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Abstract. Indistinguishability properties are essential in formal verifi-
cation of cryptographic protocols. They are needed to model anonymity
properties, strong versions of confidentiality and resistance to offline
guessing attacks, and can be conveniently modeled using process equiva-
lences. We present a novel procedure to verify equivalence properties for
bounded number of sessions. Our procedure is able to verify trace equiv-
alence for determinate cryptographic protocols. On determinate proto-
cols, trace equivalence coincides with observational equivalence which
can therefore be automatically verified for such processes. When proto-
cols are not determinate our procedure can be used for both under- and
over-approximations of trace equivalence, which proved successful on ex-
amples. The procedure can handle a large set of cryptographic primitives,
namely those which can be modeled by an optimally reducing convergent
rewrite system. Although, we were unable to prove its termination, it has
been implemented in a prototype tool and has been effectively tested on
examples, some of which were outside the scope of existing tools.

1 Introduction

Cryptographic protocols are distributed programs which rely on the use of cryp-
tography to secure electronic transactions such as those that arise in electronic
commerce and wireless communication. They are also being applied in new do-
mains such as in Internet voting—legally binding political elections in Estonia,
Norway and Switzerland offer the possibility for Internet voting in 2011. This has
led to increasing demands on the complexity of desired security properties, lead-
ing to more complex cryptographic protocols. Given the socio-economic-political
consequences and the history of incorrect design of cryptographic protocols, the
need for formal proofs of correctness of protocols has been widely recognized.
Formal reasoning about cryptographic protocols is challenging as one has to
reason against all potentially malicious behavior—all communication between
protocol participants is assumed to be under the control of an adversary.

In order to make the task of formal analysis amenable to automation, usually
the assumption of black-box cryptography and unbounded computational power
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of the adversary is made. This adversarial model is often called the Dolev-Yao
model and is derived from Dolev and Yao’s seminal paper [29]. It has proved
extremely successful, and there are several automated tools [10,6,31] that can
automatically check trace-properties such as (weak forms of) confidentiality and
authentication. While trace-based properties are certainly important, many cru-
cial security properties can only be expressed in terms of indistinguishability
(or equivalence). They include strong flavors of confidentiality [11]; resistance to
guessing attacks in password based protocols [8]; and anonymity properties in
private authentication [3], electronic voting [26,7], vehicular networks [24] and
RFID protools [5,15]. More generally, indistinguishability allows to model se-
curity by the means of ideal systems, which are correct by construction [4,25].
Indistinguishability properties of cryptographic protocols are naturally modeled
by the means of observational and testing equivalences in cryptographic exten-
sions of process calculi, e.g., the spi [4] and the applied-pi calculus [2]. While we
have good tools for automated verification of trace properties, the situation is
different for indistinguishability properties.

State-of-the-Art. Hüttel [34] showed undecidability of observational equivalence
in the spi calculus, even for the finite control fragment, as well as decidability
for the finite, i.e., replication-free, fragment of the spi calculus. The decidabil-
ity result however only holds for a fixed set of cryptographic primitives and
does not yield a practical algorithm. Current results [12] allow to approximate
observational equivalence for an unbounded number of sessions. However, this
approximation does not suffice to conclude for many applications, e.g., [26,5].
Our approach overcomes these limitations for some applications in [26]. We still
cannot conclude for the e-passport example in [5], albeit for a different reason:
our procedure does not currently handle else branches in protocols.

Symbolic bisimulations have also been devised for the spi [14,13,39] and ap-
plied pi calculus [27,35] to avoid unbounded branching due to adversary inputs.
However, only [27,39] and [14] yield a decision procedure, again only approxi-
mating observational equivalence. The results of [27] have been further refined
to show a decision procedure on a restricted class of simple processes [23]. They
rely on a procedure deciding the equivalence of constraint systems, introduced
by Baudet [8], for the special case of verifying the existence of guessing at-
tacks. Baudet’s procedure allows arbitrary cryptographic primitives that can be
modeled as a subterm convergent rewrite systems [1]. An alternate procedure
achieving the same goal was proposed by Chevalier and Rusinowitch [19]. How-
ever, both procedures are highly non-deterministic and do not yield a reasonable
algorithm that could be implemented. Therefore, Cheval et al. [17] have designed
a new procedure and a prototype tool to decide the equivalence of constraint
systems, but only for a fixed set of primitives. Tools have also been implemented
for checking testing equivalence [30], open bisimulation [39] and trace equiva-
lence [18] for a bounded number of sessions but again only for a limited set of
primitives. One may note that [18] is the only decision procedure to consider
negative tests (else branches), crucial in several case studies [5,3].
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Our Contribution. We introduce a new procedure for verifying equivalence prop-
erties for processes specified in a cryptographic process calculus (without repli-
cation). Our main contributions are as follows.

– Our procedure checks for two equivalences which over- and under-
approximate the standard notion of trace equivalence ≈t for cryptographic
protocols: the under-approximation can be used to prove protocols correct
while the over-approximation can be used to rule out incorrect protocols.

– Cortier and Delaune [23] have shown that observational equivalence coin-
cides with ≈t for the class of determinate processes. They also give a decision
procedure for a strict sub-class of determinate processes, namely, simple pro-
cesses. We show that for determinate processes the coarser relation coincides
with ≈t, and our procedure can be used to verify observational equivalence
for the whole class of determinate processes.

– A novelty of our procedure is that it is based on a fully abstract model-
ing of symbolic traces in first-order Horn clauses. This is in contrast to the
constraint-solving techniques employed in [39,17,18,8,19] for verifying under-
approximations of observational equivalence. Techniques based on Horn
clauses have been extensively used, e.g., in [10,40,33], for an unbounded
number of sessions. Of these tools, only ProVerif [10,12] can verify an equiv-
alence property, which is an under-approximation of observational equiva-
lence. Horn clause modeling of an unbounded number of sessions of security
protocols may allow false attacks. In contrast, we show our modeling of a
bounded number of sessions for determinate protocols to be precise.

– Our modeling is fully abstract for arbitrary cryptographic primitives that
can be modeled as a convergent rewrite system which has the finite variant
property. Not only this strictly includes the class of primitives that can be
modeled as subterm convergent rewrite systems, but this also allows us to
handle a larger class of cryptographic primitives than [39,17,18,8,19,10]. For
example, this allows us to handle trapdoor commitment as used by Okamoto
for electronic voting in [38]. Although we were unable to prove termination
of our procedure, we conjecture it to terminate for the class of cryptographic
primitives that can be modeled as subterm convergent rewrite systems. Our
conjecture is supported by experimental evidence.

– Our procedure is implemented in the AKiSs (Active Knowledge in Security
protocols) prototype tool and used among others to give the first automated
proof of anonymity for the electronic voting protocol presented in [32].

Technical proofs are given in an accompanying technical report [16].

2 Preliminaries

Terms. Let F be a signature, i.e., a finite set of function symbols and ar a
function that assigns to each function symbol a natural number, its arity. A
function symbol of arity 0 is called a constant. Given a set of atoms A and a
signature F , we denote by TF ,A the set of terms built inductively from A by
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applying functions symbols in F . Given sets of atoms A1,A2, . . . ,An, we denote
the set TF ,∪1≤i≤nAi by TF ,A1,A2,...An . We assume that we have the following
countably infinite pairwise disjoint sets: a set N of private names, M of public
names, a set C of public channel names, a set W of parameters, and a set X of
message variables. Intuitively, elements of the set N represent nonces generated
by honest principals of a protocol, elements of M represent nonces available
both to the adversary and to the honest participants and elements of C represent
names of public channels (e.g. the name of a public network). Elements of W
are pointers used by the adversary to refer to messages output by the honest
participants in a protocol. We fix an enumeration w1, w2, . . . of the elements of
W . We let x, y, z range over X . We also define the following set of terms:

– Terms denotes the set of all terms TF ,N ,M,W,X .
– Messages denotes the set of messages TF ,N ,M.
– SMessages denotes the set of symbolic messages TF ,N ,M,X .

If t is a term, we denote by vars(t) the set of variables appearing in t, by
names(t) the set of names (public or private) appearing in t. The functions
vars , names are extended to sequences and sets of terms as expected.

Example 1. Consider the signature F = {enc, dec, pair, fst, snd} . The term t =
pair(enc(a, k1, r1), enc(b, k2, r2)) models the pair of the asymmetric encryptions
of public names a and b with keys k1, resp. k2 and randomness r1, resp. r2.

A substitution is a partial function σ : W∪X → Terms. We restrict substitutions
to map elements of W to elements of Messages and elements of X to elements
of SMessages. The domain of σ shall be denoted by dom(σ). We denote by σ[X ]
the substitution whose domain is restricted to X . We only consider substitutions
with finite domains. As usual, a substitution extends homomorphically to terms
and we write tσ for the term obtained by applying σ to t.

Rewriting and Unification. Two terms s and t are (syntactically) unifiable if
there exists a substitution σ such that sσ = tσ. We denote by mgu(s, t) their
most general unifier. We assume that the reader is familiar with basic notions
of rewriting and only briefly introduce our notations. A rewrite system R is a
set of rewrite rules of the form � → r where �, r ∈ Terms, names(l, r) = ∅ and
vars(r) ⊆ (�). We write t →R u when a term t can be rewritten in one step
to u. →∗

R denotes the transitive and reflexive closure of →R. We only consider
convergent rewrite systems and denote by t↓R the normal form of a term t. Two
terms s and t are said to be equal modulo R, written s =R t, if s↓R = t↓R. Given
a substitution σ, σ↓R is the substitution such that dom(σ↓R) = dom(σ) and for
all u ∈ dom(σ), σ↓R(u) = σ(u)↓R. We shall omit R when clear from the context.

Example 2. Let F be the signature in Example 1. Consider the rewrite sys-
tem R = {dec(enc(x, y, z), y) → x, fst(pair(x, y)) → x, snd(pair(x, y)) → y}.
The first rule models that a message can be decrypted, provided decryption
uses the same key (represented by variable y) as encryption. The last two rules
model projection of the first and second component of a pair. We have that
t = fst(pair(dec(enc(a, k, r), k), b)) →R fst(pair(a, b)) →R a = t↓R.
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We recall the notion of complete set of variants for a convergent rewrite system
[22]:

Definition 1. A set of substitutions variants(t1, . . . , tk) is called a complete
set of variants of terms t1, . . . , tk if for any substitution ω there exist σ ∈
variants(t1, . . . , tk) and a substitution τ such that for all 1 ≤ j ≤ k we have
that ω[vars(tj)]↓ = (σ↓τ)[vars(tj)] and (tjω)↓ = (tjσ)↓τ .
Intuitively, the set of variants of t represents a pre-computation such that any
instance of t in normal form is syntactically equal to an instance of tσi↓ for some
i, without the need to apply further rewrite steps. A rewrite system has the
finite variant property if for any finite sequence of terms a finite, complete set
of variants exists. An algorithm for computing complete sets of variants which
is correct whenever the rewrite system is optimally reducing [37] is presented in
[21]. Optimally reducing rewrite systems include subterm convergent systems [1]
(and hence the classical Dolev Yao theories for encryption, signatures and hash
functions), as well as a theory for modeling blind signatures. Complete sets of
variants can be used to compute finite complete sets of unifiers modulo R [21],
which are formally defined in [16] and denoted by mguR. We assume, henceforth,
that rewrite systems in this paper have the finite variant property.

Frames, Deducibility and Static Equivalence. We will use the notion of a frame [2]
to represent messages which have been recorded by an attacker.

Definition 2. A frame ϕ is a substitution {w1 
→ t1, . . . , wn 
→ tn} where ti ∈
Messages (1 ≤ i ≤ n).

Please note, in our definition, every frame ϕ with |dom(ϕ)| = n has dom(ϕ) =
{w1, . . . , wn}. The set of all frames is denoted as Frames. The adversary can use
the messages learnt from the run of a protocol to construct new messages. This
is modeled as the deducibility relation.

Definition 3. Any term in TF ,M,W is said to be a recipe. We say that a message
t is deducible from ϕ with a recipe r (written as ϕ �r t) if t ∈ Messages and
rϕ =R t. We write Recipes for the set TF ,M,W .

Example 3. Consider the signature F and the rewrite system R in Example 2.
Let ϕ = {w1 
→ enc(s, k, r), w2 
→ k} where s, k, r ∈ N are private names. We
have that ϕ �dec(w1,w2) s. Note that dec(w1, k) �∈ Recipes as k ∈ N . If s were
public instead of being private (ie, s ∈ M instead of s ∈ N ) then we also have
that ϕ �s s; as public names are always deducible.

Static equivalence captures indistinguishability of sequences of messages:

Definition 4. Let r1, r2 ∈ Recipes. A test r1
?
= r2 holds in a frame ϕ (written

(r1 = r2)ϕ) if ϕ �r1 t and ϕ �r2 t for some t, i.e., r1 and r2 are recipes for the
same term in ϕ.

A frame ϕ1 is statically included in ϕ2 (written ϕ1 s ϕ2) iff for all r1, r2 ∈
Recipes we have that (r1 = r2)ϕ1 implies (r1 = r2)ϕ2. Two frames ϕ1 and ϕ2

are statically equivalent (written ϕ1 ≈s ϕ2) iff ϕ1 s ϕ2 and ϕ2 s ϕ1.
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Example 4. Let a, b ∈ M and r, k, k′ ∈ N . We have that {w1 
→ enc(a, k, r), w2 
→
k} �≈s {w1 
→ enc(b, k, r), w2 
→ k} because the test (dec(w1, w2) = a) dis-
tinguishes the two frames. However, {w1 
→ enc(a, k, r), w2 
→ k′} ≈s {w1 
→
enc(b, k, r), w2 
→ k′}. Moreover, we have that {w1 
→ a, w2 
→ b} s {w1 
→
a, w2 
→ a} while {w1 
→ a, w2 
→ a} �s {w1 
→ a, w2 
→ b}.

3 A Cryptographic Process Calculus

We model cryptographic protocols using a simple process calculus which has
similarities with the applied pi-calculus [2].

Syntax. We model a bounded number of instances of a cryptographic protocol
as a finite set of traces. Traces are defined using sequences of actions generated
by the following grammar:

a ::= in(c, x) | out(c, t) | [s
?
= t]

where x ∈ X , s, t ∈ SMessages, c ∈ C. A trace T is a sequence of actions T =
a1.a2. . . . .an. As usual, a receive action in(c, x) acts as a binding construct for x.
We assume the usual definitions of free and bound variables for traces. We also
assume that each variable is bound at most once. A trace is ground if it does
not contain any free variables. The set of ground traces shall be represented as
GndTraces. A set of traces P = {T1, . . . , Tn} is said to be a process. A process is
ground if all of its traces are ground. We identify traces with singleton processes.

Remark 1. We do not have an ν operator: the binding happens implicitly by
the use of private names in N . We have also not explicitly included the parallel
operator | and the choice operator +. One could include these and generate the
corresponding set of traces. Thus, there is no loss in expressivity. However, an
explicit enumeration of the traces can result in an exponential number of traces.

Semantics. The semantics of a process is defined using the semantics of its traces.
The semantics of a trace is given in terms of a labeled transition system T. We
assume that all interactions between protocol participants are mediated by the
adversary. The labeled transition system records the interaction of the protocol
participants with the adversary. The set of labels of T is defined using the set
Recipes. Recall that the set Recipes is the set TF ,M,W (see Section 2). The set
of labels, Labels, is { in(c, r),out(c), test | r ∈ Recipes, c ∈ C }.

The labeled transition system T is a subset of (GndTraces×Frames)×Labels×
(GndTraces×Frames). We write (T, ϕ)

�−→ (T ′, ϕ′) whenever ((T, ϕ), �, (T ′, ϕ′)) ∈
T. The frame in the transition system is used to record the messages that the

protocol participants have sent in the past. The relation
�−→ is defined as follows:

Receive
ϕ �r t

(in(c, x).T, ϕ)
in(c,r)−−−−→ (T{x �→ t}, ϕ)

Test
s =R t

([s
?
= t].T, ϕ)

test−−−→ (T, ϕ)

Send
(out(c, t).T, ϕ)

out(c)−−−−→ (T, ϕ ∪ {w|dom(ϕ)|+1 �→ t})
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The label in(c, r) indicates a message sent by the adversary over the channel c
and r is the recipe that adversary uses to create this message. The label out(c)
indicates a message sent over the public channel c and transition rule Send
records the message sent in the frame. Finally, the rule Test is an internal action.

We write (T, ϕ)
�
=⇒ (T ′, ϕ′) when either (T, ϕ)

test∗,�,test∗−−−−−−−−→ (T ′, ϕ′) and � �=
test or (T, ϕ)

test∗−−−→ (T ′, ϕ′) and � = test, where test∗ denotes an arbitrary num-

ber of test actions. We also write (T0, ϕ0)
�1,...,�n−−−−−→ (Tn, ϕn) when (T0, ϕ0)

�1−→
(T1, ϕ1) . . .

�n−→ (Tn, ϕn) (and similarly for the ⇒ relation) and say that �1 . . . �n

is a run of (T0, ϕ0). If P is a process, we write (P, ϕ)
�1,...,�n−−−−−→ (T ′, ϕ′) (resp.

�1,...,�n
=====⇒ (T ′, ϕ′)) if there exists a trace T ∈ P such that (T, ϕ)

�1,...,�n−−−−−→ (T ′, ϕ′)

(resp. (T, ϕ)
�1,...,�n
=====⇒ (T ′, ϕ′)).

Process Equivalences. We will now define different flavors of trace equivalence
which will be useful in this paper. We first recall the standard definition of trace
equivalence in cryptographic process algebras.

Definition 5. (Trace equivalence) A ground process P is said to be trace-

included in a ground process Q (written P t Q) if whenever (P, ∅) �1,...,�n
=====⇒

(T, ϕ) then there exist T ′, ϕ′ such that (Q, ∅) �1,...,�n
=====⇒ (T ′, ϕ′) and ϕ ≈s ϕ

′. Two
processes P and Q are trace-equivalent (written P ≈t Q) if P t Q and Q t P .

We will also define two other notions of trace equivalence, one coarser and one
more fine-grained. We start by describing the coarser trace equivalence.

Definition 6. Given ground processes P and Q, we say that P ct Q if when-

ever (P, ∅) �1,...,�n
=====⇒ (T, ϕ) then there exist T ′, ϕ′ such that (Q, ∅) �1,...,�n

=====⇒ (T ′, ϕ′)
and φ s φ

′. We say that P ≈ct Q if P ct Q and Q ct P .

The following example illustrates the difference between ≈t and ≈ct.

Example 5. Let P and Q be the ground processes defined as follows: P =
{ out(c, a).out(c, a) } andQ = { out(c, a).out(c, a),out(c, a).out(c, b) }. Clearly
P ct Q. Observe also that Q ct P . This is because {w1 
→ a, w2 
→ b} s

{w1 
→ a, w2 
→ a}. Thus, P ≈ct Q. But P �≈t Q.

We show, however, that these two notions coincide for the class of determinate
processes. In the context of the applied pi calculus determinate processes were
previously studied by Cortier and Delaune in [23].

Definition 7. (Determinate process) A ground process P is determinate if

whenever (P, ∅) �1,...,�n
=====⇒ (T, ϕ) and (P, ∅) �1,...,�n

=====⇒ (T ′, ϕ′) then ϕ ≈s ϕ
′.

Intuitively, determinate processes are processes in which the adversary’s static
knowledge at any instance is completely determined by its past interaction with
the protocol participants. Note that any ground trace is determinate.

As already mentioned above, it was demonstrated in [23] that trace equiv-
alence coincides with observational equivalence for determinate processes. We
show that ≈t and ≈ct also coincide for this class of processes.
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Theorem 1. If P and Q are ground processes then P ≈t Q implies P ≈ct Q.
Furthermore, if P and Q are determinate, then P ≈ct Q implies P ≈t Q.

We introduce a more fine-grained notion of trace equivalence, denoted ≈ft .

Definition 8. Given ground processes P and Q, we say that P ft Q whenever
for all trace T ∈ P there exists a trace T ′ ∈ Q such that T ≈t T

′. We say that
P ≈ft Q if P ft Q and Q ft P .

It follows directly form the definition that ≈ft⊂≈t. The difference between these
two relations is illustrated by the following example.

Example 6. Let P and Q be ground processes defined as follows:

P = { out(c, enc(a, k)).out(c, enc(b, k)).in(c, x).[x = enc(a, k)].out(c, k),
out(c, enc(a, k)).out(c, enc(b, k)).in(c, x).[x = enc(b, k)].out(c, k)}

Q = { out(c, enc(a, k)).out(c, enc(b, k)).in(c, x).[x = enc(dec(x, k), k)].out(c, k)}

where k ∈ N is a private name and a, b are constants. The test
x = enc(dec(x, k), k) simply checks whether x is an encryption with key k.
It is not difficult to see that P ≈t Q but P �≈ft Q.

Our procedure is able to check ≈ct (and hence ≈t) for determinate processes.
For non-determinate processes, we can check ≈ft and an over-approximation of
≈ct (see [16] for details) in order to under- and over-approximate ≈t: as traces
are determinate a procedure for checking ≈ct can be used to verify ≈ft .

4 Modeling Traces as Horn Clauses

Our procedure is based on a fully abstract modeling of a trace into first-order
Horn clauses. We give the details of this modeling; we start by giving some
definitions that we need for defining the predicates used in the logic.

Symbolic Labels and Symbolic Runs. We define the set of symbolic labels as

SLabels = {in(c, t),out(c), test | t ∈ SMessages, c ∈ C}

and the set of symbolic runs as the set of finite sequences of symbolic labels (see
Figure 1). The empty sequence is denoted by ε. We will often be lazy and write
(empty space) for ε. Intuitively, a symbolic label stands for a set of possible
labels, and a symbolic run stands for a set of possible runs of the protocol.

Symbolic Recipes. We assume a set Y of recipe variables disjoint from X . The set
of terms TF ,M,W,Y shall be called symbolic recipes and denoted by SRecipes. We
use capital letters X,Y, Z to range over Y. Intuitively, a symbolic recipe stands
for a set of recipes. We can extend the definition of substitutions to include
variables from Y in its domain: we only consider substitutions that map variables
in Y to SRecipes. A ground substitution must map variables in Y to Recipes. The
notions of mgu and mguR is extended to symbolic recipes as expected.
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Predicates. The predicates used in our modeling and the semantics of the predi-
cates are given in Figure 1. The predicates are interpreted over a triple– a trace
T , a frame ϕ and a substitution σ. We have four kinds of predicates, all of which
have a symbolic run as an argument. Intuitively, the reachability predicate rw
says that each run represented by w is possible. The intruder knowledge predi-
cate kw(R, t) says that whenever a run represented by w happens, the (symbolic)
message t can be constructed by the intruder using the (symbolic) recipe R. The
identity predicate iw(R,R′) says that whenever the (symbolic) run SR happens,
the (symbolic) recipes R and R′ are recipes for the same (symbolic) term. The
reachable identity predicate riw(R,R′) is a short form for the conjunction of the
predicates rw and iw(R,R′).

Formulas and Statements. We consider first-order formulas built using the above
predicates and the usual connectives (conjunction, disjunction, negation, impli-
cation, existential and universal quantification). As in the case of predicates, a
formula is interpreted over a triple consisting of a trace T , a frame ϕ and a sub-
stitution σ; and the semantics is defined as expected. For ground formulas we
do not need the substitution σ and when a formula f is ground we simply write
(T, ϕ) |= f to denote that this formula holds for (T, ϕ). If moreover, dom(ϕ) = ∅,
we simply write T |= f for (T, ∅) |= f .

Symbolic Runs (� ∈ SLabels):
u, v, w := ε | �, w

Predicates (w ∈ SRuns, R ∈ SRecipes, t ∈ SMessages):
rw (Reachability predicate)
kw(R, t) (Intruder knowledge predicate)
iw(R,R′) (Identity predicate)
riw(R,R′) (Reachable identity predicate)

Semantics (�i ∈ SLabels, R ∈ SRecipes, t ∈ SMessages, T ∈ GndTraces, ϕ ∈ Frames,
σ a ground substitution):

(T, ϕ0, σ) |= r�1,...,�i if (T, ϕ0)
L1−−→ (T1, ϕ1)

L2−−→ . . .
Ln−−→ (Tn, ϕn)

such that �iσ =R Liϕi−1 for all 1 ≤ i ≤ n

(T, ϕ0, σ) |= k�1,...,�i(R, t) if when (T, ϕ0)
L1−−→ (T1, ϕ1)

L2−−→ . . .
Ln−−→ (Tn, ϕn)

such that �iσ =R Liϕi−1 for all 1 ≤ i ≤ n
then ϕn �Rσ tσ

(T, ϕ0, σ) |= i�1,...,�i(R,R′) if there exists t s.t.
(T, ϕ0, σ) |= k�1,...,�i(R, t) and
(T, ϕ0, σ) |= k�1,...,�i(R

′, t)
(T, ϕ0, σ) |= ri�1,...,�i(R,R′) if (T, ϕ0, σ) |= r�1,...,�i and (T, ϕ0, σ) |= i�1,...,�i(R,R′)

Fig. 1. Predicates

We now identify a subset of the formulas, which we shall call statements.
Statements shall take the form of Horn clauses.
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Definition 9. A statement is a Horn clause of the form H ⇐ B1, . . . , Bn where:

1. H ∈ {r�1,...,�k , k�1,...,�k(R, t), i�1,...,�k(R,R′), ri�1,...,�k(R,R′)}
2. For each 1 ≤ i ≤ n,Bi = k�1,...,�ji (Xi, ti)

for some �1, . . . , �k ∈ SLabels, t ∈ SMessages, R,R′ ∈ SRecipes, ji ≤ k, t1, . . . ,
tn ∈ SMessages and X1, . . . , Xn ∈ Y. Furthermore X1, . . . , Xn are distinct vari-
ables and if H = k�1,...,�k(R, t) then vars(t) ⊆ vars(t1, . . . , tn).

As usual, we implicitly assume that in a Horn clause all variables are universally
quantified. Hence, all statements are closed formulas.

The Set of Seed Statements. Our procedure is based on a fully abstract modeling
of a trace in first-order Horn clauses. In this section, given a trace T we define
a set of statements seed(T ) that serve as a starting point for the modeling. We
also establish that seed(T ) is a sound and (partially) complete abstraction of the
trace T. In order to formally define seed(T ), we start by fixing some conventions.

Let T = a1.a2. . . . .an be a ground trace. We assume the following naming
conventions: (i) if ai is a receive action then ai = in(ci, xi); (ii) xi �= xj for any
i �= j; (iii) if ai is a send action then ai = out(ci, ti); (iv) if ai is a test action

then ai = [si
?
= ti]. Moreover, for each 1 ≤ i ≤ n, let �i ∈ SLabels be as follows:

�i =

⎧
⎨

⎩

in(ci, xi) if ai = in(ci, xi)
out(ci) if ai = out(ci, ti)

test if ai = [si
?
= ti]

.

For each 0 ≤ m ≤ n, let the sets R(m), S(m) and T (m) respectively denote the
indices of the receive actions, send actions and test actions amongst a1, . . . , am.
Formally, R(m) = {i | 1 ≤ i ≤ m, ai = in(ci, xi)}, S(m) = {i | 1 ≤ i ≤
m, ai = out(ci, ti)} and T (m) = {i | 1 ≤ i ≤ m, ai = [si

?
= ti]} Given a set

of public names M0 ⊆ M, set of seed statements associated to T and M0,
denoted seed(T,M0), is defined to be the set of statements given in Figure 2. If
M0 = M, then seed(T,M) is said to be the set of seed statements associated
to T and in this case we write seed(T ) as a shortcut for seed(T,M). While
constructing seed(T,M), we apply mguR to all tests. In addition, we also apply
finite variants. This allows us to get rid of rewriting in our procedure.

For a set of statements K, we denote by H(K) the least Herbrand
model of K ∪ {k�1,...,�n+1(X, x) ⇐ k�1,...,�n(X, x)}n∈N ∪ {i�1,...,�n+1(X1, X2) ⇐
i�1,...,�n(X1, X2)}n∈N. We show that as far as reachability predicates and in-
truder knowledge predicates are concerned, the set seed(T ) is a complete
abstraction T .

Theorem 2. Let T be a ground trace.

– (Soundness.) For any f ∈ seed(T ) ∪H(seed(T )) we have that T |= f .

– (Completeness.) If (T, ∅) L1,...,Lm−−−−−−→ (S, ϕ) then (i) rL1ϕ↓,...,Lmϕ↓ ∈ H(seed(T )),
and (ii) if ϕ �R t then kL1ϕ↓,...,Lmϕ↓(R, t↓) ∈ H(seed(T )).
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r�1στ↓,...,�mστ↓ ⇐ {k�1στ↓,...,�j−1στ↓(Xj , xjστ↓)}j∈R(m)

for all 0 ≤ m ≤ n
for all σ ∈ mguR({sk = tk}k∈T (m))
for all τ ∈ variants(�1σ, . . . , �mσ)

k�1τ↓,...,�mτ↓(w|S(m)|, tmτ↓) ⇐ {k�1τ↓,...,�j−1τ↓(Xj , xjτ↓)}j∈R(m)

for all m ∈ S(n)
for all τ ∈ variants(�1, . . . , �m, tm)

k(c, c) ⇐
for all public names c ∈ M0

k�1,...,�m(f(Y1, . . . , Yk), f(y1, . . . , yk)τ↓) ⇐ {k�1,...,�m(Yj , yjτ↓)}j∈{1,...,k}
for all 0 ≤ m ≤ n
for all function symbols f of arity k
for all τ ∈ variants(f(y1, . . . , yk)).

Fig. 2. Seed statements

Remark 2. Note that the set seed(T ) is only partially complete as we have not
shown above that if ϕ �R t and ϕ �R′

t then iL1ϕ↓,...,Lmϕ↓ ∈ H(seed(T )). We
will shortly show how the completeness of seed(T ) can be built upon to achieve
a) full abstraction of T and b) procedures for checking equivalences ≈ct and ft .

5 Procedure for Deciding Trace Equivalence

We now present a procedure for verifying trace equivalence. At a high level, this
consists of the following two steps that we will detail later.

1. A saturation procedure which constructs a set of simple statements from the
set seed(T ) which we will call solved statements. The saturation procedure
ensures that the set of solved statements is a complete abstraction of T .

2. Given two ground processes P and Q, we saturate the set of seed statements
for traces of P and Q and then use the solved statements to decide whether
P and Q are trace equivalent.

5.1 Knowledge Bases and Saturation

The saturation procedure manipulates a set of statements called a knowledge
base.

Definition 10. Given a statement f = H ⇐ B1, . . . , Bn,

– f is said to be solved if for all 1 ≤ i ≤ n, Bi = k�1,...,�ji (Xi, xi) for some
variables xi ∈ X , Xi ∈ Y.

– f is said to be well-formed if whenever it is solved and H = k�1,...,�k(R, t),
we have that t �∈ X .
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Resolution

f ∈ K, g ∈ Ksolved,

f =
(
H ⇐ kuv(X, t), B1, . . . , Bn

)
g =

(
kw(R, t′) ⇐ Bn+1, . . . , Bm

)

σ = mgu(ku(X, t), kw(R, t′)) t 
∈ X
K = K ⊕ h where h =

(
(H ⇐ B1, . . . , Bm)σ

)

Equation

f, g ∈ Ksolved, f =
(
ku(R, t) ⇐ B1, . . . , Bn

)

g =
(
ku′v′(R′, t′) ⇐ Bn+1, . . . , Bm

)
σ = mgu(ku( , t), ku′( , t′))

K = K ⊕ h where h =
(
(iu′v′(R,R′) ⇐ B1, . . . , Bm)σ

)

Test

f, g ∈ Ksolved, f =
(
iu(R,R′) ⇐ B1, . . . , Bn

)

g =
(
ru′v′ ⇐ Bn+1, . . . , Bm

)
σ = mgu(u, u′)

K = K ⊕ h where h =
(
(riu′v′(R,R′) ⇐ B1, . . . , Bm)σ

)

Fig. 3. Saturation rules

A set of well-formed statements is called a knowledge base. If K is a knowl-
edge base, we define Ksolved = {f ∈ K | f is solved } to be the knowledge base
restricted to the solved statements.

Given an initial knowledge base K, the saturation procedure produces another
knowledge base sat(K) as follows. First, new statements are generated. Then the
knowledge base is updated with the new statements. This two-step process con-
tinues until a fixed-point is achieved. We describe the two steps in the procedure.

Generating New Statements. Given a knowledge base K, new statements f are
generated by applying the rules in Figure 3.

Update. The first step while updating the knowledge base by f is to convert f
into a canonical form.

Definition 11. Given a solved deduction statement f , we define its canonical
form to be the statement f⇓ obtained by first applying Rule Rename as many
times as possible and then applying Rule Remove as many times as possible:

Rename
H ⇐ ku(X,x), kuv(Y, x), B1, . . . , Bn

(H ⇐ ku(X,x),B1, . . . , Bn){Y �→ X}

Remove
H ⇐ ku(X,x), B1, . . . , Bn x 
∈ vars(H)

H ⇐ B1, . . . , Bn

For any other type of statement, the canonical form f⇓ is defined to be f .

It is easy to see that any fact f can be converted into a canonical form. After a
canonical form has been obtained, we perform another check before f⇓ can be
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added to the knowledge base. Intuitively, this check ensures that we add enough
identity predicates in the knowledge base. We need the following definition for
the update rule.

Definition 12. The set of consequences of a knowledge base K, denoted
cons(K), is the smallest set such that:

Axiom
kuv(R, t) ⇐ ku(R, t), B1, . . . , Bm ∈ cons(K)

Res

H ⇐ B1, . . . , Bn ∈ K σ a substitution
B1σ ⇐ C1, . . . , Cm ∈ cons(K), . . . , Bnσ ⇐ C1, . . . , Cm ∈ cons(K)

Hσ ⇐ C1, . . . , Cm ∈ cons(K)

Given a knowledge base K and a statement f , the update of K by f , denoted
K⊕f , is defined to be K∪{f⇓} if the head of f is not of the form k�1,...,�k(R, t).
Otherwise, let

f⇓ = k�1,...,�k(R, t) ⇐ k�1,...,�i1 (X1, t1), . . . , k�1,...,�in (Xn, tn)

and K ⊕ f =

– K ∪ {f⇓} if f is solved and for any R′ we have that k�1,...,�k(R
′, t) ⇐

k�1,...,�i1 (X1, t1), . . . , k�1,...,�in (Xn, tn) �∈ cons(Ksolved).
– K ∪ {i�1,...,�k(R,R′) ⇐ {k�1,...,�ij (Xj , tj)}j∈{1,...,n}} if f is solved and R′ is

such that k�1,...,�k(R
′, t) ⇐ k�1,...,�i1 (X1, t1), . . . , k�1,...,�in (Xn, tn) ∈

cons(Ksolved).
– K ∪ {f⇓} if f is not solved.

Note that update is not a function, namely that there may be several
R′, i1, . . . , in such that k�1,...,�k(R

′, t) ⇐ k�1,...,�i1 (X1, t1), . . . , k�1,...,�in (Xn, tn) ∈
cons(Ksolved). However, we need to compute only one such R′.

Initial Knowledge Base. One question that naturally arises is what is the initial
knowledge base for the saturation procedure. Given a ground trace T , the initial
knowledge base for the saturation procedure is defined as follows.

Definition 13. Given a set of statements S, the initial knowledge base associ-
ated to S, denoted Ki(S), is defined to be the empty knowledge base updated by
the set S, i.e., Ki(S) = ∅ ⊕f∈S f . If T is a ground trace, we write Ki(T ) for
Ki(seed(T )).

Observe that Ki(T ) depends on the order in which statements in seed(T ) are
updated. The exact order, however, is not important and our results hold regard-
less of the order chosen. The saturation procedure takes Ki(T ) as an input and
produces a knowledge base sat(Ki(T )). The reason for choosing Ki(T ) instead
of seed(T ) as the starting point of the saturation procedure is that seed(T ) may
not be a knowledge base, i.e., may contain non well-formed statements. The set
Ki(T ) is, however, a knowledge base.

Proposition 1. Given a ground trace T , the set Ki(T ) is a knowledge base.
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Soundness and Completeness of the Saturation Procedure. We shall
now show that the set of solved statements in sat(Ki(T )) is a sound and complete
abstraction of a ground trace T . Given a set of statementsK we denote byHe(K)
the smallest set of ground terms such that

– H(K) ⊆ He(K),
– He(K) is closed under congruence rules for each iw(R,R′) ∈ He(K), and
– iw is monotonic in w, i.e., iu(R,R′) ∈ He(K) implies iuv(R,R′) ∈ He(K).

A formal definition is given in [16].

Theorem 3. Let T be a ground trace and let K = sat(Ki(T )).

– (Soundness.) For any f ∈ K ∪He(K) we have T |= f .

– (Completeness.) If (T, ∅) L1,...,Ln−−−−−−→ (S, ϕ) then (i) rL1ϕ↓,...,Lnϕ↓ ∈ He(Ksolved),
(ii) if ϕ �R t then kL1ϕ↓,...,Lnϕ↓(R, t↓) ∈ He(Ksolved), and (iii) if ϕ �R t and

ϕ �R′
t, then iL1ϕ↓,...,Lnϕ↓(R,R′) ∈ He(Ksolved).

Effectiveness of the Saturation Procedure. We have shown that the set of
solved statements in sat(Ki(T )) form a sound and complete abstraction for the
trace T. However this set is infinite and may not be effectively computable. This
may be because of following reasons.

– The set seed(T ) for a ground trace T is infinite. Hence the saturation pro-
cedure may continue forever. We will, however, shortly show that for the
saturation procedure we only need to consider the saturation of the set
Ki(seed(T,M0)) where M0 is the set of public names occurring in T (see
Lemma 1). The set sat(Ki(T )) can then be computed from this set. Since
the set Ki(seed(T,M0)) is finite, this means that all intermediate knowledge
bases in the saturation procedure are finite.

– For the update rule, we have to check that given a knowledge base K, term
t, labels �1, . . . , �k, indices 1 ≤ i1, . . . in ≤ k, variables x1, . . . , xn ∈ X and
recipe variables X1, . . . , Xn ∈ Y, whether

∃R. k�1,...,�k(R, t) ⇐ k�1,...,�i1 (X1, x1), . . . , k�1,...,�in (Xn, xn) ∈ cons(Ksolved).

Furthermore, if the check succeeds then we have to compute one such R. We
will show that can be achieved if K is finite (see Lemma 2).

– The saturation procedure may itself not terminate even if the initial knowl-
edge base is finite. As pointed out in the Introduction, we conjecture that
the saturation procedure terminates for subterm convergent rewrite systems,
but were unable to show the termination.

The following lemma allows us to compute the sat(Ki(T )) from the set
sat(Ki(seed(M0, T ))) where M0 is the set of public names occurring in T.

Lemma 1. Let T be a ground trace and MT ⊆ M be the public names occur-
ring in T . Let KM = {{k(m,m) ⇐}m∈M ∪ {i(m,m) ⇐}m∈M ∪ {ri(m,m) ⇐
}m∈M}.Then sat(Ki(T )) = sat(Ki(seed(MT , T ))) ∪KM.
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The following lemma implies that the update step terminates if we only have a
finite number of solved statements in the knowledge base.

Lemma 2. Given a finite set of statements K, term t, labels �1, . . . , �k, indices
1 ≤ i1, . . . in ≤ k, variables x1, . . . , xn ∈ X and recipe variables X1, . . . , Xn ∈
Y, it is decidable if there is an R such that k�1,...,�k(R, t) ⇐ k�1,...,�i1 (X1, x1),
. . . , k�1,...,�in (Xn, xn) ∈ cons(Ksolved). If the answer to the decision procedure is
“Yes”, then we can compute one such R.

5.2 Algorithm for Checking Equivalence

Once we constructed saturated knowledge bases for the seed statements for
ground determinate processes P0 and P1, we can check trace equivalence ≈ct.
The algorithm for checking ≈ct for determinate processes, automatically gives
an algorithm for checking ≈ft for non-determinate processes. It suffices to check
for T ct P for a ground trace T and ground determinate process P . This basi-
cally involves checking two tests which are summarized in Figure 4. We briefly
describe them below.

– Reach checks whether all sequence of actions executable by T are also exe-
cutable by P . To do this, we carry out the following operations for each state-

ment rl1,...,ln ⇐ {kwi(Xi, xi)}i∈{1,...,m}
)
∈ {sat(seed(T ))}solved. (a) First we

pick fresh constants c1, . . . , ck for each of the variables occurring in l1, . . . , ln
and fix a bijection σ between them. (b) Next for each 1 ≤ i ≤ n s.t. li
is in(di, ti), we construct one recipe Ri such that kl1σ,...,li−1σ(Ri, tiσ) ∈
H({sat(seed(T ))}solved). Such an Ri exists thanks to the completeness of the
saturation procedure. We let Mi = in(di, Ri). (c) For each 1 ≤ i ≤ n s.t.

li = test or out(di) we let Mi = li. (d) We check if (P, ∅) M1,...,Mn
======⇒ (T ′, ϕ).

If all the Reach tests pass then we go to test Identity. Otherwise we
declare T to be not trace-contained in P .

– The test Identity checks that all the equality tests that hold after an
execution of T hold after a similar execution in P . In order to do this,
we carry out the following operations for each statement ril1,...,ln(R,R′) ⇐
{kwi(Xi, xi)}i∈{1,...,m}

)
∈ {sat(seed(T ))}solved. We construct M1, . . . ,Mn as

in the Reach test and check if there is a T ′ such that (P, ∅) M1,...,Mn
======⇒ (T ′, ϕ)

and the recipes R{Xi 
→ xiσ } and R′{Xi 
→ xiσ } are equal in frame ϕ.

Note that performing the tests requires deciding if, given t, and w, kw(R, t) ∈
H(K) for some recipe R for a knowledge base K containing only solved state-

ments. This is similar to checking if
(
kw(R, t) ⇐

)
∈ cons(K).

Theorem 4. Let T be a ground trace and let P be a ground determinate process.
Let K be the set of solved statements from a saturated knowledge base associated
to T . Then T ct P iff all the tests in Figure 4 hold.
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Reach

(
rl1,...,ln ⇐ {kwi(Xi, xi)}i∈{1,...,m}

)
∈ {sat(seed(T ))}solved

c1, . . . , ck fresh constants
σ : vars(l1, . . . , ln) → {c1, . . . , ck} is a bijection

kl1σ,...,li−1σ(Ri, tiσ) ∈ H({sat(seed(T ))}solved) for all i s.t. li = in(di, ti)
Mi = li if li ∈ {test,out( )} Mi = in(di, Ri) if li = in(di, ti)

(P, ∅) M1,...,Mn=======⇒ (T ′, ϕ)

Identity

(
ril1,...,ln(R,R′) ⇐ {kwi(Xi, xi)}i∈{1,...,m}

)
∈ {sat(seed(T ))}solved

c1, . . . , ck fresh constants
σ : vars(l1, . . . , ln) → {c1, . . . , ck} is a bijection

kl1σ,...,li−1σ(Ri, tiσ) ∈ H({sat(seed(T ))}solved) for all i s.t. li = in(ti)
Mi = li if li ∈ {test,out( )} Mi = in(di, Ri) if li = in(di, ti)

(P, ∅) M1,...,Mn
=======⇒ (T ′, ϕ) such that (Rω = R′ω)ϕ where ω = {Xi �→ xiσ}

Fig. 4. Tests for checking trace inclusion

6 Prototype and Case Studies

We implemented the procedure for checking equivalence in a prototype, AKiSs
(Active Knowledge in Security protocols). AKiSs is written in OCaml and has
about 2000 lines of source code, including code for computing complete sets of
finite variants and complete sets of equational unifiers. For protocol specifica-
tion, we allow for an operator interleave which models parallel composition of
processes and an operator sequence for modeling protocols structured in phases.

We used AKiSs to verify the equivalences in Examples 5 and 6. Using AKiSs
we were able to verify strong secrecy for Denning-Sacco-Blanchet [11] and
Needham-Schroeder-Lowe (NSL) [36], resistance to guessing attacks in the EKE
protocol [9], and, more interestingly, anonymity of the FOO [32] and Okamoto [38]
electronic voting protocols.1 To our knowledge, AKiSs is the only tool that can
verify FOO and Okamoto automatically. We briefly discuss the salient points of
these examples below. AKiSs along with all the discussed examples is available
on: http://www.lsv.ens-cachan.fr/~ciobaca/akiss/. Details of the model-
ing can also be found in [16].

Strong Flavors of Confidentiality. The strong secrecy property was introduced
by Blanchet in [11] and we rephrase it here in our setting. Let P be a protocol
with x as the only free variable of P. Then x is said to be strongly secret if

in(c, x1).in(c, x2).(P{x 
→ x1}) ≈t in(c, x1).in(c, x2).(P{x 
→ x2}).
1 Please note that as defined in [38], modeling of Okamoto’s protocol requires private
channels. As we do not have private channels in our calculus, we transform the
protocol so that every message sent by honest participants on a private channel is
sent encrypted under a key not known to the adversary

http://www.lsv.ens-cachan.fr/~ciobaca/akiss/
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Intuitively, the attacker cannot distinguish the processes using variables x1 and
x2 even though it can choose arbitrary (public) values for these variables. The
definition generalizes to multiple variables in the expected way. We illustrate this
property on a Denning-Sacco-Blanchet protocol. Informally, the protocol can be
described as follows.

A → B : aenc(sign(pair(pk(ska), pair(pk(skb, k))), ska), pk(skb))
B → A : enc(x, k)

A sends to B a fresh symmetric session key k together with A’s and B’s public
keys. This is signed with A’s secret key and (asymmetrically) encrypted with B’s
public key. Upon receiving this message, B decrypts it, checks the signature and
uses the fresh session key to symmetrically encrypt a secret x. We used AKiSs
to verify this protocol for strong secrecy of x (with one session of A and B).
This protocol is determinate, and hence we used ≈ct to verify the protocol. The
verification succeeds as expected.

A variant of the protocol [11] consists in letting A also send out a secret y
encrypted with k changing the first message to

A → B : pair(aenc(sign(pair(pk(ska), pair(pk(skb, k))), ska), pk(skb)), enc(y, k))

In this case the protocol does not respect strong secrecy of x, y as, by choosing
x1 = y1 and x2 �= y2, the attacker can distinguish the two situations by testing
the equality of the encryptions of x and y. This attack is again found by AKiSs.
AKiSs also verifies strong secrecy of the nonce generated by the responder in
the Needham-Schroeder-Lowe (NSL) [36] protocol. Once again, the modeling of
NSL leads to determinate processes, and we used ≈ct for our verification.

We also used AKiSs to verify the above protocols for real-or-random secrecy.
This property is useful to model resistance to offline guessing attacks in password
protocols [8]. We show that the EKE protocol [9] is resistant to offline guessing
attacks. As EKE also leads to determinate processes, we used the ≈ct relation.

Anonymity for Electronic Voting Protocol. A voting protocol must respect voter
privacy: the adversary should not be able to learn how each voter voted. AKiSs
can automatically verify voter privacy in the FOO electronic voting protocol [32]
and the Okamoto protocol [38]. Voter privacy is naturally modeled as an equiva-
lence property [26,7]: it is not possible to distinguish the situation where honest
voter A votes ‘yes’ and honest B votes ‘no’ from the situation that A votes ‘no’
and B votes ‘yes’. Note that our modeling of the protocols is exactly the same as
in [26]. We assume that only voters A and B are honest while all other entities
are dishonest. An arbitrary number of dishonest voters are however subsumed
by the attacker and need not be modeled directly. Both the protocols do not
lead to determinate processes. Therefore, we proved the relation ≈ft . To our
knowledge, no other tool can handle this automatically. We are aware of two
other attempts for verifying the FOO protocol. Using ProVerif [11], Delaune
et al. [28], verify a transformation of the protocol. However, the soundness of
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this transformation has never been proven. Chothia et al. [20] verify a different
notion of anonymity (also based on process equivalence) using the μCRL tool.
However, the attacker they consider is only an observer that cannot interact with
the protocol participants, yielding a finite state system.

Efficiency. On a standard modern laptop, AKiSs takes a few minutes (e.g. 3
mins for FOO) to carry out the above verification. The use of a multi-core server
already reduces these timings by about 40%. We expect that some optimizations
of the saturation procedure and the use of more efficient data structures will di-
minish these times significantly. Most of the computational effort goes into the
saturation of the traces. Interleaving individual roles of a protocol introduces an
exponential blowup on the number of traces and saturations to perform. How-
ever, it would be straightforward to scale to larger protocols and more sessions
by parallelizing the saturation of these traces (e.g. on clusters of machines).

7 Conclusion and Future Work

We present a novel Horn-clause resolution based procedure for verifying equiv-
alence properties for a bounded number of sessions of cryptographic protocols.
This approach is validated by implementing it in the tool AKiSs, and we are
able to handle examples which are out of the scope of existing tools.

There are several directions for future work. The implementation of the tool
should be optimized and more examples from electronic voting, RFID protocols
and auction protocols which all have requirements stated in terms of equivalences
should be analyzed. We would also like to take disequalities into account. It will
allow to verify processes with else branches, important in a number of practical
examples, e.g., passport protocols discussed in [5]. Another direction would be
to extend the procedure to allow AC (Associative/Commutative) operators in
order to treat protocols based on exclusive-or or Diffie-Hellman exponentiations.
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