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Abstract- Most robotic grasping tasks assume a stationary 
or fixed object. In this paper, we explore the requirements for 
tracking and grasping a moving object. The focus of our work 
is to achieve a high level of interaction between a real-time 
vision system capable of tracking moving objects in 3-D and a 
robot arm with gripper that can be used to pick up a moving 
object. There is an interest in exploring the interplay of hand-eye 
coordination for dynamic grasping tasks such as grasping of 
parts on a moving conveyor system, assembly of articulated 
parts, or for grasping from a mobile robotic system. Coordination 
between an organism's sensing modalities and motor control 
system is a hallmark of intelligent behavior, and we are pursuing 
the goal of building an integrated sensing and actuation system 
that can operate in dynamic as opposed to static environments. 
The system we have built addresses three distinct problems in 
robotic hand-eye coordination for grasping moving objects: fast 
computation of 3-D motion parameters from vision, predictive 
control of a moving robotic arm to track a moving object, and 
interception and grasping. The system is able to operate at 
approximately human arm movement rates, and experimental 
results in which a moving model train is tracked is presented, 
stably grasped, and picked up by the system. The algorithms we 
have developed that relate sensing to actuation are quite general 
and applicable to a variety of complex robotic tasks that require 
visual feedback for arm and hand control. 

I. INTRODUCTION 

HE focus of our work is to achieve a high level of T interaction between a real-time vision system capable of 
tracking moving objects in 3-D and a robot arm equipped 
with a dextrous hand that can be used to intercept, grasp, 
and pick up a moving object. We are interested in exploring 
the interplay of hand-eye coordination for dynamic grasping 
tasks such as grasping of parts on a moving conveyor system, 
assembly of articulated parts, or for grasping from a mobile 
robotic system. Coordination between an organism's sensing 
modalities and motor control system is a hallmark of intelli- 
gent behavior, and we are pursuing the goal of building an 
integrated sensing and actuation system that can operate in 
dynamic as opposed to static environments. 

There has been much research in robotics over the last few 
years that addresses either visual tracking of moving objects 
or generalized grasping problems. However, there have been 
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few efforts that try to link the two problems. It is quite clear 
that complex robotic tasks such as automated assembly will 
need to have integrated systems that use visual feedback to 
plan, execute, and monitor grasping. 

The system we have built addresses three distinct problems 
in robotic hand%ye coordination for grasping moving objects: 
fast computation of 3-D motion parameters from vision, pre- 
dictive control of a moving robotic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm to track a moving 
object, and interception and grasping. The system is able to 
operate at approximately human arm movement rates, using 
visual feedback to track, intercept, stably grasp, and pick up a 
moving object. The algorithms we have developed that relate 
sensing to actuation are quite general and applicable to a 
variety of complex robotic tasks that require visual feedback 
for arm and hand control. 

Our work also addresses a very fundamental and lim- 
iting problem that is inherent in building integrated sens- 
ing/actuation systems; integration of systems with different 
sampling and processing rates. Most complex robotic systems 
are actually amalgams of different processing devices, con- 
nected by a variety of methods. For example, our system 
consists of three separate computation systems: a parallel 
image processing computer; a host computer that filters, trian- 
gulates, and predicts 3-D position from the raw vision data; and 
a separate arm control system computer that performs inverse 
kinematic transformations and joint-level servoing. Each of 
these systems has its own sampling rate, noise characteristics, 
and processing delays, which need to be integrated to achieve 
smooth and stable real-time performance. In our case, this 
involves overcoming visual processing noise and delays with 
a predictive filter based upon a probabilistic analysis of the 
system noise characteristics. In addition, real-time arm control 
needs to be able to operate at fast servo rates regardless of 
whether new predictions of object position are available. 

The system consists of two fixed cameras that can image a 
scene containing a moving object (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1). A PUMA-560 with 
a parallel jaw gripper attached is used to track and pick up the 
object as it moves (Fig. 2) .  The system operates as follows: 

1) The imaging system performs a stereoscopic optic-flow 
calculation at each pixel in the image. From these optic- 
flow fields, a motion energy profile is obtained that forms 
the basis for a triangulation that can recover the 3-D 
position of a moving object at video rates. 

2) The 3-D position of the moving object computed by 
step 1 is initially smoothed to remove sensor noise, 
and a nonlinear filter is used to recover the correct 
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Fig. 1 .  Tracking/grasping system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
trajectory parameters which can be used for forward pre- 
diction, and the updated position is sent to the trajectory- 
planner/arm-control system. 

3) The trajectory planner updates the joint-level servos of 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm via kinematic transform equations. An additional 
fixed-gain filter is used to provide servo-level control 
in case of missed or delayed communication from the 
vision and filtering system. 

4) Once tracking is stable, the system commands the arm 
to intercept the moving object and the hand is used to 
grasp the object stably and pick it up. 

The following sections of the paper describe each of these 
subsystems in detail along with experimental results. 

11. PREVIOUS WORK 

Previous efforts in the areas of motion tracking and real- 
time control are too numerous to exhaustively list here. We 
instead list some notable efforts that have inspired us to use 
similar approaches. Burt et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. [9] have focused on high- 
speed feature detection and hierarchical scaling of images 
in order to meet the real-time demands of surveillance and 
other robotic applications. Related work has been reported by 
Lee and Wohn [29] and Wiklund and Granlund [43] who use 
image differencing methods to track motion. Corke, Paul, and 
Wohn [13] report a feature-based tracking method that uses 
special-purpose hardware to drive a servo controller of an 
arm-mounted camera. Goldenberg et al. [ 161 have developed 
a method that uses temporal filtering with vision hardware 
similar to our own. Luo, Mullen, and Wessel [30] report a real- 
time implementation of motion tracking in 1-D based on Horn 
and Schunk’s method. Verghese et ul. [41] report real-time 
short-range visual tracking of objects using a pipelined system 
similar to our own. Safadi [37] uses a tracking filter similar to 
our own and a pyramid-based vision system, but few results 
are reported with this system. Rao and Durrant-Whyte [36] 
have implemented a Kalman filter-based decentralized tracking 

Fig. 2.  Experimental hardware 

system that tracks moving objects with multiple cameras. 
Miller [31] has integrated a camera and arm for a tracking 
task where the emphasis is on learning kinematic and control 
parameters of the system. Weiss et al. [42] also use visual 
feedback to develop control laws for manipulation. Brown [8] 
has implemented a gaze control system that links a robotic 
“head” containing binocular cameras with a servo controller 
that allows one to maintain a fixed gaze on a moving object. 
Clark and Ferrier [12] also have implemented a gaze control 
system for a mobile robot. A variation of the tracking problems 
is the case of moving cameras. Some of the papers addressing 
this interesting problem are 191, [15], [441, and [18]. 

The majority of literature on the control problems encoun- 
tered in motion tracking experiments is concerned with the 
problem of generating smooth, up-to-date trajectories from 
noisy and delayed outputs from different vision algorithms. 
Our previous work [4] coped with that problem in a similar 
way as in [38], using an cy - p - y filter, which is a 
form of steady-state Kalman filter. Other approaches can be 
found in papers by [33], [34], [28], [6]. In the work of 
Papanikolopoulos et al. [33], [34], visual sensors are used in 
the feedback loop to perform adaptive robotic visual tracking. 
Sophisticated control schemes are described which combine a 
Kalman filter’s estimation and filtering power with an optimal 
(LQG) controller which computes the robot’s motion. The 
vision system uses an optic-flow computation based on the 
SSD (sum of squared differences) method which, while time 
consuming, appears to be accurate enough for the tracking 
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task. Efficient use of windows in the image can improve 
the performance of this method. The authors have presented 
good tracking results, as well as stated that the controller is 
robust enough so the use of more complex (time-varying LQG) 
methods is not justified. Experimental results with the CMU 
Direct Drive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAArm I1 show that the methods are quite accurate, 
robust, and promising. 

The work of Lee and Kay [28] addresses the problem of 
uncertainty of cameras in the robot’s coordinate frame. The 
fact that cameras have to be strictly fixed in robot’s frame 
might be quite annoying since each time they are (most often 
incidentally) displaced, one has to undertake a tedious job 
of their recalibration. Again, the estimation of the moving 
object’s position and orientation is done in the Cartesian space 
and a simple error model is assumed. Andersen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. [6] adopt 
a 3rd-order Kalman filter in order to allow a robotic system 
(consisting of two degrees of freedom) to play the labyrinth 
game. A somewhat different approach has been explored in the 
work of Houshangi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[24] and Koivo et al. [27]. In these works, 
the autoregressive (AR) and autogressive moving-average with 
exogenous input (ARMAX) models are investigated for visual 
tracking. 

111. VISION SYSTEM 

In a visual tracking problem, motion in the imaging system 
has to be translated into 3-D scene motion. Our approach 
is to initially compute local optic-flow fields that measure 
image velocity at each pixel in the image. A variety of 
techniques for computing optic-flow fields have been used with 
varying results including matching-based techniques [5], [ 101, 
[39], gradient-based techniques [23], [32], [ 113, and spatio- 
temporal energy methods [20], [2]. Optic-flow was chosen as 
the primitive upon which to base the tracking algorithm for 
the following reasons. 

The ability to track an object in three dimensions implies 
that there will be motion across the retinas (image planes) 
that are imaging the scene. By identifying this motion in 
each camera, we can begin to find the actual 3-D motion. 
The principal constraint in the imaging process is high 
computational speed to satisfy the update process for 
the robotic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm parameters. Hence, we needed to be 
able to compute image motion quickly and robustly. The 
Hom-Schunck optic-flow algorithm (described below) is 
well suited for real-time computation on our PIPE image 
processing engine. 
We have developed a new framework for computing 
optic-flow robustly using an estimation-theoretic frame- 
work [40]. While this work does not specifically use these 
ideas, we have future plans to try to adapt this algorithm 
to such a framework. 

Our method begins with an implementation of the 
Horn-Schunck method of computing optic-flow [22]. The 
underlying assumption of this method is the optic-flow 
constraint equation, which assumes image irradiance at time t 
and t + S t  will be the same: 

I ( z  + sz, y + sy, t + S t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI(2, y, t ) .  (1) 

If we expand this constraint via a Taylor series expansion, 
and drop second- and higher-order terms, we obtain the form 
of the constraint we need to compute normal velocity: 

where U and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU are the velocities in image space, and I,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IY, and 1, are the spatial and temporal derivatives in the 
image. This constraint limits the velocity field in an image 
to lie on a straight line in velocity space. The actual velocity 
cannot be determined directly from this constraint due to 
the aperture problem, but one can recover the component of 
velocity normal to this constraint line as 

A second, iterative process is usually employed to propagate 
velocities in image neighborhoods, based upon a variety of 
smoothness and heuristic constraints. These added neighbor- 
hood constraints allow for recovery of the actual velocities U ,  

U in the image. While computationally appealing, this method 
of determining optic-flow has some inherent problems. First, 
the computation is done on a pixel-by-pixel basis, creating a 
large computational demand. Second, the information on optic 
flow is only available in areas where the gradients defined 
above exist. 

We have overcome the first of these problems by using 
the PIPE image processor [26], [7]. The PIPE is a pipelined 
parallel image processing computer capable of processing 256 
x 256 x 8 bit images at frame rate speeds, and it supports 
the operations necessary for optic-flow computation in a pixel- 
parallel method (a typical image operation such as convolution, 
warping, additionkubtraction of images can be done in one 
cycle-l/60 s). The second problem is alleviated by our not 
needing to know the actual velocities in the image. What we 
need is the ability to locate and quantify gross image motion 
robustly. This rules out simple differencing methods which are 
too prone to noise and will make location of image movement 
difficult. Hence, a set of normal velocities at strong gradients 
is adequate for our task, precluding the need to iteratively 
propagate velocities in the image. 

A. Computing Normal Optic-Flow in Real-Time 

Our goal is to track a single moving object in real time. We 
are using two fixed cameras that image the scene and need to 
report motion in 3-D to a robotic arm control program. Each 
camera is calibrated with the 3-D scene, but there is no explicit 
need to use registered (i.e., scan-line coherence) cameras. Our 
method computes the normal component of optic-flow for each 
pixel in each camera image, finds a centroid of motion energy 
for each image, and then uses triangulation to intersect the 
back-projected centroids of image motion in each camera. Four 
processors are used in parallel on the PIPE. The processors are 
assigned as four per camera-two each for the calculation of 
X and Y motion energy centroids in each image. We also 
use a special processor board (ISMAP) to perform real-time 
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Fig. 3. PIPE motion tracking algorithm. 

histogramming. The steps below correspond to the numbers 
in Fig. 3. 

The camera images the scene and the image is sent 
to processing stages in the PIPE. 
The image is smoothed by convolution with a Gauss- 
ian mask. The convolution operator is a built-in 
operation in the PIPE and it can be performed in 
one frame cycle. 
In the next two cycles, two more images are read in, 
smoothed and buffered, yielding smoothed images zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Io and I1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12. The ability to buffer and pipeline 
images allows temporal operations on images, albeit 
at the cost of processing delays (lags) on output. 
There are now three smoothed images in the PIPE, 
with the oldest image lagging by 3/60 s. 
Images Io and I ,  are subtracted yielding the temporal 
derivative I t .  
In parallel with step 5, image 11 is convolved with a 
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 3 horizontal spatial gradient operator, returning 
the discrete form of I,. In parallel, the vertical spatial 
gradient is calculated yielding I, (not shown). 
The results from steps 5 and 6 are held in buffers 
and then are input to a look-up table that divides 
the temporal gradient at each pixel by the absolute 
value of the summed horizontal and vertical spatial 
gradients [which approximates the denominator in 
(3)]. This yields the normal velocity in the image at 
each pixel. These velocities are then thresholded and 
any isolated (i.e., single pixel motion energy) blobs 
are morphologically eroded. The above threshold 
velocities are then encoded as gray value 255. In 
our experiments, we thresholded all velocities below 
10 pixels per 60 ms to zero velocity. 

9-10) In order to get the centroid of the motion information, 
we need the X and Y coordinates of the motion 
energy. For simplicity, we show only the situation for 
the X coordinate. The gray-value ramp in Fig. 3 is 
an image that encodes the horizontal coordinate value 
(0-255) for each point in the image as a gray value. 
Thus, it is an image that is black (0) at horizontal 
pixel 0 and white (255) at horizontal pixel 255. If 
we logically and each pixel of the above threshold 
velocity image with the ramp image, we have an 
image which encodes high velocity pixels with their 
positional coordinates in the image, and leaves pixels 
with no motion at zero. 
By taking this result and histogramming it, via a 
special stage of the PIPE which performs histograms 
at frame rate speeds, we can find the centroid of the 
moving object by finding the mean of the resulting 
histogram. Histogramming the high-velocity position 
encoded images yields 256 16-bit values (a result for 
each intensity in the image). These 256 values can 
be read off the PIPE via a parallel interface in about 
10 ms. This operation is performed in parallel to find 
the moving object’s Y centroid (and in parallel for X 
and Y centroids for camera 2). The total associated 
delay time for finding the centroid of a moving object 
becomes 15 cycles or 0.25 s. 

The same algorithm is run in parallel on the PIPE for the 
second camera. Once the motion centroids are known for 
each camera, they are back-projected into the scene using the 
camera calibration matrices and triangulated to find the actual 
3-D location of the movement. Because of the pipelined nature 
of the PIPE, a new X or Y coordinate is produced every 1/60 
s with this delay. Fig. 4 shows two camera images of a moving 
train, and Fig. 5 shows the motion energy derived from the 
real-time optic-flow algorithm. 

While we are able to derive 3-D position from motion- 
stereo at real-time rates, there are a number of sources of noise 
and error inherent in the vision system. These include stereo- 
triangulation error, moving shadow s which are interpreted 
as object motion (we use no special lighting in the scene), 
and small shifts in centroid alignments due to the different 
viewing angles of the cameras, which have a large baseline. 
The net effect of this is to create a 3-D position signal that 
is accurate enough for gross-level object tracking, but is not 
sufficient for the smooth and highly accurate tracking required 
for grasping the object. We describe in the next section how 
a probabilistic model of the motion that includes noise can 
be used to extract a more stable and accurate 3-D position 
signal. 

11) 

IV. ROBOTIC ARM CONTROL 

The second part of the system is the arm control. The robotic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
arm has to be controlled in real time to follow the motion of 
the object, using the output of the vision system. The raw 
vision system output is not sufficient as a control parameter 
since its output is both noisy and delayed in time. The control 
system needs to do the following: 
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(a) (b) 

Fig. 4. Left and right camera images. 

(a) (b) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  Motion energy derived from optic flow (left and right cameras) 

filter out the noise with a digital filter; 
predict the position to cope with delays introduced by 
both vision subsystem and the digital filter; 
perform the kinematic transformations which will map the 
desired manipulator’s tip position from a Cartesian coor- 
dinate frame into joint coordinates, and actually perform 
the movement. 

Our vision algorithm provides in each sampling instant a 
position in space as a triplet of Cartesian coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x .  y. z ) .  
The task of the control algorithm is to smooth and predict 
the trajectory, thus positioning the robot where the object is 
during its motion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A well-known and useful solution is the Kalman filter 
approach, because it successfully performs both smoothing 
and prediction. However, the assumption the Kalman filter 
makes is that the noise applied to the system is white. 
That fact directly depends on the parametrization of the 
trajectory and, unfortunately in our case, the simplest pas- 
sible parametrization-Cartesian-does not support this noise 
model. Our previous work [4] used a variant of this approach 
and obtained tracking that was smooth but not accurate enough 
to allow actual grasping of the moving object. Our solution to 
this problem was to appeal to a local coordinate system that 
was able to model the motion and system noise characteristics 



ALLEN et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: AUTOMATED TRACKING AND GRASPING OF A MOVING OBJECT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA157 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
no. of points 

,,,o{ I 

Fig. 6. Model of the motion in the plane: the moving object is in p k + l .  

while the vision system computes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ k f l .  SO is the actual arc length, and s 

is the measured arc length. 
Fig. 7. Experimental density of SI, the expected value of the arc length. 

more accurately, thus producing a more accurate control 
algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. The Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Motion 

The model of the motion we are using separates 3-D space 
into an X Y  plane and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ axis, and addresses these two 
components of motion separately. In the experimental results 
we present in Section VI, we have used the model to track 
planar trajectories. However, we still need to track the Z 
dimension to determine the height above the plane of the 
motion to command the robotic arm to correctly grasp the 
object. The tracking of the object in the X Y  plane is done 
using a local model presented below, while the tracking in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 is done with a Cartesian displacement using the fixed-gain 
filter described in [4]. 

The main idea in the trajectory parametrization used in this 
paper is to describe a point in a local coordinate frame, relative 
to the point from the previous sampling instant, by the triplet 
of coordinates (SO, $0, Az) where (see Fig. 6) 

SO is the length of an arc between two points (we will 
approximate the arc length by a straight line section and 
set SO to be the distance between points and Pk+l, 

SO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 11Pk+1-pkII where 1 1 . 1 1  denotes Euclidean distance); 
$0 is the “bending” of the trajectory; 
AZ is the altitude difference between two consecutive 
points. 

Due to the existence of noise, the measured coordinates will 
be random variables with certain distributions. We have made 
the following assumptions, as a result of both reasoning about 
the vision algorithm and certain necessary simplifications. 

In sampling instant k, our object is at point Pk. 
In the next sampling instant k + 1, the object is at Pk+1 

and the point returned by the vision algorithm is &k+l. 

The measured arc length is s = ll&k+l - 911. 
Q k f l  is normally distributed around Pk+1. The noise can 
be expressed by its two components, tangential nt and 
normal n,, where both nt and n, are random variables. 
nt and n, are both zero-mean, with the same variance CT 

and mutually not correlated. Experimentally, it has been 
determined that their coefficient of correlation is between 
0.1 and 0.2. 
AZ is independent of SO and $0 (i.e., the altitude Z is 
independent of the position in X Y  plane). 

This last assumption limits the method to tracking planar tra- 
jectories in space. However, the probabilistic method described 
below can be extended to arbitrary 3-D space curve trajectories 
by finding a distribution that will allow computation of a space 
curve torsion parameter. This essentially means creating a full 
Frenet Frame representation at each point in time. 

Under these assumptions, it can be shown that (see Appen- 
dix I) the velocity ‘U and curvature K are 

‘U = lim so/T (4) 

K = lim tan 40/so ( 5 )  

where SO = 114+1 - Pk11,$0 = 7r - LPk_1PkPk+l and T is 
the sampling interval. 

Our model assumes the following coordinate transformation 
that relates the moving object’s coordinate frame at one instant 
with the next instant in time: 

TA = rot(z, $0) o trans(z, so) o trans(z, Az) (6) 

where rot and trans are rotation about and translation along a 
given axis. Presented as a 4 x 4 matrix, transformation (6) is 

cos $0 -sin $0 0 SO cos $0 

sin $0 cos $0 0 so sin $0 

T A = [  0 ~ A z .  
0 0 0  1 

What are the advantages of such a parametrization? The 
most obvious one is the simplicity of the prediction task in this 
framework; all we need is to multiply the velocity ‘U = so/T 
by the time T > I’ we want to predict, as well as “bending” 
$0. The next advantage is that in order to achieve an accurate 
prediction, we do not need a high-order model with the mostly 
heuristic tuning of numerous parameters. The price we have 
to pay is that Jiltering is not straightforward. It turns out that 
we cannot just apply a low-pass filter in order to recover a 
dc component from s, but rather we need a more elaborate 
approach that takes into account a probabilistic distribution 
of s. Fig. 7 is a histogram of the experimentally measured 
density of the computed arc length between triangulated image 
motion points. This distribution shows the need to use a more 
sophisticated method than a simple averaging filter, which 
we have found to be incorrect in being able to correctly 
estimate the movement of the object between vision samples. 

T+O 

T-0 

] (7) 
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Fig. 8. Overview of the filtering method. 

The analysis below describes a probabilistic model of the 
experimental distribution in Fig. 7, allowing us to recover 
the actual arc length parameter SO and the bending angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$0 

at each sampling instant. While this model introduces more 
complexity than a standard Cartesian model, we will see below 
that it is more effective in allowing us to accurately predict 
and smooth our trajectory. 

B. Estimating Arc Length SO and Bending Parameter $0 

We begin this subsection with an intuitive overview of 
the method used to recover the actual arc length SO and 
actual bending parameter $0 from the noisy estimates provided 
by the vision system. The filtering method is summarized 
in Fig. 8. Given the model of the motion described in the 
previous subsection, we want to extract the actual arc length 
SO from measured, noisy arc length s. Using a smoothing filter 
(see subsection C), we can derive the expected value of the 
arc length which we denote S I ,  as well as its second-order 
moment (expectation of s2) which we denote sz. These two 
control inputs, s1 and sz, can be used to create two integral 
equations [(13) and (15)] which, when integrated, express the 
known smoothed control inputs s1 and sg as functions of 
the actual arc length SO and a variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. These equations 
allow us to estimate SO from the control inputs. To recover 
the actual bending parameter $ 0 ,  our task is simplified since 
its distribution is symmetric, and its expectation is the actual 
bending parameter itself. 

Let s = l IQk+l  - Pkll be the distance between the object 
and the next position returned by the vision algorithm. Let 
3 k  be the moving coordinate frame of the point Pk with axes 
t ,  n, and 2, where t is the tangential and n normal to the 
trajectory’s projection in X Y  plane (see Fig. 6) ,  and let 3 k + l  

be the analogous coordinate frame in the point Pk+1. The 
transformation from 3 k  to 3 k + 1  is given by TA: 

The point Q k + l  is given by 3 k + 1  by a triple (nt,n,,z), 
where nt is a noise component along t ,  and n, is a noise 
component along n. Both nt and n, are Gaussian with zero 
mean and mutually noncorrelated. Coordinate z is the altitude 
at p k + 1 .  

In the coordinate frame 3 k ,  the point Qk+l  is given by 
!!‘il[nt n, z 1IT. Thus, the distance s = I lQk+l  - 911 
is given by 

where n: = nt cos $0 + n, sin 40 and n’, = -nt sin $0 + 
n, cos $0. n: and n’, are obtained by “rotating” nt and n, 
by $0. It is known that the transformation of noiicorrelated 
Gaussian random variables results in noncorrelated Gaussian 
random variables with the same variance. Thus, n: and n’, are 
noncorrelated and Gaussian with the variance 0. 

Now we have expressed in relation (8) the dependency of 
s on two random variables with known properties n: and n’,. 
The formula for random variables’ distribution transformations 
gives us the distribution function F ( s ) .  (Note that henceforth 
s is used to denote the argument of the distribution or 
distribution density functions.) 

where D is a disk of radius s about 4. 
We need to find the expectation of the random variable 

whose distribution is given by (9). In order to do that, we 
need the density function which can be found by calculat- 
ing the integral in (9). By introducing the substitution t = 
r cos B,n = r sin 0, we get 

The distribution density is given as f (s)  = 
differentiation, 

or, after 

The last integral can be expressed by a modified Bessel 
function Io ( z )  
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2 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

Fig. 10. y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ui(z) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 9. Distribution density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( s ) , s o  = 1,a = 0.4-1.0, incremenr = 0.1. 

A graph of f(s) is given in Fig. 9. Here, SO is fixed to 1, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r~ varies from 0.4 to 1.0. Our job is to recover SO given f(s). 

It is apparent from Fig. 9 that the peak value of f (s)  
depends on o, and drifts toward higher values as o grows. The 
expectation for s also depends on 0. In particular, we have 

where 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U(.) = -x2/4 Fig. 1 1 .  Distribution density f ( 4 ) .  
&e 

. ( l o ( : )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- :(Io(:) +11(:))).(14) o = s2 (19) 
1 

Here, r~ is the constant for the given system and it is related Jq$ to SO. In order to estimate o, we will use the second-order 
moment This method requires little on-line computation-an inter- 

polation table of values of u1 is all we need to recover the 

To find the bending parameter $0, we use the same tech- 
nique as for the distribution of s, and we get the following 
formula: 

00 

si E(s2)  = / s2f(s)ds = + 2a2’ (15) arc length parameter so. 

Equations (13) and (15) are derived in Appendix 11. 
Now by eliminating SO from (13) and (15), we have 

l=zu( @T@ ) 
where p = sz/s1 and z = o/s l .  Now by setting x = 

L ,  we end up with an equation (see Appendix 111) F 
where k = o/So and $ - $0 E (-r/’,&r/2). It is obvious 
that f is symmetric around $0, which also means that the 
expectation E$ = $0. Hence, we so not need to perform a 
nonlinear filtering to recover $0. 

The graph of f for k = 0.1 to 0.9 and $0 = 0 is given 
in Fig. 11. 

= p .  (17) 

Equation (17) relates our known control inputs ( p  = s2/s1) 

dZ-5  
Ul(X) = ___ 

4.) 

to x. We can create a table of values for this function off line, 
and then by interpolation calculate a value of x given p .  

Let x~(p) be the solution of (17). Now we can express SO 
and o as functions of SI and s2 as follows: 

c. Smoothing of the Control Inputs 

In the previous subsection, we showed how to extract 
parameters SO and $0 from the updated positions determined 
from the vision system. The signals ~1,s: described in (13) 
and (15) are in fact the smoothed versionsbf the expectations 
of the control signals s, s2 which are the arc length and the 
arc length squared. The smoothing filter we use to compute 
these signals is a moving-average (MA) filter using a Kaiser 
window [25]. This filter provides the largest ratio of signal 

(18) so = s:, 
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S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 Bare Obj Grasp 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Graph nodes represent coordinate frames: 

W is world-coordinate frame 

S is robot shoulder coordinate frame 

M is 6th joint coordinate frame 

T is tool (gripper) coordinate frame 

G is grasping position coordinate frame 

0 is moving object coordinate frame 

Graph edges represent 4 x 4 coordinate transforms: 

Bare is constant transform between W and S 

T6 is variable transform computed by RCCL in each sampling interval 

Tool IS variable transform defined by the hand kinematics 

Drive is the transform introduced internally by RCCL to obtain straight-line motion in Carte- 

sian coordinates 

Grasp is constant transform which defines grasping point relative to the moving abject 

Obj is variable transform defined by vision subsystem outputs - it defines the position of the 

moving object in the world coordinate frame 

Fig. 12. Transform equation. 

energy in the main lobe and a side lobe, which usually results 
in a filter of lower order. The windowing function is given by 

where Io is the modified zeroth-order Bessel function, ,B is 
the shape parameter which defines the width of the main lobe, 
and M is the order of the filter. According to [25], ,B and M 
are given by 

. . A - 7.95 
ME----- 

14.36Aw 

and 

0.1102(A - 8.7), A 2 50 
,B={ 0.5842(A - 21)0.4 + 0.07886(A - 21), 21 < A < 50 

where A is the stopband attenuation and Aw = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(wr - 
w,)/ws, wr is the stopband frequency, w, is the passband 
frequency, and w, is the sampling frequency. 

We have adopted A = 30 and Aw = 0.05 which results in 
M = 30. Since the frequency of the vision algorithm is about 
60 Hz, the overall length of the window is about 0.5 s. We 
also apply this MA filter to the bending parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 

The implementation of MA filter is straightforward: once 
the weights are computed off line, a window of length M of 
measurements is retained and each sample is multiplied by an 
appropriate weight in the sampling period, which requires M 

multiplications and M - 1 additions. This allows reasonably 
wide windows (even up to several hundred entries) to be used 
in computing the smoothed signal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Prediction and Synchronization 

The host computer controls the initial vision processing 
and subsequent computation of control parameters described 
above. The host computer is able to predict the trajectory using 
the derivation of velocity and curvature in (4) and (5). These 
updated predictions are sent to the trajectory generator that is 
actually controlling the robot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm. The trajectory generator 
is a separate system that has two parallel tasks: a low- 
priority task which reads the serial line receiving updated 
control signals, and a high-priority task which calculates the 
transformation equation and moves the manipulator. Those two 
tasks communicate via shared memory. The job of the robot 
controlling program is to synchronize its two tasks (i.e., to 
obtain mutual exclusion in accessing shared data), to unpack 
input packets read from the serial line, and to update the joint 
servos every 30 ms. 

The asynchronous nature of the communication between 
the host computer and the trajectory generator can result in 
missed or delayed communications between the two systems. 
Since the updating of the robotic arm parameters needs to 
be done at very tightly specified servo rates (30 ms), it is 
imperative that the trajectory generator can provide updated 
control parameters at these rates, regardless of whether it has 
received a new control input from the host. Therefore, we 
have implemented a fixed-gain LY - ,B - y filter as part of the 
trajectory generator [38]. This filter provides a small amount 
of prediction to the trajectory parameters if the control signals 
from the host are delayed. 

We are using RCCL [19] to control the robotic arm (a 
PUMA 560). RCCL (Robot Control C Language) allows the 
use of C programming constructs to control the robot as well 
as defining transformation equations (as described in [35]). 
The transformation equations permit dynamic updating of arm 
position by generating the 4 x 4 transform of the moving 
object’s position from the vision system and sending this 
information to the arm control algorithm (see Fig. 12). 

v. MOTOR COORDINATION FOR GRASPING 

The remaining part of our system is the interception and 
grasping of the object. This is the least well-developed aspect 
of our system, since it is a difficult real-time problem. Cur- 
rently, we are intercepting and grasping a simple object with 
no knowledge of its local geometry. In the future, we hope 
to use visual information as well finger contact information to 
perform grasping of objects of different shapes. 

We have examined the human psychological literature in 
order to find useful paradigms for robotic visual-motor coor- 
dination strategies that include arm movement and grasping 
from visual inputs. Schmidt [I71 has proposed a theory of 
generalized motor programs, or movement schemas. In this 
view, a skilled action is composed of an ordered set of 
parametrized motor control programs of short duration (less 
than 200 ms), each of which accomplishes one part of the task. 
As one program is completed, the next one is executed. At the 
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initiation of a skilled task, the parameters of the motor control 
program are determined by sensory input and task demands, 
and then the programs are executed to completion. If the wrong 
program is selected for some reason, the program cannot be 
stopped by use of sensory information. An example of this 
can be seen in the motor activity associated with playing table 
tennis. In moving the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm to hit the ball, the motion of the 
racket is determined before the beginning of the swing and 
visual input has little effect after the initiation of motion. As 
an example of Schmidt’s theory, the skilled task of grasping 
a moving object could be partitioned into two motor control 
schemas: one to position the arm and a second one to control 
the grasping action. 

The initial strategy we have adopted in picking up the object 
is an open-loop strategy, similar in spirit to the preprogrammed 
motor control schemas described above. Schmidt’s schema 
theory holds that for tasks of short duration, perception is used 
to find a set of parameters to pass to a motor control program. 
It is not used during the execution of a task. When grasping 
a moving object, for example, once vision has determined 
the trajectory of the object, the reach and grasping motor 
schemas take over with no interference from vision. Recent 
work described in [21] suggests that visual input may be used 
to modify human arm grasping trajectories, but only after a 
100 ms or more delay after receiving the visual input. Since 
our visual inputs are already delayed by this amount, it may 
not be possible to use our current vision system effectively in 
this part of the task, motivating the use of open-loop schemas. 

In our implementation of this strategy, vision is not used 
to continually monitor the grasping, but only to provide a 
final position and velocity from which the arm is directed 
to very quickly move to the object. This automatic movement 
is done by establishing coordinate frames of action for each 
of the components of the system and solving transformation 
equations (see Fig. 12). 

The transformation equations permit dynamic updating of 
the arm position by generating the 4 x 4 transform of 
the moving object’s position from the vision system and 
sending this information to the arm control algorithm. This 
positional information from the vision system is used to update 
the Obj transform in Fig. 12. The other transforms in the 
equation are known, and this allows the system to solve for 
the Drive transform which is the transform used to update 
the manipulator’s joints and develop a straight line path in 
Cartesian coordinates that will bring the hand into contact 
with the moving object. Because the movement of the hand 
requires a small amount of time during which the object may 
have moved, the object’s trajectory is predicted ahead during 
the movement using the (Y - ,8 - y predictor. By keeping the 
fingers of the hand spread during this maneuver, no actual 
contact takes place until the gripper reaches the position of 
the moving object. Once this position is achieved, the gripper 
is commanded to close and grasp the object. 

VI. EXPERIMENTAL RESULTS 

We have implemented the system described above in order 
to demonstrate the capability of the methods. The goal was 

”T 

Fig. 13. Input signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs: (black) and filtered signal S O  (gray). Horizontal axis 
is time expressed in sampling periods (1 unit = 20 ms) and vertical axis is 
arc length in millimeters. 

to track a moving model train, intercept it, stably grasp it, 
and pick it up. The train was moving in an oval trajectory; 
however, the system had no a priori knowledge of this 
particular trajectory. The velocity of the train was varied from 
10-30 c d s .  We have experimentally established 100 ms to be 
the appropriate time to predict. Since the trajectory generation 
runs at 20 ms, that makes five sampling intervals. The accuracy 
of tracking was critical; in order not to knock the train off but 
rather to pick it up the displacement of the robot’s gripper from 
the actual train’s position has to be in subcentimeter range. 

In this section we present some results obtained by exper- 
iments. First, in Fig. 13, we have the actual measured arc 
length signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI (black) and the filtered signal SO (gray). It is 
noticeable that SO is somewhat below the expected value of SI. 
The nature of s1 is quite noisy; however, the analysis described 
in Section IV was able to accurately extract the correct 
control signal. The arm control is particularly smooth and jerk 
free, stable over time (the tracking is continuous for many 
revolutions of the train) and is highly accurate in being able to 
intercept and grasp the object between the jaws of the gripper 
as it moves. Fig. 17 shows the trajectory of commanded 
arm control set points in the zy plane, including the initial 
trajectory at system start. The actual train track is an oval, 
slightly tilted from the horizontal axis. As a part of a system, 
we have implemented a simple on-line graphic interface in 
X-windows environment. Fig. 18 shows the graphics window 
captured during an experiment. Positions are taken each 500 
ms and plotted in the window. Figs. 14, 15, and 16 show the 
time dependency of the z, y, and z coordinates. The tail of 
Fig. 16 is part of the grasping trajectory. 

Because we are using a parallel jaw gripper, the jaws 
must remain aligned with the tangent to the actual trajectory 
of the moving object. This tangential direction is computed 
directly from the calculation of the bending parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 
during the trajectory modeling phase and is used to align 
joint 6 of the robot to keep the gripper correctly aligned. This 
correct alignment allows grasping to occur at any point in the 
trajectory. 

Fig. 19 shows three frames taken from a video tape of the 
system intercepting, grasping, and picking up the object. The 
system is quite repeatable, and is able to track other arbitrary 
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Fig. 18. Object trajectory in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXY plane: on-line graphics window including 
Fig. 16. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ coordinate of the commanded zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm control set points for the 
tracked trajectory as a function of time. The tail is the movement of the arm 
to effect the grasp of the object. 

start-up points. 

The system is robust in a number of ways. The vision 
system does not require special lighting, object structure, or 
reflectance properties to compute motion since it is based upon 
calculating optic-flow. The control system is able to cope with 
the inherent visual sensor noise and triangulation error by 

trajectories in addition to the one shown. ne system is also 
capable of tracking motion direction reversals (with 
overshoot) if the train fonvard and then in reverse. 

. 

. 

VII. SUMMARY AND FUTURE WORK 

We have developed a robust system for tracking and grasp- 
ing moving objects. The system relies on real-time stereo- 
triangulation of optic-flow and is able to cope with the 
inherent noise and inaccuracy of visual sensors by applying 
parameterized filters that smooth and can predict the moving 
object's position. Once this tracking is achieved, a grasping 
strategy is applied that performs an analog of human arm 
movement schemas. 

using a probabilistic noise model and local parameterization 
that can be used to build a nonlinear filter to extract accurate 
control parameters. The arm control system is able to cope 
with the inherent bandwidth mismatches between the vision 
sampling rate and the servo-update rate by using a fixed- 
gain predictive filter that allows arm control to function in 
the occasional absence of a video control signal. Finally, the 
system is robust enough to repeatedly pick up a moving object 
and stably grasp it. 

We are currently extending this system to other hand-eye 
coordination tasks. An extension we are pursuing is to im- 
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Fig. 20. Trajectory curvature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. 

(b) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA19. Intercepting (a), grasping (b), and picking up (c) the object. 

plement other grasping strategies. One strategy is to visually 
monitor the interception of the hand and object and use this 
visual information to update the Drive transform at video 
update rates. This approach is computationally more demand- 
ing, requiring multiple moving object tracking capability. The 
initial vision tracking described above is capable of single 
object tracking only. If we attempt to visually servo the moving 
robotic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm with the moving object, we have introduced 
multiple moving objects into the scene. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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We have identified two possible approaches to tracking these 
multiple objects visually. The first is to use the PIPE’S region 
of interest operator that can effectively “window” the visual 
field and compute different motion energies in each window 
concurrently. Each region can be assigned to a different 
stage of the PIPE and compute its result independently. This 
approach assumes that the moving objects can be segmented. 
This is possible since the motion of the hand in 3-D is 
known-we have commanded it ourselves. Therefore, since 
we know the camera parameters and 3-D position of the hand, 
it will be possible to find the relevant image-space coordinates 
that correspond to the 3-D position of the hand. Once these are 
known, we can form a window centered on this position in the 
PIPE, and concurrently compute motion energy of the moving 
object and the moving hand in each camera. Each of these 
motion centroids can then be triangulated to find the effective 
positions of both the hand and object and compute the new 
Drive transform. Both computations must, however, compete 
for the hardware histogramming capability needed for centroid 
computation, and this will effectively reduce the bandwidth of 
position updating by a factor of 2. 

Another approach is to use a coarse-fine hierarchical control 
system that uses a multisensor approach. As we approach the 
object for grasping, we can shift the visual attention from the 
static cameras used in 3-D triangulation to a single camera 
mounted on the wrist of the robotic hand. Once we have 
determined that the moving object is in the field of view of this 
camera, we can use its estimates of motion via optic-flow to 
keep the object to grasped in the center of the wrist camera’s 
field of view. This control information will be used to compute 
the Drive transform to correctly move the hand to intercept 
the object. We have implemented such a tracking system with 
a different robotic system [3] and can adapt this method to 
this particular task. 

APPENDIX I 
TRAJECTORY CURVATURE 

Here we prove that the trajectory curvature is given by 
the formula zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK = 1imT-o tan ( P ~ / S O  where the following 
nomenclature is being adopted (see Fig. 20): 

K is the trajectory curvature. 
T is the sampling interval. 
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P k - 1 , 9 , 9 + 1  are three consecutive points along the 
trajectory. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 11Pk+1 - 411 is the distance between points Pk+1 

0 is the center of rotation. 
V k  = LPk-lOPk is the angle between the tangent lines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cpk = LPk-lOPk is the angle between the tangent lines 

cpo = { v k  + Vk+1}/2 is the angle between lines 
and PkPk+l. 

$k is the angle which tangent line t k  forms with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
axis. 

and 4. 

t k - 1  and t k .  

t k - 1  and t k .  

Now we have 

d - 
tan cpo - lim - - lim 

T+O sn T-+O ds 

dT tan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPO 

- 
dT 

1 1 d $ k + l  - $ k - l  = - lim ~- 
v T+O cos2 cpo dT 2 

1 d arctan yL+l - arctan yk-l 

2 

which is the formula for curvature [14]. 

APPENDIX I1 
VELOCITY EXPECTATION AND VARIANCE 

In order to compute the mathematical expectation of the ve- 
locity, we differentiate the following integral (integral l l .4.3 l 
in [l]): 

with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, and by setting a = 1/2a2, b = so/a2, we 
get formula (13). 

To prove formula (15) we use formula (11.4.29) from [ l ]  
(we set v = 0): 

@/4a 

e-at2tIo(bt)dt = - (B2) 2a . 

By differentiation with respect to a, and introducing the 
substitutions for a and b as in (21), we get the formula (15). 

APPENDIX I11 

Formula (17) follows from (16) as follows: from x = 
J m / z ,  we get by solving for z :  z = p / d m .  After 
substituting the value for z into (16), (17) follows immediately. 

Since x = J?;2-zFz/z = d m / a ,  after solving for 
a we get a = s2/dm, which is equivalent to (19). From 
(15) it follows that SO = Jm. By substituting the value 
for o, we get SO = Js; - 2s:/(zg + 2). It is easily shown 
that the last expression is equivalent to (1 8). 

VERIFICATION OF FORMULAS (17), (18), AND (19) 
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