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Urban planning refers to the eforts of designing land-use conigurations given a region. However, to obtain efective urban

plans, urban experts have to spend much time and efort analyzing sophisticated planning constraints based on domain

knowledge and personal experiences. To alleviate the heavy burden of them and produce consistent urban plans, we want

to ask that can AI accelerate the urban planning process, so that human planners only adjust generated conigurations for

speciic needs? The recent advance of deep generative models provides a possible answer, which inspires us to automate urban

planning from an adversarial learning perspective. However, three major challenges arise: 1) how to deine a quantitative land-

use coniguration? 2) how to automate coniguration planning? 3) how to evaluate the quality of a generated coniguration?

In this paper, we systematically address the three challenges. Speciically, 1) We deine a land-use coniguration as a longitude-

latitude-channel tensor. 2) We formulate the automated urban planning problem into a task of deep generative learning.

The objective is to generate a coniguration tensor given the surrounding contexts of a target region. In particular, we irst

construct spatial graphs using geographic and human mobility data crawled from websites to learn graph representations. We

then combine each target area and its surrounding context representations as a tuple, and categorize all tuples into positive

(well-planned areas) and negative samples (poorly-planned areas). Next, we develop an adversarial learning framework,

in which a generator takes the surrounding context representations as input to generate a land-use coniguration, and a

discriminator learns to distinguish between positive and negative samples. 3) We provide quantitative evaluation metrics and

conduct extensive experiments to demonstrate the efectiveness of our framework.

CCS Concepts: · Social and professional topics→ Professional topics; Computing and business; Automation;

Additional Key Words and Phrases: urban planning, representation learning, generative adversarial networks, graph neural

networks

1 INTRODUCTION

We study the problem of machine learning for automated urban planning. Urban planning is an interdisciplinary

and complex process that involves public policy, social science, engineering, architecture, landscape, and other
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related ields. In this paper, we refer urban planning to the eforts of designing land-use conigurations of a

target region, which is a reduced yet essential task of urban planning [36]. Efective urban planning can help to

mitigate the operational and social vulnerability of a urban system, such as high tax, crimes, traic congestion

and accidents, pollution, depression, and anxiety [52].
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Government 
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Natural
Environment

Traffic Conditions
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Land-use Configuration

AI generates land-use 
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Fig. 1. Our expectation is to build an AI model to generate the land-use configuration automatically by considering the

constraints that are used in traditional urban planning process.

This observation motivates us to rethink urban planning in the era of artiicial intelligence: What roles do deep

learning play in urban planning? Can machines develop and learn at a human capability to automatically and

quickly calculate land-use conigurations? In this way, machines can be planning assistants and urban planning

professionals can inally adjust machine-generated plans for speciic needs.

Due to the high complexity and speciicity of urban systems, urban planners need to consider and balance

diferent various planning requirements, such as proximity metrics (e.g., distances to important places), access

indexes (e.g., accessibility to food, recreation, goods, services, entertainment, transit, municipal services, mobility

indexes), mobility indices (e.g., sidewalks, bike lanes, speed limits, crash rates), emergency responses (e.g.,

hospitals, ire departments) and, thus, planing highly replies on empirical experience and domain knowledge [25].

As a result, it is highly appealing to pursuit a fast, automated, and machine-assisted planning strategy. The recent

advance of deep learning, particularly deep adversarial and generative learning, provide a great potential to

teach a machine at a human capability to design and generate city conigurations [10, 24, 55, 56]. This inspiration

motivates us to rethink urban planning from the lens of deep learning: can AI automate the calculation of

land-use coniguration and the balancing of various planning factors, so professional planners can inally adjust

machine-generated plans for speciic needs?

All of the above evidences prompt us to develop a data-driven AI-enabled automated urban planner. However,

three unique challenges arise to achieve the goal: (1) How can we quantify a land-use coniguration plan? (2)

How can we develop a deep adversarial generative learning framework to learn the good and the bad of existing

urban communities as data-driven knowledge, and, moreover, generate quality urban coniguration? (3) How can

we evaluate the quality of generated land-use conigurations? Next, we will introduce our research insights and

solutions for the three challenges.

First, as the objective is to teach a machine to generate the land-use coniguration of a target region, it is

naturally critical to deine a machine- perceivable structure for the land-use coniguration. In practice, the

land-use coniguration plan of a region can be geographically deined by a set of Point of Interests (POIs) and their

corresponding locations (e.g., latitudes and longitudes) and urban functionality categories (e.g., shopping, banks,

education, entertainment, residential). A close look can reveal that a land-use coniguration is a high-dimensional

indicator that precisely illustrates what, where, and how many we should build in a target region. After exploring

large-scale land-use data, we observe that there is not just location-location statistical autocorrelation but
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also location-functionality statistical autocorrelation in a land-use coniguration. To preserve such statistical

correlations, we propose to represent a land-use coniguration as a latitude-longitude-channel tensor, where each

channel is a speciic category of POIs that are distributed across the target area, and the value of an entry in the

tensor is the number of POIs. In this way, the tensor not just describes the location-location interaction, but also

captures location-function interaction.

Second, after we quantitatively deine the land-use coniguration, the next question is that how to teach a

machine to automatically generate a land-use coniguration? We analyze large-scale urban residential community

data, and ind that: (1) an urban community can be viewed as an attributed node in a socioeconomic network (city

as a community-community network), and this node proactively interacts with surrounding nodes (environments);

(2) the coupling, interaction, and coordination of a community and surrounding environments signiicantly

inluence the livability, vibrancy, and quality of a community. Based on the above observations, we aim to develop

a function that map the surrounding contexts to a well-planned coniguration tensor. Recently, the development

of deep generative and adversarial learning provides a great potential for solving this problem. We reformulate

the task into an adversarial learning paradigm, in which: (1) A neural generator is analogized as a machine

planner that generates a land-use coniguration; (2) The generator generates a coniguration in terms of the

feature representation of surrounding spatial contexts; (3) The surrounding context feature representation is

learned via self-supervised representation learning collectively from spatial graphs. (4) A neural discriminator is

to classify whether the generated land-use coniguration is well-planned (positive) or poorly-planned (negative).

(5) A new mini-max loss function is constructed to guide the generator to learn the coniguration patterns of

well-planned areas, compared to poorly-planned areas.

Third, how can we evaluate the quality of a generated land-use coniguration? This has been a long-standing

challenging question. Themost solid and sound validation is to collaborate with urban developers and city agencies

to implement a machine-generated coniguration into a target region to observe the development of the region

in the following years. However, the validation method is not practical in reality. In this paper, we design and

develop three strategies to assess the generated conigurations: (1) We leverage diferent distance measurements

to measure the similarity between generated conigurations and well-planned conigurations. If the distance

is small, it indicates that our generated conigurations preserve the overarching distribution characteristics of

well-planned conigurations. (2) We develop a scoring model to score the quality of the generated conigurations.

Speciically, since we have collected a set of existing land-use conigurations and 0-1 labels (1: well-planned 0:

poorly-planned) as training data, we train a regression model to predict the quality score ranging from 0 to 1.

After that, given a machine-generated coniguration as testing data, we use the regression model to predict its

corresponding score. (3) We use a variety of visualization approaches to visualize the generated conigurations,

so domain experts can evaluate the generated quality and rationality.

Our preliminary work in [38] proposed a fundamental automated urban planning framework to automat-

ically generate land-use conigurations. The preliminary framework can be further improved to enhance its

stability and eiciency from a computational perspective. For this purpose, in this journal version, we develop

a new conditioning augmentation module adding to the preliminary framework to enhance its performance.

Speciically, we irst estimate the distribution of the embedding space of surrounding spatial contexts. Then, we

sample embedding vectors from the estimated distribution of the embedding space to replace the embeddings of

surrounding spatial contexts. The beneit is to use embedding space distribution estimation to augment data and

overcome the sparsity of surrounding spatial context data. Later, we propose a new loss function that considers

the embedding space regularization and standardization of surrounding spatial contexts. The new loss function

can accelerate the convergence and improve the eiciency of learning. In addition, aside from prediction-based

and visualization-based valiation approaches [38], in this paper, we design a distance-based strategy to evaluate

the quality of machine-generated coniguration plans.
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In summary, in both our preliminary work [38] and this extended version, we develop an adversarial learning

framework to generate efective land-use conigurations by learning from urban geography, human mobility, and

socioeconomic data. Speciically, our contributions are: 1) We develop a latitude-longitude-channel tensor to

quantify a land-use coniguration plan. 2) We propose a socioeconomic interaction perspective to understand

urban planning as a process of optimizing the coupling between a community and surrounding environments.

3) We reformulate the automated urban planning problem into an adversarial learning framework that maps

surrounding spatial contexts into a coniguration tensor. 4) We computationally enhance the eiciency and

stability of the proposed framework by devising a conditioning augmentation module via leveraging a new

sampling technique and a new optimization loss function. 5) We develop multiple strategies (i.e., distance-based,

prediction-based, and visualization-based) to validate the efectiveness of our framework on real-world data.

Context 1 Context 2 Context 3

Context 4

Context 6 Context 7 Context 8

Context 5

Target Area

Central

Point

Fig. 2. The geographical spatial relations between a target area and the surrounding contexts.

2 PROBLEM STATEMENT AND FRAMEWORK OVERVIEW

2.1 Definitions

2.1.1 Target Area. refers to an geographical area, where is centered on a geographical location (described by

latitude and longitude), and the shape of the area is square.

2.1.2 Surrounding Contexts. refer to the surrounding squares which wraps the target area from diferent direc-

tions. The shape of each square in the surrounding contexts is same as the target area. In our research assumption,

we have known the information such as demographic data, social activity, traic volume, etc of the surrounding

contexts. According to the geographical vicinity and the information of the surrounding contexts, we construct a

spatial attributed graph, in which the vertices are the squares of the surrounding contexts and the attributes of

each vertex are extracted from the information of each square. Figure 2 shows the geographical spatial relations

between a target area and the surrounding contexts, in which diferent contexts have diferent urban utility

and characteristics. Our framework aims to generate the land-use coniguration of the target area based on the

surrounding contexts.

2.2 Problem Statement

As mentioned before, we aim to build up an automated generation framework that generates land-use conigura-

tion of the target area based on the surrounding contexts. Formally, assuming a target area is R, the surrounding

contexts of R are [C1 ∼ CK ], and the land-use coniguration for R is M that is a longitude-latitude-channel tensor.

Given a spatial attributed graphG that is constructed by extracting explicit features such as traic condition, eco-

nomic development, etc from surrounding contexts [C1 ∼ CK ], we aim to ind the mapping function f : G → M.

The function takes the spatial attributed graph G as input, and outputs the land-use coniguration M. In this
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paper, owing to the shape of the target area is square, the number of the squares in the surrounding contexts is

determined as K = 8.
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Fig. 3. An overview of the proposed framework. The proposed framework includes four steps: 1) we first collect multiple data

sources such as urban community related data (housing prices), point of interests data, and human mobility data (taxicab

GPS traces). We then utilize a spatial graph representation learning module to learn the representations of surrounding

contexts. Finally, we develop an adversarial land-use configuration generation model to automate planning and generate

recommended configurations.

2.3 Framework Overview

Figure 3 shows an overview of our proposed method (LUCGAN). This framework has two main phases: (i)

surrounding contexts embedding phase; (ii) land-use coniguration generation phase. In the surrounding contexts

embedding phase, we irst extract explicit features of the surrounding contexts from multiple aspects, such as

value-added space, POI distribution. Then, we model the eight squares of the surrounding contexts as eight

vertices and map the explicit features to the vertices as the corresponding attribute to construct a spatial attributed

graph. Next, we employ a graph embedding model to preserve the information of the graph into an embedding

vector. Through the above procedures, the inal embedding vector represents the whole surrounding contexts.

In the land-use coniguration generation phase, we irst input the embedding of the contexts into an extended

generative adversarial networks (GAN). Then, the GAN model learns to formulate the distribution of the well-

planned land-use conigurations instead of poorly-planned conigurations gradually. Finally, when the model

converges, the extended GAN can produce suitable and desired land-use conigurations based on the embeddings

of the surrounding contexts.

3 AUTOMATIC PLANNER FOR LAND-USE CONFIGURATION

In this section, we irst introduce the strategy to represent surrounding contexts. Then, we detail how to quantify

and evaluate the quality of land-use conigurations. Finally, we develop an automated urban planner based on

deep generative adversarial paradigm.

3.1 Extraction of Explicit Features of Surrounding Contexts

The surrounding contexts afect the land-use coniguration of a target area. For instance, if the surrounding

contexts own lots of recreational facilities, in order to avoid waste of resources, we will not plan lots of recreational

buildings in the target area. Instead, we prefer to choose other kinds of buildings such as commercial or educational

buildings tomake the target area coexist with the surrounding contexts in harmony. Thus, based on the observation,
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during land-use coniguration generation process, it is necessary to take surrounding contexts into consideration.

In this paper, we extract the explicit features of surrounding contexts from four aspects:

(1) Value-added Space. Commonly, the variation of housing price relects the value-added space of one

area. Thus, we calculate the dynamically changing trend of housing price of the contexts [C1 ∼ C8] in
continuous t months. Here, we take the context C1 as an example to explain the calculation process. First,

we obtain the housing price list among t months. Then, we calculate the changing trend of housing price

by using the current housing price to subtract the previous housing price. So we get the changing trend

of C1 as v1 = [v1
1 ,v

2
1 , ...,v

t−1
1 ], where vi1 represents the value of the changing trend at i-th month. Finally,

we collect the housing price changing trend of all contexts together. The collected result is denoted as

V = [v1, v2, ..., v8], where V ∈ R8×(t−1).
(2) POI Ratio. Since diferent POIs provide diferent services for residents, the ratio of diferent kinds of POIs

can relect the utility of one area. Therefore, we calculate the POI ratio of the contexts [C1 ∼ C8]. Here, we
take C1 as an example to explain the calculation process. First, we count the total number of POI belonging

to each POI category in C1 respectively to form a vector. Then, we divide each item in the vector by the

number of all POIs in C1 to obtain the POI ratio vector, denoted by r1 = [r 11 , r 21 , ..., rm1 ], where r i1 represents
the ratio of i-th POI category andm is the number of POI categories. Finally, we collect the POI ratio vector

of all contexts together, denoted as R = [r1, r2, ..., r8], where R ∈ R8×m .
(3) Public Transportation. Public transportation (i.e. bus, subway) is one of the most important travel modes

due to its convenience and economy. We need to consider the public transportation of the contextsC1 ∼ C8.

Here, we take C1 as an example to show the calculation details. To capture the characteristics of public

transportation, we extract features based on bus trajectory and bus station data from ive perspectives: (1)

the leaving volume ofC1 in one day, denoted by o11; (2) the arriving volume ofC1 in one day, denoted by o21;

(3) the transition volume of C1 in one day, denoted by o
3
1; (4) the density of bus stop of C1, denoted by o

4
1;

(5) the average balance of smart card of C1, denoted by o
5
1. Thus, the feature vector of C1 can be denoted as

[o11,o21, ...,o51]. Finally, we collect the feature vectors of all contexts together. The collected result is denoted

as O = [o1, o2, ..., o8], where O ∈ R8×5.
(4) Private Transportation. Private transportation (i.e. taxi, cab) is another important travel mode for

individuals due to its lexibility. We extract the features of private transportation of the contexts [C1 ∼ C8]
based on taxi trajectory data from 5 perspectives. Taking C1 as an example, the deinitions of the 5 features

as follows: (1) the leaving volume of C1 in one day, denoted by u11 ; (2) the arriving volume of C1 in one

day, denoted by u21 ; (3) the transition volume of C1 in one day, denoted by u31 ; (4) in C1, the average driving

velocity of taxis in one hour, denoted by u41 ; (5) in C1, the average commute distance of taxis in one hour,

denoted by u51 ; Then, the feature vector of private transportation is denoted as [u11,u21, ...,u51]. Finally, we
collect the all context features together, denoted as U = [u1, u2, ..., u8], where U ∈ R8×5.

After that, we obtain an explicit feature set from the contexts C1 ∼ C8. The set contains four kinds of features

[V,R,O,U], which describes the surrounding contexts from aforementioned perspectives.

3.2 Constructing Spatial Atributed Graphs with Explicit Features as Node Atributes

The surrounding contexts wrap the target area from diferent directions, resulting in spatial correlation among

areas. To capture the spatial correlations among the areas, we construct a spatial attributed graph. Speciically,

Figure 4 shows the graph structural relation between a target area and its surrounding contexts, where the blue

vertices represent the surrounding contexts; the orange vertex indicates the target area; the edge between two

vertices relects the spatial connectivity between them.
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Fig. 4. The spatial structural relation between a target area and its surrounding contexts.

Then, we map the explicit features [V,R,O,U] to the spatial graph structure as the corresponding node

attributes. Figure 5 expresses the mapping process. The inal spatial attributed graph not only relects the spatial

correlation among diferent context squares but also depicts the utility characteristics of each square.
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Fig. 5. The illustration of constructing a spatial atributed graph: Each feature vector is mapped to the corresponding vertex

by a column-wise strategy.

3.3 Learning Representation of Spatial Atributed Graphs

Figure 6 shows the spatial representation learning framework that preserves explicit features and spatial relations

of the spatial attributed graph into a low-dimensional vector. Formally, we denote the spatial attributed graph

as G = (X,A), where A ∈ R8×8 is the adjacency matrix that expresses the accessibility among diferent nodes;

X ∈ R8×(t+m+9) is the feature matrix of the graph, here,X = [V,R,O,U]. In order to get the latent graph embedding

z, we minimize the reconstruction loss between the original graph G and the reconstructed graph Ĝ through the

encoding-decoding paradigm.

The encoding part has two Graph Convolutional Network (GCN) layers. The irst GCN layer takes X and A as

input and outputs the feature matrix of low-dimensional space X̂. Thus, the encoding module can be formulated

as:

X̂ = GCN1(X,A) = RELU (D̂− 1
2AD̂

− 1
2XW1) (1)

where D̂ ∈ R8×8 is the diagonal degree matrix, W1 ∈ R8×M is the weight matrix of the GCN1 where M is the

output dimension of the layer, and the whole layer is activated by RELU function. The second GCN layer takes

X̂ and A as input and then outputs the mean value µ and the variance value δ2 of normal distribution. So the
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Fig. 6. The proposed representation learning module to obtain surrounding context representations by minimizing the

reconstruction loss of spatial atributed graphs.

calculation process of the second GCN layer can be formulated as:

µ, loд(δ2) = GCN2(X̂,A) = D̂
− 1

2AD̂
− 1

2 X̂W2 (2)

whereW2 ∈ RM×H is the weight matrix of GCN2. Here, H is the output dimension of the GCN2 layer. Next, we

use the reparameterization trick to obtain the latent representation z ∈ R8×H :

z = µ + δ × ϵ (3)

where ϵ ∼ N(0, 1).
The decoding module takes the z as input and then outputs the reconstructed adjacent matrix Â. Hence, the

decoding step can be formulated as:

Â = σ (zzT ) (4)

where σ represents the decoding layer activated by sigmoid function. Moreover, zzT can be converted to

∥z∥
zT

 cosθ . The inner product operation is beneicial to capture the spatial correlation among diferent

contexts.

During the training phase, we minimize the joint loss function L, denoted as:

L =
N∑

i=1

KL[q(z|X,A)| |p(z)]
︸                  ︷︷                  ︸

KL Divergence between q(.) and p(.)

+

Loss between A and Â

︷          ︸︸          ︷
S∑

j=1

A − Â


2

(5)

where N is the dimension of z; S is the total number of the vertices in A; q represents the real distribution of z;

p represents the prior distribution of z. L includes two parts, the irst part is the Kullback-Leibler divergence

between the standard prior distributionN(0, 1) and the distribution of z, and the second part is the squared error

between A and Â. The training process try to make Â get close to A and let the distribution of z get close to

N(0, 1). When the model converges, z contains all information of the surrounding contexts.

3.4 Land-use Configurationuantification anduality Measurement

Land-use coniguration indicates the location of diferent kinds of POIs in one area. To make a machine perceive

and understand the coniguration, we construct a longitude-latitude-channel tensor as the format of the conigu-

ration, where one channel denotes one POI category and the whole tensor represents the POI distribution in

the area. Figure 7 shows the construction process of the longitude-latitude-channel coniguration tensor. We

irst divide an unplanned target area into n × n squares. Then we count the number of POIs belonging to each

ACM Trans. Spatial Algorithms Syst.
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POI category in each square entry and ill the number into the corresponding entry respectively. In this way, we

obtain the land-use coniguration tensor. If we pick up one channel from the tensor, we can learn about the POI

distribution of the corresponding POI category in the whole area.

R

store

dwelling

market

finance

Extraction

Quantification

Fig. 7. The construction of longitude-latitude-channel configuration tensor. Specifically, we first collect the information such

as dwelling, market, etc of an area. Then, we extract and quantify the information of the area as a multi-channel tensor,

where the value of each entry is the number of POIs with respect to a specific category in a specific latitude range and

longitude range.

Owing to we expect the generation framework can generate well-planned land-use coniguration, the next big

question is how to evaluate the quality of the coniguration? In the classical urban planning domain, there are

no general evaluation standards since the complexity of urban systems. To make our framework can produce

the land-use conigurations that people satisied with, we provide a quality hyper-parameter Q to evaluate the

quality of land-use conigurations. In our experiment, Q is the combination of the POI diversity and the check-in

frequency. Formally, we irst count the total frequency number of mobile check-in events of an area, which relect

the social activity intensity, denoted by f req. Then, we calculate the total number of diferent POI categories

of the area as the POI diversity, which depicts the completeness of urban functions, denoted by div . Next, we

incorporate the two indicators together by the formula Q =
2×f r eq×div
f req+div

[51]. If Q > threshold, the coniguration

of the area is regarded as a well-planned coniguration, otherwise, it is justiied as a poorly-planned coniguration.

Here, the value of threshold is determined by given requirements.

3.5 Land-use Configuration Generative Adversarial Networks

Recently, Generative Adversarial Networks (GANs) achieve tremendous achievements and reveal strong imagina-

tive and generative abilities. It motivates us to formulate the land-use coniguration generation task into the

learning paradigm of GAN.

In our preliminary version [38], we propose a land-use coniguration GAN (LUCGAN), and the network

structure of LUCGAN as illustrated in Figure 8. In LUCGAN, the generator generates land-use coniguration

based on the embeddings of surrounding contexts. The discriminator provides feedback to the generator for

generating conigurations close to well-planned conigurations instead of poorly-planned conigurations.

The Algorithm 1 shows the training process of LUCGAN. Speciically, in one training iteration, we irst update

the parameters of the discriminator for κ times, then learn the parameters of the generator for 1 time based on the

current discriminator. For the updating process of the discriminator, we samplem well-planned conigurations,

surrounding context embeddings, and poorly-planned conigurations respectively. We utilize them to maximize

the loss function illustrated in line 10 of Algorithm 1. Intuitively, we expect the discriminator to provide positive

feedback for well-planned conigurations, and negative feedback for poorly-planned and generated conigurations.

In this way, the discriminator improves the distinguishing ability for land-use conigurations. For the updating

process of the generator, we sample m surrounding context embeddings irstly. Then we minimize the loss
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Fig. 9. The model structure of LUCGAN+

function shown in line 14 of Algorithm 1. Intuitively, we aim to utilize the discriminator to improve the generative

ability of the generator for producing data structures similar to well-planned conigurations.

However, the embeddings of the surrounding contexts come from a feature space constructed by spatial

attributed graphs. Owing to the small number of graphs, the distribution of them in the feature space is sparse and

discrete, which causes the learning process of the GAN model unstable. To overcome this limitation and improve

model performance, we propose an enhanced framework, namely LUCGAN+, and the network structure as shown

in Figure 9. Compared with Figure 8, we add a conditioning augmentation module [54] into our framework.

Speciically, we irst assume the prior distribution of the surrounding contexts embeddings is a normal distribution.

Then, we estimate the mean and variance of the distribution based on the original embeddings. Next, we sample

a vector from the distribution and combine it with a vector sampled from standard normal distribution as the

input vector of the model. This process improves the model performance because it mitigates the discreteness

and sparsity of original graphs in the feature space.

In addition, owing to the diferences of the model structure between LUCGAN and LUCGAN+, we customize

a new training algorithm for LUCGAN+ as shown in Algorithm 2. Compared with Algorithm 1, there are two

improvements: (1) conditioning augmentation module (line 4 line 7 in Algorithm 2); (2) loss function of the

generator (line 19 in Algorithm 2). For the conditioning augmentation module, we calculate the mean µs and the

variance δs based on original surrounding context embeddings respectively. Then, we utilize reparametrization
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Algorithm 1: The training process of LUCGAN. Here,G denotes the generator, D denotes the discriminator.

We adjust the hyperparameter κ to change the updating frequencies of the parameters of the discriminator.

1 // start training.

2 for number of training iterations do

3 // update discriminator firstly.

4 for κ steps do

5 Samplem well-planned land-use coniguration samples
{
E
1
,E

2
, ...,E

m
}
.

6 Samplem surrounding context embeddings
{
z
1
, z

2
, ..., z

m
}
.

7 Generate land-use conigurations by generator,
{
F
1
, F

2
, ..., F

m
}
, Fi = G(zi ).

8 Samplem poorly-planned land-use conigurations
{
T
1
,T

2
, ...,T

m
}
.

9 Update the discriminator by maximizing the following loss:

10 ▽θd
1
m

∑m
i=1[loд(D(Ei )) + loд(D(1 − F

i )) + loд(D(1 − T
i ))].

11 // update generator secondly.

12 Samplem context information embedding samples
{
z
1
, z

2
, ..., z

m
}
.

13 Update the generator by minimizing the following loss:

14 ▽θд
1
m

∑m
i=1 loд(1 − D(G(zi ))).

Algorithm 2: The training process of LUCGAN+. Here,G denotes the generator, D denotes the discriminator.

We adjust the hyperparameter κ to change the updating frequencies of the parameters of the discriminator.

1 // start training.

2 for number of training iterations do

3 // Conditioning Augmentation.µs ,δs are mean and variance respectively. W(), b() are

weight and bias of the corresponding item respectively. ϵ () indicates that

sampling a vector from normal distribution N(0, 1).
4 Samplem context information embedding samples Z =

{
z
1
, z

2
, ..., z

m
}
.

5 µs = RELU (Wµ · Z + bµ );
6 δs = RELU (Wδ · Z + bδ ).
7 η = Concatenate((µs + δs · ϵs ), ϵc ).
8 // update discriminator firstly

9 for κ steps do

10 Samplem well-planned land-use conigurations
{
E
1
,E

2
, ...,E

m
}
.

11 Collectm vectors as context embeddings thorough line 6
{
η1
,η2
, ...,ηm

}
.

12 Generate land-use conigurations by generator,
{
F
1
, F

2
, ..., F

m
}
, Fi = G(ηi ).

13 Samplem poorly-planned land-use conigurations
{
T
1
,T

2
, ...,T

m
}
.

14 Update the discriminator by maximizing the following loss:

15 ▽θd
1
m

∑m
i=1[loд(D(Ei )) + loд(D(1 − F

i )) + loд(D(1 − T
i ))].

16 // update generator secondly.KL means Kullback-Leibler divergence

17 Collectm vectors as contexts embeddings thorough line 6
{
η1
,η2
, ...,ηm

}
.

18 Update the generator by minimizing the following loss:

19 ▽θд
1
m

∑m
i=1 loд(1 − D(G(ηi ))) + KL(N(µs ,δs ) | | N(0, 1)).
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trick to sample a vector from normal distributionN(µs ,δs ), and concatenate the vector with a vector sampled from

normal distribution N(0, 1) as the surrogate context embeddings η. For the learning process of the discriminator,

the main logic is the same as Algorithm 1, we only replace the surrounding context embeddings z with η.

For the loss of the generator, besides improving the generative capability of the generator, we also minimize

the Kullback-Leibler (KL) divergence between N(µs ,δs ) and N(0, 1), which enhances the smoothness of the

surrounding context embeddings in the feature space and avoids overitting.

4 EXPERIMENT RESULTS

In this section, we conduct extensive experiments and case studies to answer the following questions: Q1. Is

our proposed automatic planner efective for generating land-use conigurations? Q2. We split an area into

n × n squares for quantifying land-use conigurations. What is the inluence of the square size for generating

conigurations?Q3.What are the diferences between the contexts of well-planned conigurations poorly-planned

conigurations?Q4.What are the diferences of land-use conigurations generated by our framework when facing

with diferent planning goals? Q5. What does the generated result for each POI category look like in a generated

land-use coniguration?

Table 1. POI category list

code POI category code POI category

0 road 10 tourist attraction

1 car service 11 real estate

2 car repair 12 government place

3 motorbike service 13 education

4 food service 14 transportation

5 shopping 15 inance

6 daily life service 16 company

7 recreation service 17 road furniture

8 medical service 18 speciic address

9 lodging 19 public service

4.1 Data Description

We use the following datasets for evaluation: Residential Community: The residential community dataset

contains 2990 residential communities in Beijing 1. Each community is centered by a geographic point (described

by latitude and longitude). POI: The POI dataset includes 328668 POIs in Beijing 2. Each POI item includes

latitude, longitude, and the corresponding POI category. Table 1 shows the detailed information of POI category.

Taxi Trajectories: The taxi trajectories are collected from a Beijing taxi company 3. Each trajectory contains

trip ID, distance (m), travel time (s), average speed (km/h), pick-up and drop-of time, pick-up and drop-of point.

Public Transportation: The public transportation dataset includes bus transactions in Beijing from 2012 to

2013, which contains 718 bus lines, 1734247 bus trips 4. Housing Price: The housing price dataset is collected

from a Chinese real estate website 5, which contains the housing price of residential communities of Beijing from

2011 to 2012. Check-In: The check-in dataset contains the Weibo 6 check-in records in Beijing from 2011 to 2013.

The data format of one record is: longitude, latitude, check-in time and check-in place.

1http://www.soufun.com/
2https://www.openstreetmap.org/
3https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
4https://www.beijingcitylab.com/data-released-1/data1-20/
5http://www.soufun.com/
6https://open.weibo.com/wiki/2/place/pois/add_checkin
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4.2 Evaluation Metrics

We aim to generate land-use conigurations that are similar to well-planned conigurations. To evaluate the

generative performance, we calculate the diference between the distribution of well-planned conigurations

Y and the distribution of generated conigurations Ŷ . The less distribution diference is, the better generative

performance will be.

(1) Kullback-Leibler (KL) Divergence: KL(Y | |Ŷ ) = ∑
Y (x) · lnY (x )

Ŷ (x )
, where x is a test sample.

(2) Jensen-Shannon (JS) Divergence: JS(Y | |Ŷ ) = 1
2KL(Y | |

Y+Ŷ
2 ) + 1

2KL(Ŷ | |
Y+Ŷ
2 ).

(3) Hellinger Distance (HD) : HD(Y | |Ŷ ) = 1√
2


√
Y −

√
Ŷ

2
.

(4) Wasserstein Distance (WD) :WD(Y | |Ŷ ) = in f
γ∼Γ(Y ,Ŷ )E(x,y)∼γ ∥x − y∥, where Γ(Y , Ŷ ) is a set of joint

distribution between Y and Ŷ ; γ is a joint distribution of Γ; x ,y are two samples sampled from γ ; E| |(.)| | is
the expectation of distances between any two samples.

4.3 Baseline Methods

We compare the performance of our journal version framework (LUCGAN+) against the following baseline

models:

(1) DCGAN: is an extension for traditional GAN, which utilizes convolutional layer and convolutional trans-

pose layer in the generator and discriminator respectively [32].

(2) WGAN: is a new GAN training framework, which improves the stability of learning and provides mean-

ingful learning curve for debugging and hyperparameter adjustment [4].

(3) WGANGP : utilizes gradient penalty to replace clipping weights ofWGAN, which enhances the performance

of WGAN further [16].

(4) LUCGAN: is the conference version of our land-use coniguration GAN, which is capable of generating

the conigurations based on the surrounding contexts [38].

To further study the generated land-use conigurations, we adopt two new methods: scoring model and

visualization. For the scoring model, we train a machine learning model to learn the scoring criteria that provides

high score for well-planned conigurations and low score for poorly-planned conigurations. After we obtain

all testing samples, the model can be used to evaluate the quality of generated results. For the visualization, we

visualize the generated results in heat map, pie chart, 3d-bar chart for checking the POI distribution. We conduct

all experiments on a x64 machine with Intel i9-9920X 3.50GHz CPU, 128GB RAM and Ubuntu 18.04.

4.4 Hyperparameters and Reproducibility

In our experiments, irst, to obtain the embedding of surrounding contexts (section 3.3), we employ a VGAE [20]

composed of an encoder and a decoder. The encoder contains three graph convolutional neural layers. The

decoder only has one reconstructed layer. We perform Adaptive Moment Estimation (Adam) to optimize the

VGAE model with a learning rate of 0.005 for 300 epochs. The dimension of surrounding contexts’ embedding

is set to 100. Second, to quantify the quality of land-use conigurations (section 3.4), we set the value of the

hyper-parameter Q to 0.5. Third, our planner LUCGAN+ consists of a generator and a discriminator (section

3.5). We optimize the generator by Adam with a learning rate of 0.0001. We perform Stochastic Gradient Descent

(SGD) to optimize the discriminator with a learning rate of 0.0001 and a momentum of 0.95. The whole optimizing

process continues for 50 epochs. To make other researchers easily reproduce our experiments, we release the

code and data by Dropbox 7.

7https://www.dropbox.com/sh/16pk55efb9fzm2j/AACsosXxHtfQKXKjmL0NrOn1a?dl=0
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4.5 Overall Performance (Q1)

To validate the efectiveness of our model, we evaluate the gap between the distribution of well-planned con-

igurations and the distribution of generated conigurations in terms of KL Divergence (KL), JS Divergence

(JS), Hellinger Distance (HD), and Wasserstein Distance (WD). As Figure 10 shows, compared with the best

performance of baseline models (WGAN, WGANGP ,DCGAN), LUCGAN+ improves 16.2%, 0.25%, 28.4%, 48.6%

in terms of KL, JS, HD, and, WD respectively. This observation indicates that LUCGAN+ can capture more

characteristics of the well-planned conigurations compared with other baseline models. In addition, another

interesting observation is that compared with LUCGAN, LUCGAN+ increases 8.92%, 0.23%, 8.43%, 4.32% in

terms of KL, JS, HD, and WD respectively. A potential interpretation for the observation is that the conditioning

augmentation module and the new training approach of LUCGAN+ makes the learning process more stable and

efective.
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Fig. 10. Overall performance for land-use configuration generation.

4.6 Study the influence of the square size for generating land-use configurations (Q2)

To quantify the land-use coniguration, we divide an area into n × n squares to collect the POI distribution

information. To study the inluence of the square size for generation, we vary n = 5, n = 10, n = 25, n = 50,

n = 100 to conduct experiments. Here, the smaller value of n is, the larger size of square is. Figure 11 shows the

performance of all models when facing diferent square sizes in terms of KL Divergence, JS Divergence, HD, and

WD. We ind that with the increase of the square size, the value of all metrics decreases. A possible explanation

for the observation is that when the square size is larger, the distribution of the land-use conigurations becomes

simpler. The generative models can capture the characteristics of the distribution of the conigurations very

easily, thus, the values of all metrics become smaller. However, the large square size loses much information

about urban planning details of the land-use coniguration. Another interesting observation is that LUCGAN+
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outperforms other baseline models in terms of all evaluation metrics when n = 100. But for some smaller n

values, LUCGAN + is slightly worse than LUCGAN. A potential reason for the observation is that LUCGAN is

enough to capture the pattern of land-use conigurations collected by smaller n values. Although the conditional

augmentation module of LUCGAN+ can improve robustness, in this situation such module may cause the model

to a slightly underitting. However, in reality, we should avoid collecting land-use conigurations under small n

values. Because such conigurations lose many planning details, which is harmful to producing efective urban

plans.
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Fig. 11. The influence of square size for the generation of land-use configurations.

4.7 Study the surrounding contexts of diferent configurations (Q3)

Our framework generates land-use conigurations based on the corresponding surrounding contexts. Thus,

the surrounding contexts have strong inluence on the generation of the land-use coniguration. To observe

the distribution of the surrounding contexts, we visualize the embeddings of the surrounding contexts on

2-dimensional space. Speciically, we irst randomly choose 500 embeddings of the surrounding context of well-

planned conigurations and poorly-planned conigurations respectively. Then, we utilize T-SNE algorithm [37] to

reduce the dimension of the embeddings into two. Next, we visualize the embeddings on 2-dimensional space, as

illustrated in Figure 12. We ind that the pattern of the well-planned conigurations contexts is diferent from the

pattern of the poorly-planned conigurations contexts, which indicates that our research intuition, that generates

the land-use conigurations based on the surrounding contexts is reasonable.

4.8 Scoring model evaluation for generated land-use configurations (Q1)

To validate the efectiveness of LUCGAN+ further, we build a scoring model. As illustrated in Figure 13, LUCGAN+

owns the highest quality score compared with other baseline models, which indicates the superiority of LUCGAN+.
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Fig. 12. Visualization for the surrounding contexts of well-planned and poorly-planned configurations.

Meanwhile, it also shows that the scoring model can be regarded as a evaluation method for evaluating the

generation of the land-use conigurations.
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Fig. 13. The quality score for diferent generated methods.

4.9 Study the POI ratio of generated configurations under diferent Q (Q4)

In our framework, we leverage a hyperparameter Q to evaluate whether a land-use coniguration is well-planned

or poorly-planned. When individuals have diferent urban planning goals, the meanings of Q are diferent.

To validate the utility of Q , we conduct two generative tasks: (1) Q is used to determine whether a land-use

coniguration is vibrant; (2) Q is used to validate whether a land-use coniguration is living convenient. We

visualize the POI ratio of generated conigurations and original conigurations under the two Q settings as

shown in Figure 14, in which the numbers 0 ∼ 19 denote diferent POI categories that are shown Table 1, and

the grey percentiles indicate the proportions of diferent POI categories in the corresponding coniguration.

Compared with Figure 14(a) and Figure 14(c), we ind that for the vibrant coniguration, POI category 4 (food

service), 5 (shopping), 7 (recreation service), and 11 (real estate) cover a large portion. This is reasonable because a

vibrant coniguration always owns many POIs related to economics and social activities; For the living convenient

coniguration, POI category 12 (government place), 17 (road furniture), and 19 (public service) occupy the majority.

A reasonable explanation is that a coniguration is living convenient when it contains many POIs related to

public services and traic conditions. The two observations validate that LUCGAN+ can produce the customized

land-use coniguration utilizing Q according to people’s requirements. In addition, compared with Figure 14(a)

and Figure 14(b), Figure 14(c) and Figure 14(d), another interesting observation is that the POI categories in
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generated conigurations are more complete than the original conigurations. A potential interpretation is that

LUCGAN+ not only captures the characteristics of the speciic kind of land-use coniguration but also includes

new design elements into the generated coniguration.
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Fig. 14. Comparison of POI ratio between generated and original configurations under diferent Q .

4.10 Study the POI distribution of generated configurations under diferent Q (Q4)

To further understand the utility of Q and observe the diferences between generated and original land-use

conigurations, we visualize the conigurations into a 3-dimensional space as shown in Figure 15, in which

the left color bar indicates the mapping relations between the number of POI categories and colors; the right

part relects the POI distribution of the coniguration; the height of each bar indicates the number of POIs at

the corresponding position. A careful inspection for Figure 15(a) and Figure 15(c) shows that the generated

conigurations are organized and contain enough planning information for implementation in realistic. In

addition, another interesting observation is that the generated conigurations contain more dense POI distribution

compared with original conigurations. A potential interpretation is that LUCGAN+ prefers to produce dense

POI distribution, because it’s easy to capture the correlation among diferent POIs.

4.11 Study the generated situation of each channel in generated configurations (Q5)

We quantify a land-use coniguration as a longitude-latitude-channel tensor. So, what is the generated situation

for each channel (POI category)? To check it, we visualize the POI distribution of each channel. The visualization

results are shown in Figure 16, in which the darker color of the block indicates the number of POI in the

corresponding block is larger. An interesting observation standing out is that the POI distributions of diferent

categories show their unique patterns. For example, transportation pots are more concentrated, while food
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Fig. 15. Comparison of POI distribution between generated and original configurations under diferent Q

service related POIs are more dispersed across the area; the distribution of car service spots is very similar to the

recreation service, and the possible reason is that recreation service spots may occupy many parking lots which

potentially attract car services. The observation shows that LUCGAN+ is capable of capturing characteristics of

POI distribution of diferent categories at the same time. From another perspective, the observation also relects

that LUCGAN+ is able to capture the mutual interactions and constraints among diferent kinds of POIs. Thus,

LUCGAN+ is superior and efective for generating land-use conigurations automatically.

5 RELATED WORK

Spatio-temporal Data Mining Spatio-temporal data mining refers to the process of discovering the pattern

and knowledge from the data related to space and time [5]. Owing to the spatio-temporal data is closely relevant

to our real life, many researchers attempted to extract the patterns hidden behind the data for improving the

urban life quality [22, 40ś42, 45, 58]. For instance, Wang et al. employed deep learning approaches to forecast

the travel demand of individuals based on the travel order data collected by car-hailing company [44]. Zhao

et al. predicted the air quality index by considering spatio-temporal relatedness [57]. Wang et al. employed

reinforcement learning and spatial knowledge graph to conduct mobile user proiling [50]. Yuan et al. utilized topic

model to discover urban functional zone based on POI data and taxi trajectories data [53]. Wang et al. used peer
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Fig. 16. Visualization for diferent POI categories of one generated configuration.

and temporal-aware representation learning to analyze the driving behavior based on GPS trajectory data [47].

Liu et al. studied the mobility patterns of traic lows for bus routing optimization [23]. Du et al. provided a

systematic study to capture the spatio-temporal dynamics of passenger transfers for crowdedness-aware route

recommendations [11]. In this paper, to reduce the heavy workload of urban planners and accelerate the urban

planning process, we expect to utilize spatio-temporal data for the urban planning pattern discovering.

Representation Learning. The objective of representation learning is to preserve the information of original

data into a low-dimensional feature space. In general, there are three types of representation learning models:

(1) probabilistic graphical models; (2) manifold learning models; (3) auto-encoder models. The probabilistic

graphical models build a complex Bayesian network system to learn the representation of uncertain knowledge

buried in original data [31]. The manifold learning models infer low-dimensional manifold of original data

based on neighborhood information by non-parametric approaches [59]. The auto-encoder models learn the

latent representation by minimizing the reconstruction loss between original and reconstructed data [30]. In

the spatio-temporal data mining domain, to capture the characteristics of spatial entity (i.e. city, geographical

area), representation learning achieves great success [8, 13, 14, 46, 48]. For instance, to analyze the individual

driving behaviors, Wang et al. utilized representation learning to mine the spatio-temporal characteristics of GPS

trajectory data. [49]. Du et al. proposed a new spatial representation learning framework to capture the static

and dynamic characteristics among the spatial entities for predicting housing price [12]. Wang et al. employed

a spatio-temporal representation learning module to extract the features of cyber attack in a graph for cyber

attack detection [43]. In this paper, to incorporate the surrounding context characteristics into our framework,
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we employ representation learning to preserve the spatial attributed graphs constructed by the contexts into

low-dimensional vectors.

Generative Adversarial Networks. Recently, Generative Adversarial Networks (GAN) attract tremendous

attention of researchers [55, 56]. GAN algorithms can be classiied into three categories from the task-driven

perspective. (1) Semi-supervised learning GANs. Usually, a complete labeled data set is diicult to obtain, and

the semi-supervised learning GANs can utilize unlabeled data or partially labeled data to train an excellent

classiier [10, 24]. For instance, Akcay et al. designed a semi-supervised GAN anomaly detection framework

that achieved good performance [2]. (2) Transfer learning GANs. Many researchers utilize the transfer learning

GANs to transfer knowledge among diferent domains [18, 35]. For instance, Choi et al. built an uniied GAN to

translate the images among diferent style ields [9]. (3) Reinforcement learning GANs. Reinforcement learning

(RL) is incorporated into GANs to improve the generative performance [34]. For instance, Ganin et al. combined

reinforce learning and GAN to synthesize high-resolution images [15]. Aforementioned works indicate that

GANs are capable of capturing the characteristics of the original data distribution and generate new data samples

based on the distribution. Such observation motivates us to utilize the learning paradigm of GANs as the main

framework of our automatic urban planner.

Urban Planning. Urban planning is a complex and interdisciplinary research domain [1]. Urban experts

need to consider lots of factors such as government policy, environmental protection, and more for designing

appropriate land-use conigurations [1, 27, 29, 39]. Meanwhile, diferent areas have various planning goals. For

example, Barton et al. focused on constructing an urban planning solution for human health and well-being

[7]. John et al. discussed the relationship between urban planning and real estate development [33]. Indeed, it

is diicult to generate a good urban planning solution objectively. Recently, with the development of artiicial

intelligence (AI), many researchers focus on making the process of urban planning become smart and automated.

These methods always build up a GAN model to generate the layout of a space based on the realistic architecture

or designing image [21, 26, 28]. For instance, Albert et al. utilized generative adversarial networks to generate

the complex and spatial organizations observed in global urban patterns based on footprint data [3]. Bachl et al.

proposed a new conditional GAN framework to learn the architecture features of major cities for generating

the image of buildings which do not exist before [6]. These works have had a lot of success, but they have one

drawback: they require expert layout data in order to train AI models. In addition, some researchers use transfer

learning to transfer spatial knowledge across many cities to increase the generalization of spatial AI models and

learning eiciency [17, 19]. These works are capable of perceiving human mobility patterns, which gives a decent

foundation for urban planning, but they are unable to immediately develop successful urban layouts. Compared

to these works, our framework LUCGAN+ has no strict condition for data collection. We focus on producing

customized land-use conigurations based on geographical spatial data such as POI, traic data, economic data,

demographic data, etc. These data resources are always publicly available, which makes our framework have

good lexibility and generalization.

6 CONCLUSION REMARKS

In order to generate a suitable and excellent land-use coniguration solution objectively and reduce the heavy

burden of urban planning specialists, we propose an automatic land-use coniguration planner framework. This

framework generates the land-use coniguration based on the surrounding contexts. Speciically, we irst collect

a set of land-use conigurations and corresponding surrounding contexts. Then, we construct spatial attributed

graphs that contain explicit features such as value-added space, POI distribution, traic conditions, and more

of surrounding contexts, and preserve the information of the graphs into the surrounding embeddings. Next,

we employ our proposed automatic urban planner model to generate well-planned land-use conigurations

based on the embeddings. Finally, through extensive experiments, we ind that LUCGAN+ is more efective and
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robust than other baseline models. In addition, diferent square sizes afect the generative ability of LUCGAN+,

so users should adopt suitable segmentation scheme for land-use conigurations based on their requirements.

Moreover, LUCGAN+ is capable of customizing land-use conigurations based on hyperparameterQ . Furthermore,

LUCGAN+ not only generates the POI distribution of whole area but also provides the generation of each POI

category.
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