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ABSTRACT

Head and neck cancer (HNC) includes cancers in the oral/nasal cavity, pharynx, larynx, etc., and it is the sixth 
most common cancer worldwide. The principal treatment is surgical removal where a complete tumor resection is 
crucial to reduce the recurrence and mortality rate. Intraoperative tumor imaging enables surgeons to objectively 
visualize the malignant lesion to maximize the tumor removal with healthy safe margins. Hyperspectral imaging 
(HSI) is an emerging imaging modality for cancer detection, which can augment surgical tumor inspection, 
currently limited to subjective visual inspection. In this paper, we aim to investigate HSI for automated cancer 
detection during image-guided surgery, because it can provide quantitative information about light interaction 
with biological tissues and exploit the potential for malignant tissue discrimination. The proposed solution forms 
a novel framework for automated tongue-cancer detection, explicitly exploiting HSI, which particularly uses the 
spectral variations in specific bands describing the cancerous tissue properties. The method follows a machine-
learning based classification, employing linear support vector machine (SVM), and offers a superior sensitivity 
and a significant decrease in computation time. The model evaluation is on 7 ex-vivo specimens of squamous 
cell carcinoma of the tongue, with known histology. The HSI combined with the proposed classification reaches 
a sensitivity of 94%, specificity of 68% and area under the curve (AUC) of 92%. This feasibility study paves the 
way for introducing HSI as a non-invasive imaging aid for cancer detection and increase of the effectiveness of 
surgical oncology.

Keywords: hyperspectral imaging, tongue cancer, intraoperative tumor detection, support vector machine, 
image-guided surgery, image classification, cancer detection

1. INTRODUCTION

Head and neck cancer (HNC) is the sixth common cancer by incidence worldwide. About 90% of all head and 
neck cancers are Squamous Cell Carcinomas (HNSCC).1 In recent years, besides the elderly people with HNC, 
an additional growing group of young patients (<45 years) with HNSCC have been reported worldwide,2 thereby 
representing a relevant public health problem. The standard treatment, correlated to a good prognosis, is surgical 
resection. However, 40% of the resected tumors show positive margins, and they are part of a total of 85% of 
inadequate resections, which includes close positive margins.3 Positive tumor margins are associated with disease 
recurrence and a higher rate of second surgical operations. Currently, the surgeon has to rely on palpation and 
visual inspection for malignant margin assessment, followed by histopathology of the surgical specimen.4 This 
method is based on subjective evaluation, which suffers from inter-observer variation. Moreover, histopathology 
is time-consuming, exposing the patient to a significant risk when residual tumor tissue is remaining after the 
initial surgery. Hyperspectral imaging holds the potential for non-invasive surgical guidance5 and may be a helpful 
imaging tool for the objective assessment of tumor tissue. Recent studies show that hyperspectral imaging (HSI) 
can be utilized for automated tongue-tumor detection with machine learning-based approaches applied on mice 
models6 (sensitivity of 93% and specificity of 85%),7 as well as on 10 oral cavity squamous cell carcinoma in real 
patients, where only three tongue-tumor locations are included.8
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Figure 1. Applied method for training and classification in the system

In this paper, we develop a novel framework for tumor detection on ex-vivo surgical specimens of tongue
cancer patients with hyperspectral imaging, aiming at an objective disease assessment. We propose two specific
aspects: (1) a manual selection of the most informative image bands in a spectral range based on increased
discriminative properties in the reflectance spectrum of the tumor and healthy tissue, (2) a block-based feature
extraction approach for automated classification purposes. Besides the proposed scheme, we compare this work
with an alternative and existing framework that was already applied on mouse cancer models,6 and evaluated in
our study on real patients.

2. METHODS

We apply the general computer vision framework entailing training and testing, as depicted in Figure 1. First, the
raw hypercube is preprocessed in order to perform data normalization and noise reduction, then the wavelength
range is chosen to extract the best features for malignant and healthy tissue discrimination. The pathology
images are outlined by an experienced pathologist and then used as labels for validating the cancer detection
with hyperspectral imaging.

2.1 Hyperspectral image acquisition

The hyperspectral images are acquired with a hyperspectral line-scan camera prototype (Philips Research, Eind-
hoven, The Netherlands). The line-scan camera has a CMOSIS CMV2000 image sensor (IMEC, Leuven, Belgium)
with a wavelength range of 430-920 nm, which produces a hypercube of 192 image bands with 2048 pixels per
line (y-direction) and a variable number of lines (x-direction) per sample. Seven ex-vivo tongue squamous cell
carcinoma are gathered at the Netherlands Cancer Institute (NKI, Amsterdam, The Netherlands) and included
in this study. After surgical resection, each specimen is cut straight through the tumor, scanned with the hy-
perspectral camera and sent for histological processing. The tissue is sectioned, stained in hematoxylin and
eosin (H&E) and then validated by an experienced pathologist for cancer and healthy tissue contouring. This
procedure is the gold standard in this study. All ethical guidelines for ex-vivo human studies are followed.

2.2 Hyperspectral data preprocessing

Preprocessing is an essential step for raw data normalization and correction for the instrumentation noise, which
can significantly affect the classification accuracy. First, the raw image data and white reference images are
normalized, in order to correct for the dark current influence and illumination intensity differences. The data
normalization is based on Lu et al.9 and specified by

Iref =
Iraw − Idark
Iwhite − Idark

, (1)

where Iref is the normalized reflectance value, Iraw the diffuse reflectance value at the given pixel, Iwhite the
intensity value for the white reference, acquired by positioning a white reference plate in the field of view,
and Idark the dark reference value, acquired by keeping the camera shutter closed. Within the spectral ranges
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(a) Pathology annotation (b) Registration results (c) Ground truth extraction

Figure 2. Example of RGB and pathology registration result and ground truth extraction.

430–480 nm and 580–630 nm, the spectrum is strongly affected by the sensor noise, which explains why the
image bands within these spectral ranges are discarded for further analysis, resulting in 152 image bands per
acquisition. For each image band, a median filter of 6×6 pixels and a two-dimensional (2D) Gaussian smoothing
filter are applied to reduce the noise in the spectral signatures.

2.3 Feature extraction

Collecting the spectral signature for each pixel in a 2D array, a three-dimensional (3D) dataset is generated
and considered as a hypercube. The pathological information is gathered in the diffuse reflectance of each pixel
in the hyperspectral image, for a range of 430–920 nm, which is the quantitative result of light interaction
with the biological tissue. To extract the most discriminative information, it is crucial to deal with the high-
dimensional data issue. This involves dealing with the large amount of spectral bands and at the same time
having the high redundancy within spectral bands that may potentially contain detailed diagnostic information,
whereas the redundancy can decrease the classification accuracy.5 For this reason, 20 image bands showing
the highest spectral variation in the reflectance values between the tumor and healthy tissue, are manually
selected for classification purposes. This high spectral variation of the most informative wavelengths appears
to be consistent among the patients and allows to identify cancerous tissue discrimination. The hypercubes
are divided in a grid of 6×6-pixel blocks and within each block, the pixels are averaged to obtain the average
spectra. The averaged reflectance value of each block is used for supervised learning. The block-based approach
is a powerful solution for increasing the robustness to the spectral noise, while reducing the redundancy between
the neighboring pixels and decreasing the computation load.7 For each patient, the ground truth is extracted
from the corresponding annotated H&E section, outlined by an experienced pathologist, and registered with the
RGB image of the specimen by selecting control points and using a non-rigid registration algorithm. Figure 2
shows an example of (a) the labeled pathology slide, (b) ground truth registered with the RGB image and (c) the
segmented ground-truth mask, used for block labeling. We manually obtain a mask for the region of interest of
the tumor area, discarding the image borders affected by histological colorations and motion artifacts due to the
line scanning. As an alternative to the manual selection, we apply the implemented method of Chung et al.6 This
method employs Principal Component Analysis (PCA)10 for automated band extraction, iterative clustering and
superpixel segmentation of the first components, using averaged pixel values within each superpixel in order to
build discriminative feature vectors. The superpixel algorithm is based on the Simple Linear Iterative Clustering
(SLIC) technique,11 which offers high segmentation performance. Furthermore, the superpixel segmentation
has the advantage of pixel clustering in meaningful regions based on statistical decorrelation of spectral image
bands.6

2.4 Classification of hyperspectral images & validation

As a simple first approach for this feasibility study, linear Support Vector Machine (SVM) is used for supervised
learning, to build predictive models for tumor and healthy tissue discrimination from hyperspectral acquisitions.
For each patient, one hypercube and one pathology image are collected and employed for classification. Leave-one-
patient-out cross-validation is applied, to avoid double patient usage and prevent overfitting. After classification,
each block is labeled as tumor or normal tissue. As a result, we obtain binary classified images for each patient.
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Figure 3. Averaged reflectance spectra for healthy and tumor ROI in 7 tongue-tumor patients.

We compare this result with the pathology ground truth, used as labels for validating the cancer detection with
hyperspectral imaging. To evaluate classifier performance, we compute the receiver operating characteristics
(ROC) curve, area under the curve (AUC), sensitivity (Se) and specificity (Sp). The last two metrics measure
the tumor pixels correctly classified as tumor and as healthy, respectively, as defined in the following equation
(TN : true negative, TP : true positive, FP : false positive, FN : false negative). For benchmarking, the same
performance metrics are involved during the validation process, and specified by

Se =
TP

TP + FN
, and Sp =

TN

TN + FP
. (2)

3. EXPERIMENTAL RESULTS

The proposed approach has been trained on 7 patients (20 images per patient at different wavelengths), having
cancerous and non-cancerous tissue. During the training phase, for each patient, a region of interest (ROI) is
used as ground truth, containing the malignant tissue assessed by an experienced pathologist. We present the
qualitative results in Sections 3.1 and evaluate the performance metrics in Section 3.2.

3.1 Cancer detection result evaluation

Figure 3 visualizes the averaged spectra of healthy and tumorous region of interests among the patients. The
tumor tissue shows higher reflectance values for the wavelength range of 500–800 nm, where a difference between
healthy and tumor spectral fingerprints is revealed. Within this wavelength range, we extract the most significant
images for automatic discrimination of tumor and healthy tissue in our classification method. The classification
results are visualized in Figure 4. Our method shows less false negatives (FN) compared to the benchmark
and, as described in the next paragraph, has the advantage to speed up the computational time. The malignant
tissue is clearly detected in both cases. We notice an overestimation of the detected tumor area, that can be due
to the number of superpixels or pixel blocks containing both tissues, classified as tumor, as described in ref.6

As already mentioned in the reference publication, the problem can be overcome by increasing the number of
superpixels (which is 1000 in our algorithm) or pixel blocks.

3.2 Benchmarking and performance evaluation

Figure 5 depicts the ROC curves of the detection rates. The AUC values, sensitivity (Se) and specificity (Se)
are shown in Table 1. We benchmark our proposal with an existing framework, which represents a reasonable
alternative for classifying our hyperspectral dataset, using the same classifier (SVM), and employing a different
approach for dimensionality reduction and feature extraction. Table 1 shows that a sensitivity of 94%, specificity
of 68% and AUC of 92%, are reached with our proposed method. The balance between specificity and sensitivity
can be improved computing a grid search for hyperparameter optimization. However, in this feasibility study,
our goal is to aim to a proof-of-concept cancer detection algorithm where the default parameters for the SVM
classification model are chosen. By increasing the block size to 10×10 pixels, we reach a higher sensitivity and
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(a) 680 nm image - 6 x 6 blocks (b) ground truth (c) prediction

(d) PCA (first) -superpixel (e) ground truth (f) prediction

Figure 4. Visualization of the cancer segmentation for Patient 6. (a) 680 nm image band applying 6 x 6 block grid
and averaging pixel values within each block, (b) 6 x 6 block grid divided ground truth, (c) classification result -6 x 6
block-based approach-, (d) first principal component from PCA applying superpixel segmentation and averaging pixel
values within each superpixel, (e) superpixel ground truth, (f) classification result -PCA-superpixel approach-

specificity compared to the 6×6 pixel block size, while speeding up the averaged training time from 26 minutes
and testing time to 2.5 seconds, and accepting the compromise of having a lower image resolution. A signifi-
cant improvement is achieved in reducing the computation time, when SVM is used for classification, which is
essential for intraoperative imaging. Training and testing time are 8 hours and 3 minutes (≈ 2 M data samples),
respectively, when the method of Chung et al. is applied (E5-1650v4, 3.60 GHz), versus 6 hours and 1 minute
(≈ 900.000 data samples) when the 6×6-pixel block-based processing is adopted. Lastly, Lu et al.7 apply the
block-based approach for squamous displasia detection on 34 mice, reaching an AUC of 86%, sensitivity of 79%,
and specificity of 79%, which are outperformed by our system on human data when employing linear SVM.

4. CONCLUSIONS

Intraoperative tumor assessment facilitates residual cancer removal, which has a significant impact on post-
operative prognosis. Currently, tumor-margin assessment depends on the subjective surgeon’s capability to
visually identify malignant tissue. In this study, we explore the potential of non-invasive and automated cancer
discrimination with HSI, extracting spectral features per block and applying a machine learning framework,
for squamous carcinoma detection on 7 ex-vivo tongue-tumor specimens. The results show that the proposed
approach has the ability to find a good classification solution for tongue-tumor detection in real patients with an
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Figure 5. ROC curves for 7 patients with SVM classification.

Table 1. Performance comparison between block- and superpixel-based approach for 7 ex-vivo patients with HNSCC.

Method
Proposed method-6x6 blocks Proposed method-10x10 blocks Chung et al.

AUC Sens. Spec. train(min)/test(s) AUC Sens. Spec. train(min)/test(s) AUC Sens. Spec. train(min)/test(s)

Patient 1 0.96 1.00 0.67 262/89 0.96 1.00 0.76 55/2.4 0.97 1.00 0.78 360/327
Patient 2 0.83 0.83 0.70 355/96 0.84 0.76 0.14 42/1.5 0.80 0.74 0.64 456/190
Patient 3 0.92 0.97 0.66 410/142 0.93 0.97 0.67 22/6.0 0.92 0.96 0.66 232/347
Patient 4 0.93 1.00 0.58 410/63 0.94 1.00 0.66 55/2.4 0.98 1.00 0.76 520/243
Patient 5 0.91 1.00 0.70 431/55 0.90 1.00 0.79 42/2.0 0.90 1.00 0.73 532/163
Patient 6 0.93 0.75 0.88 326/39 0.94 1.00 0.64 42/2.0 0.93 0.74 0.90 506/138
Patient 7 0.95 0.99 0.59 331/36 0.95 0.96 0.71 44/1.5 0.96 0.93 0.77 548/157

mean 0.92 0.94 0.68 333/74 0.92 0.95 0.71 43/2.5 0.92 0.91 0.74 456/224

AUC of 92%. This proposed solution forms a novel framework for automated tongue-cancer detection, explicitly
exploiting HSI, which particularly used the spectral variations in specific bands describing the cancerous tissue
properties. The presented method offers a superior sensitivity and a significant decrease in computation time,
when compared with an existing approach.6 Furthermore, our validation was more relevant for patients than
in the original publication, where the benchmark approach was tested on 11 cancer mouse models, whereas
we perform our validation on 7 real tongue-cancer patients. To the best of our knowledge, the tongue-tumor
location is not completely explored in ex-vivo studies with machine learning techniques combined with HSI,
although it is the most aggressive of all oral squamous carcinoma (OSCC) with higher rate of occult lymph node
metastases.1 Instead, we fully focus on the tongue-tumor location, achieving the feasibility of objective tumor
tissue discrimination on real patients. We conclude that the proposed method outperforms the benchmark in
speed by a factor 9, when applied on real patients, which is straightforward for real-time intraoperative tumor
detection. This feasibility study will serve as a reference for future work when more patient data will be gathered,
aiming at higher accuracy and visual aid tool. We conclude that automated tumor assessment with HSI can be
successfully employed to aid the surgeon with objective real-time tumor evaluation in tongue-cancer patients.

5. FUTURE RESEARCH

Recent studies show positive results when convolutional neural networks (CNNs) are used for ex-vivo surgical
tissue classification.12 Our hyperspectral data collection is an ongoing prospective study, aiming at building a
robust dataset. With the current progress of CNNs and their further application in this project, we have the
opinion that we can exploit the potential of HSI as a real-time, non-invasive intraoperative imaging tool for
classification of cancer tissue, which fits in a straightforward way in the surgical scenario.
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