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Abstract

In today’s software engineering landscape, performance and scalability properties of sys-
tems are of crucial importance to ensure that quality-of-service requirements are satisfied.
Changing systems in late development stages is very costly and therefore performance pre-
dictions early in the development process are essential to detect potential problems before
resources have been spent on implementation. The Palladio Component Model (PCM) is
a domain-specific modeling language for component-based systems enabling performance
prediction at design time. Four performance-influencing factors are modeled for each
system component: the component implementations, the external services they use, the
execution environment on which they are deployed, and the component usage profiles.
The modeled system is analyzed for selected performance metrics such as response time,
throughput and resource utilization, by means of a PCM model solver. Several solvers
exist which place different restrictions on the PCM model instance and offer different
trade-offs between accuracy and overhead. However, existing solvers offer limited flexibil-
ity in terms of efficiency and accuracy of the solution process, and suffer from scalability
issues. Queueing Petri Nets (QPNs) are another general-purpose modeling formalism, at
a lower level of abstraction, that has been shown to lend itself very well for performance
analysis of distributed component-based systems. Efficient and mature solution techniques
are available for QPN models and therefore an automatic transformation from PCM to
QPN models is highly desirable. It would open up the benefits of QPNs to the PCM com-
munity and provide a basis for future transformation to QPNs from other source models
in the performance engineering domain. This thesis provides a bridge between the PCM
and QPN formalisms making the following specific contributions: i) A formal mapping
from PCM to QPNs analyzing the feasibility of using QPN models as a target analysis
formalism for PCM models, ii) Implementation of an automatic transformation from PCM
to QPNs in the form of a new PCM solver tool based on SimQPN, a mature simulator for
QPNs, iii) An extensive evaluation of the PCM-to-QPN transformation in terms of results
accuracy and analysis overhead, iv) A detailed comparison of the new SimQPN solver with
existing PCM solvers, v) Formulation of future research directions, especially regarding
the PCM stochastic expressions language and the possibilities to reduce expressions to
more commonly-known probability distributions. The new SimQPN solver proved to be
much faster than the existing SimuCom reference solver with performance improvements
of up to 20 times. In most cases, the provided results were very accurate with a deviation
from the reference values below 15%. The tool was integrated into the PCM-Bench tool,
delivered with the PCM meta-model and compared with the SimuCom reference solver as
well as with LQNS and LQSim, two existing solvers based on layered queueing networks.
Customized PCM instances were created for each of the mapped features, evaluating for
the first time in detail, the PCM features supported by each solver. Additionally, to eval-
uate the transformation in realistic conditions, five case studies were conducted using the
largest existing PCM instances that could be obtained. One of the case studies was con-
ducted in cooperation with ABB Research, demonstrating the applicability of the results
of the thesis in an industrial context.





Zusammenfassung

In der heutigen Softwareentwicklung sind Performanz und Skalierbarkeit eines Systems
wichtige extrafunktionale Eigenschaften. Weil späte Änderungen im Entwicklungsprozess
sehr konstenintensiv sind, ist eine Performanzvorhersage früh im Entwicklungsprozess
notwendig. Sie ermöglicht es, potentielle Probleme zu erkennen, bevor Ressourcen in
die Implementierung investiert wurden. Das Palladio-Component-Model (PCM) ist eine
domänenspezifische Modellierungssprache für komponentenbasierte Systeme zur Perfor-
manzvorhersage zur Entwurfszeit. Ein mit PCM modelliertes System kann für ausgewählte
Performanzmetriken wie Antwortzeit, Durchsatz, und die Auslastung von Ressourcen mit-
tels eines PCM-Modell-Solvers analysiert werden. Verschiedene Solver existieren, die un-
terschiedliche Einschränkungen bezüglich der zu analysierenden Modelle aufweisen, und die
unterschiedliche Trade-Offs zwischen Genauigkeit und Analyseaufwand ermöglichen. Ver-
fügbare Solver bieten jedoch beschränkte Flexibilität, was die Effizienz und Genauigkeit des
Löseverfahrens angeht, und leiden unter Skalierbarkeitsproblemen. Queueing Petri-Netze
(QPNs) sind ein weiterer, universeller Modellierungsformalismus auf einer niedrigeren Ab-
straktionsebene als PCM. Sie haben sich für die Performanzanalyse von verteilten Software-
Systemen bewährt und bieten effiziente und ausgereifte Lösungsverfahren verfügbar. Eine
automatisierte Transformation von PCM zu QPNs ist daher das Ziel dieser Arbeit. Die
Vorteile von QPNs würden so für die PCM-Gemeinschaft zugänglich gemacht und die
Transformation würde eine Basis für weitere Transformationen zu QPNs bilden. Diese
Diplomarbeit bildet eine Brücke zwischen den PCM und QPN Formalismen und leistet
die folgenden Beiträge: i) Eine formale Abbildung von PCM zu QPNs, die die Möglichkeit
der Benutzung von QPNs als Analyseformalismus für PCM analysiert, ii) Implemen-
tierung einer automatisierten Transformation von PCM zu QPNs in Form eines neuen
Solvers basierend auf SimQPN, einem ausgereiften Simulator für QPNs, iii) eine aus-
führliche Auswertung der PCM-zu-QPN-Transformation bezüglich der Genauigkeit und
dem Analyseaufwand, iv) ein detaillierter Vergleich des neuen SimQPN-Solvers mit ex-
istierenden PCM-Solvern, v) Formulierung neuer Forschungsziele, insbesondere bezüglich
der PCM-Stochastic-Expressions-Sprache, und den Möglichkeiten, Expressions in verbre-
itete Wahrscheinlichkeitsverteilungen zu reduzieren. Der neue SimQPN-Solver erzielte um
bis zu zwanzigfach reduzierte Analyselaufzeiten im Vergleich zur bestehenden Referenz,
dem SimuCom-Solver. Die erzielten Vorhersagen waren in den meisten Fällen sehr genau
mit einer Abweichung von unter 15% von den Referenzwerten. Der Solver wurde in das
PCM-Bench-Werkzeug integriert, das mit dem PCM-Metamodell ausgeliefert wird. Neben
SimuCom wurde der Solver auch mit LQNS und LQSim verglichen, zweier auf Layered-
Queueing-Networks basierenden Solvern. Für jedes abgebildete Feature wurden individuell
angepasste PCM-Instanzen erstellt, die erstmals eine detaillierte Auswertung der von den
Solvern unterstützten Features ermöglichten. Zusätzlich wurden fünf Fallstudien mit den
größten bestehenden PCM-Instanzen, die für die Diplomarbeit verfügbar waren, durchge-
führt, um die Transformation unter realistischen Bedingungen auszuwerten. Eine der Fall-
studien wurde in Kooperation mit ABB Research durchgeführt, was die Anwendbarkeit
der Ergebnisse der Diplomarbeit in einem industriellen Umfeld demonstriert.
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1. Introduction

In today’s software engineering landscape the extra-functional properties (e.g., perfor-
mance, availability and reliability) of systems are of great importance. A lot of research
has been dedicated to developing methods and strategies to evaluate these properties at
system design time in order to ensure that systems meet their quality-of-service require-
ments (e.g., ATAM [KKC00]). One of the most important extra-functional properties
is performance, which will be the focus of this thesis. The software architecture has a
great effect on the system performance and is available early in the development cycle
[RH08]. Architectural changes in the late development stages are very costly and there-
fore it is essential to be able to predict the system performance at system design time
in order to detect potential problems before resources have been spent on implementa-
tion. The Palladio Component Model (PCM) [BKR09] is a domain-specific modeling
language for component-based systems enabling performance predictions at design time.
Four performance-influencing factors are modeled for each system component: the compo-
nent implementations, the external services they use, the execution environment on which
they are deployed, and the component usage profiles. The modeled system is analyzed for
selected performance metrics such as response time, throughput and resource utilization,
by means of a PCM model solver. Several solvers exist which place different restrictions on
the PCM model instance and offer different trade-offs between accuracy and overhead. The
advantage of PCM is that it is formally defined and provides flexibility in both creating
and analyzing model instances.

1.1 Motivation

PCM models are analyzed through a transformation to a predictive performance model at
a lower level of abstraction. In the case of SimuCom, the reference solver distributed with
the PCM meta-model, the transformation targets Java sourcecode based on a general-
purpose simulation framework. Other existing transformations are a transformation to
Layered Queueing Networks (LQNs) [KR08] and a transformation to Stochastic Regular
Expressions [Koz08, pp. 199 ff.]. Based on these transformations, several PCM solvers
have been developed which place different restrictions on the PCM model instance and
offer different trade-offs between accuracy and overhead. However, existing solvers provide
limited flexibility in terms of efficiency and accuracy of the solution process, and suffer from
scalability issues. Recent efforts in using performance models for performance management
at run-time place new requirements on the flexibility and efficiency of the solving process
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2 1. Introduction

[KBHR10]. This diploma thesis explores a new analysis method for PCM that aims at
obtaining comparable results accuracy to that of existing methods, in less time.

Queueing Petri Nets (QPNs) are another general-purpose modeling formalism, at a lower
level of abstraction, that has been shown to lend itself very well to modeling and analyzing
the performance of distributed component-based systems [Kou06, KB03]. Both a mature
and optimized simulation engine (SimQPN [KB06] which is part of QPME – the Queueing
Petri net Modeling Environment [KD09]), as well as analytical techniques (e.g., HiQPN-
Tool [BBK95]), are available for solving QPN models. However, QPNs are a general-
purpose modeling formalism and therefore have no constructs for representing software
domain elements like components or system usage profiles directly. They are defined
at another level of abstraction and a mapping from the components of the system to the
appropriate QPN model has to be developed manually and individually for each project. It
would therefore be desirable to be able to model the system in PCM, which supports most
system entities directly, but conduct the analysis using the available tools and methods
for QPNs, in particular the highly optimized SimQPN simulator [KB06]. An automatic
transformation from PCM to QPNmodels would make this possible opening up the benefits
of QPNs to the PCM community and providing a basis for future transformation to QPNs
from other source models in the performance engineering domain. The benefits of such a
transformation include:

Ease of Modeling Software systems can be modeled using PCM-Bench [BKR09], which
has been specifically designed for modeling the performance-relevant aspects of soft-
ware systems. PCM models are much more accessible to software engineers and
easier to maintain than QPN models.

Faster Analysis The SimQPN [KD09] simulator is optimized for QPN analysis and is
expected to run faster than SimuCom [BKR09], which is built on top of a generic
simulation framework.

Better Scalability With higher performance comes the ability to analyze larger PCMmod-
els, improving scalability. Furthermore, a parallelization of SimQPN is planned
[KD09], which would further improve the performance and scalability in the future.

Tool Extensibility The PCM to QPN transformation can be reused with minor modifica-
tions as further analysis methods for QPNs become available.

Customizable Simulation SimQPN offers the ability to configure what data exactly to
collect during the simulation and what statistics to provide at the end of the run
[KD09]. This allows to customize and fine-tune the simulation to the specific re-
quirements of the analysis which can significantly reduce the simulation overhead.

Extended Results Due to the different target formalism some result metrics might be
easier to obtain compared to other analysis methods and can be offered without
much implementation effort.

Future Transformations The transformation implementation and documentation can be
used as a starting point for other transformations that target QPNs.

1.2 Aim of the Thesis

The primary goal of the thesis is to evaluate the usefulness of QPNs as a target analysis
formalism for PCM. This includes the derivation of a formal mapping from PCM to QPNs
and the implementation of a prototypical solver tool used to evaluate the mapping. The
solver tool is implemented using a model-to-model transformation from PCM to QPNs.
The QPNs are analyzed using the SimQPN simulator [KB06].

The central questions to be answered are:
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• Does the expressiveness of QPNs allow the complete PCMmeta-model to be mapped?
Which limitations apply?

• Is it possible to obtain simulation results comparable to those of the existing Simu-
Com simulator and LQN solver provided with the PCM-Bench?

• Is it possible to obtain the simulation results faster? For which scenarios does this
apply?

• What are the trade-offs provided by the existing solvers and the new SimQPN solver?

1.3 Outline

Chapter 2 starts with an introduction to the foundations of this thesis. The approach
followed to reach the goals of the thesis is presented in Chapter 3. Related work is covered
in Chapter 4. Chapter 5 presents the formal PCM-to-QPN mapping and its limitations.
The solver tool implementing the mapping transformation is presented in Chapter 6. The
evaluation setup and feature by feature evaluation results are presented in Chapter 7. The
case studies are presented in Chapter 8. Finally, the conclusions, contributions, and future
work are discussed in Chapter 9.
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2. Foundations

In this section, the main concepts and technologies that this diploma thesis builds on
are introduced. In Section 2.1, we start with an introduction to the Palladio Component
Model (PCM), which is both the host technology and source meta-model for the transfor-
mation to be developed. Queueing Petri Nets, the target model for the transformation,
and related variants, are introduced in Section 2.2. The target tool for analyzing Queue-
ing Petri Nets, the Queuing Petri net Modeling Environment (QPME), is introduced in
Section 2.2.5. In Section 2.3 model-to-model transformations are introduced and major
related technologies are listed. Section 2.3.2 provides an introduction to QVT Operational.

2.1 Palladio Component Model (PCM)

2.1.1 Overview

The Palladio Component Model (PCM) is a meta-model allowing the specification of
performance-relevant information of a component-based architecture [BKR09]. It focuses
on the software performance engineering (SPE) and component based software engineer-
ing (CBSE) domains. Four factors essentially determine the performance of a software
component [BKR09]: its implementation, the performance of external services it requires,
the performance of the execution environment it is deployed on, and the usage profile.

In a large software project there is usually not a single person that has sufficient informa-
tion about all these factors to capture them in a PCM model instance. Furthermore, the
information is either not available at all times or it is not fixed. For this reason, PCM
allows the performance-relevant information of a component to be specified using para-
metric dependencies. This flexibility is used to provide a custom domain specific language
for each of the four roles in the Component-Based Software Engineering (CBSE) devel-
opment process [BKR09]: component developer, software architect, system deployer and
business domain expert. Each role contributes their part of the information, which are
then assembled to a complete model at the time of analysis of the PCM instance. Each of
the four parts are briefly introduced in the following sections.

The final section briefly introduces PCM stochastic regular expressions.

The PCM meta-model is formally defined and well-specified. The ecore meta-model of the
Eclipse Modeling Framework (EMF) [emf] is used. This allows for flexibility in both cre-
ating a PCM model instance and in using that instance for analysis. An editor called the
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6 2. Foundations

PCM-Bench implements the mentioned custom domain specific languages for the CBSE
development roles. However, creating the PCM instance by hand is not the only option.
For example, a recently developed method allows the automatic extraction of a PCM in-
stance from a running system [BKK09]. On the analysis side a number of methods are
already available. The main analysis method that currently supports the largest number
of PCM modeling constructs is SimuCom [BKR09]. It uses generated Java code to sim-
ulate the PCM instance. Other options for analysis include a transformation to Layered
Queueing Networks [KR08] as well as to Stochastic Regular Expressions [Koz08, pp. 199].

2.1.2 Repository

The component developer specifies the implementation-specific information of a component
and stores it into a component repository. After specifying the provided and required
interfaces of a component, a service effect specification (SEFF) is specified for each of the
provided interface signatures. The SEFFs abstractly model the externally visible behavior
of a service with resource demands and calls to required services [BKR09].

2.1.3 System

The system architect uses the component specifications of the component developer to
assemble the system. Like a component, the system has provided and required inter-
faces, which represent the boundaries of the modeled system. In between, components
are assembled by referencing their specification in the component repository. References
to components with a matching providing and requiring interface can be connected. The
component references are called assembly contexts. This way the software architect can
choose which components to use without knowing any implementation details.

2.1.4 Resource Environment and Allocation

The system deployer uses his knowledge about the target runtime system to model the
resource environment. The resource environment is divided into resource containers which
each can have a number of different resource types. For each assembly context, representing
a runtime instance of the component, the system deployer specifies the resource container
that instance is deployed on. This deployment part of the model is called allocation.
Consequently, any resource demands specified in the SEFF of the referenced component
logically occupy the resources of the resource container the assembly context is deployed
on.

2.1.5 Usage Model

The domain expert specifies the final piece of information: the usage profile. For each of
the system provided interfaces it is specified, how often, and with which input parameters,
the service is called. For this, stochastic probability distributions can be used to model
real life scenarios.

2.1.6 Stochastic Expressions (StoEx)

The PCM stochastic expressions language is used to specify arbitrary discrete and continu-
ous stochastic expressions. Every PCM RandomVariable contains a stochastic expression
specification, which is a valid instance of the StoEx language. At runtime, the specifi-
cation is parsed and an abstract root entity Expression is returned. There are concrete
sub-entities of Expression for numbers and other literals, common probability functions
like a probability mass function (PMF) and exponential function, and entities for combin-
ing or modifying other Expressions. A Product-expression, for example, references a left
and a right Expression and applies a product operator (like multiplication).

A detailed examination and a description of the underlying meta-model can be found in
[Koz08, pp. 96].
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2.2 Petri Nets

Petri nets are a family of formalisms that originated from what are now called ordinary
Petri Nets. Over time, the basic concept was extended to allow more complex situation to
be modeled. The following sections give a brief overview of the different evolution stages
leading up to Queueing Petri Nets (QPNs). Finally, QPME, a tool for modeling and
analysis of QPNs, is introduced.

2.2.1 Ordinary Petri Nets

An ordinary Petri Net is a bipartite, directed graph. It consists of one set of places and
one set of transitions. Places are connected to transitions, and transitions to places, but
not among themselves. Places contain a certain number of tokens. The number of tokens
at the start of the analysis is determined by an initial marking function. The forward
incidence function defines how many tokens a transition requires in each connected place
to be ready to fire. When a transition fires, it deducts that number of tokens from each
incoming place and deposits new tokens in other places if any backward incidence functions
are defined. If more than one transition is ready to fire, one is randomly chosen with equal
probability. A formal definition [Bau93] is given below:

Definition 1 An ordinary Petri Net (PN) is a 5-tuple PN = (P, T, I−, I+,M0), where:

1. P = {p1, p2, . . . , pn} is a finite and non-empty set of places,

2. T = {t1, t2, . . . , tm} is a finite and non-empty set of transitions, P ∩ T = ∅,

3. I−, I+ : P × T → N0 are called backward and forward incidence functions, respec-
tively,

4. M0 : P → N0 is called initial marking.

2.2.2 Colored Petri Nets

One extension is that of Colored Petri Nets (CPNs) [BK02]. Tokens receive a color property
and can now be distinguished. The initial marking and incidence functions are now defined
for a specific color. The different possibilities of firing a transition are referred to as modes.

2.2.3 Stochastic Petri Nets

Another extension is that of Generalized Stochastic Petri Nets (GSPNs) [BK02]. They
introduce timed transitions that do not fire immediately like immediate transitions, but
following an exponential firing delay distribution. Furthermore, firing weights can now be
assigned to transitions to influence the probability of which transition is chosen among
ready immediate transitions.

2.2.4 Queueing Petri Nets

Queueing Petri Nets (QPNs) build on a combination of CPNs and GSPNs, called Colored
Generalized Stochastic Petri Nets (CGSPNs) [BK02]. A new type of place is introduced:
that of a queueing place. A queueing place consists of a queue, a server and a depository.
The server processes the tokens in the queue according to a certain scheduling strategy.
The time a token occupies the server is defined through a statistical distribution. Once a
token is finished, it is put into the depository, which then behaves like an immediate place
for connected transitions. Only tokens in the depository are considered available for the
incidence function. A formal definition [BK02] is given below:

7



8 2. Foundations

Definition 2 A Queueing Petri Net (QPN) is an 8-tuple QPN = (P, T,C, I−, I+,M0, Q,W )
where:

1. P = {p1, p2, . . . , pn} is a finite and non-empty set of places,

2. T = {t1, t2, . . . , tm} is a finite and non-empty set of transitions, P ∩ T = ∅,

3. C is a color function that assigns a finite and non-empty set of colors to each place
and a finite and non-empty set of modes to each transition.

4. I− and I+ are the backward and forward incidence functions defined on P ×T , such
that I−(p, t), I+(p, t) ∈ [C(t) → C(p)MS ], ∀(p, t) ∈ P × T 1

5. M0 is a function defined on P describing the initial marking such that M0(p) ∈
C(p)MS.

6. Q = (Q̃1, Q̃2, (q1, . . . , q|P |)) where

• Q̃1 ⊆ P is the set of timed queueing places,

• Q̃2 ⊆ P is the set of immediate queueing places, Q̃1 ∩ Q̃2 = ∅ and

• qi denotes the description of a queue taking all colors of C(pi) into considera-
tion, if pi is a queueing place or equals the keyword ‘null’, if pi is an ordinary
place.

7. W = (W̃1, W̃2, (w1, . . . , w|T |)) where

• W̃1 ⊆ T is the set of timed transitions,

• W̃2 ⊆ T is the set of immediate transitions, W̃1 ∩ W̃2 = ∅ and

• wi ∈ [C(ti) → R
+] such that ∀c ∈ C(ti): wi(c) ∈ R

+ is interpreted as a rate of
a negative exponential distribution specifying the firing delay due to color c, if
ti ∈ W̃1 or a firing weight specifying the relative firing frequency due to color c,
if ti ∈ W̃2.

2.2.5 Queueing Petri net Modeling Environment (QPME)

QPME, the Queueing Petri net Modeling environment, is a performance modeling tool
based on the Queueing Petri Net (QPN) modeling formalism [KD09]. The QPME tool
consists of two parts: QPE, the Queuing Petri net Editor, and SimQPN, a Simulator for
Queueing Petri Nets.

QPE supports all of the Queueing Petri Net formalism and additionally supports hierar-
chical places, as well as a QPME specific extension: departure disciplines. The SimQPN
simulator supports most, but not all, features of QPE. Departure disciplines allow enabling
priorities based on colors for tokens inside the depository of a queueing place.

Another extension to the SimQPN simulator became available during the work for this the-
sis. In QPNs, token identities are not known. Only classes of tokens can be distinguished
through token colors. To allow the computation of residence time distributions over an
arbitrary subnet, individual tokens need to be tracked inside the corresponding subnet.
The ‘probes’ feature allows to mark a set of colors, a starting place and an end place,
between which tokens receive two additional properties: a timestamp and a probe id. The
timestamp marks the time the token was generated at the start place, the probe id allows
to distinguish timestamps from different probe definitions. When two or more tokens with
timestamps are consumed by a transition, both the ids and timestamps would have to be
matched. This, however, would prevent tokens from being consumed, that would other-
wise be consumed without the extension. To conserve the original semantics of QPNs,
timestamps are randomly chosen among marked tokens consumed by a transition.

1The subscript MS denotes multisets. C(p)MS denotes the set of all finite multisets of C(p).
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2.3 Model-to-Model Transformations

2.3.1 Overview

One possible way to define a model in the context of software engineering is “a formal
representation of entities and relationships in the real world with a certain correspondence
for a certain purpose” [Sta73](translated). This means that a model is an abstraction
of a real world entity which captures only the information needed for a certain purpose.
Furthermore, for the model to be useful, relationships that hold true for the model should
also hold true for the real world. Otherwise, our reasoning based on the model is flawed.

A transformation is the automatic generation of a target model from a source model,
according to a transformation definition [KWB03]. A transformation is not created for a
single model which is known beforehand, but for a possibly infinite number of models to be
created in the future. A transformation thus cannot be created based on any single model
instance, but needs a more generic frame of reference. The reference we need is called a
meta-model. It describes concepts that can be used for modeling the model [SV06]. The
meta-model is what relates all the models we want to be able to apply the transformation
to. It describes the space of relationships which can hold for model entities.

A transformation which operates on model instances that are well-defined by their cor-
responding meta-models is called a model-to-model transformation. If a transformation
uses information outside of the source meta-model we speak of a parameterized transfor-
mation. The design space of model-to-model transformations is quite large and will not
be described in detail here. More information can be found in [CH03].

Instead, we introduce some popular tools and standards in this area. Concerning meta-
models, both the OMG standard MOF (Meta-Object Facility) [OMG06a] and EMF Ecore
[emf], which is an implementation of Essential MOF (EMOF), are of great importance. In
this diploma thesis all used meta-models are formalized in EMF Ecore.

While transformations can be, and still often are, written using a general-purpose language
like Java, a number of domain specific languages for the area of model-to-model transfor-
mations are available. The transformation definition is interpreted by a transformation
engine that executes the transformation on the input models. The OMG has published the
QVT (Query View Transformation) [OMG08a] standard which incorporates a relational
language (QVTR) as well as an operational language (QVTO). Another language is ATL,
the ATLAS transformation language [JK06a]. Comparing the model-to-model transfor-
mation languages available, QVTR is purely declarative, QVTO is purely imperative and
ATL is a hybrid which offers both imperative and declarative language elements [JK06b].
A case study comparing Java and ATL can be found in [CDGDM08].

QVTO is now covered in more detail as much of the implementation of the solver tool is
realized with it.

2.3.2 QVT Operational

In this section, QVTO is introduced and simple examples are given for the most com-
monly used features. As this diploma thesis uses the QVTO implementation of the Eclipse
project, the discussion is focused on that particular interpretation of the original standard
[OMG08a]. Section 3.2.2 explains why QVTO was chosen. QVTO is an imperative lan-
guage built on top of OCL [OMG06b]. The behavior of the mappings is defined in OCL,
which is extended by several custom language features. The mapping and transformation
declarations and related QVTO-specific features use a custom syntax. In our case, the
QVTO scripts are run through a QVTO interpreter at transformation time. However, it
is possible to integrate parts written in Java through so-called blackbox components.
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Figure 2.1: QVTO Architecture

Figure 2.1 shows the simplified architecture of QVTO. One QVTO script acts as the entry
point to the transformation. It can use code imported from QVTO library scripts or
extend the transformation defined in another transformation script. It can also use Java
blackbox components. The import of a blackbox component looks just like the import of
another script and the realization of imported helper methods is transparent to the host
transformation.

Figure 2.2 shows the basic structure of a QVTO transformation script. Before the actual
transformation is defined, imports and modeltypes are defined first. The imports point
to other QVTO scripts or registered blackbox components. The modeltypes list the EMF
packages, identified by the package namespace URI, that should be loaded into the exe-
cution context under a unique name. Apart from standard datatypes defined in QVTO,
other entity types need to be loaded using a modeltype definition first. Otherwise their
names cannot be resolved.

The transformation definition defines a name for the transformation and a number of input
and output models. A model parameter can be declared as in for an input parameter,
as out for an output parameter and as inout for a model that is transformed in place.
Additionally, the library names that the transformation uses are listed.

The main() mapping always resembles the entry point to the (sequential) transformation
steps. In the figure we show how the root object or root objects of in and inout parameter
models can be retrieved and how a mapping is executed for them. Executing a mapping
(with map) on a collection executes the mapping on each of the elements.

The other parts of the transformation script are represented through placeholders. Trans-
formation properties can be defined that are valid throughout the whole transformation
script. They are either configuration properties, which are set from the outside when exe-
cuting the script, or they are intermediate properties which are managed from within the
mapping. Figure 2.3 and Figure 2.4 show examples for both types of properties.

Figure 2.5 shows a simple example of a mapping definition. A mapping is defined for
a model type (in this case A), has a name (AtoB) and a return type (B). It generally
consists of a number of execution steps separated by ‘;’. Compared to a helper, which
is discussed next, a mapping has special semantics. A mapping is only executed once for
each matching element. Also, the result of a mapping can be accessed with trace functions.

10
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import <QVTO script name without .qvto>;

import <Java blackbox namespace>.<java blackbox name>;

<...>

modeltype A uses "<EMF meta-model project package A namespace URI>";

modeltype B uses "<EMF meta-model project package B namespace URI>";

modeltype C uses "<EMF meta-model project package C namespace URI>";

modeltype D uses "<EMF meta-model project package D namespace URI>";

<...>

transformation <transf. name>(in a : A, out b : B, inout c : C <,...>)

<optional> access library LibA LibB LibC <...> </optional>;

<configuration properties>

<intermediate properties>

// <comment>

// entry point to transformation

main() {

a.rootObjects()[<classname of root objects>]-> map <mapping name>();

c.rootObjects()![<classname of root object>].map <mapping name>();

<...>

}

<mapping definitions>

<helper definitons>

Figure 2.2: QVTO Transformation Basic Structure

configuration property userPath : String;

Figure 2.3: QVTO Configuration Property Example

intermediate property <transf. name>::allNames : Set(String);

Figure 2.4: QVTO Intermediate Property Example

mapping A::AtoB() : B {

name := self.name;

}

Figure 2.5: QVTO Mapping Example

11



12 2. Foundations

There are many more variations of a mapping, however, they are out of the scope of this
thesis.

helper setName(a : A, name : String) {

a.name := name;

return;

}

query nameOf(a : A) : String {

return a.name;

}

Figure 2.6: QVTO Helper Example

Figure 2.6 shows the two types of helpers that can be defined. A helper behaves much like
a Java method. Helpers defined using helper are expected to change the given parameters
or cause other side effects. A query is expected to be free of side effects. Contrary to a
mapping, helpers are always executed when they are called and no tracing information
is generated. Like in Java, the return keyword is used to return the control flow from
the helper and to set the result. return is not available in mappings. In a mapping an
element of the result type is implicitly instantiated unless a special syntax is used. Again
a detailed discussion is out of the scope of this thesis.

<imports>

<modeltypes>

library <library name>

<optional> access library LibA LibB LibC <...> </optional>;

<helper definitions>

Figure 2.7: QVTO Library Structure

To finish the overview of QVTO, we will look at how the libraries that can be imported
by a transformation are defined. Figure 2.7 shows a definition using QVTO. It looks much
like a transformation definition. The differences are that the library keyword is used and
that there are no parameter definitions.

To write a library using a Java class, we first need to register the target class under a
name which is then used for the import statement in the QVTO script. This is done by
registering an extension point in the plugin.xml of the host Eclipse plugin. Figure 2.8
shows the basic structure of the extension point definition. The blackbox component is
put into a namespace and given a unique name. It is then found using

import <blackbox namespace>.<blackbox name>;

In addition to the target Java class (fully qualified by its package) the imported modeltypes
need to be declared like in a QVTO script. The Java imports of the target class are not
sufficient.

As we can see in Figure 2.8, a Java blackbox class looks just like a regular class. The
only difference is that the exported methods carry the @Operational annotation. In our
example, a global helper will become available as if

12



2.3. Model-to-Model Transformations 13

<extension point="org.eclipse.m2m.qvt.oml.javaBlackboxUnits">

<unit name="<blackbox name>" namespace="<blackbox namespace">

<library name="<blackbox name>" class="<java class of blackbox>">

<metamodel

nsURI="<namespace URI of package A">

</metamodel>

<metamodel

nsURI="<namespace URI of package B">

</metamodel>

<...>

</library>

</unit>

</extension>

Figure 2.8: Plugin.xml Java Blackbox Definition

@Operation

public B globalHelper(A param) {

<...>

}

@Operation(contextual = true)

public void workOnA(A self, Integer param) {

<...>

}

Figure 2.9: Java Blackbox Operation Annotation

13



14 2. Foundations

helper globalHelper(param : A) : B;

had been defined. The contextual = true setting makes a helper local to the type of the
first parameter. Our example represents

helper A::workOnA(param : Integer);

14



3. Approach

The central goal of this diploma thesis is to evaluate the usefulness of QPNs as a target
analysis model for PCM. This chapter describes how this main goal was achieved. The
main goal consists of three parts: the derivation of a formal PCM-to-QPN mapping (Sec-
tion 3.1), the development of a solver tool implementing the mapping (Section 3.2), and
the evaluation of the mapping (Section 3.3).

3.1 Mapping Derivation

A formal mapping was derived for a selected set of features covering the major parts of
PCM. To derive the mapping the following questions were asked for each of the mapped
features:

• How is the feature represented in the PCM meta-model and what are the contexts it
can be used in? Examples of context constraints include: all branch transitions of a
branch must be of the same type, loop iteration specifications must be of an integral
type.

• What is the simulation-time semantic of the feature and how does a concrete in-
stantiation of the feature look like in the context of a PCM instance? The semantic
is part of the PCM meta-model documentation. In unclear cases the simulation
run-time behavior of the SimuCom solver is taken as a reference.

• Which combination of QPN entities has the desired effect during the simulation?
Which approximations are necessary and which limitations apply?

3.2 PCM Solver Tool Development

In this section, the most important requirements that drove the development of the PCM
Solver tool are introduced. The technology that was used for the implementation is de-
scribed. Finally, the development process and its relation to the derivation of the formal
mapping are explained.

3.2.1 Requirements

The requirements were derived from the goal to evaluate the PCM-to-QPN mapping in
practice (see Section 3.3). In addition to the requirements, the approach taken to satisfy
each requirement is also provided:

15



16 3. Approach

• It should be possible to configure the PCM Solver tool easily regarding all parameters
that are to be varied for the evaluation (e.g., source model locations, measured
metrics, maximum run time). This was achieved by providing a custom launch
configuration type and user interface similar to the SimuCom configuration. To tell
the tool which metrics to measure for which PCM elements, the ProbeSpec meta-
model (Section 5.3.3) was used.

• The result metrics should directly relate to the annotated PCM elements and they
should be available in a way suitable for automatic processing (e.g., using R). A
module was developed that aggregates results data from the SimQPN simulator back
into the PCM domain and prints the result to the console and to an output file. The
module presents the metrics together with the name and the id of the source element
and of the defining context elements (e.g., AssemblyContext for a PassiveResource).

• Automated execution of a number of simulation runs for pre-defined configurations
should be possible. By encapsulating the solver process inside a PCM workflow job
it can easily be executed outside of the context of a launch configuration.

• The maintainability of the code should allow efficient changes and refactorings to
the transformation implementation. Automated JUnit tests based on separate fix-
tures for each feature were developed and maintained alongside the transformation
implementation. This ensured that changes do not break unrelated features.

3.2.2 Technology

The PCM Solver tool uses QVTO as the model-to-model transformation language for the
implementation of the PCM-to-QPN mapping. The reasons are discussed in this section.
Some parts are implemented in Java and are integrated through black-box extensions. The
decision to use QVTO was made after an initial vertical prototype had successfully been
developed.

The reason why a domain specific language was chosen over Java is that the transfor-
mation can be written more concisely and less verbose. A comparison of ATL and Java
in [CDGDM08] shows that using a domain specific language has many benefits, includ-
ing better maintainability. The prototype showed that the major drawbacks of increased
initial startup effort and of tool limitations were not a major issue in this case. Current
tool support is very mature and features like content assist and syntax highlighting are
available for QVTO, QVTR and ATL.

Among the transformation languages, QVTO and ATL looked most promising as they
offer imperative constructs. A pure declarative description using QVTR is difficult, as
no clear 1-to-1 relationship between PCM model elements and QPN elements exists. For
example, a branch inside a SEFF is not transformed once but each time for the different
assembly and usage contexts. An imperative approach that traverses the SEFF multiple
times, using a different context each time appeared to be the better and more natural
approach.

Between ATL and QVTO, QVTO was chosen because an integration component for the
PCM Workflow Engine (see Section 6.1) already existed. This greatly reduced the effort
of getting started with the prototype. The documentation of QVTO is very detailed in
the form of the OMG specification [OMG08a]. Being based on a major standard, future
adoption seems likely. One drawback compared to ATL is the lack of debugging support
in the free version of the Eclipse QVTO plugin. In practice this turned out to be an
acceptable limitation. Furthermore, future versions of the Eclipse QVTO implementation
are likely to correct this.

16



3.2. PCM Solver Tool Development 17

The tool plugins are based on and developed using Eclipse Galileo 3.5.1 with the following
features installed:

• EMF 2.5.0

• Eclipse QVT Operational 2.01

• PCM 3.2 Development Build

• QPME 1.5.2 Development Build

3.2.3 Development Process

The PCM Solver tool was developed using an iterative process. This process ran in parallel
to the formal mapping efforts so that insights during the implementation became available
to further improve the formal mapping. This minimized the risk of developing in the
wrong direction. Refactoring steps were executed in order to keep the code simple and
to increase reusability. Test cases were created to focus the implementation efforts. For
each PCM feature, at least one increment was passed through. If major variants were
identified, more increments were necessary. Support for the ProbeSpec decorator model
(Section 5.3.3) and the results aggregation module (Section 5.3.4) were added later in the
thesis. Each feature increment followed these steps:

1. Create a feature test fixture.

2. Create the most important feature test cases.

3. Add the QVTO implementation to the transformation.

4. If necessary, try to update the DependencySolver module. If this is not possible or
it would take too long, use dummy values.

5. Refactor the transformation and helper libraries.

Once the decorator model became available, each feature implementation was iteratively
updated using the following steps:

1. Check if the feature needs instrumentation.

2. If it does, add a decorator model fixture to the test fixture.

3. Add to or update the test cases.

4. Update the transformation implementation.

5. Refactor the transformation and helper libraries.

Similarly, once the results integration and simulator integration were complete, the follow-
ing steps were iteratively executed:

1. Choose a small number of features that fit together.

2. Create an integration test fixture that uses all those elements in a reasonable way.

3. Add a matching decorator model.

4. Write an integration test that checks the results of the defined metrics.

5. Fix any problems found with the mapping and implementation and update the cor-
responding test cases.

6. Refactor the transformation and helper libraries.

17



18 3. Approach

3.3 Evaluation

This section presents the approach towards the evaluation of the formal mapping and PCM
Solver tool implementation. The evaluation is split into two parts. The evaluation of the
support of the individual features considered for the mapping, and the case studies.

3.3.1 Feature Support

To evaluate the feature support, small models were analyzed using the following available
solvers: SimuCom, SimQPN, LQSim and LQNS. For each feature a separate, but complete,
model was created that uses a minimal set of other features. Simple metrics (like usage
scenario throughput, processing resource utilization) or simple derived metrics (like the
number of requests inside the system) were calculated manually. The results of the different
solvers were then compared to those reference metrics.

3.3.2 Case Studies

The purpose of the case studies was to evaluate the accuracy and analysis overhead of
the available solvers on models of realistic size and complexity. As a single model is not
enough for an in-depth evaluation, five case studies were conducted with models from
external sources. Only models that could be migrated to the employed PCM version
were used. In cases a model used stochastic expressions that were not supported by the
DependencySolver, those expressions were either removed, or the scenario was discarded
from the evaluation. The predictions of the SimQPN, LQSim and LQNS solvers were
compared to the predictions of the SimuCom solver, which served as the reference solver
for the evaluation.

18



4. Related Work

This chapter presents the related work of this thesis. Most directly related are other solvers
available for PCM. They are discussed in Section 4.1. There are many alternatives to PCM
for performance prediction. Relevant to this thesis are other model-based approaches
that naturally use some form of transformation to analyze the model instances. A broad
overview is given in Section 4.2. Finally, in Section 4.3, a number of related intermediate
languages in the domain of software performance engineering are discussed.

4.1 PCM Analysis Techniques

The techniques for analyzing PCM instances can be separated into techniques that fold
stochastic parameter expressions down to a single distribution and those that support
stochastic expressions at the analysis level. The DependencySolver, a module that re-
solves parametric dependencies, has been introduced in [Koz08, pp. 189]. It is used by
the transformation in this thesis, by the transformations to Layered Queueing Networks
(LQNs) [KR08] and by the transformation to Stochastic Regular Expressions [Koz08, pp.
199].

The transformation to LQNs is closely related. However, LQNs have different expressive
power than QPNs. A detailed comparison is not part of this diploma thesis and can
be found in [Hei07]. Stochastic Regular Expressions are solved analytically instead of
through simulation. The analysis is generally much faster but only single user scenarios
can be evaluated and the level of detail of the results is very limited.

Other techniques based on PCM are a transformation to an extended form of QPNs which
has not been studied by the research community and is not supported by available tools
[Koz08, pp. 141]. The most important difference is the use of tokens that carry arbitrary
properties instead of just a color value.

[Hen10] proposes a PCM transformation to OMNeT++, a simulation framework which
includes a language for the definition of the network topology. A decorator model is em-
ployed to generate a much more realistic network infrastructure closer to the OSI reference
network model. However, an experimental evaluation of the approach has not yet been
published.

Finally, the PCM-Bench tool comes with the SimuCom simulator [BKR09]. The PCM
instance is run through a model-to-text transformation. Java code is generated that builds
on Desmo-J, a general simulation framework. The code is then compiled on-the-fly and
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20 4. Related Work

executed. SimuCom is tailored to support all of the PCM features directly and covers
the whole PCM meta-model. Limitations with the employed version include a limited
set of results metrics. It lacks configurability regarding those metrics. Furthermore, the
scalability, especially due to the high analysis overhead and due to memory constraints is
limited. Other techniques have the potential to execute faster without sacrificing much
results accuracy.

4.2 Model-Based Approaches to Performance Prediction

The biggest group of model-based approaches to performance prediction are based on the
Unified Modeling Language (UML) [OMG07], the most commonly used general-purpose
software meta-model. A distinction can be made depending on whether or not an an-
notation profile is used. The most important standards for performance annotations in
UML are SPT (UML Profile for Schedulability, Performance and Time) [OMG05] and the
newer and extended version MARTE (UML Profile for Modeling and Analysis of Real-
time and Embedded Systems) [OMG08b]. While the MARTE profile allows for a detailed
performance specification in many software engineering domains, it suffers from the same
drawbacks that UML suffers from. Because the meta-model is very large and the seman-
tics are often ambiguous, it is unpractical to create an analysis tool that covers all of the
profile’s features. For this reason current approaches only support a limited number of
MARTE or SPT stereotypes.

We start with approaches that make use of standardized performance profile annotations:
Di Marco and Inverardi [MI04] transform UML models annotated with SPT stereotypes
into a multichain queueing network. UML-ψ, the UML Performance SImulator [MB04],
comes with its own simulation model. A UML instance annotated with SPT stereotypes is
transformed to this model. As the simulation model is close to UML, the results can easily
be reported back to the annotated UML instance [MM06]. Another approach uses the
stochastic process algebra PEPA as analysis model [TG08]. In this case, only UML activity
diagrams are considered, which are annotated with a subset of the MARTE stereotypes. A
software tool implementing this method is also available. [BM04] integrate their approach
into the Argo-UML modeling tool, using the RT-UML performance annotation profile. An
execution graph and a queueing network serve as the target analysis formalisms.

In the following, we present approaches that use UML, but do not use standardized per-
formance profile annotations: Petriu et al. [GP02] use XSLT, the eXtensible Stylesheet
Language Transformations, to execute a graph pattern based transformation from a UML
instance to LQNs. Instead of annotating the UML model, it has to be modeled in a way
so that the transformation can identify the correct patterns in the model. Bernardi et a.
[BDM02] consider only UML statecharts and sequence diagrams and assume that those
two diagram types cover all relevant aspects of the system. A transformation written in
Java turns the model into GSPN submodels that are then combined into a final GSPN.
[GM01] use UML with custom XML performance annotation. The performance model is
not described in detail, but appears to be based on queueing networks. [WW04] use UML
component models together with a custom XML component performance specification
language. LQN solvers are used for the analysis.

Other approaches exist that are not based on UML: [BMdW+04] and [BdWCM05] build
on the ROBOCOP component model. For the analysis a proprietary simulation frame-
work is used. [EFH04] propose a custom control flow graph model notation and custom
simulation framework. [HMSW02] employ the COMTEK component technology, coupled
with a proprietary analysis framework. [SKK+01] specify component composition and
performance characteristics using a variant of the big-O notation. The runtime analysis is
not discussed in detail.
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4.3. Intermediate Software Performance Languages 21

An elaborate comparison of the discussed and other performance evaluation approaches
for component-based software systems can be found in [BGMO06], and more recently, in
[Koz09].

More information on transformations in the software performance engineering domain,
especially about some of the UML-based approaches and the intermediate languages can
be found in [MM06].

It is noteworthy that Queueing Networks (QNs) and Layered Queueing Networks (LQNs)
are not the only common analysis formalisms. Markov chains, Stochastic Petri Nets and
Stochastic Process Algebras are also used for performance analysis [BKR09].

4.3 Intermediate Software Performance Languages

To bridge the gap between the software engineering and the performance analysis domains,
a number of intermediate languages (or kernel languages) for specifying software perfor-
mance information have been published. They are not used for this approach because
of the increased complexity they would introduce and their lack of adoption. Still they
are related as they aim at reducing the effort of creating transformations in the software
performance engineering domain.

The idea is that instead of having to develop M ·N transformations for M source meta-
models and N target meta-models, only M + N transformations are needed. M trans-
formations to turn the source model into an instance of the intermediate language and N
transformations to turn the intermediate language instance into the target model [MM06].

In [SLC+05] an intermediate language called SPE Meta-Model and a corresponding XML-
based interchange format called S-PMIF are introduced. S-PMIF is meant to facilitate
the transfer of information between software design tools and performance analysis tools.
In a proof-of-concept, the new format is used in conjunction with SPE·ED. SPE·ED is a
commercial software performance modeling tool.

KLAPER (Kernel LAnguage for PErformance and Reliability analysis) [GMS07] is a meta-
model defined in MOF. It is designed to capture the relevant information for the analysis
of non-functional attributes of component-based systems. Mappings depicted using QVTR
diagrams from KLAPER to both discrete time markov processes (DTMPs) and extended
queueing networks (EQNs) are also provided.

CSM, the Core Scenario Model [PW07], is a meta-model that captures the essential entities
in the SPT Profile domain model which are required for building performance models.
However, even though it was derived in the context of using UML and SPT, it is meant
to function as a general intermediate language for software performance evaluation.

While these intermediate meta-models differ in detail, they share the main concepts used
in software performance engineering: That of resources and of behavior that references and
uses those resources. Like in PCM, the behavior is formalized as some form of abstract
control flow.
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5. PCM-to-QPN Mapping

This chapter describes the PCM-to-QPN mapping from a mostly theoretical point of view.
Section 5.1 introduces the DependencySolver and how it simplifies the PCM instance for
the remainder of the mapping. Section 5.2 describes in detail the mapping of the PCM
features covered in this thesis to QPNs. Finally, Section 5.3 deals with the metrics that
are supported by the PCM Solver Tool (Chapter 6). It is shown how the generated QPN
is extended and how the collection of data is configured so that a simulation run provides
all needed information.

5.1 Dependency Solver Preprocessing

5.1.1 Overview

The DependencySolver is a module created by Heiko Koziolek as part of his PhD thesis
[Koz08, pp. 189]. It is a tool for substituting parameter names inside PCM stochastic
expressions with characterizations originating from the usage model. In addition, it also
handles component parameters. PCM stochastic expressions are briefly introduced in
Section 2.1.6.

Figure 5.1 illustrates the basic idea behind the DepdendencySolver. The performance of
a component depends on its context. The component authors can not foresee all possible
use cases and therefore they use stochastic variables inside the behavioral constructs and
resource demands. The domain expert later specifies concrete values for these parame-
ters. The main task of the DependencySolver is to resolve these parametric dependencies
as a preprocessing step. It replaces variable references with their concrete stochastic ex-
pressions and reduces the resulting expression to either a single number literal or to a
single probabilistic function literal. Discrete expressions are reduced to a probabilistic
mass function, continuous expressions to a probabilistic density function. As the values of
the stochastic variables also depend on the system composition and system allocation, the
DependencySolver manages these contexts as well during traversal of a PCM instance. A
more detailed description of the system composition and how the composition is traversed
can be found in Section 5.2.3.

Using the DependencySolver comes with a number of benefits. The subsequent map-
ping steps are made less complicated as all stochastic expressions are resolved and free of
stochastic variables. Also there is no need in this thesis to write complicated context man-
agement code. The drawback is that the DependencySolver needs to be maintained and
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24 5. PCM-to-QPN Mapping

Figure 5.1: DependencySolver Illustration [Koz08, p. 194]

extended during the work for this thesis. For example, required extensions are the support
for ForkActions, ComponentSpecifiedExecutionTimes and ExternalCallAction parameter
bytesizes.

As an alternative to using the DependencySolver it was considered to write a context man-
agement module similar to the context management system of the SimuCom simulator.
It is inspired by compiler technologies and involves stack frames [BKR09]. Stochastic ex-
pressions are reduced on-the-fly during traversal. The module implementing the reduction
of expressions and the folding of distributions could have been reused.

The decision was made to reuse the DependencySolver as it was not clear how much effort
the implementation of a custom context handling module would have required and it was
easy to integrate the DependencySolver into the prototype.

5.1.2 Limitations

The DependencySolver introduces a number of limitations: The dependencies between
stochastic variables are not considered. This can cause inaccurate results (e.g., when eval-
uating nested conditional branches that depend on a single stochastic variable). More
information can be found in Section 5.2.4. Not all boolean expressions can be evaluated.
The AND operation is not supported. This is a non-trivial problem as a solution would
require a model of the stochastic dependencies of distributions to compute dependant prob-
abilities and is out of the scope of this thesis. All information about stochastic variables is
lost, and with it the variable scopes. One example of a variable scope in PCM is a Service-
EffectSpecification (SEFF). The value which is determined for one of the input parameters
holds for all expressions that use that variable inside the SEFF until it is overridden by
a return parameter usage or the SEFF ends. We do not know if the expression for the
ResourceDemand of an InternalAction once contained a reference to a variable which was
overwritten with the return value of an ExternalCallAction. Each time an expression is
used, it is evaluated again and independently of other evaluations.

These limitations go beyond implementation issues and require further research. They are
inherent in mapping a semantic in which requests have an id and a state to a semantic
which only supports request classes. Consequently, these issues would arise even without
the use of the DependencySolver.

24



5.2. Feature Mappings 25

In addition, implementation issues were identified with the module implementing the fold-
ing and reduction of stochastic expressions. Number arithmetic like ‘3 * 4 + 5’ = ‘17’
generally does not cause any problems. Neither do simple expressions involving opera-
tions on distributions like ‘3 * IntPMF[(2;0.2)(3;0.8)]’ = ‘IntPMF[(6;0.2)(9;0.8)]’. Other
expressions like multiplying a double constant with an IntPMF were not implemented in
the employed version.

5.2 Feature Mappings

5.2.1 Overview

An introduction to the PCM meta-model can be found in Section 2.1. A more detailed
introduction can be found in [Koz08, pp. 74]. In this section, a basic understanding of
PCM and its larger components is assumed. For each feature only the relevant meta-model
entities and relationships are shown.

For each feature group the following topics are covered:

• A short general description.

• Description of the related PCM meta-model entities and their relationships.

• Gathering of information required for the mapping.

• QPN mapping and in non-trivial cases a more detailed explanation of its semantics.

• Limitations regarding any of the features in the group.

To improve readability, PCM meta-model element names, feature names as well as QPN
element names (of places and transitions) are emphasized.

As the mapping described in this section is implemented (Chapter 6) and evaluated (Chap-
ter 7) using the SimQPN simulator [KD09], several limitations apply to the supported QPN
elements available for the mapping:

• No timed transitions.

• No hierarchical (subnet) places.

• No priorities for transitions.

• For places:

– No max, no ranking and no priority properties.

– No PRIO and no RANDOM scheduling strategies.

The PCM diagrams follow the notation of UML class diagrams [OMG07]. To improve
readability and to reduce clutter the following simplifications are made regarding the
presentation of PCM concepts:

• The id and name properties of the common base entities Identifier and Entity are
omitted from the diagrams.

• Entities and properties that are unrelated to the mappings described in this thesis
have been removed from the diagrams. This includes all OCL constraints as well as
all properties only used for reliability analysis.

• Simplified attribute and reference names of all entities are used. In the meta-model
each property is postfixed with an underscore followed by the class name that intro-
duces that feature.
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26 5. PCM-to-QPN Mapping

• All comparisons between PCM entities are implicitly made by id.

• A section on SetVariableActions has been omitted as they contain no useful informa-
tion after the DependencySolver has removed all references to stochastic variables.
A simple connector transition is generated in their place.

Figure 5.2: QPN Diagram Legend

The QPN diagrams employ the QPME editor [KD09] visualizations. A legend is presented
in Figure 5.2. The following simplifications have been made for QPN concepts:

• Subnet places, though not available for the mapping, are used to represent parts of
the QPN which vary independently of the described feature.

• QPN element names have been simplified to increase readability. In the actual
mapping all elements are given a unique name generated from the host element id.

• In the following, the term transition means an immediate transition. Timed transi-
tions are not available for the mapping.

• If a place contains only one color reference or in other obvious cases, the mapping
details are not explicitly mentioned.

• The departure discipline of all places is set to NORMAL.

5.2.2 Workload

As we can see in Figure 5.3, each UsageSenario contains exactly one Workload and exactly
one ScenarioBehavior. The Workload defines how often the defined ScenarioBehavior will
be executed and can be either of type ClosedWorkload or of type OpenWorkload. An
OpenWorkload is characterized by its inter-arrival time in seconds. After each time seg-
ment, a new user is created at the Start node of the ScenarioBehavior. A ClosedWorkload,
on the other hand, defines a fixed number of users, the population, with a specified a think
time in seconds. All users start in parallel. Once a user reaches the Stop node of the
ScenarioBehavior, the user waits for the specified think time and is then released into the
ScenarioBehavior again.

Figure 5.4 shows how the OpenWorkload is represented in the QPN. The Client-Place
queueing place generates tokens of a color which is different for each UsageScenario. The
name of the color is prefixed by the UsageScenario id. This allows to trace the time that
requests spend on queues back to the originating UsageScenario (see Section 5.3). The
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Figure 5.3: Workload PCM

Figure 5.4: OpenWorkload QPN
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Client-Place references a client queue, which is only used by this part of the mapping.
Its scheduling strategy is set to Infinite Server (IS). An empirical distribution is used
for the Client-Place resource demand equal to the inter-arrival time distribution of the
OpenWorkload. The initial number of tokens at the Client-Place is set to 1. The Client-
Entry transition is now configured in a way that for each input token it will create a new
token in the first place of the QPN generated for the ScenarioBehavior and another token
in the Client-Place queue. The Client-Exit transition consumes tokens of the color for this
UsageScenario in the last place of the ScenarioBehavior subnet but does not create any
new tokens.

When the Client-Entry transition creates a new token in the ScenarioBehavior subnet,
the input token is immediately returned to the queue of the Client-Place. The next token
will then become available after the residence time in the queue. As the queue has an
Infinite Server (IS) scheduling strategy, there is no contention and thus the residence time
equals the resource demand of inter-arrival time. This combination therefore leads to the
expected behavior, that each inter-arrival time seconds a new token is generated.

Figure 5.5: ClosedWorkload QPN

As we can see in Figure 5.5, the mapping for a ClosedWorkload is not much different. Again
we have a Client-Place queueing place and the Client-Entry and Client-Exit transitions.
The same type of client queue and color are used. The major difference is that the Client-
Entry transition does not generate any tokens in the Client-Place. Instead, this is done
by the Client-Exit transition. At the Client-Place we use an empirical distribution for the
resource demand equal to the think time distribution of the ClosedWorkload. The initial
number of tokens is set to its population.

A new token will now be available after it has passed through he whole ScenarioBehavior
and after the residence time in the queue. Again there is no contention as the queue
scheduling strategy is set to Infinite Server (IS). The residence time thus equals the resource
demand of think time. As the initial number of tokens are immediately available to the
Client-Entry transition and all our transitions are immediate transitions, we obtain the
expected behavior of population tokens that enter the system in parallel and are delayed
for think time seconds before entering the ScenarioBehavior again.

Formally there are no limitations for this part of the mapping. One limitation concerning
the current solver tool implementation is that the inter-arrival time and the think time are
reduced from the distribution computed by the DependencySolver to a single mean value.
A deterministic distribution is used instead. The reason is that in the employed version of
SimQPN, the support for empirical distributions does not meet the requirements of this
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mapping. This will be fixed in upcoming versions.

5.2.3 Calls

In the PCM meta-model there are two types of call entities. The EntryLevelSystemCall
and the ExternalCallAction. They both represent the invocation of a single method of an
interface that is offered by one of the components in the repository. While the resulting
QPN mapping constructs are very simple, obtaining the necessary information to complete
the mapping is far from trivial. The situation is complex because the PCM model contains
the information about the component behavior and the component assembly in different
locations that can be referenced from multiple other locations. Even though the Dependen-
cySolver module is used to manage the related information, we will cover the information
flow and retrieval in detail because it is central to understanding the PCM model and the
mapping as a whole. The situation is less complicated for EntryLevelSystemCalls, thus
they are discussed first.

Figure 5.6: EntryLevelSystemCall PCM

Figure 5.6 shows the EntryLevelSystemCall and related entities. The available information
can be grouped into two parts. One part is made up by the two VariableUsage references
inputParameterUsages and outputParameterUsages. This part is only used when stochas-
tic variables come into play and is not crucial for the following discussion. It is consumed
exclusively by the DependencySolver (Section 5.1) and will not be covered here in more
detail. The important part is made up of the ProvidedRole and Signature references. Ba-
sicComponent is the only component type that contains concrete behavioral information
in the form of a ServiceEffectSpecification (SEFF). The BasicComponent contains a SEFF
for every Signature of every Interface it provides. Once the right BasicComponent has
been identified, the signature of the EntryLevelSystemCall uniquely identifies the SEFF
(the Signature names are assumed to be unique across all provided Interfaces). Multiple
components can provide the same Interface. Furthermore, a component can be used in
multiple locations in any ComposedStructure (System, CompositeComponent and SubSys-
tem). This indirection is implemented by the use of AssemblyContexts, which are separate
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entities used for the assembly and which reference the target component contained in one
of the repositories.

Figure 5.7: ComposedStructure PCM

To find the correct behavior to include in the generated QPN, we must navigate the com-
position hierarchy of the PCM instance. In case of an EntryLevelSystemCall, we always
start at the single System instance which is at the top of the composition hierarchy. Apart
from being the entry point of our navigation, the System behaves like any other Composed-
Structure. Figure 5.7 shows most of the entities that make up the composition structure.
Like a BasicComponent, each ComposedStructure has a list of provided and another list of
required Interfaces. They share the common base entity InterfaceProvidingRequiringEn-
tity. However, instead of specifying the behavior directly, AssemblyContexts are used that
point to another InterfaceProvidingRequiringEntity. The Interfaces are also not referenced
directly, but through a Role of which there are two concrete types. A ProvidedRole and a
RequiredRole. The pair of Role and Interface is analog to the pair of AssemblyContext and
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RepositoryComponent. The contained AssemblyContexts are now connected to the outside
using ProvidingDelegationConnectors and RequiredDelegationConnectors, determining to
which AssemblyContext a request will be routed when entering the ComposedStructure.
An AssemblyConnector can further be used to connect the RequiredRole of the Reposito-
ryComponent of one AssemblyContext to the ProvidedRole of the RepositoryComponent
of another AssemblyContext located in the same ComposedStructure. Figure 5.8 shows the
missing pieces of the composition hierarchy, including the relation between AssemblyCon-
text and RepositoryComponent.

Figure 5.8: RepositoryComponent PCM

To find the correct BasicComponent at the end of the composition hierarchy, given the
entry ProvidedRole P of a ComposedStructure S, the following steps are followed:

1. Select from S.providedDelegationConnectors the ProvidedDelegationConnector C
whose outerProvidedRole matches P .

2. If C.assemblyContext.encapsulatedComponent is of type BasicComponent, return
it.

3. If C.assemblyContext.encapsulatedComponent is of type ComposedStructure return
to step 1 with the component as S and C.innerProvidedRole as the new P .

After retrieving the target SEFF of the EntryLevelSystemCall, the mapping can continue.
Figure 5.9 shows the result. The EntryLevelSystemCall is represented by two transitions.
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Figure 5.9: EntryLevelSystemCall QPN

EntryLevelSystemCall-Entry connects the last place of the mapping of the previous us-
age model AbstractUserAction with the first place of the mapping for the target SEFF.
EntryLevelSystemCall-Exit in return connects the end of the SEFF mapping with the
beginning of the following AbstractUserAction. The submodels not directly part of this
mapping are abbreviated by the subnet places UsagemodelBehavior and SeffBehavior. It
is important to note that a new token color is created for each EntryLevelSystemCall
that distinguishes the requests coming from that call. This is important as the places
and transitions of a SEFF are reused much like a BasicComponent is reused in a PCM
instance. Even two EntryLevelSystemCalls that share the same ProvidedRole and Signa-
ture can differ in their VariableUsage and thus result in different resource demands at an
InternalAction.

Looking at Figure 5.10 we see that for an ExternalCallAction we start with almost the
same information as when we start with an EntryLevelSystemCall. We have both a Signa-
ture and a RequiredRole reference and VariableUsage information that is handled by the
DependencySolver. Locating the target BasicComponent is, however, much more difficult
compared to the case of an EntryLevelSystemCall. The reason is that we do not always
start at the outside of the top-most ComposedStructure, but at an AssemblyContext of any
of the ComposedStructures that are directly or indirectly referenced from the usage model.
In addition to the current AssemblyContext we will also need information about parent
AssemblyContexts further up in the composition hierarchy that were visited during the
traversal of the PCM instance up to the current point. In the following, this information
is assumed to be available. To find the correct BasicComponent that this ExternalCallAc-
tion points to given the current composition context and the entry RequiredRole R, the
following steps are executed:

1. Let S be the parent ComposedStructure of the current AssemblyContext X.

2. Select from S.requiredDelegationConnectors the RequiredDelegationConnector D
whose innerRequiredRole matches R and whose assemblyContext matches X.

3. If we find a match, set X to the parent AssemblyContext of X. If there is no parent,
we have reached the System and we have to deal with a system required interface
(Section 5.2.10). Return to step 1 with D.outerRequiredRole as the new R.

4. If we do not find a matching RequiredDelegationConnector, select from S.assemblyConnectors
the AssemblyConnector A whose requiredRole matches R and whose requiringAssem-
blyContext matches X.

5. If A.providingAssemblyContext.encapsulatedComponent is of type BasicCompo-
nent, return it.

32



5.2. Feature Mappings 33

Figure 5.10: ExternalCallAction PCM
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6. IfA.providingAssemblyContext.encapsulatedComponent is of type ComposedStruc-
ture, follow the steps of the previous algorithm used for the EntryLevelSystemCall
with A.providedRole as P .

Figure 5.11: ExternalCallAction QPN

The QPN result of the ExternalCallAction mapping is almost identical to the EntryLevel-
SystemCall mapping. As we can see in Figure 5.11, the only notable differences are that
the transitions are now called ExternalCallAction-Entry and ExternalCallAction-Exit and
that we find the subnet of a ResourceDemandingBehavior at the source side of the map-
ping. Again, a new color is generated and used for the TargetSeffBehavior part of the
mapping to distinguish it from other calls. Likewise the VariableUsage can affect the
resource demands at InternalActions.

Apart from general limitations that apply to the use of stochastic variables (Section 5.1)
no other limitations are known for this part of the mapping.

5.2.4 Branches

A branch routes an incoming request to exactly one of its child behaviors. The behavior
is not deterministic and depends on the probabilities of the different child behaviors.
The probabilities must add up to 1.0. There are three different kinds of branches in the
PCM meta-model. Branch from the usage model and to configurations of BranchAction
inside SEFFs. A BranchAction uses either only ProbabilisticBranchTransitions or only
GuardedBranchTransitions. All three PCM variants are mapped to a single QPN variant.

Figure 5.12: Usage Model Branch PCM

Figure 5.12 shows the Branch entity from the usage model. It contains a number of
BranchTransitions, each having a probability branchProbability of type double. Each
BranchTransition also contains a child ScenarioBehavior.
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Figure 5.13: BranchAction PCM

The situation is only slightly different for BranchAction. As we can see in Figure 5.13, a
BranchAction with ProbabilisticBranchTransitions corresponds exactly to the usage model
Branch. Only the class of the behavior (ResourceDemandingBehavior instead of Scenar-
ioBehavior) and the super class (AbstractAction instead of AbstractUserAction) differ.
When GuardedBranchTransitions are used the probabilities are not specified directly. In-
stead, branchCondition is a stochastic variable specification that must evaluate to true or
false. As the individual tokens in a QPN have no other attributes apart from their color,
the condition for each request cannot be evaluated at simulation time. The Dependen-
cySolver evaluates the condition in a preprocessing step (Section 5.1) and computes the
probabilities of each branch for each request class.

Figure 5.14: Branch QPN
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All three branch types can now be reduced at simulation time to a set of N child behaviors
Bi with corresponding branching probabilities Pi. Figure 5.14 shows the QPN result in
a generalized fashion. From the last place of the subnet of the predecessor, the Branch
transition consumes a token. The transition has N modes corresponding to the number
of child behaviors. Each mode creates a token in the first place of the subnet for child
behavior Bi and has a firing weight of the branching probability Pi. Not shown in the
figure are the transitions that lead back to the successor of our branch entity. The correct
place is passed as a parameter to the mappings of the child behaviors and they use the
given place as the exit place of the mapping.

A limitation applies to nested BranchActions with GuardedBranchTransitions. This means
that a guarded branch Bchild is used in the child behavior of another guarded branch
Bparent. If a single stochastic variable is used in the branchConditions of both Bchild and
Bparent, this can result in inaccurate behavior. The problem is that the DependencySolver
does not take into account the statistical dependency which results from evaluating a
condition which depends on the outcome of another condition. For example, if Bparent
contains a GuardedBranchTransition with the guarding specification ‘a.BYTESIZE < 100’.
We assume that ‘a.BYTESIZE’ is a stochastic expression variable available in the current
context. Let us also assume that the condition holds in 50% of the cases. If Bchild
now uses the condition ‘a.BYTESIZE >= 100’, the dependent probability would be 0.
If ‘a.BYTESIZE’ would be larger than 100, we would have never entered that branch.
The DependencySolver does not take this into account and the probability of this branch
transition is again set to 50%.

5.2.5 Loops

A loop in the PCM meta-model generally has the following properties:

1. The loop has a single child behavior.

2. The number of times the loop child behavior is executed is specified by a stochastic
expression that evaluates to an integer constant I or to an integer type probability
mass function (IntPMF). An IntPMF has N possible integer values Vi that each
have a probability Pi. All probabilities Pi must add up to 1.0. In the following, the
constant case is treated as N = 1, Vi = I and Pi = 1.0.

3. The next loop iteration does not start until the previous request has completed the
child behavior.

With the help of the DependencySolver (Section 5.1) all different PCM loop entities (Loop
from the usage model, LoopAction and CollectionIteratorAction in SEFFs) are reduced to
the presented information. Therefore after discussing the PCM entities, the QPN result
is presented in a generalized fashion. The actual mapping only adapts the place and
transition names to match the host entity.

Figure 5.15 shows the usage model Loop entity. It directly contains a ScenarioBehavior
and a PCMRandomVariable holding the loop iteration specification.

The LoopAction contains a ResourceDemandingBehavior and a PCMRandomVariable as
the iteration count specification accordingly (Figure 5.16). The bodyBehavior property
is shared with the CollectionIteratorAction and is therefore located in the super class
AbstractLoopAction.

Figure 5.17 shows that a CollectionIteratorAction does not have a direct loop iteration
specification. Instead, a Parameter is referenced that belongs to the Signature that the
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Figure 5.15: Usage Model Loop PCM

Figure 5.16: LoopAction PCM
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Figure 5.17: CollectionIteratorAction PCM

surrounding SEFF implements. The datatype of the parameter must also be of type Collec-
tionDataType. The loop iteration specification is then implicitly derived from the expres-
sion ‘parameterName.NUMBER OF ELEMENTS’ where ‘paramterName’ is the value of
the parameterName property of parameter.

For the mapping of loop structures to QPNs, two different possibilities have been consid-
ered. Figure 5.18 shows the first solution, which has been implemented in the mapping
transformation.

Figure 5.19 shows the alternative mapping. As the two alternatives share considerable
parts, those parts will be discussed first. Then the differences, benefits and limitations of
each approach are discussed.

Both mappings are not trivial as in a QPN we have only local information about tokens.
Any request property must be encoded in the token color. Local information means that
a token has an identity that is local to a place. This includes information about the order
of tokens.

Both loop subnets can be divided into an inner and an outer part. The outer part consists of
the Loop-Entry and Loop-Exit transitions, as well as of the Loop-Pool and Loop-Depository
places. The inner part consists of the Loop-Inner-Entry and Loop-Inner-Exit transitions,
as well as of the Loop-Inner-ColorCode place. The outer part handles the token input
from the predecessor and token output to the successor. The inner part handles the input
and output to and from the child behavior, denoted LoopBehavior. The color of the input
and ouput tokens is not determined in this part of the mapping and will be referred to as
the loop input color.

The outer and inner part separation is necessary to implement property number 2. If only
one token color was used, the exit transition would not know when the whole request is
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Figure 5.18: Loop QPN

Figure 5.19: Loop QPN (Alternative)

39



40 5. PCM-to-QPN Mapping

complete. Different iteration counts are possible. This is decided at the loop entry and
encoded into a new color. For each of the N possibilities of iteration counts one color
Ci and one mode Mi is generated in the Loop-Entry transition. The firing weight of each
mode is set to Pi. The Loop-Inner-Entry transition takes a token of color Ci from the Loop-
Pool, generates a token of the loop input color in the first place of the loop child behavior
denoted as LoopBehavior, and generates a token of color Ci in Loop-Inner-ColorCode. The
loop input color is used in the LoopBehavior to limit the number of modes and colors in
the child behavior subnet to a minimum. The iteration count information encoded in Ci

is needed only locally in this part of the mapping, not inside the subnet representing the
child behavior. The color code place is then necessary for the Loop-Inner-Exit transition
to know which color Ci to generate in the Loop-Depository when consuming a token of
loop input color from the last place of the LoopBehavior.

The other parts of the mapping differ in how property number 3 is implemented. The first
approach uses two different modes per color Ci in the Loop-Exit transition. One mode to
leave the loop and one mode to return the token of color Ci to the Loop-Pool for another
client behavior iteration. The exit mode has a firing weight of Pn where n is the iteration
count of color Ci. The return mode has a firing weight of 1 − Pn. The random selection
between the two modes for color Ci at the Loop-Exit transition behaves like a Bernoulli
random variable. The number of iterations until the loop is left are therefore geometrically
distributed with an expected value of 1/Pn. Therefore we choose Pn = 1/n. The mean
number of times that a request completes the inner behavior now equals the expected
value 1/Pn = 1/(1/n) = n. The limitation is that for an individual request the number of
times the internal behavior is executed does not necessarily equal n.

The alternative approach does not make this simplification. The number of times the loop
behavior is executed always exactly equals the target n for each request. This is achieved
by generating not one, but n tokens of color Ci in the Loop-Pool. The maximum number
of parallel executions of the loop body equals the number of requests in the loop subnet.
Therefore an additional semaphore place, Loop-Inner-Semaphore, with color references for
all colors Ci and an initial population of 0 for each color is introduced.

Loop-Inner-Entry cannot place tokens freely in the LoopBehavior, it needs one token from
the semaphore of the color that matches the consumed token. Loop-Inner-Exit puts a
token of matching color back after a token finishes the loop behavior. The maximum
number of tokens in the semaphore place and thus inside the loop behavior should always
equal the number of PCM requests in the loop structure. Therefore, Loop-Entry generates
in the semaphore place one token of the same color Ci which it generates inside the Loop-
Pool. Loop-Exit takes one token of color Ci away from the semaphore place when it has
consumed n tokens of matching color Ci from the Loop-Depository to complete the request.

The use of color Ci inside the semaphore place ensures that the loop body is executed
with a probability that is independent of the iteration count. Only tokens that have a
token of matching color in the semaphore can enter the child behavior. If the tokens in the
Loop-Pool had an equal probability of entering the child behavior, this would statistically
favor requests with higher iteration counts.

The first alternative (generating only one token for each color) was chosen for the imple-
mentation. It has the benefit of using less places, modes and tokens.

A limitation applies to the mapping of CollectionIteratorAction. It carries a special se-
mantic which is not implemented. The extra semantic compared to a LoopAction is that
stochastic variables that are used in the loop body must be evaluated in a statistically
dependent manner. For example, let ‘a.BYTESIZE’ contain an IntPMF that has two pos-
sible values a and b. If anywhere in the loop behavior ‘a.BYTESIZE’ is used, it is evaluated
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and if a is returned, all other references to ‘a.BYTESIZE’ must then also return a. This
special semantic is not mapped as this is not possible for continuous variables.

To map the semantic, the modes in the Loop-Entry transitions could not simply have
the firing weights according to the probabilities. If one loop randomly choses i = 1 for
a reference to a stochastic variable i, all other loops in the behavior also have to chose
i = 1. A central place would have to be introduced that is filled with the right color and
is used by all accessors. This would have to be implemented for all stochastic variables
and their combinations that result from the different stochastic expressions. An expression
‘a.BYTESIZE * b.BYTEZISE’ would have four different outcomes if both ‘a.BYTESIZE’
and ‘b.BYTESIZE’ had two possibilities each. In a continuous case the behavior simply
cannot be implemented as no continuous properties are available for tokens. The token
color is discrete and has to be decided upon in advance. Computations with token colors
are not possible.

SimQPN contains an experimental feature called ‘probes’, which allows to track individual
tokens (see Section 2.2.5). When probes are used to measure the response time distribution
instead of just the mean response time, both alternatives have limitations. In the first
variant, the number of loop iterations is not guaranteed for individual requests. This causes
a spread in the measured mean response times. The second variant, though guaranteeing
the right loop iteration count, has a different problem that also causes the request response
times to spread. The problem lies in the fact that Loop-Exit consumes n tokens of matching
color Ci from the Loop-Depository. The probes feature adds a timestamp and a probe id
to affected tokens. The timestamp is selected at random from all incoming tokens. This
causes a spread in response time because tokens generated for one requests can now be
used for completing a different request. A similar situation arises in Loop-Inner-Exit,
as it consumes tokens from both the loop child behavior and from Loop-Inner-Color-
Code. During prototypical tests, the error introduced by the Loop-Inner-Exit merge was
insignificant compared to the other errors.

5.2.6 Forks

A fork represents behavior executed in parallel. An incoming request is split into a number
of child requests started simultaneously. If the original request completes immediately,
having only started the child requests, we speak of an asynchronous fork. If the original
request has to wait until the child requests complete, we speak of a synchronous fork.
Both types of forks are supported by PCM but they are realized by a single entity, the
ForkAction.

Figure 5.20 shows the ForkAction and related entities. A ForkAction can contain directly
a number of N ForkedBehaviors. In addition, it can contain a SynchronizationPoint which
then contains M more ForkedBehaviors. The behaviors contained directly are executed
asynchronously in contrast to the behaviors contained in the SynchronizationPoint, which
are executed synchronously. The SynchronizationPoint has an additional reference out-
putParameterUsage which is handled exclusively by the DependencySolver (Section 5.1).
It allows the different synchronized control flows to return a parameter which is stored in
the context of the original request. This is not possible for asynchronous control flows as
the request is returned immediately.

In Figure 5.21 we see the QPN representation of a ForkAction. There are three transitions.
ForkAction-Split consumes a token from the last place of the predecessor subnet and creates
a token in the start places of each of the M + N child behaviors. ForkAction-Consume-
Asynchronous consumes tokens from the end places of the N asynchronous child behaviors,
but does not create any new tokens. ForkAction-Join-Synchronous waits until a token is
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Figure 5.20: ForkAction PCM

Figure 5.21: ForkAction QPN
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available in each of theM end places of the synchronous child behaviors. It then consumes
all of them and creates a new token in the start place of the successor subnet.

The case in which the ForkAction does not have a SynchronizationPoint (M = 0) is
handled by adding a dummy ordinary place in place of a synchronized client behavior.
Without the dummy place the token representing the original request, consumed when
starting the asynchronous requests, would be lost.

A limitation applies to the mapping of synchronized forked behavior. The synchronization
of two sub-requests generated by a single host request cannot be exactly mapped to QPNs.
Individual tokens carry no identity and it cannot be decided for two tokens whether or
not they belong to the same host request. The same problem is encountered when track-
ing individual tokens using the probes feature (Section 2.2.5). Likewise, the tokens are
consumed without considering their host request, introducing an error. The extent of the
error depends both on the number of parallel behaviors and on the properties of the child
behavior subnets.

5.2.7 Processing Resources

Processing resources normally represent physical resources with a certain processing rate
and a certain scheduling strategy for requests. Each request has a distinct resource demand
(in seconds), the time the request occupies the resource until completion. When one
request is being served, other requests have to wait in a queue, except in the case of a
delay resource, in which case each request is immediately served and there is no contention.
A CPU or a hard drive are good examples of processing resources.

Figure 5.22: ProcessingResourceSpecification PCM

The PCM version employed for this thesis supports only single-server processing resources
and three scheduling strategies: first-come-first-served (FCFS), processor-sharing (PRO-
CESSOR SHARING) and delay (DELAY). As we can see in Figure 5.22, each Resource-
Container of the ResourceEnvironment can have an arbitrary number of ProcessingRe-
sourceSpecifications which each have a ProcessingResourceType and a processingRate. It
is not possible to have two ProcessingResourceSpecifications in the same ResourceCon-
tainer that reference the same ProcessingResourceType. In that context the names of the
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referenced ProcessingResourceTypes must also be unique. This is necessary because a Pro-
cessingResourceSpecification is referenced indirectly using the current AssemblyContext,
AllocationContext and ProcessingResourceType.

Figure 5.23: InternalAction PCM

Figure 5.23 shows InternalAction, an entity that represents a load that a request places
on one or more processing resources. It contains a number of N ResourceDemands. Each
ResourceDemand contains a resource demand specification in the form of a PCMRandom-
Variable and a reference to a ProcessingResourceType. Contrary to how a resource demand
was introduced (time in seconds), the specification is in abstract units and must logically
match the processing rate of the target ProcessingResource. The actual resource demand
times are determined at simulation time.

The figure shows that the resourceDemands property actually belongs to the abstract
base entity AbstractInternalControlFlowAction which is also the base entity of several
other AbstractActions we have discussed. The PCM-Bench editors, however, allow adding
a ResourceDemand to an InternalAction only and therefore other possibilities were not
considered for the mapping.

As mentioned before, an InternalAction does not reference a ProcessingResourceSpecifica-
tion directly. The component behavior, the system assembly and the system allocation
information are separated in PCM. An InternalAction is part of a SEFF which describes
the behavior depending on the stochastic variables passed to it. The SEFF belongs to a
BasicComponent which is referenced by an arbitrary number of AssemblyContexts. The
AssemblyContext is itself part of a bigger composition hierarchy, which is described in de-
tail in Section 5.2.3. We assume that during the mapping the assembly context information
is available and we know the correct AssemblyContext.

Figure 5.24 shows how the allocation context information is organized. Each Allocation-
Context maps one AssemblyContext to one ResourceContainer of the ResourceEnviron-
ment. With this information the right ProcessingResourceSpecification is uniquely deter-
mined at mapping time.

Figure 5.25 shows the QPN subnet which is generated for an InternalAction. The transi-
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Figure 5.24: Allocation PCM

Figure 5.25: InternalAction QPN
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tions InternalAction-Entry and InternalAction-Exit handle token input from the predeces-
sor and token output to the successor respectively. The resource demands are processed
in series, one after another. The order cannot be specified. This matches the behavior of
the SimuCom simulator. For each of the N ResourceDemands Ri of the InternalAction a
queueing place InternalAction-ProcessingResource-i is generated. For each Ri with i < N a
connector transition InternalAction-Connector-i is also generated. The DependencySolver
(Section 5.1) has solved all parametric dependencies in the specification of Ri and provides
an empirical distribution. The distribution is then divided by the processingRate of the
target ProcessingResourceSpecification defined by the current context (using the folding
module of the DependencySolver). This results in the resource demand distribution for
the tokens of the current color. The distribution is used for an empirical distribution in
the color reference of the queueing place for Ri.

The target queues of the N queueing places are only generated on demand, one queue
for each ProcessingResourceSpecification of each ResourceContainer. The scheduling dis-
ciplines are mapped to their respective QPN queue scheduling strategies. The number of
servers is set to 1.

If N = 0, a dummy ordinary place is generated in place of the queueing places in order
not to lose the request.

Formally there are no limitations for this part of the mapping. However, as for the workload
inter-arrival times and think times (discussed in Section 5.2.2), mean resource demands
and a deterministic distribution are used inside the corresponding queueing places instead
of the empirical distribution. This is only a temporary implementation limitation that will
be fixed once an improved version of SimQPN is available.

5.2.8 Passive Resources

Passive resources normally represent software resources of which there is only a limited
number available. A request might need one of these resources for a certain part of its
execution. If more request reach that section than instances are available, requests have
to wait until the next instance becomes available. Good examples of passive resources are
a thread pool or a pool of database connections.

Figure 5.26: PassiveResource PCM

46



5.2. Feature Mappings 47

Figure 5.26 shows the PCM representation of passive resources. A BasicComponent con-
tains a number N of PassiveResources. Each PassiveResource contains an initial capacity
specification of type integer. While PassiveResources are defined per component, they are
instantiated per AssemblyContext.

Figure 5.27: AcquireAction and ReleaseAction PCM

The two entities that mark the section during which a request requires a passive resource
are AcquireAction and ReleaseAction, depicted in Figure 5.27. They both reference one of
the N PassiveResources. AcquireAction marks the beginning of the section. The current
capacity is reduced by one. When the current capacity reaches 0, the request has to
wait. ReleaseAction marks the end of the section, increasing the current capacity of the
PassiveResource again.

Figure 5.28: AcquireAction and ReleaseAction QPN

Figure 5.28 shows the resulting QPN subnet for both AcquireActions and ReleaseActions.
An AcquireAction is represented by the AcquireAction transition. It connects the last
place of the predecessor with the first place of the successor and the ordinary place Pas-
siveResource representing the PassiveResource. The initial number of tokens of the Pas-
siveResource place is set to the capacity. The AcquireAction consumes a token from the
predecessor and one token from the PassiveResource place and generates one token in
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the successor. Similarly, the ReleaseAction transition connects its predecessor and succes-
sor, generating a token in the PassiveResource place for each token it consumes from the
predecessor.

As mentioned before, the actual PassiveResource place that is used for the mapping de-
pends on the current AssemblyContext. If three AssemblyContexts reference a BasicCom-
ponent containing a PassiveResource, there will be three instances of the PassiveResource
place. For simplicity, this is not shown in the figure.

Only general limitations regarding the stochastic expression of the PassiveResource ca-
pacity apply. AcquireAction and ReleaseAction can be used anywhere in a a ResourceDe-
mandingBehavior. It is assumed, that the user sets them up in a meaningful way (and
without deadlocks).

5.2.9 Linking Resources

A linking resource represents any kind of network between two or more resource containers.
In the resource model chosen for PCM it has a processing rate and a latency. When
a request is made across container boundaries, first the combined bytesize of all input
parameters is placed on the linking resource. After the request is completed at the target
resource, the combined bytesize of all output parameters (including the return parameter)
needs to be processed by the linking resource. In addition, a delay is added to the request.
In PCM a linking resource is represented by a LinkingResource entity. Calls between
containers are represented by ExternalCallActions (Section 5.2.3) that target a component
on a different ResourceContainer.

Figure 5.29: LinkingResource PCM

Unlike a ProcessingResourceSpecification (Section 5.2.7), a LinkingResource is contained
directly by the ResourceEnvironment. It is on the same level as a ResourceContainer. This
becomes obvious when we consider that a LinkingResource connects a number of Resource-
Containers (the connectedResourceContainers property). As we can see in Figure 5.29, a
LinkingResource also contains a CommunicationLinkResourceSpecification which acts as a
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container for the other properties of the LinkingResource. It has a communicationLinkRe-
sourceType and it has throughput and latency specifications in the form of PCMRandom-
Variables. The throughput is specified in bytes per second. The latency is specified in
seconds.

As the linking resource is only used for inter-component requests, which happen only at
ExternalCallActions, the mapping for ExternalCallActions is extended by a number of
LinkingResource dependent parts. At an ExternalCallAction we first have to identify the
target resource container. It is assumed that the current AssemblyContext is available and
that the assembly context of the target SEFF is known. More details on the assembly
composition can be found in Section 5.2.3. For both AssemblyContexts, the Allocation-
Context is looked up (see Figure 5.24) which then links to the ResourceContainers of both
the source and the target context. If the containers match, no linking resource mapping
is executed. If they do not match, one LinkingResource is selected from all of the Link-
ingResources of the ResourceEnvironment which includes both the source and the target
ResourceContainer in its connectedResourceContainers set. It is assumed that no two
LinkingResources contain the same pair of ResourceContainers. If a LinkingResource is
found, the mapping proceeds.

Figure 5.30: LinkingResource QPN

Using the information from the selected LinkingResource and the input and output parame-
ters of the ExternalCallAction, the ExternalCallAction mapping is extended. This is shown
in Figure 5.30. On the source side, the ExternalCallAction-Entry and ExternalCallAction-
Exit transitions remain the same. On the target side, a number of new queueing places and
transitions are generated. All transitions are simply connectors and consume one token in
the source place and generate one token in the target place. The interesting part consists
of the three new queueing places. LR-Input-Transmit and LR-Output-Transmit link to
the same queue, which is generated on demand for each LinkingResource. It is a FCFS
queue with 1 server. The resource demands are computed by evaluating the sum of the
‘BYTESIZE’ characterization of both all the input and all the output parameters. Each
sum is then divided by the throughput of the LinkingResource. LR-Input-Latency behaves
differently. Another queue is generated on demand per LinkingResource with 1 server and
an Infinite Server (IS) scheduling strategy. As the resource demand the distribution of the
latency specification is used.

This structure behaves as expected. An incoming token is first delayed with no contention
in the delay place (as it is an Infinite Server (IS) queue) and then the load of its input
parameter bytesize is placed on the transmit queue, which is shared between all tokens
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that represent requests between any of the containers connected by the LinkingResource.
On the return to the caller, the bytesize of the output parameters is placed on the transmit
queue again. This both delays the token and creates contention when the load increases.

The input and output parameters, as well as the throughput and latency specifications are
handled by the DependencySolver (Section 5.1) and therefore general limitations apply to
the use of stochastic expressions.

5.2.10 QoS Annotations

In the PCM meta-model, there are two types of quality-of-service annotations. A System-
SpecifiedExecutionTime is used to define the time that requests that target RequiredRoles
of the System take to complete. A ComponentSpecifiedExecutionTime is used when one of
the design-time component types (ProvidesComponentType or CompleteComponentType)
are used in the system composition. As no behavior is specified for design-time compo-
nents, the execution times of the provided services must be specified. This is only necessary
when a design-time component is actually referenced by an AssemblyContext. All QoS an-
notations are contained in the System. The QoS annotations are only mandatory when the
entities in question are targeted by an EntryLevelSystemCall or an ExternalCallAction.

Figure 5.31: SystemSpecifiedExecutionTime PCM

Figure 5.31 shows the situation for system required services in more detail. The base entity
SpecifiedQoSAnnotation of SystemSpecifiedExecutionTime references a Role. Generally a
Role is used in any ComposedStructure. A detailed description of the composition hierarchy
can be found in Section 5.2.3. For SystemSpecifiedExecutionTimes however, only the
RequiredRoles of the System are valid targets. As the Role only specifies the interface, a
reference to the target Signature is provided. The time a request is delayed when accessing
one of the targeted services is specified in seconds in the specification property through a
PCMRandomVariable.

In case of a ComponentSpecifiedExecutionTime, the situation is similar (Figure 5.32). One
difference is that now the annotation does not always target the System and thus the target
AssemblyContext is specified. Furthermore, different constraints apply. The target Role
must now be a ProvidedRole and it must be contained in a RepositoryComponent of one of
the design-time component types (ProvidesComponentType or CompleteComponentType).
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Figure 5.32: ComponentSpecifiedExecutionTime PCM
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The QoS annotation information is queried by the mapping transformation whenever one of
the calls (Section 5.2.3) cannot find a corresponding SEFF. To delay the tokens in the right
place, the mapping for InternalAction (Section 5.2.7) is reused in both cases. A dummy
ProcessingResourceSpecification with a DELAY scheduling strategy and a processing rate
of 1 is generated on demand. Also, a dummy InternalAction is generated on demand
with the execution time specification taken for the ResourceDemand. As the delay queue
has no contention, all tokens are delayed exactly by the mean of the specification of the
SpecifiedQoSAnnotation.

There is one implementation-specific issue regarding QoS annotations: the employed ver-
sion of the DependencySolver module does not handle the use of input parameters in
stochastic expressions for the execution time specification.

5.3 Simulation-related Mappings

5.3.1 Overview

The QPN representing the PCM instance is generated to analyze the PCM instance
through simulation. To identify what is to be measured, a top-down approach is fol-
lowed. First, a number of meaningful metrics for PCM elements are identified. Then,
from different possibilities of calculating each metric, one is selected for which the infor-
mation can easily be provided by the simulation. Afterwards, the mapping is extended
with missing constructs only needed for the gathering of a metric and with the config-
uration information for the simulation. In a final step, the results integration code is
written that aggregates the simulator data and computes from it the metrics in the PCM
domain. This is necessary as the simulation data does not directly map to PCM metrics
and the performance analyst is not expected to know the details of the transformation and
simulation technologies.

5.3.2 Supported Metrics

The initial target was to at least support the following metrics which are also offered by
the SimuCom simulator (although the throughput and mean response time have to be
computed manually from the collected data):

• UsageScenario response time (distribution).

• UsageScenario mean throughput.

• ProcessingResourceSpecification mean total utilization (over all request types).

The following metrics are supported by the SimQPN solver. Where possible, the metrics
are offered both per UsageScenario and in total. Per UsageScenario means accumulated
over all requests that originate in that UsageScenario.

• Response time distribution of UsageScenario

• Mean response time per UsageScenario of

– UsageScenario

– EntryLevelSystemCall

– ExternalCallAction

– ResourceDemandingBehavior (includes ServiceEffectSpecification and Forked-
Behavior)

– InternalAction
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• Mean throughput

– AbstractAction (per UsageScenario)

– ProcessingResourceSpecification (per UsageScenario and total)

– LinkingResource (per UsageScenario and total)

• Mean utilization

– ProcessingResource (per UsageScenario and total)

– PassiveResource (per AssemblyContext over all UsageScenarios)

– LinkingResource (per UsageScenario and total)

More metrics are technically possible but are out of the scope of this thesis and will be
considered in future work:

• Response time distribution of EntryLevelSystemCall, ExternalCallAction, ResourceDe-
mandingBehavior, InternalAction, ScenarioBehavior

• Breakdown of metrics per EntryLevelSystemCall and per ExternalCallAction (in
addition to per UsageScenario).

• Mean throughput per AbstractUserAction (e.g., usage model Loop, Branch, En-
tryLevelSystemCall).

• Mean response time of ScenarioBehavior (e.g., usage model Loop or Branch child
behaviors).

• Other metrics which can be derived from simulator data (e.g., min/max token pop-
ulation in a place).

5.3.3 Instrumentation Model

To extend the QPN in the right places, the mapping transformation needs to know the
PCM elements that are to be instrumented and the metrics to collect. This is realized
through a simple decorator model. In the PCM Solver tool implementation (Section 6.3)
the ProbeSpec meta-model is used. The ProbeSpec meta-model has not yet been published
and is likely to change. Therefore only the general idea of the decorator model is provided.
There is a host entity similar to other EMF-based meta-models. It contains entities for
each distinct metric to gather. In each entity the type of metric (e.g., mean response
time, throughput, etc.) is stored and an EObject reference is kept that points to the PCM
instance element for which that metric should be measured. In the following section, it is
assumed that during the mapping the instrumentation information is available.

5.3.4 Instrumentation Mapping

This section deals with the actual mapping extension made to support gathering of the
specified metrics. The SimQPN simulator supports specifying the data to be collected
during the simulation run for each place separately. For each place (ordinary and queueing
place), and for each probes measurement instance (see Section 2.2.5 for an introduction to
probes), a stats-level is configured which determines the data that is collected. The higher
the level the more data is collected at the cost of simulation time. Only the levels and the
data we use in the mapping are presented here. More information can be found in [KD09].

The following stats-levels and corresponding QPN metrics are used:

stats-level 0 No measurements (and no wasted execution time).
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stats-level 1 Mean throughput only. deptThrPut is the mean throughput available per
token color. totDeptThrPut is the mean token throughput over all colors.

stats-level 2 Mean token population at the place (for ordinary places) or at the depository
(for queueing places). meanTkPop is the mean token population per token color.
meanTotTkPop is the mean token population over all colors. Total queue utilization
at the queue referenced by a queueing place (queueUtil). The other metrics measured
at this stats-level remain unused.

stats-level 3 Token residence time data. In this case we use the mean residence time
(sojourn time) meanST for probes only. The other data entries like the minimum
and maximum residence time, as well as a confidence interval are not used.

stats-level 4 Histogram for token residence times. A bucket size is specified at the start
of the simulation. The number of resulting buckets and the number of tokens in each
bucket are provided.

The throughput PCM metrics use a stats-level 1 configuration at the start place of the
QPN subnet that was generated for the target element. It is assumed that during the
simulation a steady state is reached so that the throughputs in the start place and in the
end place are equal. The mean throughput that corresponds to a given UsageScenario for
that PCM element is then the sum over all deptThrPut entries of the colors that belong
to that UsageScenario. The total throughput is totDeptThrPut.

The PCM utilization metrics for a ProcessingResourceSpecification and for a LinkingRe-
source use a stats-level 2 configuration in all places Pi that reference the underlying queue
(transmit queue in the case of LinkingResources). The mean utilization per UsageScenario
is calculated using the multiclass version of the Utilization Law. It states that the mean
utilization Ui,r of resource i and class r equals the mean service time Si,r multiplied by
the mean throughput Xi,r (at that resource i and for that class r). The resource i is fixed
and represents the measured queue. There is one class r for each pair of place Pi and
token color at the place. The mean throughput Xi,r then equals deptThrPut for a color
and place combination representing r. The mean service time Si,r is computed during the
mapping and is available. The mean utilization per UsageScenario is now the sum over
all Ui,r of all classes r that correspond to that UsageScenario for the measured queue i.
The total utilization is measured at the queue itself and equals queueUtil.

The utilization for a PassiveResource is computed differently. There is one ordinary place
for each instance of the PassiveResource that corresponds to an AssemblyContext. No
further distinction per UsageScenario is made because a passive resource could be acquired
by the request of one UsageScenario and released by the request of another. Therefore all
places representing PassiveResources can use only one type of color. The utilization per
AssemblyContext can be computed using themeanTotTkPop P of the corresponding place
and the initial capacity C of the PassiveResource. To make meanTotoTkPop available,
stats-level 2 is configured for the place. The utilization then equals (C − P )/C. When
no requests have acquired the resource, the mean token population P is still at the initial
capacity C and the utilization equals (C − C)/C = 0.0. If all available resources are
acquired, no tokens remain and P = 0. The utilization then equals (C − 0)/C = 1.0.

The PCM mean response time metrics can be computed with two different methods. One
possibility is to compute the mean of the response time distribution measured using probes.
If only the mean response time is needed, a more efficient method can be used. The method
is selected through a configuration option. The probes option is currently only available
for UsageScenarios. All other mean response times are calculated using the optimized
method.
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Figure 5.33: Measurement Place QPN

The optimized method of computing the mean response time requires a special measure-
ment place, illustrated in Figure 5.33. The measurement place is connected in parallel to
the subnet for which the mean response time is to be measured. For each token of color
c that is created in the subnet by the Measurement-Entry transition, a token of color c is
created in MeasurementPlace. Likewise, for each token that is consumed from the subnet
one is consumed from the MeasurementPlace as well. The MeasurementPlace always con-
tains the same number of tokens of color c as the whole subnet. The MeasurementPlace
is configured with stats-level 2 and the mean response time is then calculated using Lit-
tle’s Law. Little’s Law states that the average number N of tokens in a black-box system
equals the average departure (or arrival) throughput X times the average residence time
R. Treating each color separately this becomes Nc = Xc ∗ Rc for each color c. The mean
response time for a color c corresponds to the mean residence time Rc and equals Nc/Xc.
As several token colors can correspond to a single UsageScenario, we use Little’s Law for
a new combined color k that represents all of the colors of that UsageScenario. Rk is now
Nk/Xk. Nk is now the sum over the individual token populations meanTkPop of all the
colors combined in k. Likewise, Xc is the sum over all throughputs deptThrPut of the
same colors. The final division Nk/Xk completes the computation of the mean response
time of that subnet for the given UsageScenario.

The UsageScenario response time distribution is implemented using probes. The first
ordinary place of the usage scenario (UsageScenario-Entry) is marked as the starting
place of the probe. Measurements are set to start on the entry of the tokens. Likewise, the
UsageScenario-Exit place is marked as the ending place of the probe with measurements
to be taken on exit of the place. Tokens are annotated with an id and timestamp pair in
addition to their color. Response time statistics become available for the whole marked
subnet. As the PCM request is represented by a number of colors during its journey,
each of the colors is added to a list of colors for which the timestamp is to be passed
on. For other colors it is dropped. As the basic Queueing Petri Net behavior is not
modified (the id annotation is non intrusive), an approximation occurs whenever two or
more tokens of colors marked to carry timestamps are needed for a transition to fire.
Instead of waiting for tokens of an equal timestamp (and thus the completion of the whole
request), a random timestamp pair is selected. This approximation comes into effect
for loops (see Section 5.2.5) synchronous forked behaviors (see Section 5.2.6) and when
MeasurementPlaces are generated.
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This chapter covers the solving process, especially the PCM-to-QPN mapping transfor-
mation, from a more practical point of view. First the architecture of the PCM Solver
tool is presented in Section 6.1. Section 6.2 covers the most important modules and the
basic control flow of the tool in more detail. An overview of the QVTO implementation
and Java blackbox integration is presented in Section 6.3. Finally, Section 6.4 discusses
limitations and issues that will be addressed in future work.

6.1 Architecture

All software artifacts that are developed and used in this thesis are packaged as Eclipse
plugins. Since there are many individual plugins, we do not describe them separately.
Instead, related plugins are grouped and given a simpler name. Those groups make up the
major components of the architecture of the tool. The next section on design (Section 6.2)
will look at these components in more detail. In this section, an overview of the major parts
is provided. The most important part, the PCM-2-QPN plugin, will also be presented here
in more detail. It implements most of the mapping transformation described in Chapter 5.

Figure 6.1 shows the simplified plugin architecture. All plugins run inside the Eclipse
runtime environment. PCM Core denotes all plugins supplied through the PCM update
site, except of the PCM-Bench. PCM Core includes the EMF meta-model of PCM and
the PCM Workflow Engine. The PCM-Bench is shown separately because it provides
the user interface of PCM. The instrumentation user interface refers to the part of the
user interface that is used to specify the instrumentation decorator model described in
Section 5.3.3. Currently it is realized as a very simple EMF editor. A future version of
the PCM bench is likely to include a more sophisticated version this tool will make use
of (Section 9.2). As the DependencySolver updates only the stochastic expressions of the
existing model, the decorator model is valid for the Solved PCM Instance as well. The
launch configuration handlers and the transformation itself are contained in the PCM-2-
QPN plugin. More information on user interaction can be found in Section 3.2.1. The
transformation targets SimQPN, which is part of QPME (Section 2.2.5). QPME is divided
into two separate plugins, QPE and SimQPN. QPE covers the editor related parts and
SimQPN the simulation related parts. QPME is not based on EMF but uses XML files
for input and output. Therefore EMF meta-models both for the QPE serialization format,
which is the input format of SimQPN, as well as for the simulation output of SimQPN were
generated. They were generated from XML schemas derived from a number of available
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<<uses>> <<uses>>
Depends on

Figure 6.1: Simplified Plugin Architecture

sample files. The meta-model projects have been maintained manually from that point
on. Serialization annotation ensures that the XMI serializer follows the format SimQPN
expects.

Figure 6.2 shows the architecture of the PCM-2-QPN plugin and the flow of the transfor-
mation artifacts. The transformation is built on top of the PCM Workflow Engine which
provides common functionality like loading a PCM instance into memory and executing
a QVTO transformation script on it. There are four major jobs: The Dependency Solver
Job executes the DependencySolver on the provided PCM instance, solving the contained
parametric dependencies. This is described in Section 5.1. The PCM-2-QPN Transfor-
mation Job implements the mapping transformation, taking a PCM instance with solved
dependencies (denoted as Solved PCM Instance in the figure) and the instrumentation
decorator model to generate a matching QPN model. The SimQPN Simulation Job ex-
ecutes the SimQPN simulator on the generated QPN model, creating an instance of the
SimQPN results meta-model. The SimQPN Solver Job acts as a mediator for the other
jobs. It is also the target of the launch configuration of the user.

The SimQPN Solver expects from the user a valid and complete PCM instance, as well as
an instance of the instrumentation decorator model. After running the solver, the Results
Integration extension is used to feed back the results to the user in a meaningful way (see
Section 5.3.4). Currently the results are printed to the console and to a results file.

6.2 Design

6.2.1 Modules

Figure 6.3 shows the most important modules of the solver tool and the plugins they
reside in. Most modules are located in the edu.kit.ipd.sdq.simqpn.solver plugin, which

58



6.2. Design 59

PCM 

Instance

Instrumentation 

Model

QPN 

Instance

SimQPN 

Result

Flow of Artifacts

Solved

PCM 

Instance

Decorates

Figure 6.2: PCM-2-QPN Architecture
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Figure 6.3: Solver Tool Modules
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was developed throughout this thesis. As mentioned in the last section on architecture,
the SimQPNSolverJob acts as mediator for all steps that are needed to solve the given
PCM instance. RunConfig contains all classes needed to handle the user interaction and
serialized launch configuration. A new launch configuration type is defined and a sim-
ple interface similar to what the SimuCom simulator offers is implemented. The other
modules in edu.kit.ipd.sdq.simqpn.solver each implement one step of the solving process.
The substeps of loading a PCM instance into memory and validating it are handled by
modules that are part of PCM (de.uka.ipd.sdq.workflow.pcm.jobs). The DependencySolver
discussed in Section 5.1 is contained in de.uka.ipd.sdq.pcmsolver. All test classes and fix-
tures are located inside a test fragment edu.kit.ipd.sdq.simqpn.solver.test which references
edu.kit.ipd.sdq.simqpn.solver.test. Classes within a fragment have package access to classes
of its host plugin, but classes inside the host plugin cannot see classes in the fragment. This
is an ideal setup for automated tests using JUnit. There are three classes of tests. The Fea-
ture Mapping Tests run the RunPCMtoQPNTransformationJob on small PCM instances
that make use of individual features and check the resulting QPN mapping. The ProbeSpec
Mapping Tests additionally load a ProbeSpec model instance (see Section 5.3.3) and check
the instrumentation part of the mapping. The Integration Tests use PCM instances that
use a number of elements in combination and a matching ProbeSpec instance. The whole
solver process (the SimQPNSolverJob) is run and the results are checked regarding the
specified metrics.

6.2.2 Control Flow

Figure 6.4 shows the control flow inside the SimQPNSolverJob module. The solver process
takes a PCM instance, an optional ProbeSpec instance and the solver configuration as an
input and emits the selected metrics to the console and to an output file. Currently the
output file and all temporary files are put inside the users temporary system folder. If
no ProbeSpec model is specified, only the mean response time and mean throughput of
all UsageScenarios, as well as the utilization of all possible resource types (processing,
passive and linking resources) are measured. This is handled by the LoadProbeSpecInto-
BlackboardJob by creating a ProbeSpec model on-the-fly.

On the left side of the figure, we can see the Blackboard. The Blackboard is another compo-
nent offered by PCM. It manages a set of partitions in memory which hold EMF models.
This allows to decouple any details on loading the models from the jobs that actually
work with the instances. The RunPCMtoQPNTransformationJob and the OutputSimQP-
NTransformationJob simply expect a valid model loaded in the blackboard. The SimQPN
simulator expects a model in the form of an XML file. It also puts the results in an XML
file. Therefore the blackboard is not used in this case and the result file has to be loaded
onto the blackboard before the OutputSimQPNTransformationJob can access it.

One other file, omitted from the figure for simplicity, contains information on which PCM
element was mapped to which places in the QPN. This information is saved by the Run-
PCMtoQPNTransformationJob and is then used by the OutputSimQPNTransformationJob
to aggregate the result metrics. This information is stored in a set of Java hash maps that
are serialized using the built-in mechanisms (with no need to create a custom meta-model).
The class that manages this mapping file is called MeasuredObjectToPlaceMapper.

6.3 Implementation

The largest and most interesting part of the PCM Solver tool implementation is the QVTO
transformation. QVTO is introduced in Section 2.3.2, details can be found in [OMG08a].
We will look at how the transformation is defined in the pcm2qpn.qvto script. To give the
reader insight into how the transformation is implemented and how a typical code section
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looks like, a simplified mapping and a couple of global helpers are introduced. Finally, we
look at how the DependencySolver is integrated using a Java blackbox component.

6.3.1 QVTO Transformation

import edu.kit.ipd.sdq.simqpnsolver.qvto.IdManagerBlackBox;

import edu.kit.ipd.sdq.simqpnsolver.qvto.ContextWrapperBlackBox;

import edu.kit.ipd.sdq.simqpnsolver.qvto.

MeasuredObjectToPlaceMapperBlackBox;

import PcmHelper;

import QpeHelper;

import ProbeSpecHelper;

import AssertHelper;

modeltype PCM_ALLOCATION uses

"http://sdq.ipd.uka.de/PalladioComponentModel/Allocation/4.0";

modeltype PCM_USAGE_MODEL uses

"http://sdq.ipd.uka.de/PalladioComponentModel/UsageModel/4.0";

modeltype PCM_REPOSITORY uses

"http://sdq.ipd.uka.de/PalladioComponentModel/Repository/4.0";

modeltype PCM_SEFF uses

"http://sdq.ipd.uka.de/PalladioComponentModel/SEFF/4.0";

modeltype PCM_SEFF_PERFORMANCE

uses "http://sdq.ipd.uka.de/PalladioComponentModel/SEFF/Performance/1.0";

modeltype PROBE_SPEC uses "http://sdq.ipd.uka.de/ProbeSpec/0.1";

modeltype QPE uses "qpe_meta";

<...>

transformation pcm2qpn(in inAll : PCM_ALLOCATION,

in inUsg : PCM_USAGE_MODEL, in inProbeSpec : PROBE_SPEC,

out outputNet : QPE)

access library IdManagerBlackBox, PcmHelper,

ContextWrapperBlackBox, QpeHelper, ProbeSpecHelper,

MeasuredObjectToPlaceMapperBlackBox, AssertHelper;

Figure 6.5: pcm2qpn.qvto Transformation Definition

Figure 6.5 shows the transformation definition part of the pcm2qpn.qvto script. Helpers
which could be useful in other contexts were extracted to a number of libraries, which are
imported by the transformation. This includes a helper for PCM meta-model elements,
for elements of the QPE result type and for ProbeSpec elements. A number of helpers are
realized as Java blackbox components. They use the edu.kit.ipd.sdq.simqpnsolver.qvto
namespace in the import statement.

The figure shows that the pcm2qpn transformation has three input models and one output
model. We take a model of type PCM ALLOCATION with a root element of Allocation,
a model of type PCM USAGE MODEL with a root element of type UsageModel and
a model of type PROBE SPEC with a root element of type ProbeSpecRepository. One
output model of type QPE with a root element of type DocumentRoot is returned. It
is important that more than the modeltypes for the input and output parameters are
declared. As we use almost all entities of the PCM meta-model in the transformation, the
remaining PCM sub-packages are also included as modeltypes.
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// optional. emits warning if not set

configuration property measuredObjectToPlaceMapFileUri : String;

// optional property. default is false

configuration property isFatalErrors : Boolean;

// optional property. default is true

configuration property isProcessLinkingResources : Boolean;

configuration property simSettings_outputDirectory : String;

configuration property simSettings_rampUpLength : Real;

configuration property simSettings_totalRunLength : Real;

intermediate property pcm2qpe::resultNet : NetType;

intermediate property pcm2qpe::probeSpec : ProbeSpecRepository;

Figure 6.6: pcm2qpn.qvto Transformation Properties

Figure 6.6 shows the properties section of the pcm2qpn transformation. Most properties
are configuration properties. One example is the Boolean property isProcessLinkingRe-
sources, which determines wether or not LinkingResources should be considered when
mapping ExternalCallActions. Simulator settings stored in the result file are also passed
in as configuration parameters. The probeSpec intermediate property is used only for
convenience. It is set early in the main() mapping. The resultNet intermediate property
is also initialized early in the main() mapping. As we will see in the next example, the
resultNet is accessed throughout the transformation. QPN elements (places, transitions,
queues, colors, connections) are added through helpers.

Figure 6.7 presents a coherent example of the mapping CreateStructure for the type
UsageScenario. We can see how the mapping is invoked for each of the UsageScenarios
in the CreateStructure mapping for the type UsageModel. The UsageModel mapping
is invoked in the createQueueStructure helper. createQueueStructure is called directly
from the main() mapping, which has been simplified for this demonstration. We see the
use of the built-in log helper, the initialization of the result net using another helper, as well
as how after createQueueStructure returns, the result root object of type DocumentRoot
is created. Its net property is initialized with the resultNet intermediate property.

In UsageScenario :: CreateStructure we see a section of code which is typical for the
whole transformation. The id helper is used to generate fresh ids (using newId()) for
QPN elements that are about to be created. The id is stored in a temporary variable (e.g.,
clientColorId). Then global add-helpers are used to add QPN elements to the result
net. They are created using the new keyword and a constructor. In a second step more
information (e.g., color references) are added to the newly created QPN elements. The
element is retrieved by its id and another helper is used to set the required information.
Finally, other mappings are called for each of the client entities. In this case one mapping is
executed for the Workload and for the ScenarioBehavior of each UsageScenario. Workload
is an abstract entity. In this case an abstract mapping is declared for the type Workload,
which defines a common parameter signature. For each of the concrete subclasses another
mapping with the same signature is created. The QVTO interpreter chooses the most
specialized mapping at runtime.

The mapping signatures in the pcm2qpn transformation generally are passed an entry
place id, an exit place id, the current request color, and a context reference that can be
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main() {

log("Starting pcm2qpe transformation");

processConfigurationParameters();

initResultNet();

<...>

createQueueStructure();

<...>

// return results net

object DocumentRoot {

net := this.resultNet;

};

}

helper createQueueStructure() {

inUsg.getUsageModel().map CreateStructure();

}

mapping UsageModel::CreateStructure() {

self.usageScenario_UsageModel.map CreateStructure();

}

mapping UsageScenario::CreateStructure() {

var clientColorId : Integer := newId();

var colorName : String := "client_" + self.id;

// create client token

addColor(new ColorType(colorName, clientColorId));

//create usage model entry and exit places

var usageModelEntryPlaceId : Integer := newId();

var usageModelExitPlaceId : Integer := newId();

addPlace(new PlaceType("UsageScenario-Entry_" +

self.id, usageModelEntryPlaceId, "NORMAL"));

addPlace(new PlaceType("UsageScenario-Exit_" +

self.id, usageModelExitPlaceId, "NORMAL"));

getPlaceById(usageModelEntryPlaceId).addSimpleColorRef(clientColorId);

getPlaceById(usageModelExitPlaceId).addSimpleColorRef(clientColorId);

self.workload_UsageScenario.map CreateStructure(usageModelEntryPlaceId,

usageModelExitPlaceId, clientColorId);

self.scenarioBehavior_UsageScenario.

map CreateStructure(usageModelEntryPlaceId,

usageModelExitPlaceId, clientColorId);

}

Figure 6.7: pcm2qpn.qvto Mapping Example
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used to retrieve information from the DependencySolver. In this case we are still traversing
the UsageModel and no context is required.

helper addPlace(place : PlaceType) {

this.resultNet.places.place += place;

return;

}

query getPassiveResourcePlaceId(assCtx : AssemblyContext,

res : PassiveResource) : Integer {

var key: String := "place_passive_resource_" +

assCtx.id + "_" + res.id;

return getId(key);

}

Figure 6.8: pcm2qpn.qvto Helper Examples

To finish our example, we will look at two helpers which represent two common classes
of helpers (Figure 6.8). addP lace is one of the add-helpers used to add QPN elements to
the result net. We can see that the intermediate property resultNet is accessed using the
this keyword and that the place passed as a parameter is added to the places collection
using the += operator. The places collection is referenced using places.place because the
XSLT to EMF converter has introduced a special collection modeltype PlacesType in the
QPN meta-model.

getPassiveResourceP laceId represents another common class of helpers. They are used
to retrieve the id of a QPN element which is uniquely determined by a set of PCM elements.
These helpers are used when one QPN entity needs to be accessed from different parts of
the transformation. A unique string is built from input elements and another id helper
getId() is used to retrieve the id. The first time getId() is accessed, a new id is generated.

One situation in which a QPN element is accessed from different parts of the mapping is
when the mapping for an element is split up into two parts. One part creates the“structure”
for that element. The“structure” in this case means the places, transitions and connections
that are shared by all mappings for that particular PCM element. An example is the pool
place of a LoopAction. Depending on the context, the mapping for the LoopAction with the
same id is executed a number of times with different context parameters. The “structure”
is used between all mappings and is generated only once. The other part of the mapping
is then called “color structure”. This is the context dependent part (e.g., the color ids)
which differts for each execution. The ids of the elements created in the “structure” part
of the mapping are then retrieved using a matching getId-helper.

It is noteworthy that due to traversing PCM elements several times with different context
information, features like result element tracing and other more advanced QVTO features
are not used in the pcm2qpn transformation.

6.3.2 Java Integration

In this section, the integration of the DependencySolver is presented as a concrete example
of a Java blackbox component. Figure 6.9 shows the extension point definition in the
plugin.xml of the edu.kit.ipd.sdq.simqpnsolver plugin. The namespace, which is shared
by all our blackbox components is edu.kit.ipd.sdq.simqpnsolver.qvto. The name of the
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<extension point="org.eclipse.m2m.qvt.oml.javaBlackboxUnits">

<unit name="ContextWrapperBlackBox"

namespace="edu.kit.ipd.sdq.simqpnsolver.qvto">

<library name="ContextWrapperBlackBox"

class="edu.kit.ipd.sdq.simqpnsolver.qvto.ContextWrapperBlackBox">

<metamodel

nsURI="http://sdq.ipd.uka.de/PalladioComponentModel/UsageModel/4.0">

</metamodel>

<metamodel

nsURI="http://sdq.ipd.uka.de/PalladioComponentModel/SEFF/4.0">

</metamodel>

<...>

</library>

</unit>

</extension>

Figure 6.9: DependencySolver Blackbox Definition

DependencySolver integration library is ContextWrapperBlackBox. The name comes
from the main class of the DependencySolver, the ContextWrapper. The PCM usage
model and SEFF packages are loaded amongst others. PCM elements like UsageScenario
can therefore be used in the signatures of methods that are annotated using @Operation.

Figure 6.10 shows the Java class implementing the blackbox component. One of the
exported operations is shown. getContextWrapperFor() takes an EntryLevelSystemCall
and returns a reference to a ContextWrapper class. Because the ContextWrapper class
is a plain Java class and not a class representing an EMF meta-model entity, a generic
Object reference is returned. This turns into the QVTO datatype OclAny. As we can
see, getContextWrapperFor() requires an initialized rootWrapper. The rootWrapper is a
static variable of the ContextWrapperBlackBox class. It is static so it can be initialized
with the result of the DependencySolver preprocessing step (a PCMInstance) before the
QVTO interpreter runs the pcm2qpn.qvto script.

6.4 Limitations

One limitation regarding the code reusability of the PCM Solver tool is that not all new
library code for traversing and managing a PCM instance was placed in the Dependen-
cySolver module. Some helpers were written in QVTO or were placed inside the Depen-
dencySolver blackbox component class and are not available to other projects that rely
on the DependencySolver. The library methods could, however, be refactored into the
DependencySolver.

The DependencySolver module comes with its own Eclipse launch configuration classes
and a strategy pattern to include new solvers that build on the DependencySolver. The
existing architecture did, however, not consider the use of the PCM workflow engine,
especially the blackboard needed for the QVTO execution. To simplify the building of the
initial prototype of the PCM Solver tool, a separate launch configuration was used.
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package edu.kit.ipd.sdq.simqpnsolver.qvto;

<imports>

public class ContextWrapperBlackBox {

private static ContextWrapper rootWrapper = null;

public static void setPcmInstance(Object pcmInstance) {

rootWrapper = new ContextWrapper((PCMInstance) pcmInstance);

}

private ContextWrapper castWrapper(Object contextWrapper) {

return (ContextWrapper) contextWrapper;

}

@Operation

public Object getContextWrapperFor(EntryLevelSystemCall elsa) {

if (rootWrapper != null) {

try {

return rootWrapper.getContextWrapperFor(elsa);

} catch (Exception e) {

// do nothing

}

}

return null;

}

<...>

}

Figure 6.10: DependencySolver Blackbox Class
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7. Evaluation

In this section, we present a detailed evaluation of the PCM-to-QPN mapping. Section 7.1
shows how the metrics used for the evaluation were derived using the Goal/Question/Metric
approach [BCR94]. Section 7.2 lists the assumptions of the evaluation. Section 7.3 de-
scribes the runtime environment and hardware setup of the evaluation runs. Section 7.4
presents the evaluation steps and the results of the feature support evaluation. The case
studies are presented in their own chapter (Chapter 8).

7.1 Goal - Question - Metric

The main goal of this diploma thesis is to evaluate the usefulness of QPNs as target
analysis model for PCM. This main goal implies several subgoals. One goal is semantical
correctness of the mapping. In cases, where the exact semantics were unclear, the behavior
of the SimuCom solver was taken as a guideline. From this goal the following question is
derived: Do the feature mappings behave as expected during simulation time? From this
question, the requirements for the feature support evaluation metrics are derived:

• The metrics must be collected for each feature separately.

• The metrics must relate to the correct semantics of the feature in question.

• All compared solvers must support collection of the metrics.

These requirements were used to derive the feature support evaluation steps described
in Section 7.4.1. It consists of evaluation models for each feature and a small set of
manually derived reference metrics. These scenarios are very similar to integration tests.
The accuracy of the feature mappings can only be checked for a fixed number of cases.
As the time for this diploma thesis is limited and the number of features is large, not
all variations of the features could be covered. Additional scenarios, especially scenarios
that use more advanced stochastic expressions and parameter passing, would be needed
to reach a thorough understanding of the feature support.

Knowledge about which features are not supported or about features that cause crashes is
still very useful. The feature scenarios are therefore also part of the evaluation to determine
when to use each solver. They are used to answer the derived question: Which features
are supported by each solver?

A second set of important questions relate to the usability of each solver in real world
situations. The following questions cannot be answered using small, arbitrarily created,
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feature models: What is the accuracy of the mapping for a representative system? Can
the solver handle larger models? These questions lead to different requirements for the
metrics:

• The metrics must relate to the real world complexity of a system.

• The metrics must allow to evaluate the precision of the analysis.

• It must be possible to link the metrics to the real execution time of the analysis.

• All compared solvers must support the collection of the metrics.

The solution to these requirements is to conduct a number of case studies in which ex-
ternal PCM instances are analyzed that were modeled after systems of realistic size and
complexity. The evaluation steps for the case studies are described in Section 8.2.

SimuCom offers a relative precision stopping criterion for the response time of usage sce-
narios. This requires the measurement of the response times of individual requests. With
limitations, this is possible in SimQPN through the probes feature. The feature was added
late during the thesis and was not available for the major part of the evaluation. Instead
of using a relative precision stopping criterion for all compared solvers, a suitable fixed
simulation time is determined individually for each case study using SimuCom.

The evaluation of the usability and portability of the different solver tools is out of the
scope of this thesis and will be considered in future work.

7.2 Assumptions

A major assumption of the evaluation is that the DependencySolver handles parametric
dependencies and stochastic expressions correctly.

It is also assumed that the employed models do not rely on a middleware overhead model,
which is only supported by SimuCom and out of the scope of this thesis.

Another assumption is that a trained performance analyst is able to determine a suitable
fixed simulation time to analyze a system. For the case studies, the relative precision
stopping criterion of SimuCom for the mean response time of a selected UsageScenario
is used. A direct support in the solver tool developed for this thesis will be addressed in
future work.

7.3 Experimental Environment

All experiments were conducted using the Eclipse environment described in Section 3.2.2.
The operating system and hardware environment were as follows:

• Microsoft Windows 7 Professional (64bit)

• 32bit JDK 1.6.0 (Update 20)

• Quad-Core Intel i5 750 CPU (2.67 Ghz per core)

• 4 GB Memory. Substantially less was available for a simulation run due to the 32bit
JDK, which was chosen due to compatibility reasons.

The solvers were available in the following versions:

• PCM 3.2 Development Build

• QPME 1.5.2 Development Build

• LQNS and LQSim 4.1
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Of the available simulation methods offered by SimQPN, the batch means method was
used for all simulation runs. It is the most stable method. The batch means method was
also used for the LQSim solver, as it is the standard method of operation. The exact
command line call for LQSim used for the evaluation is:

lqsim -T<logical runtime> -o<output filename> <input filename>

LQNS is called with:

lqns -o<output filename> <input filename>

Additionally, the following LQNS settings are generated into the input file: convV alue =
1e − 005, itLimit = 50, printInt = 10, underCoeff = 0.5 and psQuantum = 0.001.
These are the default settings chosen by the PCM-to-LQN transformation.

7.4 Feature Evaluation

In this section, the first part of the evaluation, the evaluation of the feature support,
is presented. Before discussing the results, the steps that were executed to conduct the
evaluation are presented.

7.4.1 Steps

To analyze which solvers support which features, the following steps are taken for each of
the mapped features:

1. Create a minimal, but complete model that uses the feature to be evaluated.

2. Choose from metrics which are available for all solvers (which turned out to be
UsageScenario mean response time and throughput, ProcessingResourceSpecification
utilization) at least one which can be derived by means of exact analytical analysis.

3. For each of the chosen metrics derive the results analytically.

4. Analyze the model 30 times with each solver, deriving the respective metrics.

The simulation results are then analyzed using R and a feature support table is derived. A
95% confidence interval for the mean of each metric over the 30 measurements is computed.
The maximum relative error with respect to the expected result of all metrics and for both
the left and right border of each interval is computed. If that maximum error is ≤ 5%,
the feature is considered supported, otherwise, the feature is considered not supported. A
crash in any of the 30 runs for a feature is considered as no support. Unexpected behavior
or anomalies are noted. A similar evaluation approach based on the relative error between
two measurements can be found in [Tri10].

7.4.2 Results

It is important to point out that during the time available for the thesis, the Dependen-
cySolver module, which the SimQPN, LQSim and LQNS solvers build on, was extended
to support some of the less common features. There was no time to update the PCM-
to-LQN transformation and those features cause problems or are not supported with the
LQSim and LQNS solvers. It is out of the scope of this thesis to determine which of the
unsupported features could be mapped to LQNs and with which limitations. This section
is therefore only meaningful for the versions of the solvers used for this evaluation. The
infrastructure of the feature support evaluation can be reused once new versions of the
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solvers become available to guide the user in choosing the right solver for the model at
hand.

Table 7.1 shows the results of the feature support evaluation. The Feature column contains
the name of the evaluated feature. On the right side we find one column for each of
the examined solvers. At least one metric that is dependent on the feature semantics is
manually derived and taken as a reference value. The exact models and derivation are
omitted here for reasons of brevity but are available on request. Supported features are
marked with S, unsupported features with N. A crash during any of the runs is marked with
C. At the bottom of the table the number of supported features, not supported features
and crashes are listed.

Feature LQNSLQSimSimQPNSimuCom

OpenWorkload S S S S
ClosedWorkload S S S S
EntryLevelSystemCall S S S S
ExternalCallAction S S S S

InternalAction S(a) S S S
Usage Model Branch S S S S
Probabilistic BranchAction S S S S
Guarded BranchAction S S S S
Usage Model Loop S S S S
LoopAction S S S S
CollectionIteratorAction S C S S
ForkAction C C S S
Acquire-/ReleaseAction N N S S
SystemSpecifiedExecutionTime C C S S

ComponentSpecifiedExecutionTime N C S C(b)

CompositeComponent S S S S
SubSystem S S S S

LinkingResource N N S N(c)

#Supported 13 12 18 16
#Not supported 3 2 0 1
#Crashed 2 4 0 1

Table 7.1: Feature Support Evaluation Results

Three table entries need additional explanation:

(a) The LQNS solver crashed in the scenario put together to test the InternalAction
feature. As InternalActions are used in most of the other scenarios as well, and
LQNS had no problems with that, we assume that the crash must be due to some
other special characteristic of that particular scenario.

(b) The PCM technical reference describes the semantics of a ComponentSpecifiedExecu-
tionTime. It is likely that the SimuCom simulator will support the feature in future
versions.

(c) The launch configuration user interface for SimuCom contains a checkbox to enable
simulation of LinkingResources. As enabling that feature caused a crash, it was
deactivated for the evaluation. It is reasonable to assume that this feature is only
broken in the version of SimuCom used for this thesis. Future versions are likely to
support LinkingResources again.

Overall the SimQPN-based solver developed in this thesis has a very satisfactory feature
support. A much broader range of PCM features is covered compared to the existing
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solvers based on the transformation to LQNs. The feature scenarios are important to
validate the mapping. This is especially important for features not used in any of the
case studies described in Chapter 8. The case studies examine the more commonly used
features in much more realistic contexts and further increase the confidence in the results.

The LQNS and LQSim solvers are less reliable and cannot be recommended from the point
of view of feature support. A superior results precision and runtime can still justify their
use. This is examined in the case studies as well.
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8. Case Studies

This section describes the case studies, the second part of the evaluation, in more detail.
The derivation of metrics, assumptions and evaluation environment have already been
covered in Chapter 7. Section 8.1 provides an overview and presents the schema after
which a number of scenarios from different sources are evaluated and presented. Section 8.2
explains in detail the steps that were taken to gather the case study data. One section
follows for each scenario (Section 8.3, Section 8.4, Section 8.5, Section 8.6, Section 8.7).
The chapter concludes with an overall summary of the case study based on the results of
the individual scenarios.

8.1 Overview

As mentioned in Section 7.1, the case studies are conducted to gain insight into the behavior
of each of the evaluated solvers when confronted with large PCM instances of realistic
complexity. Both the results precision and the analysis overhead are evaluated. Their
relationship allows to estimate the precision that can be achieved in a given amount of
time and helps in determining under which circumstances each solver should be used.

As there is great variance between realistic models, a single model is insufficient to reach
a sound conclusion. Therefore, several models from different sources have been selected.
In case different usage scenarios are available, the varied PCM instances are analyzed as
well. Each case study model is evaluated according to the following schema:

1. Present an overview of the model and the PCM instances and variations to be ana-
lyzed.

2. Describe in more detail the complexity and characteristics of the PCM instances.
The discussion is based on size metrics like the number of AssemblyContexts of the
input PCM instance.

3. Present the evaluation results and the conclusions which can be drawn from the
results.

The result data is presented uniformly throughout this chapter. The processing resource
utilization metrics are represented as UResourceContainer ProcessingResourceType. RScenarioName

stands for the response time of a scenario, XScenarioName for the throughput. The runtime
in seconds is represented with TAnalysis. Each combination of PCM instance and logical
simulated runtime has its own table. In several cases, the workload for that PCM in-
stance is varied as well. The tables show the metric name in the first column. The second
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column presents the mean value x̄of the SimuCom reference measurements. To achieve suf-
ficient statistical significance, each experiment is run 30 times. A group of three additional
columns is added for each of the evaluated solvers (SimQPN, LQNS and LQSim). The
mean value x̄is presented in the first column of the group. The second column contains the
relative difference relDiffcompared to the SimuCom reference solver. The relative differ-
ence is

meansolver−meanreference

meanreference
. For the response time, utilization and throughput metrics,

relDiffrepresents the relative error of the measurements. For the execution time, it repre-
sents the reduction or addition in execution time compared to the reference solver. The
third column (statSig) of the group shows whether or not the difference between the solver
mean and the reference mean is statistically significant at a 95% confidence level. This
is evaluated using an unpaired Student’s t-test. If not enough data is available for the
t-test, relDiffis shown, but statSigis omitted. If the t-test succeeds, but the difference is
not statistically significant, relDiffis omitted. If a PCM instance causes a solver to crash,
the data is omitted as well (showing a “-”).

It is important to note that both LQSim and especially LQNS have a multitude of con-
figuration options. Unfortunately, there was not enough time in this thesis to tune those
solvers to achieve the best results. For LQSim, the same logical simulation time as for
the other simulation based solvers was used. For LQNS the standard settings for a 95%
convergence were used. The results for those solvers should therefore not be considered
the best results possible. They are still useful to clarify situations in which the SimQPN
solver and SimuCom solver have significantly different results. The results also provide a
rough idea about how exact the solvers are and how fast they run.

One issue that turned up during the evaluation is that the SimQPN simulator execution
time is larger the first time a simulation is executed compared to following simulation runs.
In cases where this value stood out, a 31st run was conducted, replacing the results of the
first run. It is therefore assumed that executing a number of simulations in a row is the
norm rather than an exception. The exact source of the effect is unclear but it is possible
that some parts of SimQPN are kept as static fields, which have less memory management
overhead the second time they are used.

In addition to the presented quantitative evaluation, a qualitative evaluation of the Us-
ageScenario response time distributions between SimuCom and SimQPN is conducted. As
the measurement with SimQPN involves an experimental feature (see Section 5.3.4), these
results should only be seen as a general indication of what is possible. The histograms
use close to 30 buckets, equally dividing the response time between 0 seconds and the
maximum value encountered. The dimension and scaling of both axis are the same for
each pair of histograms.

8.2 Steps

To gather the data for each of the case studies, the following steps were executed:

1. Identify the different model configurations in the originating project and create sep-
arate model instances for each.

2. Run the SimuCom solver and check if the results given in the project can be repro-
duced.

3. If no results are known or if the results cannot be reproduced, choose one config-
uration and modify it until it is solvable. Reduce the workload in case any of the
processing resources are overloaded.

4. Compute the relative error of the mean of each solver compared to the SimuCom
reference solver. To determine, if that error is statistically significant, a confidence
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interval for the difference of means between the SimuCom result and each other
solver is computed. The computations are carried out for each of the following
metrics: mean response time and mean throughput for each UsageScenario, mean
utilization for each ProcessingResourceSpecification (excluding DELAY resources)
and (real) execution time. The current implementation of the SimQPN solver can
only be run for a fixed amount of logical simulated seconds. It is assumed that
the examined system reaches a steady state and therefore a higher runtime leads to
better results. The time at which the steady state is reached depends on the model.
The following substeps are executed to determine appropriate fixed simulation times
for each model configuration and to compute the results.

a) Run the SimuCom solver on each of the resulting configurations using a relative
precision termination condition of 95% for a 20% relative error (10% half width)
confidence interval for the mean. The most important UsageScenario should
be chosen as the target of this criterion. If the simulation converges, note the
logical simulation finish time. If the the simulation run does not converge,
choose the logical time it takes to simulate 100000 measurements instead. Once
a number of logical run times have succesfully been identified, choose the largest
runtime T as the basis for the following evaluation runs.

b) Configure each simulation-based solver to run a fixed amount of (1/2)T , T , and
2T and simulate each configuration 30 times. Configure LQNS to use a 95%
confidence level and run it once (as it is deterministic and produces the same
result every time).

5. Evaluate the results.

6. Choose a workload that puts significant load on the system, but does not overload
it. Compute the response time distribution of each UsageScenario and produce
histograms that use the same dimension and bucket sizes for the best comparison
possible. This step is only available for SimuCom and SimQPN. The LQNS and
LQSim solvers only support mean response times. With SimQPN the response time
distribution is measured using the probes feature (see Section 5.3.4). This feature is
still experimental and the results should be interpreted accordingly. The response
time distributions are not evaluated quantitatively. Only a single experiment run
is conducted and it is evaluated, how useful the histograms are to a performance
analyst to gain additional insights.

8.3 Case Study 1: SPECjAppServer2004 Next

8.3.1 Overview

The SPECjAppServer2004 Next model is taken from [BKK09]. SPECjAppServer2004 is
a benchmark developed by the Standard Performance Evaluation Corporation (SPEC).
SPECjAppServer2004 Next is a beta version of the successor to the SPECjAppServer2004
benchmark. It is a Java EE benchmark developed by SPEC’s Java subcommittee for mea-
suring the performance and scalability of Java EE-based application servers. The bench-
mark aims at reproducing the behavior of a typical Java EE-based application. Therefore,
it can be considered a system of realistic size and complexity.

In [BKK09] a PCM instance of the SPECjAppServer2004 Next benchmark was used to
evaluate a method for automated extraction of Palladio Component Models from running
enterprise java applications. To a large degree, the PCM instance was created by the
extraction algorithm. Three different usage scenarios are considered in the paper (scenario
1, 2a and 2b). For this case study the models named “Model A” for the scenarios 1 and 2a
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were available. The scenarios will now be referred to as scenario A and scenario B. Each
scenario is evaluated using a number of different workloads.

In PCM terms, this is a single PCM system model with a number of usage models each
containing a single scenario and workload combination. The following variations were
analyzed for this case study:

• Scenario A, throughput 13.315 requests/s

• Scenario A, throughput 33.627 requests/s

• Scenario A, throughput 49.925 requests/s

• Scenario A, throughput 71.120 requests/s

• Scenario B, throughput 11.254 requests/s

• Scenario B, throughput 22.211 requests/s

• Scenario B, throughput 33.898 requests/s

• Scenario B, throughput 43.691 requests/s

As the scenarios are very similar regarding their model structure, a single logical reference
time was determined for all scenarios. The highest workload for each scenario was discarded
as the system was saturated and the relative stopping criterion of PCM did not converge.
Most logical runs finished in between 600 and 1200 simulated seconds. However, the
scenario A/11.254 throughput combination took 3200 simulated seconds once. To be safe,
4000 simulated seconds were chosen as the base time T.

8.3.2 Complexity

The two evaluated scenarios differ only in their usage model and workload. Both scenarios
have only one UsageScenario. Scenario A has a very simple usage model with one En-
tryLevelSystemCall, no loops and no branches. The workload is open and is varied between
13 and 71 requests/s. Scenario B has a more complex usage model with 6 EntryLevelSys-
temCalls and one loop. The workload is varied between 11 and 43 requests/s.

The system part is the same for both scenarios. 7 AssemblyContexts reference 7 dif-
ferent BasicComponents. No CompositeComponents or SubSystems are referenced. The
referenced SEFFs contain 14 ExternalCallActions, one loop and 4 branches. One Pas-
siveResource is referenced.

Regarding stochastic expressions, the Exp-function is used in the workload as the inter-
arrival time. IntPMF is used in the SEFFs.

8.3.3 Results

For this case study, two sets of results were obtained. The initial set of results showed
an accuracy which was out of line compared to the other case study results. The issue
was traced to a temporary simplification in the SimQPN solver implementation. As the
SimQPN simulator support for empirical distributions does not meet the requirements of
the PCM-to-QPN mapping, mean values and a deterministic distribution are used instead.
As this case study is the only case study that uses exponentially distributed inter arrival
times in the workload specification (using the Exp-function), the error introduced by that
simplification does not show in the other case studies. For scenario A, a second set of results
was obtained in which the transformation was manually modified to insert the correct
distribution, showing much better results. This shortcoming of the SimQPN simulator
and solver will be resolved in future versions.
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Throughput: 13.315 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.186 0.196 5.31% yes - - - - - -
UDBS CPU 0.0555 0.058 4.51% yes - - - - - -
RScenario 0.0215 0.018 -16.4% yes - - - - - -
TAnalysis 41.1 3.31 -92% yes - - - - - -

Throughput: 33.627 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.469 0.493 4.98% yes - - - - - -
UDBS CPU 0.140 0.147 4.77% yes - - - - - -
RScenario 0.0312 0.02 -35.8% yes - - - - - -
TAnalysis 100 5.44 -94.6% yes - - - - - -

Throughput: 49.925 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.697 0.732 5.04% yes - - - - - -
UDBS CPU 0.208 0.219 5.17% yes - - - - - -
RScenario 0.051 0.0281 -44.9% yes - - - - - -
TAnalysis 141 7.31 -94.8% yes - - - - - -

Throughput: 71.120 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.989 1.0 1.15% yes - - - - - -
UDBS CPU 0.292 0.298 2.06% yes - - - - - -

RScenario 1.06 45.9 4228%(a) yes - - - - - -

TAnalysis 41.8 310 641%(a) yes - - - - - -

Table 8.1: SPECjAppServer2004 Next Scenario A Evaluation Results for 2000 sec
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Table 8.1, Table 8.2 and Table 8.3 show the initial results for scenario A for the three logical
simulation runtimes (2000, 4000 and 8000 seconds). No data is available for LQNS and
LQSim because they could not handle the Exp-function used in the workload specification.
First of all, the values marked with (a) deserve special attention: For the 71.120 requests/s
workloads the values for the scenario mean response times are 40 to almost 200 times
higher than the values of SimuCom. The reason is that for such a high workload one of
the CPUs is at maximum capacity and the scenario uses an open workload. SimuCom
tries to allocate a new thread for each new request. As the requests are spawned faster
than they can be serviced, an internal out of memory exception is thrown and SimuCom
aborts the simulation prematurely. SimQPN runs the full specified duration as it does not
run out of memory. The system never reaches a stable state. The numbers for the mean
response times have therefore no meaning as they rise without bound with the simulation
time. The numbers have only been included here as a guide how such numbers are to
be interpreted by a performance analyst. The important information is the bottleneck
resource, which has correctly been identified by both solvers.

The other workloads show that the processing resource utilization prediction of SimQPN
is always about 5% higher than the prediction by SimuCom. The explanation for this is
that the DependencySolver reduces the stochastic expression for the inter-arrival time of
the workload to a generic distribution. In this case, the computation shows an imprecision
resulting in a mean value about 5% higher than the original mean of the specified Exp-
Function.

In this initial results set the values for the mean response times show a significant error.
For a low workload, the estimate is about 17% lower than the SimuCom estimate. The
error increases with the workload, reaching almost 45% for a high workload. Table 8.4
shows the corrected set of results for scenario A. Apart from the type of distribution
used, the mean value of the inter-arrival time was also corrected. The results now show
an excellent prediction with an error below 0.2% for the utilizations and below 1.5% for
the mean response times. This shows that the error was only caused by a temporary
implementation issue and that it is not inherent in the PCM-to-QPN mapping.

Table 8.5, Table 8.6 and Table 8.7 show the results for scenario B. This time, the highest
workload does not overload one of the CPUs and the analysis reaches steady state. Again
we notice the 5% error in the CPU utilization estimates. The scenario mean response
times, while still lower than the SimuCom estimates, however, they do not exceed an 8%
error this time. At a first sight this is surprising. It can, however, easily be explained
with the loop which is introduced in the usage model of scenario B. The loop calls a delay
resource three time with a demand of 333ms each. Each request therefore runs at least a
fixed amount of 999ms independently from all other circumstances. As the response times
are on average very close to 1000ms, we naturally reach a much smaller error. If the relative
error is computed after substracting the fixed 999ms from the results, we see a situation
comparable to scenario A. At 11.254 requests/s and 8000 seconds logical simulation time
we have a corrected relative error of about 5%. At 43.691 requests/s and 8000 seconds we
have an error of about 35%. The reason for the error is the same as in scenario A.

There are no notable differences in the results between the different logical runtimes.

Figure 8.1 shows the response time distributions for scenario A with a workload of 43.691
req/s and a logical simulation time of 8000 seconds of SimuCom and SimQPN. The
SimQPN distribution shows a much lower peak, which matches the error in the mean
response time predictions.

Figure 8.2 shows the diagram for the manually corrected set of experiments. The peaks
now match. However, the distribution of SimQPN stretches further out to the right. This
is caused by the approximation introduced in the loop mapping (see Section 5.2.5).
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Throughput: 13.315 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.185 0.195 5.34% yes - - - - - -
UDBS CPU 0.0554 0.058 4.66% yes - - - - - -
RScenario 0.0215 0.018 -16.4% yes - - - - - -
TAnalysis 81.2 4.77 -94.1% yes - - - - - -

Throughput: 33.627 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.469 0.493 4.98% yes - - - - - -
UDBS CPU 0.140 0.147 4.78% yes - - - - - -
RScenario 0.0311 0.02 -35.8% yes - - - - - -
TAnalysis 199 9 -95.5% yes - - - - - -

Throughput: 49.925 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.697 0.732 5.07% yes - - - - - -
UDBS CPU 0.208 0.219 5.13% yes - - - - - -
RScenario 0.0513 0.028 -45.4% yes - - - - - -
TAnalysis 274 12.7 -95.4% yes - - - - - -

Throughput: 71.120 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.988 1.0 1.17% yes - - - - - -
UDBS CPU 0.294 0.298 1.69% yes - - - - - -

RScenario 0.953 90.7 9417%(a) yes - - - - - -

TAnalysis 78.6 1156 1370%(a) yes - - - - - -

Table 8.2: SPECjAppServer2004 Next Scenario A Evaluation Results for 4000 sec
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Figure 8.1: SPECjAppServer2004 Next SimuCom vs SimQPN Histograms
ScenarioA 49.925 req/s 8000sec
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Throughput: 13.315 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.186 0.195 5.08% yes - - - - - -
UDBS CPU 0.0556 0.058 4.41% yes - - - - - -
RScenario 0.0216 0.018 -16.5% yes - - - - - -
TAnalysis 176 7.35 -95.8% yes - - - - - -

Throughput: 33.627 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.469 0.493 5.14% yes - - - - - -
UDBS CPU 0.140 0.147 4.83% yes - - - - - -
RScenario 0.0311 0.02 -35.7% yes - - - - - -
TAnalysis 454 15.7 -96.5% yes - - - - - -

Throughput: 49.925 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.696 0.732 5.14% yes - - - - - -
UDBS CPU 0.208 0.219 5.23% yes - - - - - -
RScenario 0.0512 0.028 -45.3% yes - - - - - -
TAnalysis 557 23 -95.9% yes - - - - - -

Throughput: 71.120 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.988 1.0 1.19% - - - - - - -
UDBS CPU 0.293 0.298 1.61% - - - - - - -

RScenario 0.934 184 19609%(a) - - - - - - -

TAnalysis 38.7 4828 12387%(a) - - - - - - -

Table 8.3: SPECjAppServer2004 Next Scenario A Evaluation Results for 8000 sec

Throughput: 13.315 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.186 0.186 - no - - - - - -
UDBS CPU 0.0556 0.0555 - no - - - - - -
RScenario 0.0216 0.0219 1.46% yes - - - - - -
TAnalysis 176 7.86 -95.5% yes - - - - - -

Throughput: 33.627 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.469 0.469 - no - - - - - -
UDBS CPU 0.140 0.140 - no - - - - - -
RScenario 0.0311 0.031 -0.405% yes - - - - - -
TAnalysis 454 17.3 -96.2% yes - - - - - -

Throughput: 49.925 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.696 0.697 0.153% yes - - - - - -
UDBS CPU 0.208 0.208 - no - - - - - -
RScenario 0.0512 0.0511 - no - - - - - -
TAnalysis 557 24.7 -95.6% yes - - - - - -

Table 8.4: SPECjAppServer2004 Next Scenario A Evaluation Results for 8000 sec
(corrected)
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Throughput: 11.254 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.235 0.247 5.16% yes - - - - - -
UDBS CPU 0.133 0.14 5.1% yes - - - - - -
RScenario 1.04 1.04 0.161% yes - - - - - -
TAnalysis 4.85 65.5 -92.6% yes - - - - - -

Throughput: 22.211 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.463 0.487 5.21% yes - - - - - -
UDBS CPU 0.263 0.276 5.18% yes - - - - - -
RScenario 1.05 1.05 -0.731% yes - - - - - -
TAnalysis 126 7.37 -94.2% yes - - - - - -

Throughput: 33.898 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.708 0.744 5.09% yes - - - - - -
UDBS CPU 0.401 0.422 5.13% yes - - - - - -
RScenario 1.09 1.06 -2.93% yes - - - - - -
TAnalysis 186 10.4 -94.4% yes - - - - - -

Throughput: 43.691 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.912 0.958 5.08% yes - - - - - -
UDBS CPU 0.517 0.544 5.05% yes - - - - - -
RScenario 1.26 1.17 -7.37% yes - - - - - -
TAnalysis 228 14 -93.9% yes - - - - - -

Table 8.5: SPECjAppServer2004 Next Scenario B Evaluation Results for 2000 sec
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Figure 8.2: SPECjAppServer2004 Next SimuCom vs SimQPN Histograms (corrected)
ScenarioA 49.925 req/s 8000sec
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Throughput: 11.254 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.235 0.247 5.16% yes - - - - - -
UDBS CPU 0.133 0.14 5.13% yes - - - - - -
RScenario 1.04 1.04 0.226% yes - - - - - -
TAnalysis 128 7.3 -94.3% yes - - - - - -

Throughput: 22.211 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.464 0.487 5.11% yes - - - - - -
UDBS CPU 0.263 0.276 5.05% yes - - - - - -
RScenario 1.05 1.05 -0.792% yes - - - - - -
TAnalysis 250 12.4 -95% yes - - - - - -

Throughput: 33.898 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.708 0.743 5.03% yes - - - - - -
UDBS CPU 0.402 0.422 5.1% yes - - - - - -
RScenario 1.09 1.06 -2.98% yes - - - - - -
TAnalysis 370 18.4 -95% yes - - - - - -

Throughput: 43.691 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.912 0.958 5.09% yes - - - - - -
UDBS CPU 0.517 0.544 5.12% yes - - - - - -
RScenario 1.26 1.17 -7.37% yes - - - - - -
TAnalysis 457 25.8 -94.4% yes - - - - - -

Table 8.6: SPECjAppServer2004 Next Scenario B Evaluation Results for 4000 sec

SimuCom

Response time in sec

P
ro

b
a

b
ili

ty

0 1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

SimQPN

Response time in sec

P
ro

b
a

b
ili

ty

0 1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

Figure 8.3: SPECjAppServer2004 Next SimuCom vs SimQPN Histograms
ScenarioB 33.898 req/s 8000sec
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Throughput: 11.254 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.235 0.247 5% yes - - - - - -
UDBS CPU 0.133 0.14 4.95% yes - - - - - -
RScenario 1.04 1.04 0.207% yes - - - - - -
TAnalysis 253 12.5 -95% yes - - - - - -

Throughput: 22.211 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.464 0.487 4.99% yes - - - - - -
UDBS CPU 0.263 0.276 4.99% yes - - - - - -
RScenario 1.05 1.05 -0.78% yes - - - - - -
TAnalysis 510 23.1 -95.5% yes - - - - - -

Throughput: 33.898 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.708 0.744 5.05% yes - - - - - -
UDBS CPU 0.402 0.422 5.06% yes - - - - - -
RScenario 1.09 1.06 -2.99% yes - - - - - -
TAnalysis 777 35.2 -95.5% yes - - - - - -

Throughput: 43.691 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UWLS CPU 0.912 0.959 5.14% yes - - - - - -
UDBS CPU 0.517 0.544 5.13% yes - - - - - -
RScenario 1.26 1.17 -7.32% yes - - - - - -
TAnalysis 926 50.6 -94.5% yes - - - - - -

Table 8.7: SPECjAppServer2004 Next Scenario B Evaluation Results for 8000 sec
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Figure 8.4: SPECjAppServer2004 Next SimuCom vs SimQPN Histograms
ScenarioB 43.691 req/s 8000sec
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Looking at Figure 8.3, the distributions for scenario B with 33.898 req/s, and Figure 8.4,
with 43.691 req/s, the match is clearly worse. The SimuCom results are almost constant,
while the SimQPN results distribution looks roughly like a Poisson distribution. In this
case the approximation introduced in the loop mapping (see Section 5.2.5) cause a no-
ticeable error in the distribution. The mapping allows for cases in which the usage model
loop is executed only once, and for cases in which the loop is executed more than the
specified three times. With over 300ms delay in the loop body of the usage scenario, even
a reduction of one iteration has a noticeable effect.

Looking at the execution times of the SimQPN run with probes, the runs took about 1.8
times as long as without the probes measurements. However, the execution time is still
about an order of magnitude lower than the execution time of SimuCom.

8.4 Case Study 2: ABB Demonstrator

8.4.1 Overview

The PCM instance of the ABB demonstrator model was made available in the context
of an internship at ABB Research in Ladenburg, Germany. It was created to evaluate
the Q-ImPrESS method of the Q-ImPrESS joint research project. The system used as
the ABB demonstrator for the Q-ImPrESS method is a large distributed [process] control
system by ABB [qim, D7.1]. We therefore assume that it meets our requirements of being
a representative system of a real industrial application.

In this case study, the workloads for the two main usage scenarios (“Retrieve Data” and
“History Retrieve”) are varied. In the following, they are referred to as scenario A and
scenario B. To limit the number of scenario/workload combinations, the workloads for
the two scenarios are varied independently. With the scenario B throughput fixed at 5
requests/s, we analyzed:

• Scenario A throughput 30 requests/s

• Scenario A throughput 60 requests/s

• Scenario A throughput 90 requests/s

• Scenario A throughput 120 requests/s

• Scenario A throughput 150 requests/s

Keeping the scenario A throughput at 30 requests/s, we analyzed:

• Scenario B throughput 3 requests/s

• Scenario B throughput 4 requests/s

• Scenario B throughput 5 requests/s

• Scenario B throughput 10 requests/s

As all variations are based on the same PCM system composition, a single logical reference
simulation time has been derived. A number of test runs showed that the PCM relative
stopping criterion for the main scenario (scenario A) did not appear to converge. Therefore
the time until 100000 requests were finished, 3000 logical seconds, was taken as the base
time T.
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8.4.2 Complexity

The ABB Demonstrator PCM instance is constructed following a simple pattern. It con-
sists of a number of BasicComponents, offering a single service each. Each SEFF consists
of a single InternalAction, followed by a branch with ExternalCallActions to the other
components of the system. The resource demands for the internal actions were derived
from black-box utilization measurements of the individual components using the Service
Demand Law. The branch probabilities were derived from inter-component request logs.

The usage model consists of four parallel UsageScenarios. Each UsageScenario is very sim-
ple and contains only one EntryLevelSystemCall and no loops or branches. All workloads
are open workloads. They are varied between 30 and 120 req/s for the main scenario and
between 3 and 10 req/s for the second most important scenario. The remaining scenarios
run at 1 req/s and do not cause significant load on the system.

The system part of the model is of about average size with 10 referenced AssemblyCon-
texts in 9 referenced BasicComponents. No CompositeComponents or SubSystems are
referenced. The referenced SEFFs contain 17 ExternalCallActions. As mentioned be-
fore, there are 9 branches, one per component, and no loops. No PassiveResources are
referenced.

Apart from basic number arithmetic, no advanced stochastic expression constructs are
used. Requests arrive at a deterministic and constant rate.

8.4.3 Results

Table 8.8, Table 8.9 and Table 8.10 show the results for the variation of the scenario A
workload for each of the three logical simulation times (1500, 3000 and 6000 seconds). The
processing resource utilizations are predicted very accurately by all solvers. The results of
the SimQPN, LQNS and LQSim solvers mostly have no statistically significant difference
to the SimuCom result. The remaining cases stay below a derivation of 0.5%.

In the prediction of the scenario mean response time the situation is more diverse. The
workload appears to have no strong effect on the accuracy of prediction of the SimQPN
solver. The results stay below a 10% error for scenario A and below a 2% error for sce-
nario B, which are good values for a response time prediction. The two LQN-based solvers
show no notable differences between each other. However, the accuracy of the prediction
results for the mean response time of scenario A appears to decrease exponentially with an
increasing workload for scenario A. The accuracy of the results for scenario B appears to
decrease in a linear fashion. The prediction results for the lowest workload for scenario A
(30 req/s) stay around a 5% error. For the highest workload for scenario A (150 req/s)
the error goes up to over 70% for scenario A and to over 17% for scenario B.

Table 8.11, Table 8.12 and Table 8.13 show the results for the variation of the scenario B
workload for the different runtimes. Compared to the scenario A results, there are no
notable differences in the accuracy of the processing resource utilization predictions and
in the SimQPN mean response time predictions. The LQN-based solvers show better
predictions for the response times but the accuracy appears to decrease exponentially
(this time for both scenarios) with an increasing workload. At 3 req/s for scenario B, the
prediction results are very accurate with an error below 2%. At 10 req/s for scenario B,
the error goes up to over 9% for scenario A and over 28% for scenario B.

There are no notable differences in the results between the different logical runtimes.

Figure 8.5 shows the response time distributions for scenario A with a workload of 120
req/s for scenario A, 5 req/s for scenario B, and a logical simulation time of 6000 seconds.
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Throughputs: ScenarioA 30 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.123 0.123 0.196% yes 0.123 - no 0.122 - no
UAS CPU 0.168 0.168 - no 0.168 - no 0.167 - no
RScenarioA 0.00452 0.00477 5.42% yes 0.00431 -4.67% yes 0.00437 -3.37% yes
RScenarioB 0.0383 0.038 -0.87% yes 0.0409 6.65% yes 0.0408 6.56% yes
TAnalysis 18 6.83 -62% yes 0.905 -95% yes 1.48 -91.8% yes

Throughputs: ScenarioA 60 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.219 0.219 - no 0.219 - no 0.219 - no
UAS CPU 0.186 0.186 - no 0.186 - no 0.186 - no
RScenarioA 0.00419 0.004 -4.64% yes 0.00477 13.8% yes 0.00488 16.4% yes
RScenarioB 0.0386 0.039 1.05% yes 0.0423 9.51% yes 0.0422 9.26% yes
TAnalysis 29.4 7.11 -75.8% yes 0.749 -97.5% yes 1.88 -93.6% yes

Throughputs: ScenarioA 90 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.315 0.314 - no 0.315 - no 0.315 - no
UAS CPU 0.204 0.204 - no 0.204 - no 0.205 - no
RScenarioA 0.00410 0.004 -2.55% yes 0.00539 31.4% yes 0.00548 33.4% yes
RScenarioB 0.0390 0.039 0.118% yes 0.0439 12.6% yes 0.0442 13.5% yes
TAnalysis 41.8 7.4 -82.3% yes 0.85 -98% yes 2.39 -94.3% yes

Throughputs: ScenarioA 120 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.411 0.411 - no 0.411 - no 0.410 - no
UAS CPU 0.222 0.222 - no 0.222 - no 0.223 - no
RScenarioA 0.00409 0.004 -2.18% yes 0.00614 50.1% yes 0.00629 53.8% yes
RScenarioB 0.0394 0.0391 -0.783% yes 0.0457 15.8% yes 0.0458 16% yes
TAnalysis 54 7.85 -85.5% yes 0.902 -98.3% yes 2.8 -94.8% yes

Throughputs: ScenarioA 150 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.507 0.507 - no 0.507 - no 0.507 - no
UAS CPU 0.24 0.24 - no 0.24 - no 0.240 - no
RScenarioA 0.00418 0.004 -4.28% yes 0.00715 71.2% yes 0.00742 77.6% yes
RScenarioB 0.0405 0.0407 0.492% yes 0.0479 18.3% yes 0.048 18.5% yes
TAnalysis 66.8 8.22 -87.7% yes 0.993 -98.5% yes 3.36 -95% yes

Table 8.8: ABB Demonstrator ScenarioA Variation Evaluation Results for 1500 sec
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Throughputs: ScenarioA 30 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.123 0.123 0.241% yes 0.123 - no 0.122 - no
UAS CPU 0.168 0.168 - no 0.168 - no 0.168 - no
RScenarioA 0.00452 0.0049 8.32% yes 0.00431 -4.71% yes 0.00437 -3.34% yes
RScenarioB 0.0383 0.038 -0.872% yes 0.0409 6.65% yes 0.0409 6.69% yes
TAnalysis 32.4 7.15 -78% yes 0.905 -97.2% yes 1.99 -93.9% yes

Throughputs: ScenarioA 60 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.219 0.219 0.120% yes 0.219 - no 0.218 - no
UAS CPU 0.186 0.186 - no 0.186 - no 0.187 - no
RScenarioA 0.00419 0.004 -4.5% yes 0.00477 14.0% yes 0.00486 16.0% yes
RScenarioB 0.0386 0.039 1.07% yes 0.0423 9.52% yes 0.0424 9.8% yes
TAnalysis 57 7.92 -86.1% yes 0.749 -98.7% yes 2.93 -94.9% yes

Throughputs: ScenarioA 90 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.315 0.315 - no 0.315 - no 0.315 - no
UAS CPU 0.204 0.204 -0.2% yes 0.204 - no 0.205 - no
RScenarioA 0.00411 0.004 -2.6% yes 0.00539 31.3% yes 0.00549 33.7% yes
RScenarioB 0.0389 0.039 0.151% yes 0.0439 12.7% yes 0.0442 13.4% yes
TAnalysis 81.2 8.74 -89.2% yes 0.85 -99% yes 3.83 -95.3% yes

Throughputs: ScenarioA 120 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.411 0.411 - no 0.411 - no 0.411 - no
UAS CPU 0.222 0.222 - no 0.222 - no 0.222 - no
RScenarioA 0.00409 0.004 -2.09% yes 0.00614 50.2% yes 0.0063 54.3% yes
RScenarioB 0.0395 0.0392 -0.723% yes 0.0457 15.8% yes 0.0456 15.7% yes
TAnalysis 106 9.48 -91% yes 0.902 -99.1% yes 4.71 -95.5% yes

Throughputs: ScenarioA 150 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.507 0.507 - no 0.507 - no 0.507 - no
UAS CPU 0.24 0.24 - no 0.24 - no 0.240 - no
RScenarioA 0.00418 0.004 -4.31% yes 0.00715 71.1% yes 0.00745 78.2% yes
RScenarioB 0.0405 0.0407 0.465% yes 0.0479 18.3% yes 0.0476 17.4% yes
TAnalysis 132 10.3 -92.2% yes 0.993 -99.2% yes 5.83 -95.6% yes

Table 8.9: ABB Demonstrator ScenarioA Variation Evaluation Results for 3000 sec
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Throughputs: ScenarioA 30 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.123 0.123 0.224% yes 0.123 - no 0.123 - no
UAS CPU 0.168 0.168 - no 0.168 - no 0.168 - no
RScenarioA 0.00452 0.00493 9.16% yes 0.00431 -4.62% yes 0.0044 -2.71% yes
RScenarioB 0.0383 0.038 -0.871% yes 0.0409 6.65% yes 0.041 7.03% yes
TAnalysis 62.5 7.85 -87.4% yes 0.905 -98.6% yes 2.92 -95.3% yes

Throughputs: ScenarioA 60 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.219 0.219 0.178% yes 0.219 - no 0.219 - no
UAS CPU 0.186 0.186 - no 0.186 - no 0.186 - no
RScenarioA 0.00419 0.004 -4.62% yes 0.00477 13.8% yes 0.00487 16.1% yes
RScenarioB 0.0386 0.039 1.06% yes 0.0423 9.52% yes 0.0423 9.74% yes
TAnalysis 111 9.29 -91.6% yes 0.749 -99.3% yes 4.85 -95.6% yes

Throughputs: ScenarioA 90 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.315 0.315 0.0801% yes 0.315 - no 0.315 - no
UAS CPU 0.204 0.204 - no 0.204 - no 0.204 - no
RScenarioA 0.00411 0.004 -2.56% yes 0.00539 31.4% yes 0.0055 33.9% yes
RScenarioB 0.0389 0.039 0.137% yes 0.0439 12.6% yes 0.0439 12.8% yes
TAnalysis 161 11.2 -93% yes 0.85 -99.5% yes 6.45 -96% yes

Throughputs: ScenarioA 120 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.411 0.411 0.072% yes 0.411 - no 0.411 - no
UAS CPU 0.222 0.222 - no 0.222 - no 0.221 - no
RScenarioA 0.00409 0.004 -2.14% yes 0.00614 50.2% yes 0.00631 54.4% yes
RScenarioB 0.0395 0.0391 -0.986% yes 0.0457 15.8% yes 0.0454 15.2% yes
TAnalysis 211 12.4 -94.1% yes 0.902 -99.6% yes 8.23 -96% yes

Throughputs: ScenarioA 150 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.507 0.507 0.0412% yes 0.507 - no 0.507 - no
UAS CPU 0.24 0.24 - no 0.24 - no 0.24 - no
RScenarioA 0.00418 0.004 -4.29% yes 0.00715 71.2% yes 0.00743 77.8% yes
RScenarioB 0.0405 0.0407 0.542% yes 0.0479 18.3% yes 0.0479 18.3% yes
TAnalysis 262 13.9 -94.7% yes 0.993 -99.6% yes 10.0 -96.2% yes

Table 8.10: ABB Demonstrator ScenarioA Variation Evaluation Results for 6000 sec

90



8.4. Case Study 2: ABB Demonstrator 91

Throughputs: ScenarioA 30 req/s ScenarioB 3 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.114 0.114 0.0699% yes 0.114 - no 0.114 - no
UAS CPU 0.108 0.108 - no 0.108 - no 0.108 - no
RScenarioA 0.00428 0.004 -6.53% yes 0.00423 -1.19% yes 0.00431 0.788% yes
RScenarioB 0.039 0.039 0.0966% yes 0.0385 -1.31% yes 0.0386 - no
TAnalysis 16.6 6.61 -60.2% yes 0.688 -95.9% yes 1.41 -91.5% yes

Throughputs: ScenarioA 30 req/s ScenarioB 4 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.118 0.118 -0.147% yes 0.118 - no 0.118 - no
UAS CPU 0.138 0.138 - no 0.138 - no 0.138 - no
RScenarioA 0.00417 0.004 -4.15% yes 0.00427 2.29% yes 0.00437 4.6% yes
RScenarioB 0.0372 0.037 -0.524% yes 0.0396 6.54% yes 0.0395 6.28% yes
TAnalysis 16.9 6.65 -60.7% yes 0.688 -96% yes 1.42 -91.6% yes

Throughputs: ScenarioA 30 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.123 0.123 0.196% yes 0.123 - no 0.122 - no
UAS CPU 0.168 0.168 - no 0.168 - no 0.167 - no
RScenarioA 0.00452 0.00477 5.42% yes 0.00431 -4.67% yes 0.00437 -3.37% yes
RScenarioB 0.0383 0.038 -0.87% yes 0.0409 6.65% yes 0.0408 6.56% yes
TAnalysis 18 6.83 -62% yes 0.905 -95% yes 1.48 -91.8% yes

Throughputs: ScenarioA 30 req/s ScenarioB 10 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.144 0.144 -0.117% yes 0.144 - no 0.145 - no
UAS CPU 0.318 0.318 - no 0.318 - no 0.320 - no
RScenarioA 0.00513 0.005 -2.50% yes 0.00455 -11.2% yes 0.00466 -9.2% yes
RScenarioB 0.0379 0.038 0.362% yes 0.0487 28.7% yes 0.0494 30.6% yes
TAnalysis 19.4 6.8 -64.9% yes 0.81 -95.8% yes 1.52 -92.2% yes

Table 8.11: ABB Demonstrator ScenarioB Variation Evaluation Results for 1500 sec
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Figure 8.5: ABB Demonstrator SimuCom vs SimQPN Histograms
ScenarioA 120/5 req/s 6000sec
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Throughputs: ScenarioA 30 req/s ScenarioB 3 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.114 0.114 0.0433% yes 0.114 - no 0.114 - no
UAS CPU 0.108 0.108 - no 0.108 - no 0.108 - no
RScenarioA 0.00428 0.004 -6.55% yes 0.00423 -1.21% yes 0.00431 0.586% yes
RScenarioB 0.039 0.039 0.0985% yes 0.0385 -1.31% yes 0.0384 -1.34% yes
TAnalysis 30.5 6.8 -77.7% yes 0.688 -97.7% yes 1.83 -94% yes

Throughputs: ScenarioA 30 req/s ScenarioB 4 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.118 0.118 -0.213% yes 0.118 - no 0.118 - no
UAS CPU 0.138 0.138 - no 0.138 - no 0.138 - no
RScenarioA 0.00418 0.004 -4.2% yes 0.00427 2.23% yes 0.00434 3.98% yes
RScenarioB 0.0372 0.037 -0.534% yes 0.0396 6.53% yes 0.0397 6.68% yes
TAnalysis 31.5 7.1 -77.4% yes 0.688 -97.8% yes 1.85 -94.1% yes

Throughputs: ScenarioA 30 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.123 0.123 0.241% yes 0.123 - no 0.122 - no
UAS CPU 0.168 0.168 - no 0.168 - no 0.168 - no
RScenarioA 0.00452 0.0049 8.32% yes 0.00431 -4.71% yes 0.00437 -3.34% yes
RScenarioB 0.0383 0.038 -0.872% yes 0.0409 6.65% yes 0.0409 6.69% yes
TAnalysis 32.4 7.15 -78% yes 0.905 -97.2% yes 1.99 -93.9% yes

Throughputs: ScenarioA 30 req/s ScenarioB 10 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.144 0.144 -0.117% yes 0.144 - no 0.145 0.373% yes
UAS CPU 0.318 0.318 - no 0.318 - no 0.319 - no
RScenarioA 0.00513 0.005 -2.5% yes 0.00455 -11.2% yes 0.00467 -9.02% yes
RScenarioB 0.0379 0.038 0.364% yes 0.0487 28.7% yes 0.0491 29.7% yes
TAnalysis 37.3 7.46 -80% yes 0.81 -97.8% yes 2.13 -94.3% yes

Table 8.12: ABB Demonstrator ScenarioB Variation Evaluation Results for 3000 sec
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Figure 8.6: ABB Demonstrator SimuCom vs SimQPN Histograms
ScenarioB 120/5 req/s 6000sec
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Throughputs: ScenarioA 30 req/s ScenarioB 3 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.114 0.114 0.0417% yes 0.114 -0.0223% yes 0.114 - no
UAS CPU 0.108 0.108 - no 0.108 - no 0.109 - no
RScenarioA 0.00428 0.004 -6.57% yes 0.00423 -1.23% yes 0.00431 0.67% yes
RScenarioB 0.039 0.039 0.0963% yes 0.0385 -1.31% yes 0.0386 -1.03% yes
TAnalysis 59.9 7.74 -87% yes 0.688 -98.9% yes 2.83 -95.3% yes

Throughputs: ScenarioA 30 req/s ScenarioB 4 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.118 0.118 -0.220% yes 0.118 - no 0.118 - no
UAS CPU 0.138 0.138 -0.113% yes 0.138 - no 0.138 - no
RScenarioA 0.00417 0.004 -4.18% yes 0.00427 2.26% yes 0.00434 3.92% yes
RScenarioB 0.0372 0.037 -0.536% yes 0.0396 6.53% yes 0.0398 6.87% yes
TAnalysis 61.5 7.76 -87.4% yes 0.688 -98.9% yes 2.88 -95.3% yes

Throughputs: ScenarioA 30 req/s ScenarioB 5 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.123 0.123 0.224% yes 0.123 - no 0.123 - no
UAS CPU 0.168 0.168 - no 0.168 - no 0.168 - no
RScenarioA 0.00452 0.00493 9.16% yes 0.00431 -4.62% yes 0.0044 -2.71% yes
RScenarioB 0.0383 0.038 -0.871% yes 0.0409 6.65% yes 0.041 7.03% yes
TAnalysis 62.5 7.85 -87.4% yes 0.905 -98.6% yes 2.92 -95.3% yes

Throughputs: ScenarioA 30 req/s ScenarioB 10 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.144 0.144 -0.117% yes 0.144 - no 0.144 - no
UAS CPU 0.318 0.318 - no 0.318 - no 0.317 - no
RScenarioA 0.00513 0.005 -2.49% yes 0.00455 -11.2% yes 0.00465 -9.28% yes
RScenarioB 0.0379 0.038 0.362% yes 0.0487 28.7% yes 0.0489 29.3% yes
TAnalysis 71.2 8.05 -88.7% yes 0.81 -98.9% yes 3.19 -95.5% yes

Table 8.13: ABB Demonstrator ScenarioB Variation Evaluation Results for 6000 sec
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The distributions look almost alike and fit the relatively low errors of the mean response
times.

The distribution for scenario B with the same workload and logical runtime (Figure 8.6)
is less accurate. SimuCom predicts, that there are almost no requests faster than 0.03
seconds. SimQPN predicts quite a big number of requests as fast as 0.02 seconds. 0.04
seconds and upwards the distributions look similar again. The most likely reason for this
is that the ABB model contains branches with very low branch probabilities and very
low resource demands. With response time differences between the diagrams below 20ms,
even small rounding errors or slight differences in how the random number generators work
could cause significant differences.

A simulation run with 18000 logical seconds produced the exact same distributions, the
error is not due to a lack of data.

The SimQPN simulation run for 6000 seconds with probes enabled took about 1.3 times
as long as without probes. In this case, the SimQPN run was about 15 times faster than
the SimuCom run.

8.5 Case Study 3: MediaStore

8.5.1 Overview

The MediaStore is an example model that does not truly reach the complexity of an
industrial system. It is still included as it is still much larger than the simple models used
to evaluate individual features. The PCM instance used for this thesis is based on the
MediaStore scenario used in [Koz08, pp. 237]. It was ported to the current PCM version.
As the results presented in [Koz08] could not be reproduced, we either deal with a slightly
different version or the tools behave differently in the current version. As the focus of this
evaluation is to compare to the SimuCom reference values, rather than to interpret the
results at a domain level, this mismatch is of no concern for this discussion.

For this evaluation, only a single scenario with a closed workload is analyzed. In the
following, it is referred to as scenario A.

A number of test runs using SimuCom and the relative stopping criterion for the scenario
mean response time finished after close to 34000 logical seconds, which is taken as the
reference time T.

8.5.2 Complexity

The MediaStore PCM instance is very simple. In the usage model it has one UsageScenario
with a single EntryLevelSystemCall, no loops and no branches. the UsageScenario has a
closed workload with one user and 0 think time.

The system part references 5 AssemblyContexts in 5 BasicComponents. 4 ExternalCallAc-
tions are referenced. No branches are used. Two loops are present (one LoopAction and
one CollectionIteratorAction). No CompositeComponents, SubSystems and no PassiveRe-
sources are referenced.

For the stochastic expressions the commonly used IntPMF and DoublePDF constructs are
used.
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1 user, 0 think time

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.359 0.362 1.02% yes 0.363 1.20% yes - - -
UDB CPU 0.641 0.638 -0.573% yes 0.638 -0.525% yes - - -
RScenario 8.37 8.28 -1.05% yes 7.51 -10.2% yes - - -
XScenario 0.120 0.121 1.1% yes 0.129 7.92% yes - - -
TAnalysis 4.2 1.96 -53.4% yes 0.361 -91.4% yes - - -

Table 8.14: MediaStore ScenarioA Evaluation Results for 17000 sec

1 user, 0 think time

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.358 0.362 1.36% yes 0.363 1.48% yes - - -
UDB CPU 0.642 0.638 -0.76% yes 0.638 -0.68% yes - - -
RScenario 8.39 8.28 -1.28% yes 7.51 -10.5% yes - - -
XScenario 0.119 0.121 1.27% yes 0.129 8.19% yes - - -
TAnalysis 5.68 1.89 -66.7% yes 0.361 -93.6% yes - - -

Table 8.15: MediaStore ScenarioA Evaluation Results for 34000 sec

1 user, 0 think time

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.358 0.363 1.31% yes 0.363 1.34% yes - - -
UDB CPU 0.642 0.637 -0.73% yes 0.638 -0.599% yes - - -
RScenario 8.38 8.28 -1.12% yes 7.51 -10.3% yes - - -
XScenario 0.119 0.121 1.14% yes 0.129 8.05% yes - - -
TAnalysis 8.88 2.02 -77.3% yes 0.361 -96% yes - - -

Table 8.16: MediaStore ScenarioA Evaluation Results for 68000 sec
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8.5.3 Results

Table 8.14, Table 8.15 and Table 8.16 show the results for scenario A for each of the three
logical simulation times (17000, 34000 and 68000 seconds). It is unclear why the LQSim
solver crashed during the execution. It is possible that there are issues with the newer
version which is used compared to the version in [Koz08]. In practice, the LQNS results
are more important because of the very low execution time.

The results between SimuCom, SimQPN and LQNS do not differ by much. It is interesting
that the processing resource utilizations in this case are predicted almost identically by
SimQPN and LQNS. The error stays under 1.5% but is statistically significant. It looks
like both approaches employ a similar set of abstractions. One possibility would be that
this error is introduced by the DependencySolver pre-processing, which both approaches
employ.

Regarding the scenario mean response time and throughput predictions the SimQPN and
LQNS solvers differ. SimQPN reaches a much smaller error which stays below 1.3% for
both metrics. LQNS reaches an acceptable error for the mean response time of just over
10% and a less acceptable error for the throughput of about 8%.

There are no notable differences in the results between the different logical runtimes.
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Figure 8.7: MediaStore SimuCom vs SimQPN Histograms
ScenarioA 68000sec

Figure 8.7 shows the response time distributions for scenario A and a logical simulation
time of 68000 seconds. The distributions show a good match. The SimQPN distribution is
slightly more steep on the left end and reaches out a little further to the right. It appears
that the error introduced by the loop mapping (see Section 5.2.5) is offset by the fact
that the DoublePDFs used inside the internal action resource demand specifications are
reduced to mean values, reducing the spread.

The simulation run times for this simple scenario are below 10 seconds for both SimuCom
and SimQPN, which is too low for a good comparison as the initialization time makes up
most of the execution time.
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8.6 Case Study 4: CoCoME

8.6.1 Overview

CoCoME stands for Common Component Modeling Example and describes a trading sys-
tem as it can be observed in a supermarket handling sales [HKW+08]. For this evaluation
a model representing the CoCoME example was available. We assume that it meets our
requirements of size and complexity.

The model was migrated and therefore might not match exactly the description in [HKW+08].
The workload has also been adapted so that the system is not overloaded and reaches a
steady state. As we focus on comparing the SimuCom results to the other solvers this is
of no concern for this evaluation.

A single scenario with a closed workload is analyzed. In the following, it will be referred
to as scenario A.

A test run using SimuCom and a relative stopping criterion for the mean response time
showed that this scenario requires a very large logical simulation time. Only after 600000
simulated seconds did the run finish. This time was taken as the base time T.

8.6.2 Complexity

The CoCoME PCM instance has a very simple usage model. It has one UsageScenario
with a single EntryLevelSystemCall, no loops and no branches. The closed workload in
this case has 20 users and a think time of 30 seconds.

The system part of the instance is of larger than average size and is dominated by loops.
The high number of loops cause the high logical simulation time as each requests spends
considerable amount of time in the system, keeping the simulation engine busy through
many loop events. 13 AssemblyContexts are referenced in 10 BasicComponents and 3
CompositeComponents. 14 ExternalCallActions, 3 branches and 6 loops (LoopActions)
are referenced. No SubSystems and no PassiveResources are referenced.

The stochastic expressions do not use more advanced constructs than the commonly used
IntPMF and DoublePDF.

8.6.3 Results

20 users, 30 sec think time

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.642 0.643 0.193% yes 0.646 0.555% yes - - -
RScenario 2.65 2.59 -2.27% yes 2.47 -6.9% yes - - -
XScenario 0.613 0.614 0.176% yes 0.616 0.553% yes - - -
TAnalysis 1250 594 -52.5% yes 5.73 -99.5% yes - - -

Table 8.17: CoCoME ScenarioA Evaluation Results for 300000 sec

20 users, 30 sec think time

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.644 0.645 - no 0.646 0.281% yes - - -
RScenario 2.57 2.54 - no 2.47 -3.69% yes - - -
XScenario 0.614 0.615 - no 0.616 0.284% yes - - -
TAnalysis 2488 1254 -49.6% yes 5.73 -99.8% yes - - -

Table 8.18: CoCoME ScenarioA Evaluation Results for 600000 sec
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20 users, 30 sec think time

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UAS CPU 0.645 0.645 - no 0.646 0.176% yes - - -
RScenario 2.53 2.52 - no 2.47 -2.41% yes - - -
XScenario 0.615 0.615 - no 0.616 0.182% yes - - -
TAnalysis 4931 2387 -51.6% yes 5.73 -99.9% yes - - -

Table 8.19: CoCoME ScenarioA Evaluation Results for 1200000 sec

Table 8.17, Table 8.18 and Table 8.19 show the results for scenario A for each of the three
logical simulation times (300000, 600000 and 1200000 seconds). No data is available for
LQSim as the solver crashed for unknown reasons.

In this scenario we notice an improvement of the prediction results with an increased
runtime. The system appears to reach its steady state quite late and with an increased
runtime the impact of the error at the beginning of the simulation is reduced.

At 300000 simulated seconds, SimQPN shows a small significant error for the processing
resource utilization, scenario mean response time and throughput. The error for the mean
response time is below 2.5%, the other errors are below 0.5%. From 600000 seconds on
the SimQPN and SimuCom solvers show no statistically significant differences.

The utilization and throughput are predicted almost equally well by LQNS. The error goes
from just over 0.5% at 300000 seconds to less then 0.2% at 1200000 seconds. The mean
response time shows a slighly higher error, going from almost 7% at 300000 seconds to
below 2.5% at 1200000 seconds. In practice, this is a very good result as well, especially
for the reduction in execution time of almost two orders of magnitude.
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Figure 8.8: CoCoME SimuCom vs SimQPN Histograms
ScenarioA 1200000sec

Figure 8.8 shows the response time distributions for scenario A and a logical simulation
time of 1200000 seconds. The distributions show a very good match. The SimQPN distri-
bution has a slightly lower peak and more values to the right of the peak. It appears that
the error introduced by the loop mapping (see Section 5.2.5) is offset by the fact that the
DoublePDFs and IntPMFs used inside the internal action resource demand specifications
are reduced to mean values, reducing the spread.
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As this is the scenario with the highest simulation execution times, a detailed examination
is useful. The SimQPN simulation run with probes enabled took 3572 seconds, which is
1.5 times as long as the mean execution time of a run without probes (2382 seconds). This
time, the SimQPN run is only about 1.4 times faster than the SimuCom run. The reason
might be that this scenario is dominated by loops, which require a relatively high number
of places, transitions and colors to map (see Section 5.2.5).

8.7 Case Study 5: Business Reporting System (BRS)

8.7.1 Overview

The Business Reporting System (BRS) model is taken from [MKBR10]. It was created to
evaluate a method of automatic software architecture optimization. Apart from migrating
the model to the current PCM version, the workload and processing resource processing
rates were adapted until the system reached a steady state during simulation.

A single usage scenario with an open workload and a throughput of 20 requests/s was
analyzed for this case study. It is denoted as scenario A in the following.

A number of test runs using SimuCom and the relative stopping criterion for the mean
response time finished after only 200 simulated seconds. That time was taken as the base
time T.

8.7.2 Complexity

The BRS scenario PCM instance is of a high complexity compared to the other case study
instances. The usage model has one UsageScenario with 9 EntryLevelSystemCalls and
2 loops. It contains no branches. It has an open workload with an arrival rate of 20
requests/s.

The system part of the instance is above average size as well. 13 AssemblyContexts are
referenced in 9 BasicComponents and 2 CompositeComponents. 28 ExternalCallActions,
5 loops (LoopActions) and 5 branches are referenced. No SubSystems and no PassiveRe-
sources are referenced.

The most advanced constructs used in the stochastic expressions are EnumPDF in the
usage model and DoublePDF in the SEFFs.

8.7.3 Results

Throughput: 20 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UServer1 CPU 0.09 0.0906 0.607% yes 0.09 -0.0243% yes - - -
UServer2 CPU 0.413 0.415 0.524% yes 0.413 - no - - -
UServer3 CPU 0.149 0.149 - no 0.149 - no - - -
UServer4 CPU 0.0471 0.0471 - no 0.0471 - no - - -
RScenario 0.0350 0.0393 12.3% yes 0.0509 45.7% yes - - -
TAnalysis 49.8 8.1 -83.8% yes 9.32 -81.3% yes - - -

Table 8.20: BRS ScenarioA Evaluation Results for 100 sec

Table 8.20, Table 8.21 and Table 8.22 show the results for scenario A for each of the three
logical simulation times (100, 200 and 400 seconds). For unknown reasons, LQSim crashed
and no data is available. LQNS showed no problems in execution.

The processing resource utilizations are predicted almost perfectly by SimQPN and LQNS.
There is either no statistically significant difference, or the error is under 1%. The mean
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Throughput: 20 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UServer1 CPU 0.09 0.09 - no 0.09 -0.0134% yes - - -
UServer2 CPU 0.413 0.413 - no 0.413 -0.0106% yes - - -
UServer3 CPU 0.148 0.149 - no 0.149 - no - - -
UServer4 CPU 0.0471 0.047 - no 0.0471 - no - - -
RScenario 0.0349 0.039 11.7% yes 0.0509 45.7% yes - - -
TAnalysis 95 10.7 -88.7% yes 9.32 -90.2% yes - - -

Table 8.21: BRS ScenarioA Evaluation Results for 200 sec

Throughput: 20 req/s

SimuCom SimQPN LQNS LQSIM

Metric x̄ x̄ relDiff statSig x̄ relDiff statSig x̄ relDiff statSig

UServer1 CPU 0.09 0.0899 - no 0.09 -0.00759% yes - - -
UServer2 CPU 0.413 0.413 - no 0.413 -0.00634% yes - - -
UServer3 CPU 0.149 0.148 - no 0.149 - no - - -
UServer4 CPU 0.0471 0.047 - no 0.0471 - no - - -
RScenario 0.0350 0.0389 11.2% yes 0.0509 45.7% yes - - -
TAnalysis 183 16.3 -91.1% yes 9.32 -95% yes - - -

Table 8.22: BRS ScenarioA Evaluation Results for 400 sec

response time of the scenario is predicted to a satisfying degree by SimQPN. Slightly
increasing in accuracy with an increased simulation time, it approaches an error of 11%.
LQNS, on the other hand, has an error of over 45%. It is unclear by how much this value
could have been improved by tuning the LQNS configuration.
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Figure 8.9: BRS SimuCom vs SimQPN Histograms
ScenarioA 400sec

Figure 8.9 shows the response time distributions for scenario A and a logical simulation
time of 400 seconds. We can clearly see the spread introduced by the approximations
in the loop mapping (see Section 5.2.5). Even though DoublePDFs are used for internal
action resource demand specifications, the actual values show very little variation (e.g.,
‘DoublePDF[(0.2;0.1)(0.3;0.6)(0.4;0.3)]’). Therefore the SimuCom histogram shows very
little spread and there is little variance in the resource demands to offset the spread
introduced by the loops (as encountered in Section 8.5 and Section 8.6).
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8.8 Summary

The case studies show very satisfying results. Even though a numerous range of scenarios
with different complexities were evaluated, the SimQPN solver predicted all mean value
metrics with high accuracy. At the same time, the analysis overhead compared to SimuCom
could be significantly reduced, in many cases by an order of magnitude. Models with a
high number of loops showed a higher analysis overhead, but remained below 60% of the
SimuCom analysis time.

LQSim could only handle the ABB Demonstrator case study, where it showed equal results
to LQNS for all metrics. As LQNS runs much faster than LQSim and could handle all but
the SPECjAppServer2004 Next case study, LQNS can be recommended over LQSim.

Looking at the individual metrics, processing resource utilizations predictions showed very
little differences between the solvers. For usage scenario throughputs, SimQPN showed
predictions within 2% of the SimuCom results. LQNS showed an error of up to 10%.
Mean response time predictions by SimQPN showed an error of up to 15% compared to
SimuCom. The error was independent of the workload. This was not the case with LQNS.
In the ABB Demonstrator case study, the error increased from about 10% to over 70%
with an increasing workload.

LQNS, being an analytical method, generally runs about an order of magnitude faster
than the SimQPN solver. It can therefore be recommended for utilization analysis. For
throughput analysis it can be recommended if the margin for an acceptable error is larger
than 10%. For mean response time analysis it can not be recommended. SimQPN can be
recommended for all mean value metric analyses.

Response time distributions can normally not be computed with QPNs as the identity of
individual tokens is not known. An experimental extension of SimQPN allows to track
individual tokens to a certain degree. This makes a comparison with distributions provided
by SimuCom possible. The abstractions made when tracking tokens cause distributions of
varying accuracy. Loops caused the highest variation in response times. Overall the results
were still satisfying. Even when the distributions show a higher spread a performance
analyst can still draw information from the distribution like the number of peaks and
the general shape of the distribution. When generating response time distributions, the
runtime of the SimQPN solver was between 1.4 and 15 times faster than SimuCom.

The SPECjAppServer2004 Next case study helped to identify a minor shortcoming with
the employed SimQPN version, as the support for empirical distributions in queueing places
did not satisfy the requirements of the PCM-to-QPN mapping. Initially the use of the Exp
function in the inter-arrival times of the workload specification caused a significant error
with the mean response time predictions. A manual workaround resolved the prediction
errors, showing that this was simply an implementation issue which will be resolved in
future versions of the SimQPN solver. The SPECjAppServer2004 Next case study also
showed that the implementation handling the folding of distribution functions (which is
part of the PCM-Bench) needs to be improved. In this case it introduced an error of 5%.
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9. Summary and Future Work

This chapter provides a summary of the contributions of the thesis and an overview of
future work.

9.1 Contributions

In this thesis, a formal mapping of the Palladio Component Model (PCM) to Queueing
Petri Nets (QPNs) was developed. A solver tool implementing the mapping transformation
was developed and used to evaluate the mapping both feature by feature and for a number
of case studies of realistic size and complexity. The solver tool was compared to the
existing reference solver SimuCom, as well as to a set of solvers based on a transformation
to Layered Queueing Networks (LQNs): LQNS and LQSim. The main evaluation criteria
were results accuracy and analysis overhead.

The mapping builds on top of the DependencySolver, a module in PCM-Bench imple-
menting a pre-processing step on the PCM instance, eliminating variables in stochastic
expressions and providing context management functionality needed for model traversal.
The number of combinations of PCM meta-model entities and stochastic expressions lan-
guage entities can quickly explode. Therefore, the scope of the thesis was limited to the
correct mapping of the meta-model entities, assuming the DependencySolver correctly
handles the common stochastic expressions typically used in real-life models.

It was possible to map all PCM entities to QPN elements. Regarding mean value metric
predictions, limitations exist only for less common entities not encountered in any of the
case studies, i.e., CollectionIteratorAction and synchronized ForkAction behaviors. The
CollectionIteratorAction has a special semantic different from the other PCM loop entities
which cannot be mapped to QPNs when continuous distributions are used for the iteration
count. This is due to the fact that the synchronization of two sub-requests generated by
a single host request cannot be mapped to QPNs directly, as individual tokens carry no
identity and it cannot be decided for two tokens whether or not they belong to the same
host request.

The solver tool developed throughout this thesis makes use of the SimQPN simulator
[KB06]. The architecture, design and implementation of the tool were presented. The
implementation part focuses on QVT Operational, being the primary implementation lan-
guage. Also the additional mapping to configure the simulator and to measure the metrics,
as well as the way the metrics are aggregated, were presented. The main focus of the tool
development was to support the evaluation of the PCM-to-QPN mapping.
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The evaluation was separated into two parts. The first part evaluated which of the com-
pared solvers support the various PCM features. This resembles a set of integration tests
that ensure that the formal mapping works as expected for simple example models. The
new PCM-to-QPN mapping covers a much higher number of features than the existing
transformation to LQNs.

In the second part of the evaluation, a set of case studies were carried out considering five
different PCMmodels of realistic size and complexity. They were migrated to the employed
version of PCM. The workload specifications were updated to ensure that the modeled
system is in steady state. This was necessary as the results for mean response times are
only meaningful for systems that are not overloaded. In cases where different system usage
specifications were available, they were considered in the analysis. For each case study, the
resulting PCM instances were analyzed using SimuCom, the new SimQPN solver, LQNS
and LQSim. Each simulation run was executed 30 times to obtain statistically sound
results.

The results were very encouraging and demonstrated the applicability of the developed
transformation in realistic contexts. The new SimQPN solver produced very accurate re-
sults (with deviation from the reference values below 15%) in substantially reduced analysis
times. In most cases, the overhead could be reduced by an order of magnitude. Compared
to the SimuCom reference solver, the new solver showed performance improvements of up
to 20 times. LQNS produced equally accurate results for processing resource utilizations,
and about 8% less accurate results for throughputs. LQNS exhibited much less accurate
results for mean response times, but, being an analytical method, had a much lower analy-
sis overhead. LQSim could only handle one of the case studies and showed similar accuracy
to LQNS. The use of an experimental SimQPN extension, allowing to track individual to-
kens, made it possible to measure response time distributions with the SimQPN solver.
A comparison to the SimuCom results showed acceptable results and helped to uncover
previously unknown limitations of the new extension. Finally, the case studies helped to
guide future development of SimQPN and parts of the PCM-Bench.

The expected benefits of the PCM-to-QPN transformation discussed in Section 1.1 were
all achieved. All PCM instances that were available for the thesis could be solved without
issues and the SimQPN solver did not run into memory limitations, as SimuCom did.
The SimQPN solver was integrated into the PCM-Bench employing the new ProbeSpec
meta-model soon to be introduced in SimuCom. The source code has been structured
into modules which can be reused for future transformations. The ProbeSpec meta-model
allows to customize which metrics are gathered during the simulation without knowing
any details about QPNs. Several metrics are offered by the SimQPN solver which are
not directly offered by SimuCom or other existing solvers. Notable examples include the
utilization of passive resources and the information about how much of the utilization
of a processing resource is caused by the individual usage scenarios. The mapping is
generic enough to be useful for future transformations to QPNs in the domain of software
performance engineering.

It is planned to publish the contributions of this thesis in a paper.

In summary, the primary contributions of this thesis are:

• A formal mapping from PCM to QPNs. Analysis of limitations that apply for each
of the mapped features. Analysis of the limitations of the DependencySolver module
which is used to resolve PCM stochastic variable dependencies and to assist PCM
model traversal.

• Implementation of a PCM-to-QPN transformation in a new PCM solver tool based
on SimQPN, a mature simulator for QPNs. The tool successfully reduces the anal-
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ysis overhead by at least an order of magnitude while maintaining a high level of
results accuracy. The transformation serves as a basis for future transformations
to QPNs. Important practical experience with using QVT Operational for a com-
plex transformation was gained. This supports future decisions on model-to-model
transformation languages. The tool was also integrated into the PCM-Bench tool,
delivered with the PCM meta-model.

• An extensive evaluation of the PCM-to-QPN transformation regarding the results
accuracy and analysis overhead. The SimuCom reference solver was compared with
the developed SimQPN solver, and LQNS and LQSim, two existing solvers based on
LQNs. Customized PCM instances were created for each of the mapped features,
showing for the first time in detail, which solver supports which of the multitude of
PCM features. Additionally, to evaluate the transformation in realistic conditions,
five case studies were conducted using the largest exiting PCM instances that could
be obtained for this thesis. One of the case studies was conducted in cooperation
with ABB Research, demonstrating the applicability of the results of the thesis in
an industrial context.

• Future research areas were identified, especially regarding the PCM stochastic ex-
pressions language and the possibilities to reduce expressions to more commonly
known probability distributions.

9.2 Future Work

The identified future research areas are grouped according to the three main contributions
of this thesis: the mapping, the solver tool implementation and the mapping evaluation.
Regarding the mapping, the following tasks have been identified:

• The case study and maintenance work have shown that a deeper analysis of the
DependencySolver limitations and generally the handling and reduction of stochastic
expressions requires more research. Important research questions remain: Which
exact limitations apply when going from value arithmetic of stochastic expressions
to an arithmetic involving the folding of the distributions? The SimuCom solver
directly uses the stochastic expression to draw a sample value and can therefore
evaluate the expression in different contexts. A mapping to a language that does not
handle stochastic expressions directly requires to reduce the expressions to one of
the supported distributions. It is unclear in which cases this is possible, and which
of the possible cases are implemented by the DependencySolver. Another question is
how stochastic dependencies between variables can be handled. Currently they are
simply ignored by the DependencySolver. This can lead to inaccurate results, e.g.,
when nested guarded branches use the same stochastic variable in their conditions.

• More research is required with regards to measuring the response time distribution
using probes. The two presented loop alternatives, as well as the fork mapping, need
to be examined in more detail to determine the degree of error being introduced. The
possibility to relax the assumptions in the modeling of loops should be explored.

• SimuCom allows the inclusion of a middleware description model in the simulation
process. This possibility is outside the scope of this thesis. Further research is needed
to evaluate if those parts could be mapped to QPNs.

The solver tool can be improved in the following ways:

• Once the support for empirical distributions in queueing places of SimQPN has
been improved, the transformation of the workload, internal actions, and of linking
resources should be updated to use those distributions instead of mean values.
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• Once the SimuCom solver and the PCM editors fully support the ProbeSpec meta-
model, the corresponding module in the solver tool of this thesis should be updated.
The user will then benefit from an improved ProbeSpec user interface and from an
integrated way of specifying the metrics at the PCM domain level.

• Once the PCM tools support the new EDP2 data serialization, the corresponding
module in the solver tool can be updated to feed the data to EDP2. The user of
the SimQPN solver would then gain the benefits of an improved results visualization
and possibly of integrated post processing.

• A number of metrics could easily be implemented, further increasing the range of
metrics available: throughput per AbstractUserAction, breakdown of the metrics per
EntryLevelSystemCall and per ExternalCallAction in addition to per UsageScenario.
Also, support of response time distributions for all response time metrics (not just
UsageScenario) would be beneficial.

• The DependencySolver can be extended to support the usage of stochastic variables
in QoS annotations.

• The user interface to configure the default ProbeSpec annotation behavior (in case
a ProbeSpec model is not specified) should be added.

The following tasks would improve the mapping evaluation:

• The evaluation of the usability, as well as of the portability, of the different solvers
is outside the scope of this thesis. A detailed evaluation would be beneficial as they
are important factors in the value of the tools for a performance analyst.

• Two mapping variations for loops have been presented. The corresponding results
precision and analysis overhead should be evaluated in more detail.

• SimuCom offers a relative precision stopping criterion for the response time of usage
scenarios. This requires the measurement of the response times of individual requests.
With limitations, this is possible in SimQPN through the probes feature. The feature
was added late during the thesis and was not available for the major part of the
evaluation. Fixed simulation times were used instead. It would be beneficial to
explore the probes feature in combination with a relative precision stopping criterion.
There is the potential to remove the assumption that the performance analyst is able
to determine a suitable fixed simulation time for a given model.

• Case studies employing more complex stochastic expressions are out of the scope of
this thesis. A more detailed analysis of the impact of the numerous simplifications
introduced by the DependencySolver and distribution folding would be of value.

• The MediaStore case study appears suitable for a more detailed analysis of the effect
of the DependencySolver as all three solvers based on the DependencySolver show
about an equal error.
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