
Automated tremor detection in Parkinson’s Disease using
accelerometer signals

Ada Zhang
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA

ajzhang@cs.cmu.edu

Rubén San-Segundo
Center for Information Processing

and Telecommunications
Universidad Politécnica de Madrid

Madrid, Spain
ruben.sansegundo@upm.es

Stanislav Panev
Griffin Tabor

Katelyn Stebbins
Andrew S. Whitford
Fernando De la Torre
Jessica K. Hodgins
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA

ABSTRACT

Wearable sensor technology has the potential to transform the treat-

ment of Parkinson’s Disease (PD) by providing objective analysis

about the frequency and severity of symptoms in everyday life.

However, many challenges remain to developing a system that

can robustly distinguish PD motor symptoms from normal motion.

Stronger feature sets may help to improve the detection accuracy

of such a system. In this work, we explore several feature sets com-

pared across two classification algorithms for PD tremor detection.

We find that features automatically learned by a Convolutional

Neural Network (CNN) lead to the best performance, although our

handcrafted features are close behind. We also find that CNNs ben-

efit from training on data decomposed into tremor and activity

spectra as opposed to raw data.
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1 INTRODUCTION

Approximately one million individuals in the United States are

living with Parkinson’s Disease (PD), a progressive neurological

condition that most notably manifests in a variety of motor symp-

toms, such as tremor, slowness, or stiffness. Medication can effec-

tively manage symptoms and improve quality of life. However,

precise dosing is important: too small of a dose will fail to have a

therapeutic effect, but too large of a dose can cause adverse side

effects. The current standard of care calls for a specialist to assess

PD patients every few months and adjust their medication based

on self-reported symptoms and a short motor function evaluation.

However, these assessments can be subjective and a short office

visit may not accurately reflect a patient’s experience at home.

With the advent of inexpensive and widely-available mobile and

wearable sensor technology, there has been increasing interest in

developing systems for continuous monitoring of PD symptoms.

Statistical and machine learning algorithms have recently shown

promise in processing raw sensor data into disease-relevant infor-

mation that is easily interpretable by physicians and patients. For

example, on data collected from PD patients in a simulated home en-

vironment, Pulliam et al. [3] report reasonable agreement between

sensor-derived estimates of tremor, bradykinesia, and dyskinesia

severity and assessments from clinical experts.

In natural living conditions, however, it is particularly difficult

for a system to accurately distinguish PD symptoms (such as tremor)

from other daily activities (such as brushing one’s teeth). One aspect

of such a system is the choice of features extracted to represent the

sensor signal. The majority of researchers in automated PD symp-

tom detection have used variations on a standard set of features that

are common in the field of activity recognition. In this work, we

compare this standard set of features to four unexplored feature sets.

All feature sets were compared across two different classification

algorithms. In this way, we could analyze whether performance

gains were due to improved features or stronger algorithms.

2 METHODS

Wrist-worn accelerometers were used to record movement data

from six individuals with PD as they engaged in tasks that were

chosen to mimic activities of daily living and clinical diagnostic

tests. Videos of the data collection sessions were used to assign
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Table 1: Area Under the Curve (AUC) and False Positive Rate

(FPR) at 0.9 True Positive Rate (TPR) values for the five fea-

ture sets and two classifiers: Random Forest (RF) and Multi-

layer Perceptron (MLP)

AUC FPR at 0.9 TPR

Feature Sets RF MLP RF MLP

Baseline 0.830 0.829 0.45 0.45

MFCCs 0.851 0.853 0.40 0.39

CNN 0.850 0.850 0.38 0.41

MFCCs-T/A 0.869 0.870 0.33 0.33

CNN-T/A 0.884 0.887 0.32 0.30

labels of “tremor” or “no tremor” to every 3-second segment of

accelerometer data.

We compared five distinct sets of features derived from the data:

• Baseline – This set consists of 90 features per axis that are

common in previousworks and include those used by Fisher et

al. [2].

• Mel frequency cepstral coefficients (MFCCs) – These features

are adapted from the speech processing field and have previ-

ously been shown to be effective for human motion under-

standing of accelerometer signals [4, 5]. Here, we evaluate

their effectiveness on PD tremor detection.

• MFCCs on tremor/activity spectra (MFCCs-T/A) – In an at-

tempt to enhance the tremor signal measured during move-

ment, we developed a method to decompose the raw sig-

nal into separate tremor and voluntary movement (activity)

spectra. This separating method was inspired by the main

voice extraction technique proposed by Durrieu et al. [1],

which uses non-negative matrix factorization. This feature

set includes MFCCs computed on the raw signal, the tremor

spectrum, and the activity spectrum.

• CNN – These features are taken from the last layer of a CNN

trained on the raw signal, before the fully connected layers

of the multilayer perceptron (MLP) classifier.

• CNN on tremor/activity spectra (CNN-T/A) – These features

are taken from the last layer of a CNN trained on the sepa-

rated tremor and activity spectra.

Feature sets were evaluated by comparing their performance

using two different classifiers. For our baseline algorithm, we used

a random forest (RF) because preliminary tests indicated that an RF

performed at least as well as or better than other traditional machine

learning algorithms, such as decision trees, 5-nearest neighbor, and

Support Vector Machines. Our other classifier was an MLP, which

is typically used with deep learning pipelines. Classifier and feature

set performance was compared by computing the area under the

curve (AUC) of the receiver operating characteristic (ROC) curves

and the False Positive Rate (FPR) at a True Positive Rate (FPR) of

0.9.

3 RESULTS AND CONCLUSION

The most effective system for tremor detection from accelerometer

signals was the full deep learning architecture – a CNN to learn

features with an MLP at the end for classification – trained on the

separated tremor and activity spectra (CNN-T/A with MLP). Table 1

compares the performance of several feature sets and classifiers. The

difference in AUC values between the best- and worst-performing

feature set/classifier pair was 0.058. The differences are more pro-

nounced when comparing the FPR of the algorithms at 0.9 TPR,

where the best system demonstrated a 0.15 reduction in FPR.

It is interesting to note that the main performance advantage of

the deep learning architecture was through the learned features,

and that the standard MLP classifier at the top of the network

offered little to no performance advantage over other classifiers. In

fact, the differences between RF and MLP classifiers given the same

feature set (mean Δ: 0.002 in AUC and mean Δ: 0.0075 in FPR at

0.9 TPR) are an order of magnitude smaller than the difference in
performance between feature sets given the same classifier (up to

Δ = 0.054 in AUC and Δ = 0.15 reduction in FPR at 0.9 TPR).

Another observation is that, while the CNN-T/A features were

able to offer a significant improvement over baseline features,

the improvement was considerably smaller over our handcrafted

MFCCs-T/A features. We suspect that, because the CNN-T/A fea-

tures are learned from data, they may fail to generalize if the train-

ing dataset is small. Thus, for very small datasets, our handcrafted

MFCCs-T/A features might outperform those learned by a CNN.

Finally, results indicate the importance of preprocessing the data

to separate it into the tremor and activity spectra before inputing

it into the CNN architecture. In fact, when a CNN is trained on

raw data, performance is worse than our handcrafted MFCCs-T/A

features.

In future work, we plan to analyze how sensitive these deep

learning architectures are to the size of the training set, and to

determine whether our handcrafted MFCCs-T/A features may of-

fer an advantage over CNN-learned features on particularly small

datasets. We also plan to analyze how well these features perform

on data collected in more naturalistic environments.
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