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Many intracellular signal transduction processes involve the reversible translocation from
the cytoplasm to the nucleus of transcription factors. The advent of fluorescently tagged
protein derivatives has revolutionized cell biology, such that it is now possible to follow the
location of such protein molecules in individual cells in real time. However, the quantitative
analysis of the location of such proteins in microscopic images is very time consuming. We
describe CellTracker, a software tool designed for the automated measurement of the cellular
location and intensity of fluorescently tagged proteins. CellTracker runs in the MS Windows
environment, is freely available (at http://www.dbkgroup.org/celltracker/), and combines
automated cell tracking methods with powerful image-processing algorithms that are
optimized for these applications. When tested in an application involving the nuclear
transcription factor NF-kB, CellTracker is competitive in accuracy with the manual human
analysis of such images but is more than 20 times faster, even on a small task where human
fatigue is not an issue. This will lead to substantial benefits for time-lapse-based high-content
screening.
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1. INTRODUCTION

There is increasing interest, in both cell biology and
drug discovery, in knowing both the amount and the
spatial distribution of specific proteins in individual
cells. Aided by the development of luciferase tags and
fluorescent proteins (e.g. Tsien 1998), optical methods
can now be used to effect this, leading to a huge increase
in cell-based or so-called ‘high-content’ screening
assays (Dove 2003; Abraham et al. 2004; Carpenter &
Sabatini 2004; Giuliano et al. 2005; Grånäs et al. 2005;
Mitchison 2005; Bailey et al. 2006). Many of these
assays are currently performed at fixed time points,
whereas it is becoming clear that for systems biology
modelling it is important to track cellular functions in
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single cells over time. A major limitation for this has
been the lack of analysis tools for time-lapse imaging in
single cells. While the scoring of such image-based
assays can (of course) be done manually, the volumes
and complexity of the data generated make the
development of automated scoring procedures highly
desirable.

A number of commercial software systems offer
general-purpose image-processing capabilities, while
some of the commercial integrated hardware systems,
based on automated microscopy, incorporate software
that is designed to form part of specific assay kits, often
in fixed cells. However, as part of a programme in
understanding spatial signal transduction using live-
cell imaging in single cells (e.g. Nelson et al. 2002a,b,
2003, 2004), it became clear that none of these was
suitable for our needs, more specifically because living
cells are motile and change shape throughout the course
of time-lapse experiments. In addition, we wished to
have a robust data model that would allow us to store
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Table 1. Fields used to describe a boundary.

field function

ID a unique integer as the boundary
data a two-column matrix with x, y coordinates
control point spline control point to control data
tag boundary type
label boundary name
label position one may label a boundary at a couple of

positions
children sub-boundary IDs
parent parent boundary IDs
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and retrieve the images in a structured, effective,
intelligent and systematic manner, much as in the
emerging standard for the open microscopy environ-
ment (Swedlow et al. 2003; Goldberg et al. 2005).

Carpenter, Sabatini and colleagues have developed
open source software for cellular image processing (e.g.
Carpenter & Sabatini 2004; Wheeler et al. 2004; Bailey
et al. 2006 and www.cellprofiler.org/), but it is not
designed for tracking moving (living) cells. We have
therefore developed, and here describe, CellTracker—
an image-processing environment designed for the
analysis of high-content cellular images.
2. METHODS

Compared with most tracking tasks, CellTracker
tracks not only cell positions, but also their boundaries.
With cell boundaries available, one may measure gene
expression level during dynamical processes as well as
other cellular properties, e.g. morphology. There are
three types of boundaries in the CellTracker, i.e.
cellular, nuclear and user-defined. The user-defined
boundaries can be used for tracking cellular compart-
ments other than the cytoplasm and the nucleus.
Boundaries are defined as two-dimensional cubic spline
curves with the properties given in table 1. Only the
control points of boundaries are usually used in the
tracking, which also makes boundary editing easy.
CellTracker provides management tools for boundaries
over a time-series, e.g. copy, edit, delete, rename and
conversion. It also includes operators for simple
boundary processing activities, such as expansion and
contraction.

The menus and logical structure of CellTracker are
illustrated in figure 1. CellTracker offers various
visualizing tools. An image series may be inspected
using various combinations of imaging channels.
Boundaries are plotted as overlays upon image.
Operations in CellTracker can be classified at the levels
of the image, boundary or cell. Image processing and
cell tracking are confined to user-selected regions of
interest that persist over a sequence of images.
2.1. Image processing

Compared with natural images, image intensities inside
cells are often not homogeneous and there can be large
differences between the cells in a single image. As can be
seen from figure 1, a number of image-processing
techniques have been included, e.g. image blurring,
gradient, edge detection, morphological transforms,
local normalization and texture feature operations.
Preview windows are usually given to help users to
choose proper parameters. CellTracker also provides an
image-processing guide under the help menu.
2.2. Boundary detection

Since CellTracker uses the fluorescent channels for
object detection, the cells themselves may be detected
based on image intensities, e.g. via thresholding and
level set (Vese & Chan 2002). If an initial boundary is
given, the CellTracker may refine the cell boundary
J. R. Soc. Interface (2006)
based on the detected edges or absolute intensities.
The active contour (‘snakes’) is an algorithm based
on edge information (Kass et al. 1987), and is a curve
cðrÞZ ½xðrÞ; yðrÞ� that moves within an image to
minimize the energy function

E Z

ð1
0
ðajc0ðrÞj2 Cbjc00ðrÞj2 CEextðcðrÞÞÞdr; ð2:1Þ

where a, b specify the elasticity and stiffness (respecti-
vely) of the active contour. The external energy
function Eext is derived from the image so that it
takes on its smallest values at the features of interest,
such as boundaries. There are quite a few formulations
of the active contour. We use the algorithm developed
by Xu & Prince (1998), where the external force is
defined as the gradient vector flow (GVF) field. The
main advantages of GVF active contours are: (i) a
longer capture range to guide the contour towards the
desired boundary, and (ii) an ability to progress into
boundary concavities. The latter is very useful since cell
boundaries may have sharp corners.

A Voronoi-based segmentation method is also used
to find cytoplasmic regions (Jones et al. 2005). Given
seeds for a region, the segmentation process is guided by
the appearance of the cells. A metric is defined as

G Z
VgðFÞVgTðFÞClI

1Cl
; ð2:2Þ

where F is the image, g is a blurring filter with a small
radius and I is the 2!2 identity matrix. l is a
regularization parameter, which makes the metric
more Euclidean as it increases. Given the metric
above, each foreground pixel is assigned to the nearest
seed within the manifold defined by the metric.
Boundaries between regions are specified where adja-
cent pixels are assigned to different seeds.
2.3. Boundary tracking
2.3.1. Shape model. In many tracking applications, the
object shape is modelled using a two-dimensional planar
affine transform (Blake & Isard 1998) with only one
shape template. In most cases, the nuclear boundaries
undergo limited changes, which may also be modelled
using the conventional approach. Any allowed shape
vector Q can be represented by a shape space W.

QZWs: ð2:3Þ
Here, s is a vector for estimating Q within the shape
space defined by W. The shape matrix for affine

http://www.cellprofiler.org/
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Figure 1. The basic functionality of CellTracker. (a) Illustration of the menu structure. (b) Logical flow of operations.
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transforms can be written as

W Z
1 0 Qx 0 Qy 0

0 1 0 Qy 0 Qx

" #
: ð2:4Þ

Here, 1 and 0 in equation (2.4) are vectors with 1s and 0s,
respectively. Qx and Qy are the x and y coordinates of
shape template on the key frames. The first two columns
of W govern horizontal and vertical translations,
respectively. Qx and Qy are chosen to have their
centroids at the origin so that the third and thereafter
columns are associated with shape changes only. The
nuclear boundary can usually be represented by
equation (2.4). In some cases, the shape of the nuclei
approximates to an ellipsoid. The tracking parameter s
contains the centre, radii and orientation of the ellipse.
The affine shape variation is true only for a very limited
number of cellular boundaries. They may be better
J. R. Soc. Interface (2006)
approximated bya linear combination of those in the key
frames, and the system thus uses a couple of representa-
tive boundaries as templates. A motion of translation
and a linear combination of key frames 1 and 2 can be
written as

W Z
1 0 Qx

1 Qx
2

0 1 Qy
1 Qy

2

" #
: ð2:5Þ

If the cell boundaries cannot be represented by a limited
number of templates, the Voronoi-based boundary
detection method (described in §2.2) may be employed,
using the nuclear boundaries as seeds.
2.3.2. Tracking features. Given a contour, the possi-
bility of its being aligned with cellular boundaries may
be estimated based on the appearance, edge or colour
features. Correlation-based tracking is a traditional



790 Automated tracking of gene expression H. Shen and others
approach based on object appearance. It is incapable of
tracking boundaries with varying shape and size. In
edge-based tracking, an observation is made normal to
a set of points chosen to lie on a contour; here, we used
evenly spaced points. In the tracking algorithm, we
sample a series of random contours in the image. Given
edges detected along a normal of the contour, the
probability of a sample reflecting a true contour point is
estimated as follows (Isard & Blake 1998):

pf1C
1ffiffiffiffiffiffi
2p

p
sl

XM
mZ1

eKðf ðdm ;mÞ=2s2Þ

where f ðdm;mÞZminðd2
m;m

2Þ:
ð2:6Þ

The parameter s is similar to the standard deviation in
a normal distribution and is set according to the
accuracy of the shape model. The more accurate a
shape model, the smaller is s. l is related to the prior
probability of the contour point not being detected by
edge detection. dm is the distance between the contour
and the edge along its mth normal. m is the maximum
distance between the contour and edge points under
consideration. The probability of a hypothetical con-
tour aligning with the true contour is estimated by
multiplying the probabilities of edges along all the
normal lines. If there is no edge detected, as we can seen
from equation (2.6), f ðdm;mÞZm2.

In colour-based tracking (Nummiaro et al. 2003), the
colour template is characterized by the colour histo-
gram in a region. The similarity between the colour
distributions is measured by the Bhattacharyya dis-
tance d (see appendix). The observation probability of
each sample is specified by a Gaussian with standard
variation s (equation (2.7)). More details about colour
template tracking can be found in the appendix.

pðnÞ Z
1ffiffiffiffiffiffi
2p

p
s
eKðd2=2s2Þ: ð2:7Þ
2.3.3. Dynamic model. The dynamics of shape par-
ameters can be presented using an autoregressive model
of order K. In equation (2.8), sn, and snKk are shape
parameter vectors at times n and nKk, respectively. In
the case of modelling in equation (2.4), the parameters
involve x, y translation, shape scale and rotation. In an
unsupervised tracking, A is set to the identity matrix,
i.e. cell motion is regarded as random walk. A large
noise level 3n at time n has to be set in order to cover the
possible range of motion. In the CellTracker, all the
shape space contains x, y position parameters. With a
training set, their corresponding dynamic parameters
are determined by stepwise least squares (Schneider &
Neumaier 2001).

sn Z
XK
kZ1

AksnKk C3n: ð2:8Þ

For tracking using key frames, we assume that the cell
boundaries vary steadily over time. The shape changes
between frames, Ds, may be calculated beforehand.
A small amount of random shape variation is added as
well because the shape change is not necessarily evenly
distributed between the key frames.
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2.3.4. Particle filter. The objective of tracking is
recursive estimation of the boundary position and size
sn of the filtering distribution given a series of
observations y1:nZðy1;.; ynÞ. In the framework of
probability theory, the objective is to estimate the
conditional probability of sn, i.e. pðsnjy1:nÞ. Generally,
there are no analytical solutions for the above
formulation. The particle filter (Doucet et al. 2001) is
a Monte Carlo implementation of general recursions, in
which the filtering distribution is represented by
samples/particles with associated important weights
�pN ðsnjy1:nÞZ

PN
iZ1 p

ðiÞ
n d

s
ðiÞ
n
ðdsnÞ. More details can be

found in Blake & Isard (1998), Isard & Blake (1998),
Doucet et al. (2001) and Shen et al. (2006).
2.4. Cell tracking

The term ‘cell tracking’ here means tracking of both
nuclear and cytoplasmic boundaries for each cell. The
first step in tracking is initialization. Initialization of
the cell boundaries may be generated by the cell
detection algorithm described earlier (or may be done
manually). The tracking parameters vary according to
the combination of tracking algorithms mentioned
earlier. A chart of possible combinations available via
the interface is given in figure 2. CellTracker provides a
wizard to guide users to a reasonable combination.
Note that CellTracker provides tracking at the
boundary level, and the software provides an inter-
face for tracking selected boundaries using a variety
of methods.
2.5. Import and export

In CellTracker, a time-lapse image series is imported
for tracking. Currently, it supports Carl Zeiss LSM, tiff
and Matlab mat files. The LSM file is essentially an
extension of the TIFF multiple image stack file format,
and it thereby accommodates any number of user-
defined channels, e.g. those based on the fluorescence at
different wavelengths. CellTracker may export a
variety of calculated image data and a video of selected
snapshots. The CellTracker software produces cell
boundaries for each frame. One can also export cell
properties, such as the nuclear and cytoplasmic average
intensities, into Microsoft Excel and to an XML file.
The XML file, whose schema we give on the website
http://dbkgroup.org/celltracker, includes the tracking
methods and cell boundaries for each frame, which can
be exported into our information management system.
With cell boundaries and image data available, users
may calculate other properties without using the
CellTracker.
3. EXPERIMENTAL

SK-N-AS cells (Nelson et al. 2004) were plated in
35 mm glass-bottomed tissue-culture dishes (Iwaki,
Japan) containing 3 ml of minimal essential medium
with Earle’s salts (Gibco, UK) plus 10% (v/v) foetal
bovine serum (Harlan Seralab, UK) and 1% non-
essential amino acids (Gibco, UK). Twenty-four

http://dbkgroup.org/celltracker
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Figure 2. Screen shots illustrating some of the choices available to the user for tracking cells within CellTracker. (a) Interface for
tracking cell boundaries. (b) Wizard for tracking both nuclear and cell boundaries. (c) A chart to illustrate the combinations
available as algorithm options in the wizard.
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hours post-plating, the cells were co-transfected with
p65-DsRed and pEGFP-N1 expression vectors, which
produced a red fluorescent p65 (relA) fusion protein
and enhanced green fluorescent protein. Twenty-four
hours post-transfection, the cells were stimulated with
TNF-a and imaged by confocal laser scanning
microscopy. The microscopy was carried out using
a Zeiss LSM510 confocal microscope equipped with
a humidified CO2 incubator (37 8C, 5% CO2) and a
40!immersion objective (numerical apertureZ1.3).
Excitation of enhanced green fluorescent protein was
performed using an argon ion laser at 488 nm and the
emitted light was detected that was reflected through a
505–550 nm bandpass filter from a 545 nm dichroic
mirror. DsRed fluorescence was excited using a green
helium–neon laser (543 nm) and was detected through a
545 nm dichroic mirror and a 560 nm longpass filter.
Data capture and manual analysis were carried out
with LSM510 v. 3.2 software (Zeiss, Germany). The
mean fluorescence intensities per pixel of DsRed fusion
proteins were calculated for each time point for both
nuclei and cytoplasm using the physiology option in the
LSM510 v. 3.2 software, from which the nuclear to
cytoplasmic (Nuc : Cyto) fluorescence intensity ratios
were calculated and plotted using Microsoft Excel.

The automatic tracking has been tested on various
computers. The running time given in this paper was
based on the results using a portable computer with
1.7 GHz Intel CPU and 1 Gb RAM.
J. R. Soc. Interface (2006)
4. RESULTS AND DISCUSSION

Figure 3a shows four typical frames recorded in an
NF-kB signalling experiment. The cells touch each
other, and the cell positions and boundaries change
over time. It is therefore very time consuming to draw
the cell boundaries manually. In this example, no
nuclear or cytoplasmic dyes were added to aid tracking.
However, the signal from the p65-DsRed fusion protein
often provides a clear contrast between the nucleus and
cytoplasm of the cells, and can be used for tracking via
the image edge features. The fluorescent intensities
between cells may vary considerably between cells and
over time. This makes it difficult to find edge features
using fixed parameters. In this example, we first smooth
the images using a median filter of size 5, and normalize
the images using a local average and its standard
deviation. The normalized images of the p65-DsRed
channel are shown in figure 3b. The cell fluorescent
intensities after normalization are then at the similar
levels. Note that the shape of the nuclei approximates
to ellipsoids, which may be used as a template. On the
other hand, the shape of the cytoplasm is both irregular
and highly variable, and it is difficult to define a limited
number of shape templates. Using the nuclei as seeds,
the segmentation method based on Voronoi can be
applied to estimate the cellular boundaries. The results
(see figure 3b and the electronic supplementary
material) show how CellTracker is able to capture the
motion of cells and their size variations. Figure 4a
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Figure 3. Image sequence of NF-kB at the times stated (following the addition TNF-a). (a) Original images. (b) Images of the
DsRed channel after pre-processing.

0

5

10

15

20

50 100 150 200 250 300 350 400 450 500

Nuc Cell 1
Cyto Cell 1
Nuc Cell 2
Cyto Cell 2

×102

in
te

ns
ity

0

2

4

6

8

10

50 100 150 200 250 300 350 400 450 500

N
uc

 : 
C

yt
o

Cell 1

Cell 2

Average

0

2

4

6

8

50 100 150 200 250 300 350 400 450 500
time (min)

N
uc

 : 
C

yt
o

Cell 1

Cell 2

(a)

(b)

(c)

Figure 4. Cell tracking results. (a) Average fluorescent intensities of nuclei and cytoplasm. (b) Nuc : Cyto ratio profiles obtained
by CellTracker. (c) Nuc : Cyto ratio profiles obtained by a biologist.
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shows the average fluorescent intensity of nuclei and
cytoplasm measured using CellTracker, while figure 4b
gives the equivalent nucleus : cytoplasm (Nuc : Cyto)
ratio. There is a clear oscillation pattern in the profiles
(as seen previously, e.g. Nelson et al. 2004). The results
obtained by the CellTracker agree with these profiles
obtained using manual analysis (figure 4c), but were
obtained over 20 times more quickly (approx. 5 versus
120 min). Obviously, due to human fatigue, this ratio
will grow substantially, and the automated data out-
strip the manual analyses in terms of quality, with
increases in the number of images analysed. (The gene
expression levels of cell 3 are not shown here because
the image intensities saturated at some time points.)

In high-content image analysis, it is often the case
that populations of cells (often dead or fixed) are
analysed as a whole. The cells in this example show
clearly that the location of signalling proteins can
oscillate in each cell but that they are out of phase with
each other when comparing different cells. This causes
them to be damped out if they are analysed at the level
of the population (cf. Davey & Kell 1996; Nelson et al.
2002a, 2004). The dotted line in figure 4b shows the
average Nuc : Cyto ratio of cells 1 and 2. Its oscillation
pattern is clearly quite different quantitatively from
those of the individual cells, and as the properties of
more cells are time averaged, this pattern becomes
increasingly blurred. Therefore, it is impossible to
establish the mechanisms of signalling that occur in
individual cells, and effect their comparison with
systems biology-type models, using results from a
population. Indeed, based on single-cell analyses, it
was reported that the functional consequences of
NF-kB signalling may in fact depend not only on the
signal amplitude, but also on the number, period and
frequency of these oscillations, i.e. their detailed
dynamics (Nelson et al. 2004; Kell 2006), underscoring
the importance of single-cell measurements.

The above paragraphs have summarized many of the
chief properties of CellTracker, but many other features
are available and are described in full in the software
itself and its manual. To this end, we have made
CellTracker available for download via the URL
http://dbkgroup.org/celltracker/, together with a
variety of files illustrating various features including
multiparameter analyses. We believe that it has the
most comprehensive facilities available for live-cell
tracking, and trust that it may prove useful to the high-
content screening community.

We thank the UK Department of Trade and Industry, under
the terms of the Beacon project scheme, and the BBSRC for
financial support. We thank various members of the White
Lab for their helpful and critical comments during the
development of this software.
APPENDIX A. COLOUR-BASED TRACKING

The colour distribution pyZfpuyguZ1;.;m of a region R
at location y is calculated as

puyf
X
xi2R

k
kyKxik

a

� �
d½hðxiÞKu�; ðA 1Þ
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where d is the Kronecker delta function and h(xi)
assigns one of the m-bins of the histogram to a given
colour at location xi. The variable a provides invariance
against scaling of the region. The colour distribution is
normalized to ensure that

Pm
uZ1 p

u
yZ1. A popular

measure for assessing the difference between two distri-
butions is the Bhattacharyya coefficient (Nummiaro
et al. 2003). Considering discrete densities, such as two-
colour histograms pZfpuguZ1;.;m and qZfquguZ1;.;m,
the coefficient is defined as

rðp; qÞZ
Xm
uZ1

ffiffiffiffiffiffiffiffiffiffi
puqu

p
: ðA 2Þ

The larger the r is, the more similar are the
distributions. For two identical histograms, we obtain
rZ1, indicating a perfect match. The distance between
two distributions is measured by Bhattacharyya
distance

d Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Krðp; qÞ

p
: ðA 3Þ

The quality of the colour-based particle filter can be
influenced by the illumination conditions, the visual
angle and the camera parameters. To overcome this, we
update the target model when image observations are
slowly changing. By discarding image outliers where
the object is occluded or too noisy, the tracker can be
protected against updating the model when the object
has been lost. Thus, we use the update rule pE½s�OpT

where pE½s� is the observation probability in terms of the
mean state E [s] and pT is a threshold. The update of the
target model is implemented by the equation

qut Z ð1KaÞqutK1 CapuE½st �; ðA 4Þ

for each bin u, where a weighs the contribution of the
mean state histogram pE½st � to the target model qtK1.
Thus, we invoke a ‘forgetting’ process, in the sense that
the contribution of a specific frame decreases exponen-
tially the further it lies in the past.
REFERENCES

Abraham, V. C., Taylor, D. L. & Haskins, J. R. 2004 High
content screening applied to large-scale cell biology.
Trends Biotechnol. 22, 15–22. (doi:10.1016/j.tibtech.
2003.10.012)

Bailey, S. N., Ali, S. M., Carpenter, A. E., Higgins, C. O. &
Sabatini, D. M. 2006 Microarrays of lentiviruses for gene
function screens in immortalized and primary cells. Nat.
Methods 3, 117–122. (doi:10.1038/nmeth848)

Blake, A. & Isard, M. 1998 Active contours: the application of
techniques from graphics, vision, control theory and
statistics to visual tracking of shapes in motion. London:
Springer.

Carpenter, A. E. & Sabatini, D. M. 2004 Systematic genome-
wide screens of gene function. Nat. Rev. Genet. 5, 11–22.
(doi:10.1038/nrg1248)

Davey, H. M. & Kell, D. B. 1996 Flow cytometry and cell
sorting of heterogeneous microbial populations: the
importance of single-cell analysis. Microbiol. Rev. 60,
641–696.

Doucet, A., De Freitas, N. & Gordon, N. 2001 Sequential
Monte Carlo methods in practice. Statistics for engineering
and information science. New York: Springer.

http://dbkgroup.org/celltracker/
http://dx.doi.org/doi:10.1016/j.tibtech.2003.10.012
http://dx.doi.org/doi:10.1016/j.tibtech.2003.10.012
http://dx.doi.org/doi:10.1038/nmeth848
http://dx.doi.org/doi:10.1038/nrg1248


794 Automated tracking of gene expression H. Shen and others
Dove, A. 2003 Screening for content—the evolution of high
throughput. Nat. Biotechnol. 21, 859–864. (doi:10.1038/
nbt0803-859)

Giuliano, K. A., Cheung, W. S., Curran, D. P., Day, B. W.,
Kassick, A. J., Lazo, J. S., Nelson, S. G., Shin, Y. & Taylor,
D. L. 2005 Systems cell biology knowledge created from
high content screening. Assay Drug Dev. Technol. 3,
501–514. (doi:10.1089/adt.2005.3.501)

Goldberg, I. G. et al. 2005 The open microscopy environment
(OME) datamodel andXMLfile: open tools for informatics
and quantitative analysis in biological imaging. Genome
Biol. 6, R47. (doi:10.1186/gb-2005-6-5-r47)
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