

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 134–141, 2008.
© IFIP International Federation for Information Processing 2008

Automated Usability Evaluation during Model-Based
Interactive System Development

Sebastian Feuerstack1, Marco Blumendorf1, Maximilian Kern1, Michael Kruppa2,
Michael Quade1, Mathias Runge1, and Sahin Albayrak1

1 DAI-Labor
Technische Universität Berlin

Ernst-Reuter-Platz 7,10587 Berlin
Firstname.Lastname@DAI-Labor.de

2 Deutsches Forschungszentrum für Kuenstliche Intelligenz GmbH
Trippstadter Str.122, 67663 Kaiserslautern
Firstname.Lastname@dfki.de

Abstract. In this paper we describe an approach to efficiently evaluate the us-
ability of an interactive application that has been realized to support various
platforms and modalities. Therefore we combine our Multi-Access Service Plat-
form (MASP), a model-based runtime environment to offer multimodal user
interfaces with the MeMo workbench which is a tool supporting an automated
usability analysis. Instead of deriving a system model by reverse-engineering or
annotating screenshots for the automated usability analysis, we use the seman-
tics of the runtime models of the MASP. This allows us to reduce the evaluation
effort by automating parts of the testing process for various combinations of
platforms and user groups that should be addressed by the application. Further-
more, by testing the application at runtime, the usability evaluation can also
consider system dynamics and information that are unavailable at design time.

Keywords: model-based user interface development, automated usability
evaluation.

1 Introduction

User interfaces (UI) are more and more required to support several contexts-of-use.
They need to be able to be run on several platforms, consider different types of users
and adapt to various usage situations. This poses new challenges when it comes to the
development of interactive applications as well as their evaluation. In this work we
present our approach combining a model-based runtime system with an Automated
Usability Evaluation (AUE) tool to provide the ability to evaluate UIs that adapt at
runtime. In order to attend to these issues we combined two approaches: The Mental
Models (MeMo) workbench, a workbench for AUE and the Multi-Access Service
Platform (MASP), a model-based framework for UI generation. Model-based UI
development approaches [1, 2, 3, 4] already support the generation of multi-platform
user-interfaces as well as context-of-use adaptation. They contain semantics stored in

 Automated Usability Evaluation 135

a well-structured form of declarative design models. This allows tools to assist devel-
opers at design-time by detecting questionable features and by offering the help of
automated advisors. However, most of these approaches do not consider ad-hoc adap-
tation to the context-of-use which can only be calculated at runtime. The MASP al-
lows the derivation of a UI from a set of executable models [5], defining the user
interface state. Besides having the possibility to describe adaptive UIs, the models and
the state information can also be utilized to support the AUE of the UI. By working
with abstract UI models, which ideally contain all required concepts, the UIs could be
generated for any platform and thus usability evaluation could be done by considering
any platform without being forced to redefine the concepts of the evaluation target.

After we give an overview of related work in the research field of automated us-
ability evaluation in the next section, we elaborate on the combination of the two
approaches. We illustrate the results of the evaluation using the interactive Cooking
Assistant we developed based on the MASP (the Cooking Assistant has also been
deployed as a demo application in our Ambient Assisted Living Testbed [6]) and we
conclude with a summary and outlook in section 5.

2 Related Work

AUE methods can support the evaluation process, whereas they differ significantly
in their degree of automation and the effort for evaluators [7]. The majority of AUE
methods is usually applied on already existing systems or prototypes and therefore
requires re-constructing a system interaction model by reverse-engineering or manu-
ally annotating the semantics of already existing applications [8, 9, 10]. The Cog-
Tool [11] is a tool to predict execution times for certain tasks. The max model [12] is
considering cognitive aspects via user simulation for measuring accessibility of in-
formation within web sites and the PROSKIN project [13] is tracking user data in
order to aggregate it to higher-level profiles to gain personalized UI designs. The
AIDE [14] tool focuses on organizing the controls of an interface by incorporating
five metrics (efficiency, alignment, horizontal balance, vertical balance and con-
straints) into the design process, while initial automated assistance has been pro-
posed by USAGE [15]. Furthermore, tests have been developed for certain aspects of
completeness, consistency and command-reach ability [16]. Model-based interface
development environments, such as TADEUS’s [17], support simulation and model-
checking by translating the dialog model into a Petri net.

In contrary to these approaches we are moving the AUE from design-time to run-
time in order to enable the evaluation of ad-hoc context-of-use adaptations as well as
considering system dynamics that are unknown at design-time, such as data queries.
We use the MeMo workbench [18] to simulate different user profiles that perform
certain tasks and benefit in the way that usability issues are uncovered for a wide
range of possible users. Further on, we can simulate users performing more errors as
usual to diagnose the system’s behavior which is difficult to predict by real persons
within complex systems. The evaluation process of the MeMo workbench is based on
a cognitive walkthrough (CWT) carried out by a usability expert and includes a rule
engine which contains a set of modifier rules extracted from the CWT methodology.

136 S. Feuerstack et al.

Compared to the related work, our approach offers the following benefits:

• No need for a manual re-creation of the specification of an application which is
fragile for introducing misunderstandings and incompleteness.

• All combinations of platforms and users that are addressed by the interactive
application can be efficiently targeted to an automated user interface evaluation.

• By utilizing the model-based run-time system, the evaluation can consider sys-
tem dynamics and parameters, and context-of-use variations.

3 Model-Based Automated Usability Evaluation

In order to automate the usability evaluation for several context-of-use scenarios, each
specifying a combination of a specific platform, a certain group of users and condi-
tions of the environment, we replaced the system interaction model (SIM) of the
MeMo workbench with the runtime models of the MASP. The simulation starts with
the MASP generating the initial representation of the user interface for a certain con-
text-of-use. This representation is sent to the MeMo workbench by delivering a sys-
tem interaction state (SI state) which consists of the current enabled set of interaction
input and output tasks. Based on this information and the current user profile, the
MeMo workbench chooses an interaction which is related to an input task of the
MASP. The correlated user action will be performed and a new SI state is generated
until the user’s goal has been accomplished.

3.1 System Interaction State Generation

In the MASP we are interpreting task trees that define the temporal relations as the
basic interaction flow for the interactive system. A domain model completes the task
model by providing content for the tasks. The model defines the data structures and
holds instances of these structures which are objects that become accessible at run-
time. The life-time of these objects is determined by the task model, which also refer-
ences the objects in the designated tasks as we described in detail in [19]. Modifying
objects of the domain model happens either through the service model (1), connecting
backend services to application tasks (2) or by user interaction (3) while entering and
changing information. User interaction is mediated by the interaction model, detailing
the interaction tasks (4). Here we distinguish input interaction tasks (IIT) and output
interaction tasks (OIT), which identify the interaction on the highest level of abstrac-
tion. While OITs require no human intervention but present information to the user
until they become disabled by another task, IITs require human intervention such as
data input. The tasks are also annotated with the objects that are read, modified, cre-
ated or declared and refer to the related classes of the domain model. A reification of
the interaction in terms of details is provided by the interaction model. It encloses an
abstract interaction description that is modality independent and a concrete interaction
description that adds the modality dependent information. Additionally, by mappings
between the interaction and the layouting model (5) presented in [20], absolute posi-
tions and element sizes of the concrete interaction objects are calculated based on the
context model (6) and filled with information delivered by various sensors at runtime.
Thus, each SI state will be composed of encapsulated sets of enabled tasks. Each

 Automated Usability Evaluation 137

atomic task is linked to the concrete domain object class and the relevant class attrib-
utes which are presented in the interface together with the expected user operation
(read, create or modify) (3). Further, the relevant interaction model elements and the
calculated layouting information are added for each enabled task of the SI state (5).
Finally a cascading style sheet defining the style for the graphic elements of the con-
crete model is attached to the SI state.

Interaction
Model

Interaction
Model

Service
Model
Service
Model

Tasks
Model
Tasks
Model

Context
Model
Context
Model

Layouting
Model

Layouting
Model

Domain
Model
Domain
Model

ss

ss

ss

ss ss

ss

(1)

(2)

(3)

(4)

(5)

(6)

Fig. 1. Overview of the involved runtime MASP models, separating multiple levels of abstrac-
tion. Each model comprises (part of) the runtime state(s).

The relation between the models is formalized by mappings which support the ex-
change of information between the models and keep the models synchronized. Figure 1
shows the different models and how they are related. At runtime each model contains
additional state information, allowing the derivation of the final UI according to the
state of the application. Through the utilization of mappings between the models, we
support an information flow at runtime, which allows identifying active elements of the
models based on the enabled task set. The derived SI state allows the creation of a final
UI which can be evaluated by an AUE tool as described in the next section.

From the AUE perspective, the runtime interpretation of the UI models creates a
SIM containing SI states, which describe the interface and interaction capabilities of
the evaluation target. The UI elements contained in a SI state are communication
elements with different interactions, e.g. a button can be used with left click or right
click as input interaction, whereas the information of the caption is carried through an
output interaction from the system to the user. Every input interaction and the succes-
sive SI state, which is enabled after the interaction, are encapsulated in a transition to
the subsequent SI state. In the simulation phase the SIM is mapped to a dynamic SIM
representation which is handed over to the simulator for interaction with the user
interaction model (UIM). The simulator continuously presents SI states to the UIM
and maps the input interactions, chosen by the UIM depending on the current user
task, to the corresponding transitions of the SIM.

3.2 User Action Generation

After the MASP presents the SI state to MeMo, the information processing unit (IPU)
of the UIM evaluates all input and output interactions and manipulates the data stor-
age which is used by the planning unit for the final interaction selection process. Both
modules are influenced by two types of user attributes (UA). Static UA express the
characteristics of a user group and cannot be influenced by the simulation process,
whereas dynamic UA (DUA) are flexible properties of a user.

138 S. Feuerstack et al.

Fig. 2. The components of the user interaction model and the interaction selection process

As shown in figure 2 the knowledge of the UIM is divided into three categories.
While the task knowledge describes the knowledge which has to be exchanged to
successfully accomplish a task, general knowledge describes knowledge all user
groups have in common and domain knowledge depends on the system to be evalu-
ated, e.g. experts know where to look for required information in the system.

During the analysis process, the UIM has to handle four different situations: re-
ceiving new information (1), already known information (2), known information with
differing values (3), or a request for information (4). Situations 1 and 2 are easy to
handle. Either the UIM already knows what the system is presenting or the UIM
stores the presented information in its data storage. Situation 3 is a mismatch between
the knowledge of the UIM and the presented information by the system. The UIM can
react in different ways. If the mismatch refers to the task knowledge, the UIM stores
the wish for correction in its working memory, otherwise its domain or general
knowledge will be corrected. If the requested information in situation 4 is contained
in its knowledge, the UIM is able to respond to the request.

After analyzing the output interactions, the rule engine is called to modify the dy-
namic user attributes according to DUA rules. The DUA influence the intention of the
UIM, e.g. high frustration or irritation level increase the probability of a task abortion,
time pressure reduces the probability for requesting help. Four intentions are imple-
mented so far: forward, cancel, help and abort. If the UIM has the intention forward,
it tries to transfer its task knowledge to the system and therefore prefers interactions
which support the transfer. In case that no interaction is preferred the UIM tries to
navigate in order to analyze further states. If the UIM is navigating and believes fur-
ther navigation is not possible or reasonable the intention turns to cancel and the UIM
tries to navigate back. In case it could find neither interactions for knowledge transfer
nor meaningful interactions for navigation, the intention becomes help. The intention
abort leads to an abort of the current task.

After the intention alteration the UIM starts to evaluate the available input interac-
tions. Assuming the intention is forward, the UIM tries to transfer its task knowledge
to the system and therefore prefers interactions which support the transfer. These
interactions are set up with a higher probability of selection. In case that no interac-
tion was preferred by the IPU, the planning unit systematically evaluates the UI

 Automated Usability Evaluation 139

objects for navigational functionalities (navigation objects) in correlation with its
knowledge and increases their interaction selection probability. If the intention is not
forward, the UIM tries to find navigation objects related to its intention, e.g. the
intention is help it prefers buttons labelled with “?”, “i” or “Help”. In case that no
interaction related to help or cancel can be identified, the intention will be set to
abort and the UIM gives up. Finally each interaction is set up with a probability of
selection, whereas the preferred interactions have higher probabilities than alterna-
tive interactions. In order to modify these probabilities, the rule engine analyzes the
complete SI state and generates facts for numerous attributes of the UI objects. A
dice throw selects the interaction according to the probabilities. The selected interac-
tion is given back to the MASP which generates a new SI state. The interaction se-
lection process will be started again until the task is finished or the UIM aborts the
process.

4 Evaluation Process and Results

All data collected during the simulation is captured with the help of a logging module
and stored in log files. With the help of an internal view the designer gains access to
simulation details for each task, user group and iteration of the simulation. This way,
the designer can retrace every interaction the UIM has chosen. This information con-
sists of the interaction element, the list of triggered rules, the probability distribution
of the available interactions and further statistics, e.g. execution time. A portion of
these data is visualized within an interactive graph (compare figure 3). Each node of
this graph represents a SI state which has been passed by the UIM and each transition
represents the chosen interaction. Deviations from the shortest goal driven path are
highlighted in different colors This helps the designer to easily uncover problematic
SI states and to find reasons for the deviations, because in the current state of imple-
mentation the workbench is not offering this level of critique by itself. As described in
section 1 the MeMo workbench evaluated the interactive Cooking Assistant (CA)
which is presented to the workbench by the MASP. In the following, evaluation re-
sults of several simulation runs are described.

With the help of the rule engine, several limitations of the CA regarding its usabil-
ity were exposed. Figure 3 illustrates a problematic iteration in which the UIM acci-
dently chose a different meal from a list of presented meals and did not discover this
fact immediately in the state RecipeDetails. In fact the probability of this interaction
is low, but the consequences might cause costs for the user, e.g. buying ingredients
for a different recipe as intended. In the subsequent state a dialog in which the number
of persons to whom the meal should be prepared for was presented to the UIM. In this
state the name of the meal is not displayed and therefore the UIM did not discover its
wrong meal choice. The same problem occurs in the state ShoppingList, where the
UIM can decide whether to continue with the CA or prepare a shopping list with the
necessary ingredients. Finally the UIM is able to discover its wrong meal choice in
the last state of figure 3.

In this dialog the information of the chosen meal is displayed and returned to the
user as output interaction. The only input interaction to undo the selection is via a link

140 S. Feuerstack et al.

Fig. 3. An interactive graph which displays user interactions and presented SI states

to the start page in the upper left corner of the screen. As a result of its non-conform
coding as a link it might not be recognized as an interaction element and the rule
engine therefore reduces its interaction probability. Within a couple of iterations the
UIM did not choose this interaction which has the consequence that the user finds no
proper interaction to correct the meal selection and therefore aborts the task.

Another result of the evaluation was the low contrast of the font compared to the
underlying interaction elements and furthermore the low contrast of some buttons
compared to the background, e.g. a small white font was used on light blue buttons.
The rule engine discovered this fact and reduced the interaction probabilities for user
groups representing elderly people with poor vision. These user groups had a higher
probability of not finding the appropriate interaction element and therefore choosing
an alternative interaction that deviated from the shortest goal driven path.

Finally, using standard labels for some interaction elements (e.g. “Next”) to
achieve higher coherences could improve the usability as well, which was confirmed
by further simulations done with the help of the workbench.

5 Conclusion and Outlook

In this paper we presented our approach to utilize user interface design and runtime
models to support an AUE of the modeled system. Utilizing the models allows skip-
ping the usually required manual annotation of the final UI with the underlying design
concepts. The approach also makes the evaluation of multi-platform and context
adaptive user interfaces much more straightforward because the automated system is
able to make assumptions about context parameters or used platforms. Thus it can
evaluate multiple variants of the UI much easier. We have also shown the evaluation
of one of our applications which revealed several usability problems.

For the near future we plan to extend the approach to consider more details of the
UI descriptions as well as to consider multimodal aspects of the UI and extended
context information (e.g. voice-based feedback could help noticing the selection of a
wrong recipe earlier). We would like to support the evaluation of different context
situations, e.g. simulating migrated or distributed UIs. Along with the challenge, we
would also like to enrich the perception of the UIM by concerning further mental
aspects. Finally our goal is to automatically make constructive suggestions (beyond
critique) for improving the usability.

 Automated Usability Evaluation 141

References

1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
unifying reference framework for multi-target user interfaces. Interacting with Com-
puters 15(3) (2003)

2. Coninx, K., Luyten, K., Vandervelpen, C., Van den Bergh, J., Creemers, B.: Dygimes:
Dynamically generating interfaces for mobile computing devices and embedded systems.
In: Mobile HCI (2003)

3. Mori, G., Paternò, F., Santoro, C.: Design and development of multidevice user interfaces
through multiple logical descriptions. IEEE Trans. Softw. Eng. 30(8) (2004)

4. Reichard, D., Forbrig, P., Dittmar, A.: Task models as basis for requirements engineering
and software execution. In: Proceedings of TAMODIA (2004)

5. Blumendorf, M., Lehmann, G., Feuerstack, S., Albayrak, S.: Executable Models for Hu-
man-Computer Interaction. In: Proc. of DSV-IS (2008)

6. Blumendorf, M., Feuerstack, S., Albayrak, S.: Multimodal smart home user interfaces. In:
Proc. of IUI4AAL Workshop on IUI 2008 (2008)

7. Ivory, M.Y., Hearst, M.A.: The state of the art in automating usability evaluation of user
interfaces. ACM Comput. Surv. 33(4) (2001)

8. Tarta, A., Moldovan, G.: Automatic Usability Evaluation Using AOP. In: IEEE Interna-
tional Conference on Automation, Quality and Testing, Robotics, vol. 2, pp. 84–89. IEEE
Computer Society, Los Alamitos (2006)

9. Ritter, F.E., et al.: High-level behavior representation languages revisited. In: ICCM
(2006)

10. Paternò, F., Piruzza, A., Santoro, C.: Remote web usability evaluation exploiting multimo-
dal information on user behaviour, pp. 287–298. Springer, Heidelberg (2006)

11. Teo, L., John, B.E.: Comparisons of keystroke-level model predictions to observed data
CHI 2006: CHI 2006 extended abstracts on Human factors in computing systems, pp.
1421–1426. ACM Press, New York (2006)

12. Lynch, G., Plamiter, S., Tilt, C.: The max model: A standard web site user model. In: 5th
Conference of Human factory & the Web (1999)

13. Fine, N., Brinkman, W.: EUSAI 2004, pp. 15–18. ACM, New York (2004)
14. Sears, A.: Aide: a step towards metric-based interface development tools. In: UIST (1995)
15. Byrne, M.D., Wood, D., Sukaviriya, P.N., Foley, J.D., Kieras, D.E.: Automating interface

evaluation. In: CHI Conference Companion (1994)
16. Braudes, R.E., Sibert, J.L.: Conmod: a system for conceptual consistency verification and

communication. SIGCHI Bull. 23(1) (1991)
17. Elwert, T., Schlungbaum, E.: Modelling and generation of graphical user interfaces in the

tadeus approach. In: DSV-IS (1995)
18. Jameson, A., Mahr, A., Kruppa, M., Rieger, A., Schleicher, R.: Looking for unexpected

consequences of interface design decisions: The memo workbench. In: Winckler, M.,
Johnson, H., Palanque, P. (eds.) TAMODIA 2007. LNCS, vol. 4849, Springer, Heidelberg
(2007)

19. Feuerstack, S., Blumendorf, M., Albayrak, S.: Prototyping of multimodal interactions for
smart environments based on task models. In: European Conference on Ambient Intelli-
gence: Workshop on Model Driven Software Engineering for Ambient Intelligence Appli-
cations (2007)

20. Feuerstack, S., Blumendorf, M., Schwartze, V., Albayrak, S.: Model-based layout genera-
tion. In: Proc. of Advanced Visual Interfaces (2008)

	Automated Usability Evaluation during Model-Based Interactive System Development
	Introduction
	Related Work
	Model-Based Automated Usability Evaluation
	System Interaction State Generation
	User Action Generation

	Evaluation Process and Results
	Conclusion and Outlook

