Hom-Schunck optic-flow algorithm (described below) is
well suited for real-time computation on our PIPE image
processing engine.
We have developed a new framework for computing
optic-flow robustly using an estimation-theoretic frame-
work [40]. While this work does not specifically use these
ideas, we have future plans to try to adapt this algorithm
to such a framework.

Our method begins with an implementation of the
Horn-Schunck method of computing optic-flow [22]. The
underlying assumption of this method is the optic-flow
constraint equation, which assumes image irradiance at time t
and t + S t will be the same:

I (z + sz, y + sy, t + S t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI(2, y, t) . (1)

If we expand this constraint via a Taylor series expansion,
and drop second- and higher-order terms, we obtain the form
of the constraint we need to compute normal velocity:

where U and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU are the velocities in image space, and I,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IY, and 1, are the spatial and temporal derivatives in the
image. This constraint limits the velocity field in an image
to lie on a straight line in velocity space. The actual velocity
cannot be determined directly from this constraint due to
the aperture problem, but one can recover the component of
velocity normal to this constraint line as

A second, iterative process is usually employed to propagate
velocities in image neighborhoods, based upon a variety of
smoothness and heuristic constraints. These added neighbor-
hood constraints allow for recovery of the actual velocities U ,

U in the image. While computationally appealing, this method
of determining optic-flow has some inherent problems. First,
the computation is done on a pixel-by-pixel basis, creating a
large computational demand. Second, the information on optic
flow is only available in areas where the gradients defined
above exist.

We have overcome the first of these problems by using
the PIPE image processor [26], [7]. The PIPE is a pipelined
parallel image processing computer capable of processing 256
x 256 x 8 bit images at frame rate speeds, and it supports
the operations necessary for optic-flow computation in a pixel-
parallel method (a typical image operation such as convolution,
warping, additionkubtraction of images can be done in one
cycle-l/60 s). The second problem is alleviated by our not
needing to know the actual velocities in the image. What we
need is the ability to locate and quantify gross image motion
robustly. This rules out simple differencing methods which are
too prone to noise and will make location of image movement
difficult. Hence, a set of normal velocities at strong gradients
is adequate for our task, precluding the need to iteratively
propagate velocities in the image.

A. Computing Normal Optic-Flow in Real-Time

Our goal is to track a single moving object in real time. We
are using two fixed cameras that image the scene and need to
report motion in 3-D to a robotic arm control program. Each
camera is calibrated with the 3-D scene, but there is no explicit
need to use registered (i.e., scan-line coherence) cameras. Our
method computes the normal component of optic-flow for each
pixel in each camera image, finds a centroid of motion energy
for each image, and then uses triangulation to intersect the
back-projected centroids of image motion in each camera. Four
processors are used in parallel on the PIPE. The processors are
assigned as four per camera-two each for the calculation of
X and Y motion energy centroids in each image. We also
use a special processor board (ISMAP) to perform real-time

ALLEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: AUTOMATED TRACKNG AND GRASPING OF A MOVING OBJECT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA155

Gaussian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 3. PIPE motion tracking algorithm.

histogramming. The steps below correspond to the numbers
in Fig. 3.

The camera images the scene and the image is sent
to processing stages in the PIPE.
The image is smoothed by convolution with a Gauss-
ian mask. The convolution operator is a built-in
operation in the PIPE and it can be performed in
one frame cycle.
In the next two cycles, two more images are read in,
smoothed and buffered, yielding smoothed images zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Io and I1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12. The ability to buffer and pipeline
images allows temporal operations on images, albeit
at the cost of processing delays (lags) on output.
There are now three smoothed images in the PIPE,
with the oldest image lagging by 3/60 s.
Images Io and I , are subtracted yielding the temporal
derivative I t .
In parallel with step 5, image 11 is convolved with a
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 3 horizontal spatial gradient operator, returning
the discrete form of I,. In parallel, the vertical spatial
gradient is calculated yielding I, (not shown).
The results from steps 5 and 6 are held in buffers
and then are input to a look-up table that divides
the temporal gradient at each pixel by the absolute
value of the summed horizontal and vertical spatial
gradients [which approximates the denominator in
(3)]. This yields the normal velocity in the image at
each pixel. These velocities are then thresholded and
any isolated (i.e., single pixel motion energy) blobs
are morphologically eroded. The above threshold
velocities are then encoded as gray value 255. In
our experiments, we thresholded all velocities below
10 pixels per 60 ms to zero velocity.

9-10) In order to get the centroid of the motion information,
we need the X and Y coordinates of the motion
energy. For simplicity, we show only the situation for
the X coordinate. The gray-value ramp in Fig. 3 is
an image that encodes the horizontal coordinate value
(0-255) for each point in the image as a gray value.
Thus, it is an image that is black (0) at horizontal
pixel 0 and white (255) at horizontal pixel 255. If
we logically and each pixel of the above threshold
velocity image with the ramp image, we have an
image which encodes high velocity pixels with their
positional coordinates in the image, and leaves pixels
with no motion at zero.
By taking this result and histogramming it, via a
special stage of the PIPE which performs histograms
at frame rate speeds, we can find the centroid of the
moving object by finding the mean of the resulting
histogram. Histogramming the high-velocity position
encoded images yields 256 16-bit values (a result for
each intensity in the image). These 256 values can
be read off the PIPE via a parallel interface in about
10 ms. This operation is performed in parallel to find
the moving object’s Y centroid (and in parallel for X
and Y centroids for camera 2). The total associated
delay time for finding the centroid of a moving object
becomes 15 cycles or 0.25 s.

The same algorithm is run in parallel on the PIPE for the
second camera. Once the motion centroids are known for
each camera, they are back-projected into the scene using the
camera calibration matrices and triangulated to find the actual
3-D location of the movement. Because of the pipelined nature
of the PIPE, a new X or Y coordinate is produced every 1/60
s with this delay. Fig. 4 shows two camera images of a moving
train, and Fig. 5 shows the motion energy derived from the
real-time optic-flow algorithm.

While we are able to derive 3-D position from motion-
stereo at real-time rates, there are a number of sources of noise
and error inherent in the vision system. These include stereo-
triangulation error, moving shadow s which are interpreted
as object motion (we use no special lighting in the scene),
and small shifts in centroid alignments due to the different
viewing angles of the cameras, which have a large baseline.
The net effect of this is to create a 3-D position signal that
is accurate enough for gross-level object tracking, but is not
sufficient for the smooth and highly accurate tracking required
for grasping the object. We describe in the next section how
a probabilistic model of the motion that includes noise can
be used to extract a more stable and accurate 3-D position
signal.

11)

IV. ROBOTIC ARM CONTROL

The second part of the system is the arm control. The robotic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
arm has to be controlled in real time to follow the motion of
the object, using the output of the vision system. The raw
vision system output is not sufficient as a control parameter
since its output is both noisy and delayed in time. The control
system needs to do the following:

156 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 2, APRIL 1993

(a) (b)

Fig. 4. Left and right camera images.

(a) (b)

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Motion energy derived from optic flow (left and right cameras)

filter out the noise with a digital filter;
predict the position to cope with delays introduced by
both vision subsystem and the digital filter;
perform the kinematic transformations which will map the
desired manipulator’s tip position from a Cartesian coor-
dinate frame into joint coordinates, and actually perform
the movement.

Our vision algorithm provides in each sampling instant a
position in space as a triplet of Cartesian coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x . y. z) .
The task of the control algorithm is to smooth and predict
the trajectory, thus positioning the robot where the object is
during its motion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A well-known and useful solution is the Kalman filter
approach, because it successfully performs both smoothing
and prediction. However, the assumption the Kalman filter
makes is that the noise applied to the system is white.
That fact directly depends on the parametrization of the
trajectory and, unfortunately in our case, the simplest pas-
sible parametrization-Cartesian-does not support this noise
model. Our previous work [4] used a variant of this approach
and obtained tracking that was smooth but not accurate enough
to allow actual grasping of the moving object. Our solution to
this problem was to appeal to a local coordinate system that
was able to model the motion and system noise characteristics

ALLEN et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: AUTOMATED TRACKING AND GRASPING OF A MOVING OBJECT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA157 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
no. of points

,,,o{ I

Fig. 6. Model of the motion in the plane: the moving object is in p k + l .

while the vision system computes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ k f l . SO is the actual arc length, and s

is the measured arc length.
Fig. 7. Experimental density of SI, the expected value of the arc length.

more accurately, thus producing a more accurate control
algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. The Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Motion

The model of the motion we are using separates 3-D space
into an X Y plane and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ axis, and addresses these two
components of motion separately. In the experimental results
we present in Section VI, we have used the model to track
planar trajectories. However, we still need to track the Z
dimension to determine the height above the plane of the
motion to command the robotic arm to correctly grasp the
object. The tracking of the object in the X Y plane is done
using a local model presented below, while the tracking in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 is done with a Cartesian displacement using the fixed-gain
filter described in [4].

The main idea in the trajectory parametrization used in this
paper is to describe a point in a local coordinate frame, relative
to the point from the previous sampling instant, by the triplet
of coordinates (SO, $0, Az) where (see Fig. 6)

SO is the length of an arc between two points (we will
approximate the arc length by a straight line section and
set SO to be the distance between points and Pk+l,

SO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 11Pk+1-pkII where 1 1 . 1 1 denotes Euclidean distance);
$0 is the “bending” of the trajectory;
AZ is the altitude difference between two consecutive
points.

Due to the existence of noise, the measured coordinates will
be random variables with certain distributions. We have made
the following assumptions, as a result of both reasoning about
the vision algorithm and certain necessary simplifications.

In sampling instant k, our object is at point Pk.
In the next sampling instant k + 1, the object is at Pk+1

and the point returned by the vision algorithm is &k+l.

The measured arc length is s = ll&k+l - 911.
Q k f l is normally distributed around Pk+1. The noise can
be expressed by its two components, tangential nt and
normal n,, where both nt and n, are random variables.
nt and n, are both zero-mean, with the same variance CT

and mutually not correlated. Experimentally, it has been
determined that their coefficient of correlation is between
0.1 and 0.2.
AZ is independent of SO and $0 (i.e., the altitude Z is
independent of the position in X Y plane).

This last assumption limits the method to tracking planar tra-
jectories in space. However, the probabilistic method described
below can be extended to arbitrary 3-D space curve trajectories
by finding a distribution that will allow computation of a space
curve torsion parameter. This essentially means creating a full
Frenet Frame representation at each point in time.

Under these assumptions, it can be shown that (see Appen-
dix I) the velocity ‘U and curvature K are

‘U = lim so/T (4)

K = lim tan 40/so (5)

where SO = 114+1 - Pk11,$0 = 7r - LPk_1PkPk+l and T is
the sampling interval.

Our model assumes the following coordinate transformation
that relates the moving object’s coordinate frame at one instant
with the next instant in time:

TA = rot(z, $0) o trans(z, so) o trans(z, Az) (6)

where rot and trans are rotation about and translation along a
given axis. Presented as a 4 x 4 matrix, transformation (6) is

cos $0 -sin $0 0 SO cos $0

sin $0 cos $0 0 so sin $0

T A = [0 ~ A z .
0 0 0 1

What are the advantages of such a parametrization? The
most obvious one is the simplicity of the prediction task in this
framework; all we need is to multiply the velocity ‘U = so/T
by the time T > I’ we want to predict, as well as “bending”
$0. The next advantage is that in order to achieve an accurate
prediction, we do not need a high-order model with the mostly
heuristic tuning of numerous parameters. The price we have
to pay is that Jiltering is not straightforward. It turns out that
we cannot just apply a low-pass filter in order to recover a
dc component from s, but rather we need a more elaborate
approach that takes into account a probabilistic distribution
of s. Fig. 7 is a histogram of the experimentally measured
density of the computed arc length between triangulated image
motion points. This distribution shows the need to use a more
sophisticated method than a simple averaging filter, which
we have found to be incorrect in being able to correctly
estimate the movement of the object between vision samples.

T+O

T-0

] (7)

~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

158 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, APRIL 1993

s = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[J&k+i - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApkll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlow pass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfilter
(computed arc length including noise) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r 3 c >

< V i S -;\; see section N.B)

(stt N.c)

nonlinear transform

r I

s2 (computed square ofthe arc

length including noise)
low pass filta
(sec section I V . 9

Fig. 8. Overview of the filtering method.

The analysis below describes a probabilistic model of the
experimental distribution in Fig. 7, allowing us to recover
the actual arc length parameter SO and the bending angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$0

at each sampling instant. While this model introduces more
complexity than a standard Cartesian model, we will see below
that it is more effective in allowing us to accurately predict
and smooth our trajectory.

B. Estimating Arc Length SO and Bending Parameter $0

We begin this subsection with an intuitive overview of
the method used to recover the actual arc length SO and
actual bending parameter $0 from the noisy estimates provided
by the vision system. The filtering method is summarized
in Fig. 8. Given the model of the motion described in the
previous subsection, we want to extract the actual arc length
SO from measured, noisy arc length s. Using a smoothing filter
(see subsection C), we can derive the expected value of the
arc length which we denote S I , as well as its second-order
moment (expectation of s2) which we denote sz. These two
control inputs, s1 and sz, can be used to create two integral
equations [(13) and (15)] which, when integrated, express the
known smoothed control inputs s1 and sg as functions of
the actual arc length SO and a variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. These equations
allow us to estimate SO from the control inputs. To recover
the actual bending parameter $ 0 , our task is simplified since
its distribution is symmetric, and its expectation is the actual
bending parameter itself.

Let s = l IQk+l - Pkll be the distance between the object
and the next position returned by the vision algorithm. Let
3 k be the moving coordinate frame of the point Pk with axes
t , n, and 2, where t is the tangential and n normal to the
trajectory’s projection in X Y plane (see Fig. 6) , and let 3 k + l

be the analogous coordinate frame in the point Pk+1. The
transformation from 3 k to 3 k + 1 is given by TA:

The point Q k + l is given by 3 k + 1 by a triple (nt,n,,z),
where nt is a noise component along t , and n, is a noise
component along n. Both nt and n, are Gaussian with zero
mean and mutually noncorrelated. Coordinate z is the altitude
at p k + 1 .

In the coordinate frame 3 k , the point Qk+l is given by
!!‘il[nt n, z 1IT. Thus, the distance s = I lQk+l - 911
is given by

where n: = nt cos $0 + n, sin 40 and n’, = -nt sin $0 +
n, cos $0. n: and n’, are obtained by “rotating” nt and n,
by $0. It is known that the transformation of noiicorrelated
Gaussian random variables results in noncorrelated Gaussian
random variables with the same variance. Thus, n: and n’, are
noncorrelated and Gaussian with the variance 0.

Now we have expressed in relation (8) the dependency of
s on two random variables with known properties n: and n’,.
The formula for random variables’ distribution transformations
gives us the distribution function F (s) . (Note that henceforth
s is used to denote the argument of the distribution or
distribution density functions.)

where D is a disk of radius s about 4.
We need to find the expectation of the random variable

whose distribution is given by (9). In order to do that, we
need the density function which can be found by calculat-
ing the integral in (9). By introducing the substitution t =
r cos B,n = r sin 0, we get

The distribution density is given as f (s) =
differentiation,

or, after

The last integral can be expressed by a modified Bessel
function Io (z)

ALLEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: AUTOMATED TRACKING AND GRASPING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF A MOVING OBJECT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA159 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4

Fig. 10. y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ui(z) . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 9. Distribution density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (s) , s o = 1,a = 0.4-1.0, incremenr = 0.1.

A graph of f(s) is given in Fig. 9. Here, SO is fixed to 1, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r~ varies from 0.4 to 1.0. Our job is to recover SO given f(s).

It is apparent from Fig. 9 that the peak value of f (s)
depends on o, and drifts toward higher values as o grows. The
expectation for s also depends on 0. In particular, we have

where
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U(.) = -x2/4 Fig. 1 1 . Distribution density f (4) .
&e

. (l o (:) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- :(Io(:) +11(:))).(14) o = s2 (19)
1

Here, r~ is the constant for the given system and it is related Jq$ to SO. In order to estimate o, we will use the second-order
moment This method requires little on-line computation-an inter-

polation table of values of u1 is all we need to recover the

To find the bending parameter $0, we use the same tech-
nique as for the distribution of s, and we get the following
formula:

00

si E(s2) = / s2f(s)ds = + 2a2’ (15) arc length parameter so.

Equations (13) and (15) are derived in Appendix 11.
Now by eliminating SO from (13) and (15), we have

l=zu(@T@)
where p = sz/s1 and z = o/s l . Now by setting x =

L , we end up with an equation (see Appendix 111) F
where k = o/So and $ - $0 E (-r/’,&r/2). It is obvious
that f is symmetric around $0, which also means that the
expectation E$ = $0. Hence, we so not need to perform a
nonlinear filtering to recover $0.

The graph of f for k = 0.1 to 0.9 and $0 = 0 is given
in Fig. 11.

= p . (17)

Equation (17) relates our known control inputs (p = s2/s1)

dZ-5
Ul(X) = ___

4.)

to x. We can create a table of values for this function off line,
and then by interpolation calculate a value of x given p .

Let x~(p) be the solution of (17). Now we can express SO
and o as functions of SI and s2 as follows:

c. Smoothing of the Control Inputs

In the previous subsection, we showed how to extract
parameters SO and $0 from the updated positions determined
from the vision system. The signals ~1,s: described in (13)
and (15) are in fact the smoothed versionsbf the expectations
of the control signals s, s2 which are the arc length and the
arc length squared. The smoothing filter we use to compute
these signals is a moving-average (MA) filter using a Kaiser
window [25]. This filter provides the largest ratio of signal

(18) so = s:,

160 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 9, NO. 2, APRIL 1993

Tool

S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 Bare Obj Grasp 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

Graph nodes represent coordinate frames:

W is world-coordinate frame

S is robot shoulder coordinate frame

M is 6th joint coordinate frame

T is tool (gripper) coordinate frame

G is grasping position coordinate frame

0 is moving object coordinate frame

Graph edges represent 4 x 4 coordinate transforms:

Bare is constant transform between W and S

T6 is variable transform computed by RCCL in each sampling interval

Tool IS variable transform defined by the hand kinematics

Drive is the transform introduced internally by RCCL to obtain straight-line motion in Carte-

sian coordinates

Grasp is constant transform which defines grasping point relative to the moving abject

Obj is variable transform defined by vision subsystem outputs - it defines the position of the

moving object in the world coordinate frame

Fig. 12. Transform equation.

energy in the main lobe and a side lobe, which usually results
in a filter of lower order. The windowing function is given by

where Io is the modified zeroth-order Bessel function, ,B is
the shape parameter which defines the width of the main lobe,
and M is the order of the filter. According to [25], ,B and M
are given by

. . A - 7.95
ME-----

14.36Aw

and

0.1102(A - 8.7), A 2 50
,B={ 0.5842(A - 21)0.4 + 0.07886(A - 21), 21 < A < 50

where A is the stopband attenuation and Aw = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(wr -
w,)/ws, wr is the stopband frequency, w, is the passband
frequency, and w, is the sampling frequency.

We have adopted A = 30 and Aw = 0.05 which results in
M = 30. Since the frequency of the vision algorithm is about
60 Hz, the overall length of the window is about 0.5 s. We
also apply this MA filter to the bending parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.

The implementation of MA filter is straightforward: once
the weights are computed off line, a window of length M of
measurements is retained and each sample is multiplied by an
appropriate weight in the sampling period, which requires M

multiplications and M - 1 additions. This allows reasonably
wide windows (even up to several hundred entries) to be used
in computing the smoothed signal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Prediction and Synchronization

The host computer controls the initial vision processing
and subsequent computation of control parameters described
above. The host computer is able to predict the trajectory using
the derivation of velocity and curvature in (4) and (5). These
updated predictions are sent to the trajectory generator that is
actually controlling the robot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm. The trajectory generator
is a separate system that has two parallel tasks: a low-
priority task which reads the serial line receiving updated
control signals, and a high-priority task which calculates the
transformation equation and moves the manipulator. Those two
tasks communicate via shared memory. The job of the robot
controlling program is to synchronize its two tasks (i.e., to
obtain mutual exclusion in accessing shared data), to unpack
input packets read from the serial line, and to update the joint
servos every 30 ms.

The asynchronous nature of the communication between
the host computer and the trajectory generator can result in
missed or delayed communications between the two systems.
Since the updating of the robotic arm parameters needs to
be done at very tightly specified servo rates (30 ms), it is
imperative that the trajectory generator can provide updated
control parameters at these rates, regardless of whether it has
received a new control input from the host. Therefore, we
have implemented a fixed-gain LY - ,B - y filter as part of the
trajectory generator [38]. This filter provides a small amount
of prediction to the trajectory parameters if the control signals
from the host are delayed.

We are using RCCL [19] to control the robotic arm (a
PUMA 560). RCCL (Robot Control C Language) allows the
use of C programming constructs to control the robot as well
as defining transformation equations (as described in [35]).
The transformation equations permit dynamic updating of arm
position by generating the 4 x 4 transform of the moving
object’s position from the vision system and sending this
information to the arm control algorithm (see Fig. 12).

v. MOTOR COORDINATION FOR GRASPING

The remaining part of our system is the interception and
grasping of the object. This is the least well-developed aspect
of our system, since it is a difficult real-time problem. Cur-
rently, we are intercepting and grasping a simple object with
no knowledge of its local geometry. In the future, we hope
to use visual information as well finger contact information to
perform grasping of objects of different shapes.

We have examined the human psychological literature in
order to find useful paradigms for robotic visual-motor coor-
dination strategies that include arm movement and grasping
from visual inputs. Schmidt [I71 has proposed a theory of
generalized motor programs, or movement schemas. In this
view, a skilled action is composed of an ordered set of
parametrized motor control programs of short duration (less
than 200 ms), each of which accomplishes one part of the task.
As one program is completed, the next one is executed. At the

ALLEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: AUTOMATED TRACKING AND GRASPING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF A MOVING OBJECT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~

161

initiation of a skilled task, the parameters of the motor control
program are determined by sensory input and task demands,
and then the programs are executed to completion. If the wrong
program is selected for some reason, the program cannot be
stopped by use of sensory information. An example of this
can be seen in the motor activity associated with playing table
tennis. In moving the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm to hit the ball, the motion of the
racket is determined before the beginning of the swing and
visual input has little effect after the initiation of motion. As
an example of Schmidt’s theory, the skilled task of grasping
a moving object could be partitioned into two motor control
schemas: one to position the arm and a second one to control
the grasping action.

The initial strategy we have adopted in picking up the object
is an open-loop strategy, similar in spirit to the preprogrammed
motor control schemas described above. Schmidt’s schema
theory holds that for tasks of short duration, perception is used
to find a set of parameters to pass to a motor control program.
It is not used during the execution of a task. When grasping
a moving object, for example, once vision has determined
the trajectory of the object, the reach and grasping motor
schemas take over with no interference from vision. Recent
work described in [21] suggests that visual input may be used
to modify human arm grasping trajectories, but only after a
100 ms or more delay after receiving the visual input. Since
our visual inputs are already delayed by this amount, it may
not be possible to use our current vision system effectively in
this part of the task, motivating the use of open-loop schemas.

In our implementation of this strategy, vision is not used
to continually monitor the grasping, but only to provide a
final position and velocity from which the arm is directed
to very quickly move to the object. This automatic movement
is done by establishing coordinate frames of action for each
of the components of the system and solving transformation
equations (see Fig. 12).

The transformation equations permit dynamic updating of
the arm position by generating the 4 x 4 transform of
the moving object’s position from the vision system and
sending this information to the arm control algorithm. This
positional information from the vision system is used to update
the Obj transform in Fig. 12. The other transforms in the
equation are known, and this allows the system to solve for
the Drive transform which is the transform used to update
the manipulator’s joints and develop a straight line path in
Cartesian coordinates that will bring the hand into contact
with the moving object. Because the movement of the hand
requires a small amount of time during which the object may
have moved, the object’s trajectory is predicted ahead during
the movement using the (Y - ,8 - y predictor. By keeping the
fingers of the hand spread during this maneuver, no actual
contact takes place until the gripper reaches the position of
the moving object. Once this position is achieved, the gripper
is commanded to close and grasp the object.

VI. EXPERIMENTAL RESULTS

We have implemented the system described above in order
to demonstrate the capability of the methods. The goal was

”T

Fig. 13. Input signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs: (black) and filtered signal S O (gray). Horizontal axis
is time expressed in sampling periods (1 unit = 20 ms) and vertical axis is
arc length in millimeters.

to track a moving model train, intercept it, stably grasp it,
and pick it up. The train was moving in an oval trajectory;
however, the system had no a priori knowledge of this
particular trajectory. The velocity of the train was varied from
10-30 c d s . We have experimentally established 100 ms to be
the appropriate time to predict. Since the trajectory generation
runs at 20 ms, that makes five sampling intervals. The accuracy
of tracking was critical; in order not to knock the train off but
rather to pick it up the displacement of the robot’s gripper from
the actual train’s position has to be in subcentimeter range.

In this section we present some results obtained by exper-
iments. First, in Fig. 13, we have the actual measured arc
length signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI (black) and the filtered signal SO (gray). It is
noticeable that SO is somewhat below the expected value of SI.
The nature of s1 is quite noisy; however, the analysis described
in Section IV was able to accurately extract the correct
control signal. The arm control is particularly smooth and jerk
free, stable over time (the tracking is continuous for many
revolutions of the train) and is highly accurate in being able to
intercept and grasp the object between the jaws of the gripper
as it moves. Fig. 17 shows the trajectory of commanded
arm control set points in the zy plane, including the initial
trajectory at system start. The actual train track is an oval,
slightly tilted from the horizontal axis. As a part of a system,
we have implemented a simple on-line graphic interface in
X-windows environment. Fig. 18 shows the graphics window
captured during an experiment. Positions are taken each 500
ms and plotted in the window. Figs. 14, 15, and 16 show the
time dependency of the z, y, and z coordinates. The tail of
Fig. 16 is part of the grasping trajectory.

Because we are using a parallel jaw gripper, the jaws
must remain aligned with the tangent to the actual trajectory
of the moving object. This tangential direction is computed
directly from the calculation of the bending parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4
during the trajectory modeling phase and is used to align
joint 6 of the robot to keep the gripper correctly aligned. This
correct alignment allows grasping to occur at any point in the
trajectory.

Fig. 19 shows three frames taken from a video tape of the
system intercepting, grasping, and picking up the object. The
system is quite repeatable, and is able to track other arbitrary

162 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 2, APRIL 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2m

L C a

Y ["I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t [sec]

-tm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-200

Fig. 18. Object trajectory in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXY plane: on-line graphics window including
Fig. 16. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ coordinate of the commanded zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm control set points for the
tracked trajectory as a function of time. The tail is the movement of the arm
to effect the grasp of the object.

start-up points.

The system is robust in a number of ways. The vision
system does not require special lighting, object structure, or
reflectance properties to compute motion since it is based upon
calculating optic-flow. The control system is able to cope with
the inherent visual sensor noise and triangulation error by

trajectories in addition to the one shown. ne system is also
capable of tracking motion direction reversals (with
overshoot) if the train fonvard and then in reverse.

.

.

VII. SUMMARY AND FUTURE WORK

We have developed a robust system for tracking and grasp-
ing moving objects. The system relies on real-time stereo-
triangulation of optic-flow and is able to cope with the
inherent noise and inaccuracy of visual sensors by applying
parameterized filters that smooth and can predict the moving
object's position. Once this tracking is achieved, a grasping
strategy is applied that performs an analog of human arm
movement schemas.

using a probabilistic noise model and local parameterization
that can be used to build a nonlinear filter to extract accurate
control parameters. The arm control system is able to cope
with the inherent bandwidth mismatches between the vision
sampling rate and the servo-update rate by using a fixed-
gain predictive filter that allows arm control to function in
the occasional absence of a video control signal. Finally, the
system is robust enough to repeatedly pick up a moving object
and stably grasp it.

We are currently extending this system to other hand-eye
coordination tasks. An extension we are pursuing is to im-

ALLEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: AUTOMATED TRACKING AND GRASPING OF A MOVING OBJECT

Fig. 20. Trajectory curvature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn.

(b)

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA19. Intercepting (a), grasping (b), and picking up (c) the object.

plement other grasping strategies. One strategy is to visually
monitor the interception of the hand and object and use this
visual information to update the Drive transform at video
update rates. This approach is computationally more demand-
ing, requiring multiple moving object tracking capability. The
initial vision tracking described above is capable of single
object tracking only. If we attempt to visually servo the moving
robotic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm with the moving object, we have introduced
multiple moving objects into the scene. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~

163

We have identified two possible approaches to tracking these
multiple objects visually. The first is to use the PIPE’S region
of interest operator that can effectively “window” the visual
field and compute different motion energies in each window
concurrently. Each region can be assigned to a different
stage of the PIPE and compute its result independently. This
approach assumes that the moving objects can be segmented.
This is possible since the motion of the hand in 3-D is
known-we have commanded it ourselves. Therefore, since
we know the camera parameters and 3-D position of the hand,
it will be possible to find the relevant image-space coordinates
that correspond to the 3-D position of the hand. Once these are
known, we can form a window centered on this position in the
PIPE, and concurrently compute motion energy of the moving
object and the moving hand in each camera. Each of these
motion centroids can then be triangulated to find the effective
positions of both the hand and object and compute the new
Drive transform. Both computations must, however, compete
for the hardware histogramming capability needed for centroid
computation, and this will effectively reduce the bandwidth of
position updating by a factor of 2.

Another approach is to use a coarse-fine hierarchical control
system that uses a multisensor approach. As we approach the
object for grasping, we can shift the visual attention from the
static cameras used in 3-D triangulation to a single camera
mounted on the wrist of the robotic hand. Once we have
determined that the moving object is in the field of view of this
camera, we can use its estimates of motion via optic-flow to
keep the object to grasped in the center of the wrist camera’s
field of view. This control information will be used to compute
the Drive transform to correctly move the hand to intercept
the object. We have implemented such a tracking system with
a different robotic system [3] and can adapt this method to
this particular task.

APPENDIX I
TRAJECTORY CURVATURE

Here we prove that the trajectory curvature is given by
the formula zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK = 1imT-o tan (P ~ / S O where the following
nomenclature is being adopted (see Fig. 20):

K is the trajectory curvature.
T is the sampling interval.

IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. NO. 2, APRIL 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P k - 1 , 9 , 9 + 1 are three consecutive points along the
trajectory. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 11Pk+1 - 411 is the distance between points Pk+1

0 is the center of rotation.
V k = LPk-lOPk is the angle between the tangent lines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cpk = LPk-lOPk is the angle between the tangent lines

cpo = { v k + Vk+1}/2 is the angle between lines
and PkPk+l.

$k is the angle which tangent line t k forms with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx
axis.

and 4.

t k - 1 and t k .

t k - 1 and t k .

Now we have

d -
tan cpo - lim - - lim

T+O sn T-+O ds

dT tan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPO

-
dT

1 1 d $ k + l - $ k - l = - lim ~-
v T+O cos2 cpo dT 2

1 d arctan yL+l - arctan yk-l

2

which is the formula for curvature [14].

APPENDIX I1
VELOCITY EXPECTATION AND VARIANCE

In order to compute the mathematical expectation of the ve-
locity, we differentiate the following integral (integral l l .4.3 l
in [l]):

with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, and by setting a = 1/2a2, b = so/a2, we
get formula (13).

To prove formula (15) we use formula (11.4.29) from [l]
(we set v = 0):

@/4a

e-at2tIo(bt)dt = - (B2) 2a .

By differentiation with respect to a, and introducing the
substitutions for a and b as in (21), we get the formula (15).

APPENDIX I11

Formula (17) follows from (16) as follows: from x =
J m / z , we get by solving for z : z = p / d m . After
substituting the value for z into (16), (17) follows immediately.

Since x = J?;2-zFz/z = d m / a , after solving for
a we get a = s2/dm, which is equivalent to (19). From
(15) it follows that SO = Jm. By substituting the value
for o, we get SO = Js; - 2s:/(zg + 2). It is easily shown
that the last expression is equivalent to (1 8).

VERIFICATION OF FORMULAS (17), (18), AND (19)

REFERENCES

M. Abramowitz, Ed., Handbook of Mathematical Functions, National
Bureau of Standards, 1964.
E. H. Adelson and J. R. Bergen, “Spatio-temporal energy models for the
perception of motion,” J. Opt. Soc. Amer., vol. 2, no. 2, pp. 284-299,
1985.
P. Allen, “Real-time motion tracking using spatio-temporal filters,” in
Proc. DARPA Image Understanding Workshop, Palo Alto, May 1989.
P. K. Allen, B. Yoshimi, and A. Timcenko, “Real-time visual servoing,”
in Proc. IEEE Con5 Robotics Automat., 1991, pp. 851-856.
P. Anadan, “Measuring visual motion from image sequences,” Tech.
Rep. COINS TR-87-21, COINS Dep., Univ. Mass., Amherst, 1987.
N. A. Andersen, 0. Ravn, and A. T. Sorenson, “Using vision in
real-time control systems,’’ in Proc. Amer. Contr. Cont, 1991.
Aspex, PIPE User’s Manual.
C. Brown, “Gaze controls with interaction delays,’’ in Proc. DARPA
Image Understanding Workshop, May 23-26, 1989, pp. 200-218.
P. J. Burt, J. R. Bergen, R. Hingorani, R. Kolczynski, W. A. Lee, A.
Leung, J. Lubin, and H. Shvayster, “Object tracking with a moving
camera,” in Proc. IEEE Workshop Visual Motion, Irvine, CA, Mar.

P. J. Burt, C. Yen, and X. Xu, “Multi-resolution flow-through motion
analysis,” in Proc. IEEE CVPR C o f , 1983, pp. 246-252.
B. F. Buxton and H. Buxton, “Computation of optic flow from the
motion of edge features in image sequences,” Image Vision Comput.,
vol. 2, 1984.
J. J. Clark and N. J. Fenier, “Control of visual attention in mobile
robots,” in Proc. IEEE Con5 Robotics Automat., May 15-19, 1989, pp.
826-83 1.
P. Corke, R. Paul, and K. Wohn, “Video-rate visual servoing for
sensory-based robotics,” Tech. Rep., GRASP Lab., Dep. Comput.
Inform. Sci., Univ. Pennsylvania, Philadelphia, 1989.
I. D. Faux and M. J. Pratt, Computational Geometry for Design and
Manufacture. New York Wiley, 1980.
J. T. Feddema and C. S. G. Lee, “Adaptive image feature prediction
and control for visual tracking with a hand-eye coordinated camera,”
IEEE Trans. Syst., Man, Cybem., vol. 20, 1990.
R. Goldenberg, W. C. Lau, A. She, and A. Waxman, “Progress on the
prototype pipe,” in Proc. IEEE Con5 Robotics Automat., Raleigh, NC,
Mar. 31-Apr. 3, 1987.
H. H. H. Cruse, J. Dean, and R. Schmidt, “Utilization of sensory
information for motor control,” in Perspectives on Perception and
Action, H. Heuer and A. F. Sanders, Eds. Hillsdale, NJ: Lawrence
Erlbaum, 1987, pp. 43-79.
K. Hashimoto, T. Kimoto, T. Ebine, and H. Kimura, “Manipulator
control with image-based visual servo,” in Proc. IEEE Con$ Robotics
Automat., 1991, pp. 2267-2271.
V. Hayward and R. Paul, “Robot manipulator control under UNIX,”
in Proc. 13th ISIR, Chicago, Apr. 17-21, 1983, pp. 20:32-20:44.
D. Heeger, “A model for extraction of image flow,” in Zst Int. Con$
Comput. Vision, London, 1987.
B. Hoff and M. Arbib, “Models of trajectory formation and temporal
interaction of reach and grasp,” Tech. Rep., Center Neural Eng., Univ.,
Southern Calif., Los Angeles, 1991.
B. K. P. Horn. Robot Vision.
B. K. P. Horn and B. Schunck, “Determining optical flow,” Art$ Infell.,

N. Houshangi, “Control of a robotic manipulator to grasp a moving
target using vision,” in Proc. IEEE Con$ Robotics Automat., 1990.
L. B. Jackson. Digital Filters and Signal Processing. Norwell, MA:
Kluwer Academic, 1986.
E. W. Kent, M. 0. Shneier, and R. Lumia, “Pipe: Pipelined image
processing engine,” J. Parallel Distributed Comput., vol. 2, pp. 50-78,
1985.
A. J. Koivo and N. Houshangi, “Real-time vision feedback for servoing
robotic manipulator with self-tuning controller,” IEEE Trans. Syst.,
Man, Cybern., vol. 21, no. 1, 1991.
S. Lee and Y. Kay, “An accurate estimation of 3D position and
orientation of a moving object for robot stereo vision: Kalman filter
approach,” in Proc. IEEE Con5 Robotics Automat., 1990.
S. W. Lee and K. Wohn, “Tracking moving objects by a mobile
camera,” Tech. Rep. MS-CIS-88-97, Univ. Pennsylvania, Dep. Comput.
Inform. Sci., Philadelphia, Nov. 1988.
R. C. Luo, R. E. Mullen, and D. E. Wessell, “An adaptive robotic
tracking system using optical flow,” in Proc. IEEE Cont Robotics
Automat., Philadelphia, 1988, pp. 568-573.
W. T. Miller, “Real-time application of neural networks for sensor-
based control of robots with vision,” IEEE Trans. Syst., Man, Cybern.,

20-22, 1988, pp. 2-12.

Cambridge, MA: M.I.T. Press, 1986.

vol. 17, pp. 185-203, 1983.

- 1

ALLEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: AUTOMATED TRACIUNG AND GRASPING OF A MOVING OBJECT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI65 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
vol. 19, pp. 825-831, July/Aug. 1989. Aleksandar Tmcenko (S’90) received the B.S

[32] H. H. Nagel, “On the estimation of dense displacement vector fields degree in electrical engineering and the M.S.
from image sequences,” in Proc Workshop Motion. Representation and degree in control science from Belgrade University,
Perception, Toronto, 1983, pp. 59-65. Yugoslavia, and the M.S. degree in computer

[33] N. Papanikolopoulos. T Kanade, and P. Khosla, “Vision and control science from Columbia University, New York.
techniques for robotic visual tracking,” in Proc IEEE Con$ Robotzcs He is currently working toward the Ph.D. degree
Automat., 1991, pp. 857-863. in computer science at Columbia University in

[34] N. Papanikolopoulos, P. K. Khosla, and T. Kanade, “Adaptive robotic the area of motion planning with uncertrun-
visual tracking,” in Proc. Amer. Contr Con$, 1991. ties. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[35] R. Paul Robot Manipulators. Cambndge, MA: MIT Press, 1981. His professional interests include modeling and
[36] B. S. Y. Rao and H F. Durrant-Wbyte, “A fully decentralized algorithm simulation of complex robotic systems.

for multi-sensor Kalman filtenng,” Tech. Rep. OUEL 1787/89, Dep.
Eng. Sci., Univ. Oxford, 1989.

[37] R. B. Safadi, “An adaptive algonthm for robotics and computer vision
application,” Tech. Rep. MS-CIS-88-05, Dep. Comput. Inform. Sci.,
Univ. Pennsylvania, Jan. 1988.

[38] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-, “An adaptive trackmg algorithm for robotics and computer
vision apphcation,”Master’s thesis, Univ. Pennsylvania, 1988.

[39] G. L. Scott, “Four-line method of locally estimating optic flow,” Image
Vision Computing, vol. 5, no. 2, 1986.

[40] A. Singh, “An estimation-theoretic framework for image-flow compu- His is active -Oing‘

tation,” in Proc. Int. Con$ Comput. Vision (ICCV-90). Kyoto, Japan,
Dec. 1990.

1411 G. Verghese, K. G. Lynch, and C R. Dyer, “Real-time motion track-

Billibon Yaehimi (S’89) nxeived both the B.S. and the M.S. degrees in
computer science from Colmbia university School of hg=hg and
Applied Science, New York, NY. He is currently working toward the W.D.
degree in computer science zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat Columbia

ing of -three-dimensional objects,” in Proc. IEEE Int. Conf: Robotics
Automat., Cincinnati, OH, May 13-18, 1990.

[42] L. E. Weiss, A. Sanderson, and C. P. Neuman, “Dynamic sensor-based
control of robots with visual feedback,” IEEE J. Robotics Automat.,

I431 J. Wiklund and G. Granlund, “Tracking of multiple moving objects,”
in Time Varying Image Processing and Moving Object Recognition, V.
Cappelini, Ed. 1987, pp. 241-249.

1441 M. Xie, “Dynamic vision: Does 3d scene perception necessarily need
two cameras or just one?” Tech. Rep., Institut National de Recherche
en Informatique et en Automatique, 1989.

vol. RA-3, pp. 404417, Oct. 1987.

Peter K. Allen (S’82-M’85) received the A.B.
degree from Brown University in Mathematics-
Economics, the M.S. degree in computer science
from the University of Oregon, and the Ph.D. de-
gree in computer science from the University of
Pennsylvania, where he was the recipient of the
CBS Foundation Fellowship, Army Research Office
fellowship, and the Rubinoff Award for innovative
uses of computers.

He is an Associate Professor of Computer Science
at Columbia University and Director of the Center

for Research in Intelligent Systems. His current research interests include real-
time computer vision, using dextrous robotic hands for object recognition and
task-level manipulation, and model-based sensor planning.

Dr. Allen has been named a Presidential Young Investigator by the National
Science Foundation. He is a member of ACM and AAAI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Paul Michelman (S’88-M’W) received the B.A. degree in classics from
Grinnell College, Grinnell, IA, the B.E.E.E. degree from the City College
of New York, and the M.S. degree in computer science zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom Columbia
University, New York, NY. He is currently working toward the Ph.D. degree
in computer science at Columbia University.
His research interests include robotics, tactile sensing, and dextroua manip-
ulation.
Mr. Michelman is a member of Tau Beta Pi.

