

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Automated Software Engineering 20.1 (2013): 5–46

DOI: http://dx.doi.org/10.1007/s10515-012-0102-y

Copyright: © 2013 Springer US

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/s10515-012-0102-y

Noname manuscript No.
(will be inserted by the editor)

Automated Verification of Model Transformations

based on Visual Contracts

Esther Guerra · Juan de Lara ·

Manuel Wimmer · Gerti Kappel ·

Angelika Kusel · Werner Retschitzegger ·

Johannes Schönböck · Wieland Schwinger

Received: date / Accepted: date

Abstract Model-Driven Engineering promotes the use of models to conduct
the different phases of the software development. In this way, models are
transformed between different languages and notations until code is generated
for the final application. Hence, the construction of correct Model-to-Model
(M2M) transformations becomes a crucial aspect in this approach.

Even though many languages and tools have been proposed to build and
execute M2M transformations, there is scarce support to specify correctness
requirements for such transformations in an implementation-independent way,
i.e., irrespective of the actual transformation language used.

In this paper we fill this gap by proposing a declarative language for the
specification of visual contracts, enabling the verification of transformations
defined with any transformation language. The verification is performed by
compiling the contracts into QVT to detect disconformities of transformation
results with respect to the contracts. As a proof of concept, we also report on
a graphical modeling environment for the specification of contracts, and on its
use for the verification of transformations in several case studies.

Keywords Model-Driven Engineering · Model Transformation · Contract-
based Specification · Verification · QVT-Relations

This work has been funded by the Austrian Science Fund (FWF) under grant P21374-N13,
the Spanish Ministry of Science under grants TIN2008-02081 and TIN2011-24139, and the
R&D programme of the Madrid Region under project S2009/TIC-1650.

Esther Guerra · Juan de Lara
Universidad Autónoma de Madrid, Spain
E-mail: firstname.lastname@uam.es

Manuel Wimmer · Gerti Kappel · Johannes Schönböck
Vienna University of Technology, Austria
E-mail: lastname@big.tuwien.ac.at

Angelika Kusel · Werner Retschitzegger · Wieland Schwinger
Johannes Kepler University Linz, Austria
E-mail: firstname.lastname@jku.at

2 Esther Guerra et al.

1 Introduction

Model-Driven Engineering (MDE) [46] proposes an active use of models to
conduct the different phases of software development. Hence, models become
first-class artifacts throughout the software lifecycle, which leads to a shift
from the “everything is an object” paradigm to the “everything is a model”
paradigm [6]. In this context, model transformations are crucial for the success
of MDE, being comparable in role and importance to compilers for high-level
programming languages, since models have to be automatically refined until
the code of the final application is obtained. Thus, in MDE there is a recur-
ring need to transform models between different languages and abstraction
levels, e.g., to migrate between language versions, to translate models into se-
mantic domains for analysis, to generate platform-dependent from platform-
independent models, or to refine and abstract models [18]. These kinds of
transformations are called Model-to-Model (M2M) transformations, and one
of the major challenges of MDE is their automation while ensuring the cor-
rectness of the produced models.

M2M transformations are usually defined with dedicated languages tai-
lored for the task of transforming models, like QVT [43], ATL [27] or ETL
[29] (cf. [13] for a detailed overview). Most of these languages have a strong
focus on the implementation of transformations but miss to provide means
for their analysis, design and verification. However, just like any other soft-
ware, transformations should be engineered using sound, robust engineering
techniques [18,23]. This necessity is even more acute given the prominent role
of transformations in MDE, and their use in increasingly complex scenarios.
Hence, the MDE community demands for methods, notations and techniques
supporting appropriate abstractions to be used in the different phases of the
transformation development and, in particular, for the verification of transfor-
mations.

In order to fill this gap, in [22,23] we introduced a visual, declarative,
formal specification language to describe, in an implementation-independent
way, correctness requirements of the transformations and of their input and
output models. This language, called PaMoMo (Pattern-based Modeling Lan-
guage for Model Transformations), was initially designed to play a similar role
for M2M transformations to the role that Z [48] or Alloy [24] play for gen-
eral software development: specifying properties that a transformation should
fulfill, regardless of its particular implementation. Thus, PaMoMo specifica-
tions express what a transformation should do, but not how it should be done,
providing an adequate level of abstraction to express transformation require-
ments. These requirements may correspond to preconditions, postconditions
or invariants that the input and output models of a transformation as well
as the transformation itself should fulfill. Even though some researchers [20,
34,40] have proposed the use of OCL for this task, in this paper we show the
benefits of using of a visual, formal, bidirectional and domain-specific notation
like PaMoMo. In particular, we argue that PaMoMo patterns lead to more

Automated Verification of Model Transformations based on Visual Contracts 3

succinct specifications, enable reasoning at the pattern level, and permit more
informative feedback (higher diagnosability).

In this paper, we extend the expressivity of PaMoMo with support to
define sets of variable size in invariants as well as enabling and disabling condi-
tions in pre- and postconditions. We also present a set of reasoning rules aimed
at detecting redundancies, contradictions and potential errors in specifications.
More important, borrowing ideas from the design by contract approach [39], we
use PaMoMo to specify contracts for the automated verification of transfor-
mation implementations by the compilation of these contracts into executable
transformations expressed in the QVT-Relations language [43]. These trans-
formations are executed before the transformation under test (to check the
preconditions) and afterwards (to check invariants and postconditions), and
provide the user with detailed information on which contracts were violated (if
any) and where. In this way, the present work improves the feedback returned
to users with respect to a previous compilation of our patterns into OCL pre-
sented in [22], as in OCL we were only able to report whether a pattern was
satisfied or not, whereas now we report in addition the parts of the models
that make a contract fail. Finally, we also present the new PaCo-Checker tool
(PaMoMo Contract-Checker) which supports the visual specification of con-
tracts, their compilation into QVT-Relations, its chaining with the execution
of the transformation under test, and the visualization of the test results. We
illustrate the usefulness of our method on a number of case studies.

The rest of the paper is organized as follows. Section 2 introduces M2M
transformation and presents a running example that we will use throughout
the paper. Section 3 introduces the main concepts of contract-based specifi-
cation as well as our approach to model transformation contracts. Section 4
presents our specification language PaMoMo. Section 5 recalls the main con-
cepts of QVT-Relations as this is the target language for the compilation of
PaMoMo, whereas Section 6 details this compilation. Section 7 describes how
to conduct automated verification with the PaCo-Checker tool. Section 8 il-
lustrates further features of our approach on a number of case studies. Finally,
Section 9 compares with related work and Section 10 concludes the paper.

2 Background: Model Transformation in a Nutshell

In this section we present the main concepts of M2M transformations, and
then introduce an example that will be used throughout the paper.

2.1 Model-to-Model Transformations

Models play a fundamental role in MDE, and hence their transformation is
crucial for the success of MDE. Models in this context are abstractions of
systems and/or their environments [13]. In the same way as programs have
to follow certain syntactic constraints – commonly described by grammars –

4 Esther Guerra et al.

models also have to follow syntactic constraints given by so-called metamodels
which define their abstract syntax [32]. Thus, in order to describe how models
should be transformed into other models, the transformation definition uses
the respective metamodels the models conform to (cf. Fig. 1). Such definitions
are finally executed by dedicated transformation engines.

Source TargetSource
Metamodel

conforms to

executes

conforms to

Transformation Definition
Target

Metamodel

Source
Model

New Target
Model

co o s to

input output
Transformation

Engine

conforms to

Fig. 1 Model transformation: exogenous, batch scenario

Fig. 1 shows a batch and exogenous transformation scenario [38], where a
source model conformant to a source metamodel, is transformed into a target
model conformant to a target metamodel. Many other scenarios are possible
as well. First, the source model may change after the transformation is exe-
cuted. In this case, it is sometimes more efficient not to build the target model
from scratch but to update it. Then, transformations can also be bidirectional,
if the same specification can be used to transform from source to target and
the other way round. Transformations can also be used in check-only mode, to
ascertain whether two existing models comply with the transformation defini-
tion. Finally, a model may be transformed in-place, for example for refactoring.
In this case, the transformation is called endogenous and it only considers one
metamodel. In this paper, we target batch and exogenous transformations, but
our specification language can be used to specify correctness requirements for
other transformation scenarios as well.

2.2 Transformation Scenario: From Class Diagrams to Relational Schemas

Before delving into details, we introduce a concrete transformation scenario
that is used throughout the paper. In particular, we present a small extract
of the well-known Class2Relational transformation (cf. Fig. 2) [7], which
has been chosen due to its popularity. The metamodel to the left of the figure
is used to represent a simple object oriented modeling language. While the
parents reference contains direct ancestors of classes, the derived ancestors

reference contains the transitive closure of parents, and therefore it includes
indirect ancestors as well. The metamodel to the right is used to represent a
language for defining database schemas. In this scenario, the goal is to trans-
form instances of the classmetamodel into instances of the relationalmeta-
model. For this transformation, six main requirements arise:

Automated Verification of Model Transformations based on Visual Contracts 5

ModelElement
name : String

Class Metamodel

(Req1) Package ‐> Schem

Corresponden

Package

Class attributes
**

/ancestors

Attribute

type : Stringnamespace

(q) g

(Req2) Class (isPersistent
(Req3) Attributes ‐> Colu
(Req4) Inherited Attributchildren

*

t
*

Class

isPersistent : Boolclasses *

attributes

context Class:
def ancestors: Set(Class)=self.parents‐>

union(self.parents‐>collect(an| an.ancestors))

parents

c1 : Class
isPersistent = true
name = ‘Person‘

classes

s1 :

a1 : Attribute
name = ‘name‘

type = ‘String‘

attributes

Exemplary Class Model

namespace
sch

name = Person

c2 : Class
isPersistent = true
name ‘Student‘

classes

p1 : Package

name = ‘University‘

s1 :

nam

type = String

a2 : Attribute
name = ‘registrNo‘
type = ‘Integer‘

ancestors

attributes
namespace

schchildren

parents

name = Student type = Integer

Relational Metamodel

ModelElement
name : String

ma

nces

Schema Column

type : String

*
columns

schema

t) ‐> Table
mn

es ‐> Column

Table
tables

*
columns

R lti R l ti l M d l

Schema

t1 : Table

name = ‘Person‘

tables co1 : Column
name = ‘name‘

type = ‘String‘

columns

Resulting Relational Model

hema

 Schema

me = ‘University‘

t2 : Table

name = ‘Student‘

tables

co2 : Column
name = ‘registrNo‘
type = ‘Integer‘

columns

hema

co3 : Columnco3 : Column
name = ‘name‘

type = ‘String‘columns

Fig. 2 Running example

– Requirement 1 : For each instance of the metaclass Package, a correspond-
ing instance of the metaclass Schema should be generated, which should be
equally named (cf. instances p1 and s1 in Fig. 2).

– Requirement 2 : For each persistent instance of the metaclass Class, an
instance of the metaclass Table should be generated, which should be
equally named (cf. instances c1, c2 and t1, t2 in Fig. 2). The table should
be added to the schema created from the package the class belongs to.

– Requirement 3 : For each instance of the metaclass Attribute that belongs
to a persistent class, an equally named instance of the metaclass Column
should be generated, and this should be added to the table created from
the owner class (cf. instances a1, a2 and co1, co2 in Fig. 2).

– Requirement 4 : Since the relational metamodel does not support inheri-
tance between tables and since information loss should be prevented dur-
ing the transformation process, for each inherited attribute a corresponding
Column instance should be generated (cf. instance co3 in Fig. 2).

Besides requirements that any pair of input/output models should satisfy,
some requirements may solely apply to the input models. Such requirements
are used to add further constraints on the input models in order to exclude
those not handled by the transformation (although they conform to the source
metamodel). This is due to the fact that metamodels allow for many different
valid models, but a certain transformation might only cover a subset thereof.
A requirement on the input models of our example is the following:

– Requirement 5 : Class models cannot contain redefined attributes (i.e., at-
tributes with the same name in an inheritance hierarchy), since otherwise
tables containing equally named columns would result.

Finally, a certain transformation might need to guarantee that the pro-
duced output models fulfill certain conditions (beyond metamodel constraints).
In our example, we demand the following:

6 Esther Guerra et al.

– Requirement 6 : Relational models cannot contain tables with equally named
columns, even though this is allowed by the metamodel.

3 Model Transformation Contracts

In order to make the previous requirements explicit, we propose their specifi-
cation by contracts. Therefore, we next discuss different usages of contracts for
M2M transformations, and then introduce PaMoMo for their specification.

3.1 Increasing Quality through Design by Contract

Design by contract [39] was introduced as a means to increase quality in terms
of correctness and robustness of the constructed software. One of the advan-
tages of contracts is that they allow defining what a piece of software does
but not how it is done. Different levels of contracts can be distinguished com-
prising syntactic contracts and behavioral semantic contracts [5]. The former
enforce syntactically valid programs. In the context of model transformations,
syntactic contracts are specified by the source and target metamodels since
they describe the types of the manipulated data, implying that the source
and target models must conform to these types [40]. In contrast, behavioral
semantic contracts put further restrictions on the required input models, the
produced output models as well as their combinations [40]. In this way, in the
first place, behavioral semantic contracts can be used to precisely specify the
conditions (going beyond metamodel constraints) to be satisfied by input mod-
els such that the transformation is applicable, i.e., preconditions. Second, they
can be used to express that an output model should or should not contain cer-
tain configurations of elements, i.e., postconditions. Finally, they can be used
to specify what conditions need to be satisfied by any pair of input/output
models of a correct transformation, i.e., invariants of the transformation.

In the context of model transformations, contracts can be useful in several
scenarios [12]:

– Implementation: A contract is a useful document for the transformation
designer in the development phase, to make explicit the requirements that
need to be implemented in a transformation.

– Documentation: Contracts serve as a useful documentation of the trans-
formation in the maintenance phase. Moreover, if contracts have a formal
semantics, they can be used to select transformations by matching proper-
ties of a required transformation and properties of transformations stored
in a transformation library.

– Compatibility Checking: Contracts can be used to check the compat-
ibility of transformations in a chaining scenario, e.g., to check whether
the postconditions of a preceding transformation are compatible with the
preconditions of a succeeding transformation.

Automated Verification of Model Transformations based on Visual Contracts 7

Set of all possible input models Set of all possible output models

Valid subset of
models considered by

the transformation?

Expected subset of

models produced by

the transformation?

Source
Metamodel

conforms to conforms to

Transformation Definition
Target

Metamodel

Oracle is needed to check if the result of a test
case is correct, i.e., if the generated model equals
the expected model for a given input model

Fig. 3 Model transformation testing challenge

– Testing: A common need in model transformation testing is to automat-
ically compare expected output models to generated output models [37].
Unfortunately, the oracle that should predict the expected output models
remains a major challenge [3], for which contracts (invariants) could be
used to partially determine the expected output model.

The contracts specified using PaMoMo can be beneficial in each of the
above discussed scenarios. Nevertheless, the focus in this paper is on the testing
scenario, i.e., how preconditions, invariants and postconditions can be applied
to test model transformations (cf. Fig 3).

3.2 Model Transformation Contracts with PaMoMo at a Glance

Contracts may be realized by being embedded in a certain language (e.g., as-
sertions in Java) or described by a dedicated external language (e.g., Z [48] or
Alloy [24]). The realization by a dedicated language has two main advantages
though: (i) the definition of contracts is not tied to a particular target trans-
formation language, i.e., it is implementation-independent (which is especially
favorable in MDE since no dedicated standard transformation language has
been brought forward so far [13]) and (ii) designers of transformations can
make explicit desired properties of a transformation before implementation
which would allow for test-driven development of transformations.

Thus, we adopt a declarative, formal, visual language called PaMoMo [22,
23] to express behavioral semantic contracts for M2M transformations in an
implementation-independent way [22]. Fig. 4 outlines our approach. First, the
transformation designer uses PaMoMo to define a contract specifying precon-
ditions, postconditions, and invariants for the transformation (label 1). This
contract has a formal semantics and can be analysed to discover redundancies,
contradictions, and to measure coverage of the involved metamodels. Next, the
developer can make use of the contract as a high-level model to implement the
transformation (label 2). This implementation can be tested by compiling the
contract into the executable QVT-Relations language (label 3), and then us-
ing a QVT engine in check-only mode in order to check the consistency of the

8 Esther Guerra et al.

contract (requirements)1 transformationcontract (requirements) 1 transformation
implementation2

c: Class

P(InheritedAttributes)

p: Class t:Table

Class Relational
pa: Package

s: Schema

isPersistent = true C

p:Class

N(NoRedefinedAttrs)

a:Attribute

name=X

l

Class Relational

pa:Package

designer

using arbitrary

… developer

compilation into QVT-Relations3

a: Attribute
name=A

c.general‐>includes(p)

co:Column

name=A

isPersistent = true
name=C

name=Cc:Class ar:Attribute

name=X
c.general‐>includes(p)

transformation

language

qualifying

criteria

oracle

function

transformation

implementation

compilation into QVT-Relations3

preconditions invariants,

postconditions

under test

automated
testing4

QVT-Relations

engine

check check

QVT-Relations

engine

engine for arbitrary

language

testing

source

model

target

model
transformation

execution

tester

Fig. 4 Automated verification of transformations using PaMoMo

transformed models with respect to the contract. In this mode, a transforma-
tion is not used to produce a target model, but to check if a set of existing
models conform to the transformation, and to report the locations where this
is not the case by means of a built-in tracing mechanism. Hence, the compiled
contract acts as an oracle describing invariants that output models should sat-
isfy, and is used for automated testing (label 4). The compilation is also used
to test whether a model can be used as input for the transformation.

Altogether, our approach to testing proceeds by chaining a QVT-Relations
check-only transformation, derived from the preconditions in the contract,
which checks the validity of the input model; next executing the transforma-
tion implementation; and finally checking that the input and resulting output
models conform to the contract by using another check-only transformation.

In the following section we focus on the first step in our approach, namely
the specification of contracts with PaMoMo.

4 Contract Specification with P❛▼♦▼♦

In this section, we provide an overview of the syntax and semantics of PaMoMo

(we refer to [22] for details on its formal semantics). We first describe how to
specify contracts with PaMoMo, and then continue describing pattern rea-
soning rules to discover redundancies and conflicts in contracts.

4.1 Modeling Contracts with PaMoMo

A PaMoMo contract consists of a set of declarative visual patterns, which
can be either positive or negative. Positive patterns describe necessary con-

Automated Verification of Model Transformations based on Visual Contracts 9

P(Package2Schema)
Class RelationalSource compartment

t i bj t

Target compartment
t i bj t

p: Package
name=X

s: Schema

name=X

contains an object
graph typed on the
source metamodel

contains an object
graph typed on the
target metamodel

Variable constrains the allowed attribute values

Fig. 5 Positive invariant formalizing requirement 1

ditions to happen (i.e., the pattern is satisfied by a pair of models if these
contain certain elements) while negative ones state forbidden situations (i.e.,
the pattern is satisfied if certain elements are not found). Patterns are bidi-
rectional and can be interpreted forwards (e.g., to verify a source-to-target
transformation) and backwards (e.g., to verify a target-to-source transforma-
tion). By default, we assume a forward semantics. Patterns are made of two
compartments containing object graphs, plus a constraint expression using the
Object Constraint Language (OCL) [42]. The left compartment contains ob-
jects typed on the source metamodel (e.g., class), while the objects to the
right are typed on the target metamodel (e.g., relational).

As an example, Fig. 5 shows a positive pattern formalizing requirement 1 of
the example transformation. We depict positive patterns in green with its name
enclosed in P(...), while negative patterns are shown in red with its name
enclosed in N(...). Patterns where both the source and target compartments
are not empty are called invariants.

Hence, patterns are made of a graphical part, specified visually, and a tex-
tual expression enabling the specification of additional constraints. Objects in
the source and target compartments may have attributes that can be assigned
either a concrete value or a variable (like X in the example). A variable can be
assigned to several attributes to ensure equality of their values, or be used in
the pattern constraint expression. This expression may involve elements of the
source and target compartments. The invariant of Fig. 5 has no expression,
but variable X is assigned to the name of the package and the schema, hence
requiring the equality of both names.

Fig. 6 shows a scheme of the satisfaction of a positive and a negative
invariant over a pair of models, where EXP represents the pattern constraint
expression. Thus, the satisfaction for positive invariants amounts to check:

P(…)
Source Target

N(…)

object
graph

object
graph

Source Target
object
graph

object
graph

EXP

graphgraph

O
src

O
tar

graph

EXP

graph

O
src

O
tar

Source
model

Target
model

Source
model

Target
model

Fig. 6 Scheme of the semantics of positive and negative invariants

10 Esther Guerra et al.

∀Occ(Osrc) s.t. EXP |src(Occ(Osrc))

∃Occ(Otar) s.t. EXP (Occ(Osrc), Occ(Otar))

where EXP |src is the part of the expression EXP that contains source objects,
attributes and variables only, and Occ(Osrc), Occ(Otar) represent an occur-
rence of the source and target object graphs respectively. An occurrence is
a binding from the objects in the object graph of the pattern to elements
in the model. A pattern invariant is therefore satisfied either if we do not
find an occurrence of the source object graph of the pattern (called vacuous

satisfaction) or if for each occurrence of the source object graph, we find a
corresponding occurrence of the target object graph (or do not find any if the
invariant is negative). A contract is satisfied if all its patterns are satisfied,
hence a conjunction is assumed between all the patterns of the contract.

Fig. 7 shows the invariants addressing requirements 2, 3 and 4 in our
running example (i.e., transformation of classes, attributes and inherited at-
tributes). The invariant to the left states that for each persistent class c in a
package p, there must be an equally named table t in a corresponding schema
s. The invariant in the middle states that each attribute a of a persistent class
must be transformed into a column co with the same name and type. Finally,
the right-most invariant states that if a class c has an ancestor class p owning
an attribute a, then the table t that corresponds to c must contain a column
with the same name as the attribute. This invariant contains a constraint ex-
pression checking that the derived property ancestors of class c includes the
class p (i.e., p is a superclass of c).

P(Class2Table)
Class Relational

t: Table
name=Yname = Y

isPersistent=true

c: Class

p: Package
name=X

s: Schema

name=X

P(Attribute2Column)
Class Relational

t: Table
name=Y

c: Class

p: Package
name=X

s: Schema

name=X

name = Z
type = T

a: Attribute
name = Z
type = T

co: Column

name = Y
isPersistent=true

Requirement 2 Requirement 3 Requirement 4

c: Class

P(InheritedAttributes)

p: Class

a: Attribute
name=A c.ancestors‐>includes(p)

t:Table

co:Column

name=A

Class Relational
pa: Package

s: Schema

isPersistent = true
name=C

name=C

Fig. 7 Additional invariants formalizing requirements 2, 3 and 4

4.1.1 Preconditions and Postconditions

In contrast to invariants, which relate source and target models, preconditions
refer only to elements of the source metamodel (i.e., only the source com-
partment of the pattern contains an object graph) and postconditions refer
only to elements of the target metamodel (i.e., only the target compartment

Automated Verification of Model Transformations based on Visual Contracts 11

p:Class

N(NoRedefinedAttrs)

a:Attribute

name=X

c:Class ar:Attribute

name=X
c.ancestors‐>includes(p)

Class Relational

pa:Package

N(NoDuplicatedColumns)

t:Table

c:Column

name=X

e:Column

name=X

Class Relational

Fig. 8 Precondition (requirement 5) and postcondition (requirement 6)

contains an object graph). The left side of Fig. 8 shows a precondition ex-
pressing requirement 5 in our example (i.e., absence of redefined attributes in
class hierarchies) by a negative pattern. The right part of the figure shows the
postcondition to express requirement 6 (i.e., absence of duplicated columns in
the same table) as a negated pattern as well.

Fig. 9 depicts a schema of the semantics of positive and negative precondi-
tions. Positive preconditions demand the existence of a structure in the source
model satisfying the expression constraint. Negative preconditions demand the
absence of a structure in the source model satisfying the constraint expression.
Postconditions have similar semantics, but are evaluated on the target model.

‐

P(…)
Source
object
graph

EXP

Source
model

O
src

∃

N(…)
Source
object
graph

EXP

O
src

Source
model

∃

P(…): ∃ Occ(Osrc) s.t. EXP(Occ(Osrc))

N(…): ∃ Occ(Osrc) s.t. EXP(Occ(Osrc))

Fig. 9 Scheme of the semantics of positive and negative preconditions

4.1.2 Enabling and Disabling Conditions

The invariants we have presented so far check that for all occurrences of an
object graph in the source model, a corresponding structure in the target ex-
ists. However, some more flexibility is often needed, to demand the satisfaction
of a pattern only when certain conditions in the source and the target occur.
For this purpose, patterns can define enabling and disabling conditions, which
restrict their satisfaction context.

In particular, enabling and disabling conditions allow expressing properties
with the form of an implication. Each pattern can define any number of dis-
abling conditions and one enabling condition. This permits formulating proper-
ties of the form if 〈enabling〉 and (not 〈disabling1〉) ... and (not 〈disablingn〉)
then 〈pattern〉. For instance, Fig. 10 shows an invariant with an enabling con-
dition to the left, so that the invariant is required to be satisfied only for

12 Esther Guerra et al.

N(NoTableForTransientClasses)
Class Relational

Enabling Condition Invariant

P(PackageAndSchema)

p:Package s:Schema

Class Relational

t Table

s:Schema

c Class

p:Package

name=Y name=Y t:Table

name=X

c:Class

name=X

isPersistent=false

Fig. 10 Invariant with an enabling condition

packages for which there is an equally named schema. In such a case, the in-
variant states that the transient classes inside the packages should not have
a corresponding table in the schema (because the invariant is negative). This
pattern uses a non-constructive specification style, ensuring that a transfor-
mation implementation will not accidentally translate a non-persistent class
into a table.

Fig. 11 shows to the left the scheme of an invariant with one enabling and
one disabling condition, while the right part sketches its evaluation on a pair
of models. In this case we look for all occurrences of the source object graph
of the invariant plus the enabling condition, which in addition: (i) fulfill the
expression EXPEN of the enabling condition, (ii) fulfill the part of the invari-
ant expression containing only source elements (EXP |src), and (iii) for which
no occurrence of the disabling condition (which might contain an expression
EXPDS) is found. Then, for each one of these occurrences, there should be an
occurrence of the target object graph of the invariant satisfying the invariant
expression. Note how enabling conditions permit including target elements in
the pattern condition (i.e., in the for all).

The evaluation of invariants with enabling and disabling conditions is there-
fore as follows:

enabling+inv‐source

Source Target
object
graph

P(inv)P(inv)

P(enabling)
Source Target

object
h

object
h

N(disabling)

so that... then...

object
hgraph

()
Source Target

()

Source Target

graphgraph

EN
src EN

tar

N(disabling)

g

Source Target

object
h

object

EN
src

O

+

graph

EN
tar

DS

object
graph

DS

object
graph

object
graph

O

object
graph

O
EXPEN

N(disabling)
Source Target

 object
graph

object
graph

graph

O
src

graph

O
tar

O
src DS

src
DS

tar
O

src
O

tar

EXP

EXP

EXPEN+EXP|src EXPDS

Source
model

DS
src

DS
tar

EXPDS
Target
model

Fig. 11 Scheme of the semantics of enabling and disabling conditions

Automated Verification of Model Transformations based on Visual Contracts 13

P(Class2Table)
Class Relational

t: Table

name=Yname = Y

isPersistent=true

c: Class

p: Package

name=X

s: Schema

name=X

P(ExistsSchema)
Class Relational

p: Package

name=X

s: Schema

name=X

P(Class2Table.2)
Class Relational

t: Table

name=Yname = Y

isPersistent=true

c: Class

p: Package s: Schema

c1 : Class

isPersistent = true

name = ‘Person‘

c2 : Class

isPersistent = true

name = ‘Student‘

classes

classes

p : Package

name = ‘University‘

s1 : Schema

name = ‘University‘

t1 : Table

name = ‘Person‘

tables

Class Model Relational Model

namespace

namespace

schema

s2 : Schema

name = ‘University‘

t2 : Table

name = ‘Student‘

tablesschema

?

Fig. 12 Semantics of invariants with and without enabling condition

∀Occ(ENsrc +Osrc, ENtar) s.t.

[(EXPEN + EXP |src)(Occ(ENsrc +Osrc, ENtar))∧

∄Occ(DSsrc, DStar) s.t. EXPDS(Occ(DSsrc, DStar)) ∧ ...]

∃Occ(Otar) s.t. EXP (Occ(Osrc), Occ(Otar))

Fig. 12 illustrates how enabling conditions modify the semantics of a pat-
tern, through an example of two syntactically similar invariants for classes,
one declaring an enabling condition and the other not. The invariant in the
lower left demands the existence of a schema and table for each persistent class
in a package. The models shown above fulfill this, as the class model contains
two occurrences of the source graph of the invariant (i.e., two classes), and
for each one we find one schema in the relational model defining a table with
same name as the class. In contrast, the models do not satisfy the invariant
to the right. This is so as this invariant demands that for each occurrence of
a persistent class, its package and equally named schema (this latter required
by the enabling condition), a table with same name as the class exists. This is
not true in this case as, for instance, if we take the occurrence given by objects
p, c1 and s2, there is no table named “Person” in s2.

Pre- and postconditions may have enabling and disabling conditions as
well. As an example, Fig. 13 shows to the left the scheme of the semantic
interpretation of a precondition with an enabling condition. In this case, for
each occurrence of the enabling condition, we need to find an occurrence of
the precondition. For the sake of illustration, the right part of the figure shows
an example precondition demanding each persistent class to have at least one
attribute.

14 Esther Guerra et al.

()()

Source

object
graph

P(…)P(enab)
Source

 c Class

P(persistent)
Class

P(attributed)
Class

object
graph c: Classgraph

O
src

EXP

EXPEN

c: Class graph

EN
src

c: Class

a: Attribute
isPersistent=true

Source model

Fig. 13 Semantics of precondition with enabling condition (left). Example (right)

4.1.3 Sets

It is sometimes useful to formulate properties related to the number of times
a certain structure can occur in a model. For this purpose, patterns can define
variable sets of source and target elements (improving the expressive power
compared to [22]). A set is depicted as a polygon with a name (see for example
set pclasses in Fig. 14) and it represents the set of all occurrences of the
structure enclosed in the polygon. Furthermore, sets may be nested and contain
arbitrary structures. As an example, the left side of Fig. 14 shows an invariant
making use of sets in the source and target. The invariant states that the
number of persistent classes in a package (size of set pclasses) should be the
same as the number of tables in the corresponding schema (size of set tables).

The center and right sides of Fig. 14 show the evaluation scheme of invari-
ants with sets. The figure in the middle represents an invariant with two sets
(set1 in the source and set2 in the target) and a constraint expression EXP

that includes both sets. A pair of models satisfies such an invariant if for each
occurrence of the source object graph, there is an occurrence of the target
object graph that satisfies the constraint expression. Such an expression may
make use of the sets set1 and set2 of all occurrences of the object graphs
Oset1 and Oset2:

∀Occ(Osrc) s.t. EXP |src(Osrc, Set of all Occ(Oset1))

∃Occ(Otar) s.t.

EXP (Occ(Osrc), Occ(Otar), Set of all Occ(Oset1), Set of all Occ(Oset2))

P(NumberOfPersistentClasses) P(…) P(…)

p:Package

name=Y

s:Schema

name=Y

Class Relational Source Target
object
graph

()
Source Target

object
graph

object
graph

object
graph

object
graph

Osrc Otar Osrc

object
graph
OtarOset1

Oset2

t:Tablec:Class

isPersistent=true tables

object
graph

Oset1
 EXP#f #g

src tar
object
graph

Oset2

Oset1 set2

t1 t2

set1 set2

isPersistent=true

pclasses

tables

pclasses.size() = tables.size()
EXP

Source
model

Target
model

set1 set2

Fig. 14 Invariant with sets (left). Semantics of invariants with sets (center and right)

Automated Verification of Model Transformations based on Visual Contracts 15

4.2 Reasoning with Patterns

The formal semantics of PaMoMo allows for reasoning on: (i) metamodel

coverage, (ii) redundancies, (iii) contradictions and (iv) pattern satisfaction

on contracts, as we detail next.
First, we can measure metamodel coverage, that is, we can identify the

elements in the source and target metamodels that are used in a PaMoMo

contract, as well as how they are used (i.e., in enabling or disabling conditions
only, or in positive/negative patterns). This allows for a quick identification
of underspecifications if, for instance, some element in the target metamodel
is not used in any positive pattern. In the presented example in Figs. 5–14 all
elements in both metamodels are used.

Second, we can investigate redundancies in contracts (cf. Table 1). A redun-
dant pattern can be safely removed yielding a simpler, more compact contract
with the same semantics as the original one but which can be more efficiently
verified. For instance, if a positive pre- or postcondition is included in a “big-
ger” positive pre- or postcondition, the smaller one is redundant and can be
removed. The reason is that whenever the bigger one is found, the smaller one
will be found as well (and both need to be found). Similarly, if a negative pre-
or postcondition is included in a “bigger” one, the bigger is redundant. Ta-
ble 1 shows these two redundancy cases (first row), as well as other cases that
we can identify for invariants (second row) and for the disabling conditions
of a pattern (third row). For example, if a pattern has a disabling condition
included in another one, then the “bigger” condition is redundant. Please note
that the redundancy rules for invariants assume the forward interpretation of
patterns; in the backward case the rules are the symmetric ones.

Table 1 Redundancies in PaMoMo contracts. Pi and Ni are a positive and a negative
pattern without enabling or disabling conditions. Subindex src and tar refer to the source
and target of a pattern.

Scope Rule

Pre/postconditions P1 ⊆ P2 ⇒ P1 is redundant
N1 ⊆ N2 ⇒ N2 is redundant

Invariants P1,src = P2,src and P1,tar ⊆ P2,tar ⇒ P1 is redundant
P1,tar = P2,tar and P1,src ⊆ P2,src ⇒ P2 is redundant
N1,src = N2,src and N1,tar ⊆ N2,tar ⇒ N2 is redundant
N1,tar = N2,tar and N1,src ⊆ N2,src ⇒ N2 is redundant

Disabling conditions of a pattern disabling1 ⊆ disabling2 ⇒ disabling2 is redundant

Third, we can statically investigate contradictions preventing the satisfac-
tion of a contract by any pair of models (cf. Table 2). For example, there is a
contradiction if a negative pre- or postcondition is included in a positive pre-
or postcondition. The reason is that the satisfaction of the positive precondi-
tion requires finding an occurrence in the source model, but this means that
we will find an occurrence of the negative precondition as well. This conflict
corresponds to the first two rows in Table 2. The third row in the table shows
another contradiction that may arise if a negative postcondition is included
in the target of a positive invariant. In this case, the invariant and the post-

16 Esther Guerra et al.

Table 2 Contradictions in PaMoMo contracts. Pre, Pos and I refer to a precondition,
postcondition and invariant without enabling or disabling conditions. Prefix P and N mean
positive or negative. Subindex src and tar refer to the source and target of a pattern.

Scope Contradiction

Pre/postconditions NPre ⊆ PPre ⇒ contract is unsatisfiable
NPos ⊆ PPos ⇒ contract is unsatisfiable

NPos ⊆ PItar ⇒ contract is potentially unsatisfiable
Invariants NIsrc = PIsrc and NItar ⊆ PItar ⇒ contract is potentially unsatisfiable

condition cannot be simultaneously satisfied whenever we find an occurrence
of the source part of the invariant in the source model, and only if the source
model does not contain the source part of the invariant the contract may be
satisfied (by vacuous satisfaction of the invariant). The same situation arises
if two invariants have the same source, one is positive and the other negative,
and the target of the negative one is included in the target of the positive one
(last row in the table).

Finally, we can reason on the satisfaction of patterns in order to detect
potential errors in a contract and report a warning. For instance, consider a
negative precondition that is included in the source part of an invariant or
in one of its enabling conditions. In this case there is no contradiction, but
if the negative precondition holds, then the invariant will also hold vacuously
because it will never be enabled. If the precondition does not hold, then the
invariant can be satisfied or not (depending on whether its main pattern is
found in the models) but nevertheless the whole contract will not hold. Thus,
this situation usually indicates an error in the specification. Table 3 gathers
different warnings for PaMoMo contracts concerning satisfiability.

Table 3 Potential errors in PaMoMo contracts concerning satisfiability. Pre, Pos and
I refer to a precondition, postcondition and invariant. Prefix P and N mean positive or
negative (the absence of prefix means “in both cases”). Subindex src and tar refer to the
source and target of a pattern.

Scope Warning

Pre/postconditions NPre ⊆ Isrc ⇒ if NPre holds, I vacuously holds
NPre ⊆ Ienabling ⇒ if NPre holds, I vacuously holds

NPos ⊆ NItar ⇒ if NPos holds, NI holds
NPos ⊆ Ienabling ⇒ if NPos holds, I vacuously holds

Enabling/disabling conditions disabling ⊆ enabling ⇒ pattern vacuously holds
of a pattern

As an example of this kind of reasoning, Fig. 15 shows on top a negative
precondition discarding the transformation of models where some package con-
tains duplicated classes. The invariant below, specified by a different designer,
deals with the transformation of equally named classes inside a package, which
should be transformed into a single table containing columns for the attributes
of the classes. Thus, the second invariant is useless because it can only be satis-
fied (in a non-vacuous way) if the input model has duplicated classes, but this
is forbidden by the negative precondition. This situation, which corresponds
to the first row in Table 3 (i.e., NPre ⊆ Isrc), gives rise to a warning.

Automated Verification of Model Transformations based on Visual Contracts 17

N(NoDuplicatedClasses)N(NoDuplicatedClasses)
Class Relational

c1:Class c2:Class

p:Package

c1:Class

isPersistent = true
name=C

c2:Class

isPersistent = true
name=C

P(JointClasses)
Class Relational

p:Package

inclusion

c1:Class

isPersistent = true
c2:Class

isPersistent = true t:Table

s:Schema

name=Cname=C name=C

a1:Attribute

name=A1

a2:Attribute

name=A2
co1:Column

name=A1

name=C

co2:Column

name=A2
A1<>A2

name=A1 name=A2

Fig. 15 Potential error: disabled invariant due to negative precondition

5 Implementing Model Transformations with QVT-Relations

After the designer has specified the transformation requirements in terms of
contracts (cf. step 1 in Fig. 4), the developer may start implementing the
model transformation (cf. step 2 in Fig. 4). Although any arbitrary transfor-
mation language might be chosen for this task, we employ QVT-Relations in
our running example. This is since we will also use QVT-Relations to auto-
matically verify the specified contracts (cf. Section 6), and thus, the reader is
not confronted with many different languages.

QVT-Relations (QVT-R in short) is a declarative model transformation
language standardized by the Object Management Group (OMG) [43]. It al-
lows for several execution scenarios, like model transformation (i.e., generating
a new target model from an existing source model),model synchronization (i.e.,
synchronizing two existing models) and consistency checking (i.e., checking the
synchronization of two existing models without enforcing it).

With QVT-R, a transformation is specified as a set of relations that must
hold between a set of models, called candidate models. Each relation defines
local constraints to be satisfied by the candidate models, and has two or more
domains. Domains are described by object graph patterns, and have a flag
to indicate whether they are checkonly or enforce. The models of a do-
main marked as enforce may be modified to satisfy the relation. In contrast,
the models of a domain marked as checkonly are just inspected to check if
the relation holds for the candidate models, resulting in reported errors only.
Thus, in order to realize a transformation scenario, the target domain must
be marked as enforce to allow the creation of a new target model, and the
transformation must be executed in the direction of this domain. In our exam-
ple transformation, we aim at generating a new target model from an existing

18 Esther Guerra et al.

source model, and hence the domain class is marked as checkonly whereas
the domain rel is marked as enforce.

Fig. 16 shows a first version of the QVT-R implementation for the running
example. This transformation comprises two candidate models class and rel

(cf. line 2) representing a model conforming to the Class metamodel and
a model conforming to the Relational metamodel, respectively. The trans-
formation contains five relations, namely PackageToSchema, ClassToTable,
AttributeToColumn, PrimitiveAttributeToColumn and SuperAttributeTo-
Column. Relations may be top-level or not, which is indicated with the keyword
top. The execution of a transformation requires that all its top-level relations
hold, whereas the non-top level ones only need to hold when they are invoked
directly or indirectly from top-level relations. A relation holds if for each bind-
ing of the objects in the source graph pattern (in the source model), there
exists a valid binding of the target pattern objects (in the target model).

In the example, assuming that the execution starts with the top relation
ClassToTable (cf. line 16), then it is required that for each persistent class c
contained in a package p, a table t contained in a schema s exists. Furthermore,
the class c and the table t must be equally named, which is enforced by using
a common variable cn.

In addition, relations may declare when and where clauses containing OCL
expressions as well as relation invocation expressions. When clauses express
preconditions under which the relation needs to hold. They usually refer to
other relations, to which they pass a number of parameters that appear as
variables in the current relation. For instance, the relation ClassToTable is
only required to hold if the relation PackageToSchema holds, as this latter re-
lation appears in the when clause of ClassToTable (cf. line 28). Where clauses
are used to specify relation postconditions (i.e., if the current relation holds
then the where clause should hold) and may also include references to other re-
lations. For instance, ClassToTable requires the relation AttributeToColumn

to hold in its where clause (cf. line 31). This second relation delegates the
transformation of attributes to the relations PrimitiveAttributeToColumn

and SuperAttributeToColumn in its where clause (cf. lines 39 and 40). The
relation PrimitiveAttributeToColumn transforms the attributes of a class c
into equally named and typed columns of the corresponding table. Finally, the
relation SuperAttributeToColumn deals with inherited attributes by recur-
sively calling itself (cf. line 68).

As the attentive reader might have already spotted, by the recursive call
in the where clause of the SuperAttributeToColumn relation, all super classes
of a given class are visited, but without producing additional columns for
inherited attributes. In Section 7, we show how this error is detected by using
the previously presented contract and how it can be fixed. For this purpose,
the next section shows how to use the consistency checking mechanisms of
QVT-R to verify PaMoMo contracts.

Automated Verification of Model Transformations based on Visual Contracts 19

1 transformation ClassToRel

2 (class : Class ; rel : Relational){

3

4 // map each package to a schema

5 top relation PackageToSchema {

34 // map each attribute to a column

35 relation AttributeToColumn {

36 checkonly domain class c: Class {};

37 enforce domain rel t: Table {};

38 where {p g {

6 pn: String ;

7 checkonly domain class p: Package {

8 name =pn

9 };

10 enforce domain rel s: Schema {

{

39 PrimitiveAttributeToColumn (c, t);

40 SuperAttributeToColumn (c, t);

41 }

42 }

43

11 name =pn

12 };

13 }

14

15 // map each persistent class to a table

44 // map each attribute to a column

45 relation PrimitiveAttributeToColumn {

46 an , tn: String ;

47 checkonly domain class c: Class {

48 attributes =a: Attribute {

16 top relation ClassToTable {

17 cn: String ;

18 checkonly domain class c: Class {

19 namespace =p: Package {},

20 isPersistent =true ,

49 name =an,

50 type =tn

51 }

52 };

53 enforce domain rel t: Table {

21 name =cn

22 };

23 enforce domain rel t: Table {

24 schema =s: Schema {},

25 name =cn

26 }

54 columns =cl: Column {

55 name =an ,

56 type =tn

57 }

58 };

59 }26 };

27 when {

28 PackageToSchema (p, s);

29 }

30 where {

31 AttributeToColumn (c t);

59 }

60

61 // map inherited attributes

62 relation SuperAttributeToColumn {

63 checkonly domain class c: Class {

64 parents sc: Class {}31 AttributeToColumn (c, t);

32 }

33 }

64 parents=sc: Class {}

65 };

66 enforce domain rel t: Table {};

67 where {

68 SuperAttributeToColumn (sc , t);

69 }69 }

70 }

71 }

Fig. 16 Class2Relational transformation implemented in QVT-R

6 Operationalizing Contracts: From P❛▼♦▼♦ to QVT-Relations

In order to use PaMoMo contracts as oracles, they have to be made oper-
ational. For this purpose, we translate the contracts into checkonly QVT-R
transformations and check if they hold for certain models, according to the se-
mantics shown in Section 4. In case a certain relation does not hold, the QVT
engine provides information on which contract failed due to which bindings
(i.e., bound objects, values and links). Our approach generates three QVT
transformations: one containing the generated code for the preconditions, an-
other one for the invariants, and the last one for the postconditions. In the
following we detail each one of them by providing a schematic template of the
generated code and a concrete example.

6.1 Compilation of Preconditions and Postconditions

Compilation scheme of preconditions. Preconditions have empty the tar-
get compartment. However, in QVT-R, all transformations must have at least
two domains. Therefore, in the case of pre- and postconditions, we generate

20 Esther Guerra et al.

P(Pre)
Source

top relation 〈Pre〉 {

domain Source1 〈Root of Object Graph Osrc〉
checkonly domain Source2 〈Object Graph Osrc〉

where { 〈obj-identity-inequality〉; 〈EXP〉; }
}

N(Pre)
Source

top relation 〈Pre〉 {

domain Source1 〈Object Graph Osrc〉
checkonly domain Source2 〈Root of Object Graph Osrc〉

when { 〈obj-identity-inequality〉; 〈EXP〉; }
where { false; }

}

object
graph

O
src

EXP

object
graph

O
src

EXP

Fig. 17 Compilation scheme for preconditions

transformations with two domains conforming to the same metamodel, which
are actually bound to the same model. Fig. 17 shows the compilation scheme
for positive and negative preconditions. In both cases, we produce one top
relation with two domains (named Source1 and Source2 in the figure) bound
to the same metamodel.

If we execute the resulting transformation in check-only mode in the di-
rection Source1→Source2, for each occurrence of the source of each top re-
lation, the engine has to find an occurrence of the target of the relation to
consider that the relation holds. Therefore, for positive preconditions, we add
in Source1 one element that we will always need to find (the root node of the
precondition’s object graph), and in Source2 the full object graph. Further-
more, we include in the where clause inequalities ensuring that two objects
with compatible type cannot be bound to the same object in the model, as
well as the OCL constraint expression EXP of the precondition.

Regarding negative preconditions, they demand the absence of an object
graph. Therefore, in this case, the object graph is added in the Source1 do-
main, and the OCL constraint is included in the when clause. Moreover, as a
negative precondition has to fail whenever the object graph is found, we add
false to the where clause of the relation. Thus, finding the object graph in the
source domain makes the relation fail due to the where clause.

Example. Fig. 18 shows a negative precondition taken from Fig. 8 and the
generated QVT-R code. The source object graph of the negative precondition
is compiled as the object graph for the Source1 domain, whereas the Source2
domain includes only the root node of this graph. In addition, three constraints
are added to the when clause. The first two check that different objects in
the relation are bound to different objects in the model. This is checked by
inequalities in the identifiers of objects with same type. The third constraint,
taken directly from the precondition, checks if the class p is a superclass of
class c. Finally, the where clause includes the false statement, to make the
relation fail in case a match for the source graph is found in the model.

Compilation scheme of postconditions. Fig. 19 shows the scheme of
the compilation of positive and negative postconditions. Positive postcondi-

Automated Verification of Model Transformations based on Visual Contracts 21

transform

N(NoRedefinedAttrs)

transform

top rela

X : St
domain

cla

p:Class

N(NoRedefinedAttrs)

a:Attribute

name=X

Class

pa:Package

cla

},
cla

c:Class ar:Attribute

name=X
c.general‐>includes(p)

p g

}
};
checko

when{when{
c<>
ar<
c.g

}}
where{

}
}

mation checkPre(Source1:uml; Source2:uml){mation checkPre(Source1:uml; Source2:uml){
ation NoRedefinedAttrs{
tring;
n Source1 pa : Package{
asses = p : Class{asses = p : Class{
attribute = a : Attribute{ name=X }

asses = c : Class{
attribute = ar : Attribute{ name=X }attribute = ar : Attribute{ name=X }

only domain Source2 pa2 : Package{};

>p;
<>a;
general->includes(p);

 false; }

Fig. 18 Compiling a negative precondition into QVT-R

tions demand an occurrence of the target object graph, while negative post-
conditions are satisfied if there is no occurrence of the target object graph.
Thus, the code generated from postconditions is similar to the one generated
from preconditions but acting on the target metamodel.

top relation 〈Post〉 {

domain Target1 〈Root of Object Graph Otar〉
checkonly domain Target2 〈Object Graph Otar〉

where { 〈obj-identity-inequality〉; 〈EXP〉; }
}

top relation 〈Post〉 {

domain Target1 〈Object Graph Otar〉
checkonly domain Target2 〈Root of Object Graph Otar〉

when { 〈obj-identity-inequality〉; 〈EXP〉; }
where { false; }

}

P(Post)

N(Post)

Target
object
graph

O
tar

EXP

Target
object
graph

O
tar

EXP

Fig. 19 Compilation scheme for postconditions

Example. Fig. 20 depicts the negative postcondition shown in Fig. 8 and
its compilation into QVT-R. It can be seen that the resulting code is analogous
to the code produced for the negative precondition example in Fig. 18.

transformation checkPost(Target1:rdbms; Target2:rdbms){
top relation NoDuplicatedColumns {
X : String;
domain Target1 t : Table {

columns = c:Column { name=X },
columns = e:Column { name=X }

};
checkonly domain Target2 t2 : Table {};
when { c <> e; }
where { false; }

}
}

N(NoDuplicatedColumns)

t:Table

c:Column

name=X

e:Column

name=X

Class Relational

Fig. 20 Compiling a negative postcondition into QVT-R

22 Esther Guerra et al.

6.2 Compilation of Invariants

Compilation scheme. Fig. 21 shows the scheme of the compilation of positive
and negative invariants. The scheme for positive invariants is similar to the one
for preconditions and postconditions, but now the two domains are typed on
different metamodels and contain different object graphs. Moreover, the when

clause includes the terms of the OCL invariant expression containing only
elements of the source graph, whereas the remaining terms of the expression
are added to the where clause.

P(inv)
Source Target

EXP

top relation 〈inv〉 {
domain Source 〈Object Graph Osrc〉
checkonly domain Target 〈Object Graph Otar〉

when { 〈obj-identity-inequality-src〉; 〈EXP|src〉; }
where { 〈obj-identity-inequality-tar〉; 〈EXP〉; }

}

N(inv)

Source Target

EXP

top relation 〈inv〉 {
domain Source 〈Object Graph Osrc〉
checkonly domain Target 〈root of Target metamodel〉

when { 〈obj-identity-inequality-src〉; 〈EXP|src〉; }
where { not 〈inv〉2(...); }

}
% ---
relation 〈inv〉2 {

domain Source 〈root of Object Graph Osrc〉
checkonly domain Target 〈Object Graph Otar〉

where { 〈obj-identity-inequality-tar〉; 〈EXP〉; }
}

object
graph

O
tar

object
graph

O
src

object
graph

O
tar

object
graph

O
src

Fig. 21 Compilation scheme for invariants

As a difference from the previous compilations, negative invariants are
split into two relations: the first one is top and looks for occurrences of the
source, and the second one is non-top and looks for occurrences of the target
when it is invoked from the where clause of the top relation. In this way, the
top relation checks that for each occurrence of the source graph, there is no
occurrence of the target graph (this latter checked by invoking the non-top
relation in the where section, negated). Note that generating a single relation
with a false statement in the where section, as we did for negative pre- and
postconditions (cf. Figs. 17 and 19), is not enough in this case. The reason is
that such a relation fails if it does not find the complete target graph, however
the relation should fail only if it does find both the source and target graphs.

Example. Fig. 22 shows the compilation of the positive invariant modeling
requirement 4 in Fig. 7. The generated relation has one domain for the source
object graph and another domain for the target object graph. Its when clause
includes an inequality to avoid binding the two classes p and c to the same
object in the model, as well as the OCL constraint in the invariant as it only
includes source objects. An example for the compilation of negative invariants
is illustrated in the following subsection.

Automated Verification of Model Transformations based on Visual Contracts 23

transformation checkInv(Source:uml; Target:rel){
top relation InheritedAttributes {
A, C : String;
domain Source pa : Package {

classes = p:Class {
attributes = a:Attribute { name = A }

},
classes = c:Class {
isPersistent = true,
name = C

}
};
checkonly domain Target s : Schema {

tables = t:Table {
name = C,
columns = co:Column { name = A }

}
};
when { p<>c; c.ancestors->includes(p);}

}
}

c: Class

P(InheritedAttributes)

p: Class

a: Attribute
name=A c.ancestors‐>includes(p)

t:Table

co:Column

name=A

Class Relational
pa: Package

s: Schema

isPersistent = true
name=C

name=C

Fig. 22 Compiling a positive invariant into QVT-R

6.3 Compilation of Enabling and Disabling Conditions

Compilation scheme. Enabling conditions are translated into top relations,
which are checked in the when clause of the relation derived from the pattern
they constrain. In this way, if the relation derived from the enabling condition
does not hold, then the relation derived from the pattern vacuously holds.
This compilation scheme is shown in Fig. 23. For disabling conditions the
scheme is the same, but they are invoked in the when clause preceded by
“not”. If a pattern contains several disabling conditions, their invocations are
concatenated with a logical “and”.

P(inv)P(enab)

top relation inv {
domain Source Object Graph Osrc
checkonly domain Target Object Graph Otar()

Source Target

object
graph

O

object
graph

O

()
Source Target

object
graph

EN

object
graph

EN

y g j p tar

when { obj-identity-inequality-src;
EXP|src;
enab(…); }

EXP

O
tar

O
src

EXPEN

EN
tar

EN
src

where { obj-identity-inequality-tar;

EXP; }
}
%---
top relation enab {
domain Source Object Graph ENsrc
checkonly domain Target Object Graph ENtar

when { obj-identity-inequality-src;
EXPEN|src; }

where { obj-identity-inequality-tar;
EXPEN; }

}

Fig. 23 Compilation scheme for enabling conditions

Example. Fig. 24 shows the code generated for the negative invariant of
Fig. 10, which has an enabling condition. In particular, the relations NoTableFor-
TransientClass and NoTableForTransientClass2 are generated from the
negative invariant, and PackageAndSchema from the enabling condition. Hence,
top relation NoTableForTransientClass only needs to hold for a particular

24 Esther Guerra et al.

P(PackageAndSchema)

p:Package

name=Y

s:Schema

name=Y

Class Relational

N(NoTableForTransientClass)
Class Relational

t:Table

name=X

s: Schema

c:Class

name=X

isPersistent=false

p: Package

top relation NoTableForTransientClass{
X : String;
domain Source p : Package {

classes = c:Class {
name = X,
isPersistent = false

}
};
checkonly domain Target s : Schema{};
when { PackageAndSchema(p,s); }
where { not NoTableForTransientClass2(p,s,X); }

}

relation NoTableForTransientClass2{
X : String;
domain Source p : Package {};
checkonly domain Target s : Schema {

tables = t:Table { name = X }
};
primitive domain X2:String;
where { X = X2; }

}
} //end of transformation

transformation checkInv(Source:uml; Target:rel){
top relation PackageAndSchema{
Y: String;
domain Source p : Package { name = Y };
checkonly domain Target s : Schema { name = Y };

}

Fig. 24 Compiling an enabling condition for a negative invariant into QVT-R

Package and Schema when they satisfy the relation PackageAndSchema, which
is checked in the when clause.

In this example, the relation NoTableForTransientClass invokes NoTable-
ForTransientClass2 passing the string variable X as a parameter, which has
to be defined as a primitive domain in the invoked relation. Moreover, due
to a limitation of the QVT-R engine that we use (ModelMorf), which only
supports relations with two domains, we have to tweak the compilation of
enabling conditions containing more than one object in the source or target.
This is so as any invocation to a relation must receive exactly two objects as
parameters, plus any number of primitive values. Thus, if the enabling condi-
tion contains several objects in the source or the target, all should be passed in
the invocation, which is not allowed. We have solved this problem by passing
the object identifiers (which have primitive type, and can therefore be passed
as primitive domains) instead of the objects themselves.

6.4 Compilation of Sets

Compilation scheme. QVT-R allows matching for collections of objects
(sets, bags or sequences) using so-called collection templates. The ModelMorf
QVT engine provides two kinds of collection templates: (i) enumerations for
the extensional definition of sets, and (ii) comprehensions for its intensional
definition. Enumerations match for a certain number of members in a col-
lection. For instance, classes = pclasses : Set(Class) {c1, c2 ++ }
matches for two classes in the reference classes. The underscore is a wildcard

Automated Verification of Model Transformations based on Visual Contracts 25

that matches for the rest of the collection. Comprehensions allow matching
members in a collection using a condition. For instance, classes = pclasses

: Set(Class) {} {pclasses->forall (c | c.isPersistent)}matches all
persistent classes in the reference classes.

As Fig. 25 shows, sets in PaMoMo patterns are compiled into collection
templates. We generate enumerations if the elements in the set are not con-
strained by any condition, and comprehensions otherwise. As before, the OCL
expressions using only source variables and source set variables are included
in the when clause, whereas the rest are included in the where clause.

P(…)
S T tSource Target
object
graph

bj

object
graph

O
src

O
tar

bj t

top relation inv {
domain Source Osrc + set-templates(set1)
checkonly domain Target Otar + set-templates(set2)
h { bj id tit i lit object

graph

O
set1

object
graph

O
set2

set1 set2

when { obj-identity-inequality-src;
EXP|src; }

where { obj-identity-inequality-tar;
EXP; }

}

EXP

set1 set2 }

Fig. 25 Compilation scheme for sets

Example. Fig. 26 lists the code generated from the invariant with sets
shown in Fig. 14. The set pclasses is translated into a comprehension because
it contains a condition matching for persistent classes only (isPersistent =

true). In contrast, the set tabs is compiled into a simple enumeration. The
OCL expression is added to the where section of the relation because it relates
set variables of the source and target. This expression fails if the number of
persistent classes is not equal to the number of tables.

If a set contains an arbitrary graph having more than one element, then we
generate one additional relation looking for occurrences of this graph structure.
This relation is used to filter which elements should be added to the collection
(i.e., only those making the relation hold).

transformation checkInv(Source:uml; Target:rel){
top relation NumberOfPersistentClasses {
Y : String;
domain Source pa : Package {P(NumberOfPersistentClasses)

name = Y,
classes = pclasses : Set(Class) {}

{classes->forAll(c | c.isPersistent=true)}
};

p:Package

name=Y

s:Schema

name=Y

Class Relational

checkonly domain Target s : Schema {
name = Y,
tables = tabs : Set(Table) {}

};
t:Tablec:Class

isPersistent=true tabs
where { pclasses.size() = tabs.size(); }

}
}

isPersistent true

pclasses

tabs

pclasses.size() = tabs.size()

Fig. 26 Compiling a positive invariant with sets into QVT-R

26 Esther Guerra et al.

6.5 Summary of the Compilation

Table 4 summarizes the compilation of PaMoMo contracts into QVT-R code.
We can observe that PaMoMo allows for a more compact specification of con-
tracts than the direct use of QVT-R. Its graphical nature, the availability of
different kinds of patterns (positive and negative invariants, pre- and post-
conditions) and its features (enabling/disabling conditions, sets) make it less
complex than the equivalent QVT-R code. In particular, patterns are especially
useful to express negative information and large, complex graphical structures
in a concise way. In these cases, the QVT-R code equivalent to the visual
PaMoMo pattern is more intricate (e.g., see Fig. 24), as a negative invariant
needs to be split in two QVT relations, and one additional relation needs to
be generated for each enabling or disabling condition. The higher conciseness
of PaMoMo for this task is natural, as its aim is specifying transformation
properties, while QVT-R is a language to implement M2M transformations.

Table 4 Summary of PaMoMo-to-QVT compilation

P❛▼♦▼♦ concept QVT-R representation

P(Pre/Post) 1 relation with pseudo domain
N(Pre/Post) 1 relation with pseudo domain + false in where clause
P(Inv) 1 relation
N(Inv) 2 relations + negated call to relation2 from where of relation1
Enabling/Disabling 1 relation + (negated) call from when of relation produced for

constrained pattern
Set collection template

7 The P❛❈♦-Checker Tool

After the transformation logic has been implemented, it needs to be verified to
check whether it satisfies the requirements specified by the contract. For this
purpose, we have developed an EMF-based tool [14] called PaCo-Checker that
automates this process and enables the visual specification of contracts. Fig. 27
shows its architecture, which consists of three main components: a visual editor
to build the patterns (label 1), a chain of transformations from the patterns
to QVT-R abstract syntax and from this to QVT-R concrete textual syntax
(label 2), and a verification editor to configure the patterns to be checked
on a particular transformation using certain source and target models (label
3). The rest of this section provides an overview on the needed steps for the
verification process and gives additional details of the tool components.

Prerequisites. We assume the existence of the source and target metamod-
els, as these are necessary to specify the contracts and implement the trans-
formation. In addition, for the verification process, we need a suitable set
of input models conforming to the source metamodel. Such input models

Automated Verification of Model Transformations based on Visual Contracts 27

PaMoMo
MM

implements

QVT
MM

ATLATL

T f ti

XPandXPand

T f ti

QVT
G

Generation of Concrete Syntax 22

MM

instance of

MM

QVT

instance of

TransformationTransformation TransformationTransformation GrammarGrammar

QVTATL XPand

instance of

GMF‐based
Editor

PaMoMo

Model

produces

QVT
Model

QVT
Code

ATL

Engine

XPand

Engine

Source models

Model

Specification of Requirements
11

QVT Engine
ModelMorf

Source models

Target models

p q

configurerefers to

uses

Verification

Log

Test Suite
(Prerequisite)

PaCo‐Checker
Verification Editor

Configuration33 g

Fig. 27 Overview of the architecture of PaCo-Checker

can be manually created, which however is a tedious and error-prone task.
In our experience, this manual creation often leads to small input models
that only cover parts of the metamodel. Alternatively, there are available
mechanisms that automatically synthesize a large number of different in-
put models [9,17,47] ensuring a certain level of metamodel coverage. We
assume the existence of such set of input models as well, since their gener-
ation is out of scope of this paper.

Step 1: Formal specification of requirements with PaMoMo. In a first
step, the transformation requirements have to be formally specified us-
ing PaMoMo. For this purpose, PaCo-Checker implements the PaMoMo
metamodel using EMF (cf. (1) in Fig. 27) and provides a graphical con-
crete syntax supported by a GMF-based [21] editor that enables the visual
specification of contracts (cf. Fig. 28). The source and target metamodels
of the transformation have to be imported into the tool palette of the ed-
itor before starting modeling patterns. Then, the transformation designer
can use the editor to specify preconditions, postconditions and invariants.
Our current implementation only supports one type of pattern per con-
tract, i.e., either preconditions, postconditions or invariants, whereby one
contract results in one file. Therefore, if preconditions, postconditions and
invariants should be used to verify a transformation, three different con-
tract files are needed. Fig. 28 shows a screenshot of the editor begin used
to define the invariant that models the requirement 4 of the running ex-
ample. Instances of the classes from the source and target metamodels can
be added to the appropriate compartments of the invariant, together with
the attributes of such classes. The patterns can also include OCL expres-
sions to specify conditions on the attributes, e.g., to check if the class is
persistent (boolean attribute isPersistent) or more general conditions,
e.g., if class p is a superclass of class c.

28 Esther Guerra et al.

PaMoMo

elements

Positive Invariant

Source object Target objectSource object
graph

Target object
graph

Source MM
elements

Target MM Target MM
elementselements

Fig. 28 Specification of invariant for requirement 4 (cf. Fig. 7) with PaCo-Checker

Step 2: Specification of a verification job. Once the designer has speci-
fied the contracts, a verification job has to be configured (cf. (3) in Fig. 27).
Such a job definition allows executing all specified preconditions, postcon-
ditions and invariants to achieve a comprehensive verification result. Fig. 29
shows a screenshot of the verification job for the running example. First,
the source and target metamodels have to defined, which must be equal to
those used for specifying the patterns. Furthermore, a source (test) input
model is needed as well as the target model generated by the transfor-
mation under test. Then, the preconditions, postconditions and invariants
which shall be checked for the transformation have to be selected. Thus, it
is possible to reuse patterns to verify different transformations with over-
lapping requirements, e.g., if we have designed several transformations from
the same source (target) metamodel, some of the preconditions (postcon-
ditions) may be reused.

Step 3: Execution of the verification job. Once specified, the verification
job can be executed if no inconsistency between the patterns of the contract
is reported by the reasoning component. In order to execute the job, an
ATL transformation transforms the PaMoMo contract into a QVT model
implementing the semantics of the contract (cf. (2) in Fig. 27). Since there
is no execution engine available to execute QVT-R on the basis of its ab-
stract syntax, we produce the QVT concrete textual syntax by means of
a model-to-text transformation using XPand [52]. The resulting QVT-R
code is finally executed by the ModelMorf QVT-R engine [49], which pro-

Automated Verification of Model Transformations based on Visual Contracts 29

Specification of

Metamodels and Models

Specification of

Preconditions

Specification of

Invariants

Specification of

Postconditions

Fig. 29 Definition of a verification job with PaCo-Checker

duces a verification log providing hints of any error in the transformation
logic.

Step 4: Inspection of verification results. The execution of the verifica-
tion job produces a verification log. Fig. 30 shows to the right the log gen-
erated for the running example, considering the input and output models
to the left (the output model is produced by the transformation implemen-
tation). This log reports that these models satisfy requirements 1 - 3, but
not requirement 4, which addresses the translation of inherited attributes.
If we inspect the models, we realize that the transformation in Fig. 16 pro-
duces a schema s1 which stems from the package p1, checked by the first
invariant. The second invariant checks if persistent classes are translated
into equally named tables, which is also true since two appropriate tables
have been created. Furthermore, every direct attribute, i.e., name in case
of class c1 and registrNo in case of c2, has been correctly transformed
into columns of the corresponding tables (as demanded by invariant 3).
Nevertheless, invariant 4 fails because attribute a1 in the superclass c1 is
not transformed into a column of the table generated from c2 (i.e., table

30 Esther Guerra et al.

s1 : Schema

name = ‘University‘

t1 : Table
name = ‘Person‘

tables co1 : Column
name = ‘name‘

type = ‘String‘

columns

t2 : Table
name = ‘Student‘tables

co2 : Column
name = ‘registrNo‘
type = ‘Integer‘

columns

Resulting Output Model

schema

schema

Verification Log

ModelMorf

PAMOMO

Contract

implements QVT
Code

c1 : Class
isPersistent = true
name = ‘Person‘

c2 : Class
isPersistent = true
name = ‘Student‘

classes

classes

p1 : Package
name = ‘University‘

a1 : Attribute
name = ‘name‘

type = ‘String‘

a2 : Attribute
name = ‘registrNo‘
type = ‘Integer‘

attributes

attributes

Test Input Model

namespace

namespace

children

parentsancestors

Fig. 30 Verification results of requirements 1-4 for our running example

t2 has no column name). Therefore, our transformation implementation in
Fig. 16 does not handle appropriately the inherited attributes.

The transformation in Fig. 16 was implemented with the rationale that each
relation addressed exactly one requirement. In this way, relation SuperAttri-

buteToColumn handles requirement 4. However, when investigating the QVT
code, it can be seen that we specified the wrong relation call in the where clause
of relation SuperAttributeToColumn. In particular, by calling this relation,
only the super classes are visited, but no column is created. We can solve this
error by changing the where clause of relation SuperAttributeToColumn to
call AttributeToColumn (cf. line 68 in Fig. 31) which takes care of, on the one
hand, delegating the creation of additional columns, and on the other hand,
traversing the super classes from bottom to top. Running again the updated
transformation to produce the output model and subsequently verifying the
contract shows that all invariants are satisfied.

61 // map inherited attributes61 // map inherited attributes

62 relation SuperAttributeToColumn {

63 checkonly domain class c: Class {

64 parents=sc: Class {}

65 };

66 enforce domain rel t: Table {};{};

67 where {

68 AttributeToColumn (sc , t);

69 }

70 }

71 }

Fig. 31 Corrected transformation code

Automated Verification of Model Transformations based on Visual Contracts 31

8 Case Studies

In this section we illustrate the usefulness of contracts through several case
studies in three application domains. The first one deals with the verification
of the transformation from PaMoMo into QVT-R presented in this paper.
The second one is concerned with the verification of a complex transformation
from a process-interaction simulation language [15] in the area of performance
evaluation into coloured Petri nets [25]. Finally, the third one presents an
application of contracts for third-party transformations, in particular we tackle
the generation of visual editors from GMF models. These case studies show
the versatility and language independence of our approach by the automated
verification of an ATL transformation, a QVT-R transformation, and the safe
execution of a third party transformation (from which we do not have the
source code). In each case, we stress the use of different features of PaMoMo.

8.1 Using PaMoMo to Verify its own Translation into QVT-Relations

In this section we show some patterns of the contract that helped us in verify-
ing the transformation from PaMoMo into QVT-R. The metamodels of both
languages are depicted in Fig. 32. With this example we want to stress that
PaMoMo is independent from the language used to realize the transforma-
tions, since whereas our running example verified a QVT-R transformation,
here the translation was implemented with ATL.

RelationTransformation

R l ti
*

rule

0..1
typedModel

*

modelParam

referredRel

PAMOMO metamodel QVT-Relations metamodel

Specification

name : String
sourceMMAlias : String
targetMMAlias : String

ConstraintGraph

name : String

G h

1 1
sourceGraph targetGraph

disablingCondition

enablingCondition

constraint

0..1

1
*

TypedModel
name : String

Relation

name : String
isTopLevel : Bool

RelationDomain

name : String
isCheckable : Bool
isEnforceable : Bool

domain
*

pattern

0..1
when where

0..10..1

0..1

ditiPattern

1..*
patterns

Graph

MMAlias : String

Object

name : String
t St i

*objects refersTo

1
DomainPattern

Predicate

*

predicate

OclExpression
1

Pattern
condition

Expression

Pattern

name : String
OCLcondition : String

PositivePattern NegativePattern

type : String

Feature

name : String

*

features
bindsTo

template

Expression

*

Variable
name : String

Type

bindsTo
0..1value

1

DomainPattern

referredVar

0..1

RelationCallExpAttribute

variable : String
value : String
type : String

Reference

*

Expression
0..1

ObjectTemplateExp

PropertyTemplateItem

name : String

type
0..1

VariableExp

part

Fig. 32 PaMoMo (left) and QVT-R (right) metamodels

The contract for our transformation contains invariants and postconditions,
but it does not contain preconditions because we handle the translation of all
features in PaMoMo. As an example, Fig. 33 shows an invariant addressing
the translation of pre and postconditions. These are patterns with either the
source or target graphs empty (i.e., the size of the set of objects either in the
source graph or the target graph is 0, as checked by the constraint expres-
sion). These patterns should be transformed into relations with two domains

32 Esther Guerra et al.

P(ConditionsToRelationsWithPseudodomain)P(ConditionsToRelationsWithPseudodomain)

:Pattern :Relation

PaMoMo QVT‐Relations

name=Z

constraint

:RelationDomain

domain

t t

:ConstraintGraph

name=Z

source

Graph
domain

target

Graph
:RelationDomain

:Graph :Graph
typed typed

:TypedModel:Object

sourceObjs

:Object

targetObjs

Model Model

sourceObjs.size() = 0 OR targetObjs.size() = 0

Fig. 33 A positive invariant for PaMoMo-to-QVT-R

(since this is required by the QVT-R metamodel) but referring to the same
TypedModel instance, as shown by the target graph object.

Fig. 34 shows another invariant stating that positive patterns of any type
without enabling or disabling conditions (checked by the two disabling con-
ditions) are transformed into a unique relation. Thus, the generated relation
cannot invoke other relations in its when clause (shown invariant) or where

clause (checked by another similar invariant).

Finally, Fig. 35 shows two postconditions checking that all generated re-
lation domains are checkonly (left), and that there are no chains of when

relation invocations (right). Both are constraints of the models generated by
our transformation.

8.2 From a Process-Interaction Language into Timed Coloured Petri Nets

If we are interested in modeling systems with the aim of simulating their perfor-
mance, we can use a language in the process-interaction simulation style [15].

name=Z

N(PositivePatternTo1Relation)

p:PositivePattern

name=Z

:Relation

:Pattern

when

:Predicate

predicate

N(NoEnablingCondition)

:RelationCallExp

condition

Expression

QVT‐RelationsPaMoMo PaMoMoQVT‐R...

:ConstraintGraph

disabling

Condition

p:PositivePattern

N(NoDisablingCondition)

PaMoMo QVT‐R...

:ConstraintGraph

enabling

Condition

p:PositivePattern

Fig. 34 A negative invariant for PaMoMo-to-QVT-R

Automated Verification of Model Transformations based on Visual Contracts 33

P(Domains)

r:RelationDomain

PaM... QVT‐Relations

P(AreCheckonly)

r:RelationDomain

PaM... QVT‐Relations

isCheckable=true

isEnforceable=false

N(NoChainOfWhen)

:Relation

:Pattern

when

:Predicate

predicate

:RelationCallExp

condition

Expression

QVT‐RelationsPaM...

:Relation

:Pattern

when

:Predicate

predicate

:RelationCallExp

re
fe
rr
e
d
R
e
la
ti
o
n

condition

Expression

Fig. 35 Two postconditions for PaMoMo-to-QVT-R

In these kinds of languages, systems are modeled by processes made of inter-
connected blocks through which transactions flow.

Fig. 36 shows a process-interaction model. The two blocks to the left are
generators of transactions. In particular, the upper left block produces a trans-
action of type 1 at each [10, 20] time steps, with a transaction length having
a uniform probability between [120, 150]. Similarly, the lower left block pro-
duces a transaction of type 2 at each [12, 24] time steps, with a length having
a uniform probability between [140, 180]. Both kinds of transactions arrive at
the advance block (labeled “A”), which models a process with a delay given by
a uniform probability in the interval [2, 5]. After this delay, transactions reach
a server block with a parallelism of 3, meaning that the server can attend 3
transactions at the same time. Moreover, the server has a delay between [4, 5].
Then, a type switch block (labeled “type”) selects the transactions depending
on their type. Transactions of type 1 are routed into a server with parallelism
2, while transactions of type 2 are routed into a server with parallelism 3.
Finally, transactions finish in a terminate block, which counts 1 each time a
transaction arrives. Altogether, this model represents a client/server system
that accepts two kinds of requests, processed in different servers.

21

[2 5]

[1*len,3*len]

par:2
1 S

par:3

[4 5]

SA typelen=[120,150]

[10,20]

1

[2,5]

par:3

[2*len,5*len]2
S

[4,5]
12

[12,24]
len=[140,180][]

Fig. 36 A process-interaction model

Fig. 37 shows the metamodel for this process-interaction language. Thus,
a Simulation model is made of Blocks and Resources. Block is an abstract
class subclassified for each different kind of block.

In order to simulate and analyse process-interaction models, we have built
a transformation of these models into Coloured Petri Nets (CPNs) [25], which
allows using tools like CPNTools [26] for this task. CPNs are a kind of au-
tomaton made of two kinds of nodes: places and transitions. Transitions can

34 Esther Guerra et al.

Fig. 37 Metamodel of the process-interaction language

be connected to places, and vice versa, using directed arcs. Places may contain
tokens, and these may store data conformant to a given data type. Transitions
are the active elements of the system. Whenever all its incoming places have
at least one token, the transition is enabled and may fire, removing one token
from each input place and adding one token to each output place. Arcs are dec-
orated with inscriptions that select tokens from the input places according to
the data they hold, and set appropriate data in the generated tokens. We also
make use of the fact that CPNTools supports time by attaching timestamps
to tokens, which can be incremented by the transitions.

We have used PaMoMo to express different requirements for this trans-
formation. Fig. 38 shows some of the specified invariants. The one to the left
expresses how parallel servers should be translated into CPNs. In particular,
if the parallelism of the server is P, then we need to replicate P times the CPN
structure inside the set servers to the right. This is indicated by the expres-
sion servers.size()=P. The input and output blocks of the parallel server
can be of any type, hence the invariant uses objects of type Block (represented
by dotted rectangles) for them, to mean “any subclass of Block”. Moreover,
the labels LS and LT of these two blocks are used to locate the CPN places
generated from them.

The upper right of Fig. 38 shows an invariant formalizing the translation
of switches (both TypeSwitch and SizeSwitch). They should be transformed
into places with as many output arcs as paths leaving from the switch. Finally,
the bottom right of the figure shows an invariant describing the relation be-
tween the number of resources produced by a resource manager (with label RM)
and the number of arcs that the corresponding transition should map to the
place created for the resource. In particular, a correct transformation should
produce as many arcs as the attribute num of the resource manager.

Altogether, in this complex case study we intensively used invariants with
sets. This is due to the fact that both metamodels exhibited large hetero-
geneities. In particular, it was often the case that an attribute in the process-
interaction language (like the parallelism in servers, or the resources produced
by resource managers) had to be translated into a number of replicated struc-

Automated Verification of Model Transformations based on Visual Contracts 35

P(ParallelServer)
Process‐
Interaction

CPNs

LS Transaction L
Transaction

label=L

P(SwitchOutPaths)

L start

servers
label=LS

Transaction

L BusyL Idle

{len=tl, type=t}

1`()

()par:P

[MIN,MAX]

S

label=L

B path

switch out

label=B

L Busy

L d

L Idle

TransactionUNIT

() {len=tl, type=t}
label=LT

switch.size()=out.size()

P(ResourceManagerProduces)

@+DELS()

L end

TransactionLT

RM
arcsnum=n

label=RM

produces
Transaction

AVAILX=int with MIN..MAX;
Declarations:

LT

R
res

type=R

servers.size()=P fun DELS()=AVAILX.ran(); n=arcs.size()

Fig. 38 Invariants for: translation of parallel servers (left), translation of switches (upper
right), translation of number of resources produced by resource managers (bottom right)

tures in the CPN metamodel. Here we benefit from the fact that patterns are
declarative, so that complex structures can be easily described graphically, as
opposed to textually encoding them using e.g. OCL navigation expressions.

8.3 Verification of Graphical Definitions in the GMF

The Graphical Modeling Framework (GMF) [21] enables the “rapid” develop-
ment of environments for visual languages. The approach taken is to specify
different aspects of the editor using a set of interrelated models. The so-called
gmfgraph model has a crucial role as it contains the specification of the graph-
ical syntax of the language. However, only a tree-based editor is available for
the specification of the figures of the concrete syntax, which is cumbersome
and error prone. The gmfgraph model is then used (together with the other
models) in a transformation to generate the so-called gmfgen model which is
the basis for the final Java code generation of the editor.

A well-known problem is that if some model does not conform to a set of
rules, the code generation produces erroneous code which may override a pre-
vious successful compilation. Although the framework validates some simple
preconditions before the translation, like if all fields have meaningful values, no
behavioral semantic contract is checked. Therefore, designers of GMF editors
could greatly benefit from a means to check whether their models conform
to the set of GMF norms that ensure a successful compilation. Here we use
contracts for this purpose and discuss some preconditions.

Layout constraints. The specifications of figures need to provide a certain
Layout, e.g., a GridLayout providing a row/column oriented layout. Typically,
figures consist not only of a single figure but also contain children-figures, like

36 Esther Guerra et al.

labels to visualize feature values. The actual visualization of the children fig-
ures can be constrained by means of LayoutData. However, the type of Layout
for a figure, e.g., GridLayout, should correspond to the type of LayoutData for
its children, e.g., GridLayoutData. To check this, we can use the precondition
in Fig. 39. The enabling condition selects figures with a certain Layout that
contain a child figure with some LayoutData. Then, the OCL condition in the
precondition checks the compatibility of the Layout and the LayoutData.

Figure

Shape

LayoutData

GridLayoutData BorderLayoutData

layoutData

Layout
layout

GridLayout BorderLayout
Rectangle

RealFigure

children

0..*

0..1

0..1

P(FoundLayoutData)
GMFGraph GMFGen

P(EnsureCorrectLayoutData)
GMFGraph GMFGen

f1:RealFigure

f2:RealFigure

children

g1:Layout

layout

l1:LayoutData

layoutData

(g1.oclIsTypeOf(GridLayout) and

l1.oclIsTypeOf(GridLayoutData)) or

(g1.oclIsTypeOf(BorderLayout) and

l1.oclIsTypeOf(BorderLayoutData)) or

...

 Extract of GMFGraph metamodel

...

...

f1:RealFigure

f2:RealFigure

children

g1:Layout

layout

l1:LayoutData

layoutData

Layoutable

Fig. 39 Precondition checking layout constraints in GMF

Child access constraints. In order to be able to access the children
figures of a figure in the gmfmap model, every FigureDescriptor (which de-
scribes a figure) needs to specify a ChildAccess for each one of its children. To
be able to reuse a figure, e.g., if it is used several times in the concrete syntax, it
is possible to use Nodes assigning a graphical representation to a certain meta-
model element. Hence, if a Node refers not only to a FigureDescriptor but
also to some ChildAccess, then the figure referred by the ChildAccess must
be a child of the FigureDescriptor. In addition, the type of the Node has to
correspond to the type of the child figure (e.g., in case of a DiagramLabel, the
type of the child figure must be Label). These two conditions can be checked
by using the precondition shown in Fig. 40. The second condition is encoded
by the OCL expression in the pattern.

DiagramElement

AbstractNode

Node

DiagramLabel Canvas
labels

0..*

FigureGallery
0..*

figures

FigureDescriptor

0..* descriptors

1
figure

ChildAccess

0..1

accessor

0..*

accessors

Figure
1

figure

1

Label

P(FoundFigureDescriptor)
GMFGraph GMFGen

P(EnsureCorrectAccessors)
GMFGraph GMFGen

d1:DiagramLabel

c1:ChildAccess

accessor

f1:FigureDescriptor

figure

f2:Figure

figure

f2.oclIsTypeOf(Label)

accessors

Extract of GMF

metamodel

d1:DiagramLabel

c1:ChildAccess

f1:FigureDescriptor

figure

f2:Figure

actual
Figure

Fig. 40 Precondition checking child access constraints in GMF

Automated Verification of Model Transformations based on Visual Contracts 37

Hence, this example shows the use of PaMoMo to make explicit certain
(non-documented) assumptions of transformations. Once these assumptions
are encoded in the form of preconditions, they can be checked using PaCo-
Checker in order to avoid errors caused by the GMF compilation.

9 Related Work

The need for systematic verification of model transformations has been rec-
ognized by the research community and documented by several publications
outlining the challenges to be tackled [3,4]. As a response, several verification
approaches have been proposed, which may be classified into the following
three areas: (i) verification of general properties such as confluence, applicabil-
ity and termination of a set of transformation rules [10,33,51], (ii) automated
generation of test input models [9,16,47], and (iii) verification of specific prop-
erties of transformations by means of oracle functions [41], which are used to
analyse the validity of output models for a given set of test input models.
The approaches dealing with the specification of oracles are the closest to the
contributions of the present paper and are discussed in detail next.

In general, the literature distinguishes two kinds of oracle functions [4,41].
First, complete oracle functions may be defined by providing a full-fledged
expected output model for each test input model, and subsequently, employ-
ing model comparison frameworks to verify the equality of the actual output
model with respect to the expected model. Second, partial oracle functions

expressed as contracts have been proposed for checking the validity of input
models, output models, and their relationships. In addition, a third approach
has recently been proposed [28], to specify oracle functions solely based on
the trace links between the input models and output models. In the following,
we elaborate on these three kinds, namely verification by model comparison,
verification by trace analysis, and verification by contract.

Verification by model comparison. Complete oracle functions may be
defined by having the expected output model at hand acting as a reference
model for analysing the actual output model of a transformation as proposed
in [31,36,37]. Model comparison frameworks are employed for computing a
difference model between the expected and the actual output models. If there
are differences then there is an error. However, reasoning about the cause
for the mismatch solely based on the difference model (comprising differences
such as additions, deletions, movements and updates of model elements) is
challenging. Even more aggravating, several elements in the difference model
may be caused by the same error, however, the transformation engineer has
the burden to cluster the differences by himself. For large test input models
expecting large output models, this approach seems unfeasible in practice, and
partial oracle functions are more appropriate.

Verification by trace analysis. A complementary approach to model
transformation testing has been proposed in [28] by using a generic oracle

function. The idea of this approach is that the traces between the source

38 Esther Guerra et al.

and target models of a transformation should be similar to existing example
traces. In particular, the oracle function checks how large a derivation of the
generated traces of a model transformation from existing traces in the example
base is. While this approach assumes that traces between source and target
models exist, our approach aims at scenarios where no traces and even no
corresponding target models for source models are available.

In [1], the authors use traces to trace back from a faulty output element the
transformation rules causing the error. This idea can be incorporated into our
framework, by the manual annotation of the transformation implementation
rules with the invariants they are concerned with, as we did in [22].

Verification by contract. Contracts [39] are a well-established technique
in software engineering to verify object-oriented programs [35]. Inspired by
this work, contracts have also been applied for the verification of model trans-
formations in previous research. In the following, we elaborate on several ap-
proaches proposed for verifying model transformations using contracts, divided
into (i) OCL based, (ii) graph pattern based and (iii) model-fragment based
approaches.

OCL based approaches. The first approach using contracts for model trans-
formations was proposed by Cariou et al. [11,12]. The authors suggest imple-
menting transformations with OCL. In this way, the source metamodel classes
are provided with operations, which may comprise preconditions, postcon-
ditions and invariants. Although OCL natively supports design-by-contract,
OCL is not intended to specify transformations and relationships between
models. Thus, the authors propose an extension for OCL that allows defining
mappings between input and output model elements.

A similar approach for defining contracts with OCL has been proposed
in [40]. Besides other aspects, Kuester et al. [34] also agree on the use of
OCL for the definition of transformation specific constraints for the produced
output models. In [30], the authors propose the Epsilon Unit Testing Language
to test model management operations. The language permits defining test
operations where post-conditions for the model transformation under test may
be specified. In a similar vein, Giner and Pelechano [19] propose a Test-Driven
approach to the construction of model transformations. Thus, requirements
for the transformation are captured in the form of test cases made of an input
model together with output fragments and OCL assertions. Finally, in [20], a
mechanism is presented to define properties for source models, target models,
and source-target relationships as contracts expressed in OCL.

Graph pattern based approaches. In [2], the authors propose to use the pat-
terns supported by the VIATRA2 tool to specify contracts for model transfor-
mations. However, their patterns operate on one model only, being therefore
usable to specify pre- and postconditions, but not transformation invariants.

Model-fragment based approaches. A special form of verification by con-
tract was presented in [41]. Based on [45], the authors propose to use model
fragments for defining properties which are expected for an output model pro-
duced from a specific input model. For verifying these properties, the model
fragments are matched on the produced output model. This approach is differ-

Automated Verification of Model Transformations based on Visual Contracts 39

ent from the previous ones, which propose using generic contracts solely defined
on the metamodel level and not specific to a concrete test input model. The
advantage of using model fragments is to support a user-friendly specification
of test cases by reusing the graphical modeling editors, but this benefit comes
with the price that the constraints are described at the model level. Thus, they
have to be defined for each particular test input model.

As in our proposal, all mentioned approaches (except the model-fragment
based ones) define contracts based on the metamodel of the input and output
models. However, the ones based on OCL usually lead to complex constraints,
difficult to write in practice, and yielding verbose specifications [12], especially
for the specification of relations between input and output models.

Finally, contracts have been used as oracle functions for testing object-
oriented systems [8,50]. In particular, these works aim at evaluating the diag-

nosability and the robustness or vigilance of systems provided with contracts.
Vigilance refers to the degree in which contracts can detect faults in the run-
ning system. Diagnosability is related to the ease with which the faulty state-
ments are found given a program failure. A relevant question is the level of
detail required in contracts to find a significant number of failures and obtain
high vigilance. Interestingly, both works agree that even contracts with low
level of detail are good enough to find over 80% of software failures, being a
good substitute for hand-crafted test oracle functions.

9.1 Contributions of PaMoMo and Discussion

Even though the community is spending considerable research effort on the
verification and testing of transformations, and some approaches based on con-
tracts have emerged, there is still the need for a high-level language able to
express transformation properties. Therefore, in order to facilitate the spec-
ification of contracts, we proposed in this paper a visual language to define
transformation contracts which induces several advantages.

First, our language is visual and enables a succinct expression of graph pat-
terns, which otherwise would need to be encoded using navigation expressions
in OCL, or complex expressions in the case of our notation for sets. This is
illustrated in Fig. 41, which shows a positive invariant and the equivalent OCL
expression for it (based on [22]). In particular, the OCL expression needs to
include nested forAll clauses iterating over all instances of the source classes,
and additional nested exists clauses checking the existence of appropriate ob-
jects in the target. Second, the semantics of our patterns is bidirectional, hence
the same invariant may be used to verify a forward and a backward transfor-
mation. In contrast, using OCL one would need to encode differently the same
invariant, iterating first the source elements with forAll clauses and then the
target elements with exists clauses, or vice-versa. Although QVT-R (and other
bidirectional languages) does not suffer from this drawback, we have seen that
PaMoMo is more suitable (more succinct) than QVT-R to express contracts,
most of all concerning the expression of negative information (a negative pat-

40 Esther Guerra et al.

c: Class

P(InheritedAttributes)

p: Class

a: Attribute
name=A c.ancestors‐>includes(p)

t:Table

co:Column

name=A

Class Relational
pa: Package

s: Schema

isPersistent = true
name=C

name=C

uml::Package.allInstances->forAll(pa |
uml::Class.allInstances->forAll(p |
pa.classes->includes(p)
implies

uml::Attribute.allInstances->forAll(a |
p.attributes->includes(a)
implies

uml::Class.allInstances->forAll(c |
(pa.classes->includes(c) and
c.ancestors->includes(p) and
c.isPersistent = true and p<>c)
implies

rel::Schema.allInstances->exists(s |
rel::Table.allInstances->exists(t |
s.tables->includes(t) and
rel::Column.allInstances->exists(co |
t.columns->includes(co) and
c.name = t.name and
a.name = co.name)))))))

OCL

Fig. 41 Positive invariant, and equivalent OCL code for its forward interpretation

tern produces two QVT relations), or enabling/disabling conditions (which
generates additional QVT relations invoked from another relation).

Third, PaMoMo’s formal semantics enables also reasoning about meta-
model coverage, redundancies, contradictions and pattern satisfaction. Fourth,
the specification of the contracts is completely decoupled from the transforma-
tion implementation. This means that the contracts are independent from the
specified transformation rules and from the trace model of a specific transfor-
mation execution. Finally, the translation of the contracts to QVT-R allows for
dedicated feedback in terms of the model elements not satisfying a particular
contract. By using a pure OCL-based approach, only true or false is given back
as answer to the user, but no further information is accessible in standard OCL
environments (see Fig. 41). Hence, our approach provides better support for
diagnosability than an approach based solely on OCL. In contrast to model-
fragmentation, our approach allows the definition of the contracts with a visual
language but we refrain from defining the contracts for a particular test input
model.

Regarding the scalability of our approach, it depends on the size of the
tested input and output models as well as on the size of the patterns, as we
rely on a pattern matching mechanism. Thus, the smaller the models and
patterns, the higher the performance. The size or complexity of the tested
transformation implementation is not an issue though.

Some works report some limitations regarding the kind of failures that
contracts can detect [50]. For example, in object oriented systems, method
pre- and postconditions have difficulties in reasoning about the global state
of an object or set of objects, as they are specified locally. For example, a
prune method of a stack cannot define a trivial local contract checking if
the removed element was previously inserted by a put method [50]. In con-
trast, transformation contracts are not specified at the rule level – as they
are language-independent – and hence can be used to specify global transfor-
mation properties. In [50], it is argued that detecting certain failures requires
overly complex contracts, more than the method implementation itself. In our
case, contracts can be made more precise by: (a) enriching a pattern with en-
abling or disabling conditions, (b) adding more objects to the source or target

Automated Verification of Model Transformations based on Visual Contracts 41

compartments of a pattern, or (c) adding new patterns to the contract. It is
up to future work to investigate the degree in which more complex contracts
increase the effectiveness for failure detection (as in [8,50]).

Finally, the kind of failures PaMoMo can detect is related to its expres-
siveness. There are some limitations concerning the specification of contextual
conditions for a given property, as currently patterns support conjunction of
disabling conditions but not disjunction or arbitrary boolean formulae over
disabling conditions, or nested (i.e., recursive) conditions. The expresiveness
of the graphical part of our patterns is limited (less than first-order logic). For
example, we cannot model the absence of cycles of a given relation graphi-
cally. Nonetheless, in practice, we have found the expressiveness of PaMoMo

to be enough to build useful contracts declaring interesting properties for our
transformations, as we have shown in Section 8.

10 Conclusion and Future Work

Transformations should be developed using sound engineering principles. For
this purpose, and based on the well-known design by contract paradigm, we
have presented a visual, declarative language called PaMoMo to specify be-
havioral semantic contracts for M2M transformations in an implementation-
independent way.

PaMoMo allows in a first step the specification of preconditions, i.e., con-
ditions that need to be satisfied by input models to qualify for a transfor-
mation. Second, invariants are used to specify conditions that any pair of
input/output models resulting from a correct transformation has to fulfill. Fi-
nally, postconditions are used to express required or forbidden configurations
of elements in the output models. In order to make these declarative contracts
operational, we reported on their compilation into check-only QVT-R trans-
formations to check for conformance with respect to the specified contracts.
Finally, a prototypical implementation was presented enabling the visual speci-
fication of contracts, their automatic compilation into QVT-R, and its chaining
with the execution of the transformation under test. Several case studies were
reported, showing the versatility of our approach.

In the future, we intend to work towards better facilities for error location
(diagnosability) in the transformation implementation. In addition to anno-
tating the implementation rules with the addressed invariants, a more complex
but also more user friendly approach might be to employ heuristics exploiting
trace information provided by the execution engines. This trace information
might be matched with the error bindings provided by QVT-R to conclude on
the rules causing the error. We also plan to study to which degree more de-
tailed contracts (e.g., patterns with enabling or disabling conditions) improve
failure detection in transformation testing. We are also investigating the use
of the formal semantics of the contracts to analyse the compatibilities of indi-
vidual transformations in a transformation chain. We also plan to extend the
expressive power of PaMoMo, to use it for expressing contracts for in-place

42 Esther Guerra et al.

transformations, and to develop additional reasoning rules that help designers
in building better contracts, e.g., by detecting mismatches between a contract
and the metamodel constraints of the involved languages. It could be also
interesting to integrate PaMoMo with our transformation engineering lan-
guage transML [23] in order to apply the presented contract-based approach
to industrial case studies. Moreover, our compilation into QVT-R opens the
door to use PaMoMo not only as a specification language for contracts, but
also as an executable, high level language to specify the actual transformation
behavior. Finally, regarding tool support, we are working towards the use of
the concrete syntax of models in PaMoMo specifications.

References

1. V. Aranega, J.-M. Mottu, A. Etien, and J.-L. Dekeyser. Using trace to situate errors in
model transformations. In Software and Data Technologies, volume 50 of Communica-
tions in Computer and Information Science, pages 137–149. Springer, 2011.

2. A. Balogh, G. Bergmann, G. Csertán, L. Gönczy, Á. Horváth, I. Majzik, A. Pataricza,
B. Polgár, I. Ráth, D. Varró, and G. Varró. Workflow-driven tool integration using model
transformations. In Graph Transformations and Model-Driven Engineering, volume
5765 of LNCS, pages 224–248. Springer, 2010.

3. B. Baudry, T. Dinh-Trong, J. Mottu, D. Simmonds, R. France, S. Ghosh, F. Fleurey,
and Y. Le Traon. Model transformation testing challenges. In ECMDA Workshop on
Integration of Model Driven Development and Model Driven Testing, volume 92, 2006.

4. B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon, and J.-M. Mottu. Barriers
to systematic model transformation testing. Communication of the ACM, 53:139–143,
2010.

5. A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making components con-
tract aware. Computer, 32:38–45, 1999.

6. J. Bézivin. On the unification power of models. Software and Systems Modeling, 4(2):31,
2005.

7. J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt. Model Transformations in Practice
Workshop of MoDELS’05, 2005.

8. L. C. Briand, Y. Labiche, and H. Sun. Investigating the use of analysis contracts to
improve the testability of object-oriented code. Softw., Pract. Exper., 33(7):637–672,
2003.

9. E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. L. Traon. Metamodel-based test
generation for model transformations: an algorithm and a tool. In ISSRE’06, pages
85–94. IEEE CS, 2006.

10. J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. Verification and validation of declarative
model-to-model transformations through invariants. Journal of Systems and Software,
83(2):283–302, 2010.

11. E. Cariou, N. Belloir, F. Barbier, and N. Djemam. OCL contracts for the verification
of model transformations. ECEASST, 24, 2009.

12. E. Cariou, R. Marvie, L. Seinturier, and L. Duchien. OCL for the specification of
model transformation contracts. In Workshop on OCL and Model Driven Engineering
@ UML’04, volume 12, pages 69–83, 2004.

13. K. Czarnecki and S. Helsen. Feature-based survey of model transformation approaches.
IBM Systems Journal, 45(3):621–645, 2006.

14. EMF. Eclipse Modeling Framework. www.eclipse.org/emf. Last accessed: July 2011.
15. G. S. Fishman. Discrete-Event Simulation: Modeling, Programming, and Analysis.

Springer, 2001.
16. F. Fleurey, B. Baudry, P.-A. Muller, and Y. Traon. Qualifying input test data for model

transformations. Software and Systems Modeling, 8:185–203, 2009.

Automated Verification of Model Transformations based on Visual Contracts 43

17. F. Fleurey, J. Steel, and B. Baudry. Validation in model-driven engineering: testing
model transformations. In MoDeVa’04, pages 29–40. IEEE CS, 2004.

18. R. France and B. Rumpe. Model-driven development of complex software: A research
roadmap. In FOSE’07, pages 37–54. IEEE CS, 2007.

19. P. Giner and V. Pelechano. Test-driven development of model transformations. In
MODELS’09, volume 5795 of LNCS, pages 748–752. Springer, 2009.

20. M. Gogolla and A. Vallecillo. Tractable model transformation testing. In ECMFA’11,
volume 6698 of LNCS, pages 221–235. Springer, 2011.

21. R. C. Gronback. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.
Addison-Wesley Professional, 2009. See also http://www.eclipse.org/modeling/gmp/.

22. E. Guerra, J. de Lara, D. S. Kolovos, and R. F. Paige. A visual specification language
for model-to-model transformations. In VL/HCC, pages 119–126. IEEE CS, 2010.

23. E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige, and O. M. dos Santos. Engineering
model transformations with transML. Software and Systems Modeling, In press, 2011.

24. D. Jackson. Software Abstractions. Logic, Language, and Analysis. MIT Press, 2006.
25. K. Jensen. Coloured Petri nets basic concepts, analysis methods and practical use

(Monographs in theoretical computer science). Springer, 1997.
26. K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri nets and CPN tools for

modelling and validation of concurrent systems. STTT, 9(3-4):213–254, 2007.
27. F. Jouault and I. Kurtev. Transforming models with ATL. In Model Transformations

in Practice Workshop, 2005.
28. M. Kessentini, H. A. Sahraoui, and M. Boukadoum. Example-based model-

transformation testing. Autom. Softw. Eng., 18(2):199–224, 2011.
29. D. Kolovos, R. Paige, and F. Polack. The Epsilon Transformation Language. In

ICMT’08, volume 5063 of LNCS, pages 46–60. Springer, 2008.
30. D. Kolovos, R. Paige, L. Rose, and F. Polack. Unit testing model management opera-

tions. In ICSTW’08, pages 97–104. IEEE CS, 2008.
31. D. S. Kolovos, R. F. Paige, and F. A. Polack. Model comparison: a foundation for model

composition and model transformation testing. In GaMMa’06, pages 13–20. ACM, 2006.
32. T. Kühne. Matters of (meta-)modeling. Software and Systems Modeling, 5(4):369–385,

2006.
33. J. M. Küster. Definition and validation of model transformations. Software and Systems

Modeling, 5(3):233–259, 2006.
34. J. M. Küster and M. Abd-El-Razik. Validation of model transformations - first experi-

ences using a white box approach. In Models in Software Engineering, volume 4364 of
LNCS, pages 193–204. Springer, 2006.

35. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design of JML
accommodates both runtime assertion checking and formal verification. Sci. Comput.
Program., 55(1-3):185–208, 2005.

36. Y. Lin, J. Zhang, and J. Gray. Model comparison: A key challenge for transforma-
tion testing and version control in model driven software development. In OOPSLA
Workshop on Best Practices for Model-Driven Software Development, 2004.

37. Y. Lin, J. Zhang, and J. Gray. A testing framework for model transformations. Model-
Driven Software Development, pages 219–236, 2005.

38. T. Mens and P. Van Gorp. A taxonomy of model transformation. ENTCS, 152:125–142,
2006.

39. B. Meyer. Applying “design by contract”. Computer, 25:40–51, 1992.
40. J.-M. Mottu, B. Baudry, and Y. Le Traon. Reusable MDA components: A testing-

for-trust approach. In MoDELS’06, volume 4199 of LNCS, pages 589–603. Springer,
2006.

41. J.-M. Mottu, B. Baudry, and Y. L. Traon. Model transformation testing: oracle issue.
In ICSTW’08, pages 105–112. IEEE CS, 2008.

42. Object Management Group. OCL Specification Version 2.0. http://www.omg.org/docs/
ptc/05-06-06.pdf, 2005.

43. Object Management Group. QVT Specification Version 1.1. http://www.omg.org/

spec/QVT/1.1/, 2011.
44. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.

http://www.omg.org/spec/QVT/1.1/Beta2/PDF/, 2009.

44 Esther Guerra et al.

45. R. Ramos, O. Barais, and J.-M. Jézéquel. Matching model-snippets. In MoDELS’07,
volume 4735 of LNCS, pages 121–135. Springer, 2007.

46. D. C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25–31, 2006.
47. S. Sen, B. Baudry, and J.-M. Mottu. Automatic model generation strategies for model

transformation testing. In ICMT’09, volume 5563 of LNCS, pages 148–164. Springer,
2009.

48. J. M. Spivey. An introduction to Z and formal specifications. Softw. Eng. J., 4(1):40–50,
1989.

49. TATA Research Development and Design. ModelMorf. http://www.tcs-trddc.com/

trddc_website/ModelMorf/ModelMorf.htm. Last accessed: July 2011.
50. Y. L. Traon, B. Baudry, and J.-M. Jézéquel. Design by contract to improve software

vigilance. IEEE Trans. Software Eng., 32(8):571–586, 2006.
51. D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and G. Taentzer. Termination analysis

of model transformations by Petri nets. In ICGT’06, volume 4178 of LNCS, pages 260–
274. Springer, 2006.

52. Xpand. Xpand templates:. http://wiki.eclipse.org/Xpand. Last accessed: July 2011.

